Properties

Label 5994.2.a.bb.1.4
Level 59945994
Weight 22
Character 5994.1
Self dual yes
Analytic conductor 47.86247.862
Analytic rank 00
Dimension 1010
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5994,2,Mod(1,5994)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5994.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5994, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 5994=23437 5994 = 2 \cdot 3^{4} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5994.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,0,10,1,0,1,10,0,1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 47.862330971647.8623309716
Analytic rank: 00
Dimension: 1010
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x102x926x8+49x7+236x6420x5860x4+1461x3+993x21638x+99 x^{10} - 2x^{9} - 26x^{8} + 49x^{7} + 236x^{6} - 420x^{5} - 860x^{4} + 1461x^{3} + 993x^{2} - 1638x + 99 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 666)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 2.79044-2.79044 of defining polynomial
Character χ\chi == 5994.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+1.00000q40.949474q54.04317q7+1.00000q80.949474q101.82314q11+2.65283q134.04317q14+1.00000q16+7.58372q175.40297q190.949474q201.82314q22+3.54317q234.09850q25+2.65283q264.04317q28+2.25294q295.23080q31+1.00000q32+7.58372q34+3.83888q351.00000q375.40297q380.949474q402.42733q41+9.79523q431.82314q44+3.54317q46+1.51051q47+9.34719q494.09850q50+2.65283q524.98930q53+1.73102q554.04317q56+2.25294q5812.2070q59+1.61261q615.23080q62+1.00000q642.51879q65+9.03491q67+7.58372q68+3.83888q7010.3584q71+2.93156q731.00000q745.40297q76+7.37124q77+9.64020q790.949474q802.42733q82+5.29091q837.20054q85+9.79523q861.82314q88+15.0956q8910.7258q91+3.54317q92+1.51051q94+5.12997q95+9.33056q97+9.34719q98+O(q100)q+1.00000 q^{2} +1.00000 q^{4} -0.949474 q^{5} -4.04317 q^{7} +1.00000 q^{8} -0.949474 q^{10} -1.82314 q^{11} +2.65283 q^{13} -4.04317 q^{14} +1.00000 q^{16} +7.58372 q^{17} -5.40297 q^{19} -0.949474 q^{20} -1.82314 q^{22} +3.54317 q^{23} -4.09850 q^{25} +2.65283 q^{26} -4.04317 q^{28} +2.25294 q^{29} -5.23080 q^{31} +1.00000 q^{32} +7.58372 q^{34} +3.83888 q^{35} -1.00000 q^{37} -5.40297 q^{38} -0.949474 q^{40} -2.42733 q^{41} +9.79523 q^{43} -1.82314 q^{44} +3.54317 q^{46} +1.51051 q^{47} +9.34719 q^{49} -4.09850 q^{50} +2.65283 q^{52} -4.98930 q^{53} +1.73102 q^{55} -4.04317 q^{56} +2.25294 q^{58} -12.2070 q^{59} +1.61261 q^{61} -5.23080 q^{62} +1.00000 q^{64} -2.51879 q^{65} +9.03491 q^{67} +7.58372 q^{68} +3.83888 q^{70} -10.3584 q^{71} +2.93156 q^{73} -1.00000 q^{74} -5.40297 q^{76} +7.37124 q^{77} +9.64020 q^{79} -0.949474 q^{80} -2.42733 q^{82} +5.29091 q^{83} -7.20054 q^{85} +9.79523 q^{86} -1.82314 q^{88} +15.0956 q^{89} -10.7258 q^{91} +3.54317 q^{92} +1.51051 q^{94} +5.12997 q^{95} +9.33056 q^{97} +9.34719 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+10q2+10q4+q5+q7+10q8+q10+3q11+12q13+q14+10q16+12q17+24q19+q20+3q22+3q23+21q25+12q26+q28+4q29++35q98+O(q100) 10 q + 10 q^{2} + 10 q^{4} + q^{5} + q^{7} + 10 q^{8} + q^{10} + 3 q^{11} + 12 q^{13} + q^{14} + 10 q^{16} + 12 q^{17} + 24 q^{19} + q^{20} + 3 q^{22} + 3 q^{23} + 21 q^{25} + 12 q^{26} + q^{28} + 4 q^{29}+ \cdots + 35 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 0 0
44 1.00000 0.500000
55 −0.949474 −0.424617 −0.212309 0.977203i 0.568098π-0.568098\pi
−0.212309 + 0.977203i 0.568098π0.568098\pi
66 0 0
77 −4.04317 −1.52817 −0.764087 0.645114i 0.776810π-0.776810\pi
−0.764087 + 0.645114i 0.776810π0.776810\pi
88 1.00000 0.353553
99 0 0
1010 −0.949474 −0.300250
1111 −1.82314 −0.549696 −0.274848 0.961488i 0.588628π-0.588628\pi
−0.274848 + 0.961488i 0.588628π0.588628\pi
1212 0 0
1313 2.65283 0.735762 0.367881 0.929873i 0.380083π-0.380083\pi
0.367881 + 0.929873i 0.380083π0.380083\pi
1414 −4.04317 −1.08058
1515 0 0
1616 1.00000 0.250000
1717 7.58372 1.83932 0.919661 0.392714i 0.128464π-0.128464\pi
0.919661 + 0.392714i 0.128464π0.128464\pi
1818 0 0
1919 −5.40297 −1.23953 −0.619763 0.784789i 0.712771π-0.712771\pi
−0.619763 + 0.784789i 0.712771π0.712771\pi
2020 −0.949474 −0.212309
2121 0 0
2222 −1.82314 −0.388694
2323 3.54317 0.738802 0.369401 0.929270i 0.379563π-0.379563\pi
0.369401 + 0.929270i 0.379563π0.379563\pi
2424 0 0
2525 −4.09850 −0.819700
2626 2.65283 0.520262
2727 0 0
2828 −4.04317 −0.764087
2929 2.25294 0.418360 0.209180 0.977877i 0.432921π-0.432921\pi
0.209180 + 0.977877i 0.432921π0.432921\pi
3030 0 0
3131 −5.23080 −0.939479 −0.469739 0.882805i 0.655652π-0.655652\pi
−0.469739 + 0.882805i 0.655652π0.655652\pi
3232 1.00000 0.176777
3333 0 0
3434 7.58372 1.30060
3535 3.83888 0.648889
3636 0 0
3737 −1.00000 −0.164399
3838 −5.40297 −0.876477
3939 0 0
4040 −0.949474 −0.150125
4141 −2.42733 −0.379086 −0.189543 0.981872i 0.560701π-0.560701\pi
−0.189543 + 0.981872i 0.560701π0.560701\pi
4242 0 0
4343 9.79523 1.49376 0.746879 0.664959i 0.231551π-0.231551\pi
0.746879 + 0.664959i 0.231551π0.231551\pi
4444 −1.82314 −0.274848
4545 0 0
4646 3.54317 0.522412
4747 1.51051 0.220331 0.110166 0.993913i 0.464862π-0.464862\pi
0.110166 + 0.993913i 0.464862π0.464862\pi
4848 0 0
4949 9.34719 1.33531
5050 −4.09850 −0.579615
5151 0 0
5252 2.65283 0.367881
5353 −4.98930 −0.685333 −0.342666 0.939457i 0.611330π-0.611330\pi
−0.342666 + 0.939457i 0.611330π0.611330\pi
5454 0 0
5555 1.73102 0.233411
5656 −4.04317 −0.540291
5757 0 0
5858 2.25294 0.295825
5959 −12.2070 −1.58922 −0.794611 0.607119i 0.792325π-0.792325\pi
−0.794611 + 0.607119i 0.792325π0.792325\pi
6060 0 0
6161 1.61261 0.206473 0.103236 0.994657i 0.467080π-0.467080\pi
0.103236 + 0.994657i 0.467080π0.467080\pi
6262 −5.23080 −0.664312
6363 0 0
6464 1.00000 0.125000
6565 −2.51879 −0.312417
6666 0 0
6767 9.03491 1.10379 0.551895 0.833913i 0.313905π-0.313905\pi
0.551895 + 0.833913i 0.313905π0.313905\pi
6868 7.58372 0.919661
6969 0 0
7070 3.83888 0.458834
7171 −10.3584 −1.22932 −0.614658 0.788793i 0.710706π-0.710706\pi
−0.614658 + 0.788793i 0.710706π0.710706\pi
7272 0 0
7373 2.93156 0.343113 0.171557 0.985174i 0.445120π-0.445120\pi
0.171557 + 0.985174i 0.445120π0.445120\pi
7474 −1.00000 −0.116248
7575 0 0
7676 −5.40297 −0.619763
7777 7.37124 0.840031
7878 0 0
7979 9.64020 1.08461 0.542304 0.840182i 0.317552π-0.317552\pi
0.542304 + 0.840182i 0.317552π0.317552\pi
8080 −0.949474 −0.106154
8181 0 0
8282 −2.42733 −0.268054
8383 5.29091 0.580753 0.290376 0.956913i 0.406220π-0.406220\pi
0.290376 + 0.956913i 0.406220π0.406220\pi
8484 0 0
8585 −7.20054 −0.781008
8686 9.79523 1.05625
8787 0 0
8888 −1.82314 −0.194347
8989 15.0956 1.60013 0.800066 0.599912i 0.204798π-0.204798\pi
0.800066 + 0.599912i 0.204798π0.204798\pi
9090 0 0
9191 −10.7258 −1.12437
9292 3.54317 0.369401
9393 0 0
9494 1.51051 0.155798
9595 5.12997 0.526324
9696 0 0
9797 9.33056 0.947375 0.473688 0.880693i 0.342923π-0.342923\pi
0.473688 + 0.880693i 0.342923π0.342923\pi
9898 9.34719 0.944209
9999 0 0
100100 −4.09850 −0.409850
101101 7.69792 0.765972 0.382986 0.923754i 0.374896π-0.374896\pi
0.382986 + 0.923754i 0.374896π0.374896\pi
102102 0 0
103103 17.3840 1.71289 0.856446 0.516236i 0.172667π-0.172667\pi
0.856446 + 0.516236i 0.172667π0.172667\pi
104104 2.65283 0.260131
105105 0 0
106106 −4.98930 −0.484603
107107 9.97908 0.964714 0.482357 0.875975i 0.339781π-0.339781\pi
0.482357 + 0.875975i 0.339781π0.339781\pi
108108 0 0
109109 7.02860 0.673218 0.336609 0.941644i 0.390720π-0.390720\pi
0.336609 + 0.941644i 0.390720π0.390720\pi
110110 1.73102 0.165046
111111 0 0
112112 −4.04317 −0.382043
113113 12.7285 1.19740 0.598700 0.800973i 0.295684π-0.295684\pi
0.598700 + 0.800973i 0.295684π0.295684\pi
114114 0 0
115115 −3.36414 −0.313708
116116 2.25294 0.209180
117117 0 0
118118 −12.2070 −1.12375
119119 −30.6622 −2.81080
120120 0 0
121121 −7.67617 −0.697834
122122 1.61261 0.145998
123123 0 0
124124 −5.23080 −0.469739
125125 8.63878 0.772676
126126 0 0
127127 −2.00548 −0.177957 −0.0889786 0.996034i 0.528360π-0.528360\pi
−0.0889786 + 0.996034i 0.528360π0.528360\pi
128128 1.00000 0.0883883
129129 0 0
130130 −2.51879 −0.220912
131131 −5.60693 −0.489880 −0.244940 0.969538i 0.578768π-0.578768\pi
−0.244940 + 0.969538i 0.578768π0.578768\pi
132132 0 0
133133 21.8451 1.89421
134134 9.03491 0.780498
135135 0 0
136136 7.58372 0.650298
137137 −6.11247 −0.522224 −0.261112 0.965309i 0.584089π-0.584089\pi
−0.261112 + 0.965309i 0.584089π0.584089\pi
138138 0 0
139139 9.39268 0.796677 0.398338 0.917239i 0.369587π-0.369587\pi
0.398338 + 0.917239i 0.369587π0.369587\pi
140140 3.83888 0.324444
141141 0 0
142142 −10.3584 −0.869258
143143 −4.83647 −0.404446
144144 0 0
145145 −2.13911 −0.177643
146146 2.93156 0.242618
147147 0 0
148148 −1.00000 −0.0821995
149149 5.31790 0.435659 0.217830 0.975987i 0.430102π-0.430102\pi
0.217830 + 0.975987i 0.430102π0.430102\pi
150150 0 0
151151 4.07823 0.331882 0.165941 0.986136i 0.446934π-0.446934\pi
0.165941 + 0.986136i 0.446934π0.446934\pi
152152 −5.40297 −0.438238
153153 0 0
154154 7.37124 0.593992
155155 4.96650 0.398919
156156 0 0
157157 22.3662 1.78502 0.892509 0.451029i 0.148943π-0.148943\pi
0.892509 + 0.451029i 0.148943π0.148943\pi
158158 9.64020 0.766933
159159 0 0
160160 −0.949474 −0.0750625
161161 −14.3256 −1.12902
162162 0 0
163163 −3.87053 −0.303164 −0.151582 0.988445i 0.548437π-0.548437\pi
−0.151582 + 0.988445i 0.548437π0.548437\pi
164164 −2.42733 −0.189543
165165 0 0
166166 5.29091 0.410654
167167 17.2998 1.33870 0.669349 0.742948i 0.266573π-0.266573\pi
0.669349 + 0.742948i 0.266573π0.266573\pi
168168 0 0
169169 −5.96251 −0.458654
170170 −7.20054 −0.552256
171171 0 0
172172 9.79523 0.746879
173173 10.2202 0.777029 0.388515 0.921443i 0.372988π-0.372988\pi
0.388515 + 0.921443i 0.372988π0.372988\pi
174174 0 0
175175 16.5709 1.25264
176176 −1.82314 −0.137424
177177 0 0
178178 15.0956 1.13146
179179 −21.1620 −1.58172 −0.790861 0.611995i 0.790367π-0.790367\pi
−0.790861 + 0.611995i 0.790367π0.790367\pi
180180 0 0
181181 −9.76447 −0.725787 −0.362894 0.931831i 0.618211π-0.618211\pi
−0.362894 + 0.931831i 0.618211π0.618211\pi
182182 −10.7258 −0.795051
183183 0 0
184184 3.54317 0.261206
185185 0.949474 0.0698067
186186 0 0
187187 −13.8262 −1.01107
188188 1.51051 0.110166
189189 0 0
190190 5.12997 0.372167
191191 8.02147 0.580413 0.290206 0.956964i 0.406276π-0.406276\pi
0.290206 + 0.956964i 0.406276π0.406276\pi
192192 0 0
193193 12.2955 0.885050 0.442525 0.896756i 0.354083π-0.354083\pi
0.442525 + 0.896756i 0.354083π0.354083\pi
194194 9.33056 0.669896
195195 0 0
196196 9.34719 0.667656
197197 23.3938 1.66674 0.833370 0.552715i 0.186408π-0.186408\pi
0.833370 + 0.552715i 0.186408π0.186408\pi
198198 0 0
199199 9.00271 0.638185 0.319092 0.947724i 0.396622π-0.396622\pi
0.319092 + 0.947724i 0.396622π0.396622\pi
200200 −4.09850 −0.289808
201201 0 0
202202 7.69792 0.541624
203203 −9.10901 −0.639327
204204 0 0
205205 2.30469 0.160966
206206 17.3840 1.21120
207207 0 0
208208 2.65283 0.183941
209209 9.85034 0.681363
210210 0 0
211211 23.8522 1.64205 0.821025 0.570892i 0.193402π-0.193402\pi
0.821025 + 0.570892i 0.193402π0.193402\pi
212212 −4.98930 −0.342666
213213 0 0
214214 9.97908 0.682156
215215 −9.30031 −0.634276
216216 0 0
217217 21.1490 1.43569
218218 7.02860 0.476037
219219 0 0
220220 1.73102 0.116705
221221 20.1183 1.35330
222222 0 0
223223 −10.7527 −0.720052 −0.360026 0.932942i 0.617232π-0.617232\pi
−0.360026 + 0.932942i 0.617232π0.617232\pi
224224 −4.04317 −0.270145
225225 0 0
226226 12.7285 0.846689
227227 1.16889 0.0775819 0.0387910 0.999247i 0.487649π-0.487649\pi
0.0387910 + 0.999247i 0.487649π0.487649\pi
228228 0 0
229229 17.5125 1.15726 0.578628 0.815592i 0.303588π-0.303588\pi
0.578628 + 0.815592i 0.303588π0.303588\pi
230230 −3.36414 −0.221825
231231 0 0
232232 2.25294 0.147913
233233 13.6563 0.894657 0.447328 0.894370i 0.352376π-0.352376\pi
0.447328 + 0.894370i 0.352376π0.352376\pi
234234 0 0
235235 −1.43419 −0.0935565
236236 −12.2070 −0.794611
237237 0 0
238238 −30.6622 −1.98754
239239 −20.0715 −1.29832 −0.649160 0.760652i 0.724879π-0.724879\pi
−0.649160 + 0.760652i 0.724879π0.724879\pi
240240 0 0
241241 3.04219 0.195964 0.0979822 0.995188i 0.468761π-0.468761\pi
0.0979822 + 0.995188i 0.468761π0.468761\pi
242242 −7.67617 −0.493443
243243 0 0
244244 1.61261 0.103236
245245 −8.87491 −0.566997
246246 0 0
247247 −14.3331 −0.911996
248248 −5.23080 −0.332156
249249 0 0
250250 8.63878 0.546365
251251 −30.0821 −1.89877 −0.949383 0.314121i 0.898290π-0.898290\pi
−0.949383 + 0.314121i 0.898290π0.898290\pi
252252 0 0
253253 −6.45968 −0.406117
254254 −2.00548 −0.125835
255255 0 0
256256 1.00000 0.0625000
257257 −30.0228 −1.87277 −0.936384 0.350976i 0.885850π-0.885850\pi
−0.936384 + 0.350976i 0.885850π0.885850\pi
258258 0 0
259259 4.04317 0.251230
260260 −2.51879 −0.156209
261261 0 0
262262 −5.60693 −0.346397
263263 5.85068 0.360768 0.180384 0.983596i 0.442266π-0.442266\pi
0.180384 + 0.983596i 0.442266π0.442266\pi
264264 0 0
265265 4.73721 0.291004
266266 21.8451 1.33941
267267 0 0
268268 9.03491 0.551895
269269 −13.2488 −0.807794 −0.403897 0.914804i 0.632345π-0.632345\pi
−0.403897 + 0.914804i 0.632345π0.632345\pi
270270 0 0
271271 28.1980 1.71290 0.856452 0.516227i 0.172664π-0.172664\pi
0.856452 + 0.516227i 0.172664π0.172664\pi
272272 7.58372 0.459830
273273 0 0
274274 −6.11247 −0.369268
275275 7.47213 0.450586
276276 0 0
277277 16.5354 0.993513 0.496756 0.867890i 0.334524π-0.334524\pi
0.496756 + 0.867890i 0.334524π0.334524\pi
278278 9.39268 0.563336
279279 0 0
280280 3.83888 0.229417
281281 20.5622 1.22664 0.613319 0.789835i 0.289834π-0.289834\pi
0.613319 + 0.789835i 0.289834π0.289834\pi
282282 0 0
283283 −28.6982 −1.70593 −0.852966 0.521967i 0.825199π-0.825199\pi
−0.852966 + 0.521967i 0.825199π0.825199\pi
284284 −10.3584 −0.614658
285285 0 0
286286 −4.83647 −0.285986
287287 9.81411 0.579308
288288 0 0
289289 40.5127 2.38310
290290 −2.13911 −0.125613
291291 0 0
292292 2.93156 0.171557
293293 −12.4437 −0.726969 −0.363484 0.931600i 0.618413π-0.618413\pi
−0.363484 + 0.931600i 0.618413π0.618413\pi
294294 0 0
295295 11.5903 0.674811
296296 −1.00000 −0.0581238
297297 0 0
298298 5.31790 0.308058
299299 9.39941 0.543582
300300 0 0
301301 −39.6037 −2.28272
302302 4.07823 0.234676
303303 0 0
304304 −5.40297 −0.309881
305305 −1.53113 −0.0876720
306306 0 0
307307 0.945546 0.0539652 0.0269826 0.999636i 0.491410π-0.491410\pi
0.0269826 + 0.999636i 0.491410π0.491410\pi
308308 7.37124 0.420016
309309 0 0
310310 4.96650 0.282078
311311 −0.353447 −0.0200422 −0.0100211 0.999950i 0.503190π-0.503190\pi
−0.0100211 + 0.999950i 0.503190π0.503190\pi
312312 0 0
313313 13.2578 0.749376 0.374688 0.927151i 0.377750π-0.377750\pi
0.374688 + 0.927151i 0.377750π0.377750\pi
314314 22.3662 1.26220
315315 0 0
316316 9.64020 0.542304
317317 11.3256 0.636111 0.318055 0.948072i 0.396970π-0.396970\pi
0.318055 + 0.948072i 0.396970π0.396970\pi
318318 0 0
319319 −4.10742 −0.229971
320320 −0.949474 −0.0530772
321321 0 0
322322 −14.3256 −0.798335
323323 −40.9746 −2.27989
324324 0 0
325325 −10.8726 −0.603104
326326 −3.87053 −0.214369
327327 0 0
328328 −2.42733 −0.134027
329329 −6.10726 −0.336704
330330 0 0
331331 −26.7870 −1.47235 −0.736174 0.676792i 0.763370π-0.763370\pi
−0.736174 + 0.676792i 0.763370π0.763370\pi
332332 5.29091 0.290376
333333 0 0
334334 17.2998 0.946603
335335 −8.57841 −0.468689
336336 0 0
337337 −20.0579 −1.09262 −0.546310 0.837583i 0.683968π-0.683968\pi
−0.546310 + 0.837583i 0.683968π0.683968\pi
338338 −5.96251 −0.324318
339339 0 0
340340 −7.20054 −0.390504
341341 9.53646 0.516428
342342 0 0
343343 −9.49008 −0.512416
344344 9.79523 0.528124
345345 0 0
346346 10.2202 0.549443
347347 −16.2126 −0.870335 −0.435168 0.900349i 0.643311π-0.643311\pi
−0.435168 + 0.900349i 0.643311π0.643311\pi
348348 0 0
349349 −17.3932 −0.931038 −0.465519 0.885038i 0.654132π-0.654132\pi
−0.465519 + 0.885038i 0.654132π0.654132\pi
350350 16.5709 0.885753
351351 0 0
352352 −1.82314 −0.0971735
353353 −12.6778 −0.674772 −0.337386 0.941366i 0.609543π-0.609543\pi
−0.337386 + 0.941366i 0.609543π0.609543\pi
354354 0 0
355355 9.83503 0.521989
356356 15.0956 0.800066
357357 0 0
358358 −21.1620 −1.11845
359359 −15.4716 −0.816560 −0.408280 0.912857i 0.633871π-0.633871\pi
−0.408280 + 0.912857i 0.633871π0.633871\pi
360360 0 0
361361 10.1920 0.536423
362362 −9.76447 −0.513209
363363 0 0
364364 −10.7258 −0.562186
365365 −2.78344 −0.145692
366366 0 0
367367 −17.9237 −0.935611 −0.467805 0.883832i 0.654955π-0.654955\pi
−0.467805 + 0.883832i 0.654955π0.654955\pi
368368 3.54317 0.184700
369369 0 0
370370 0.949474 0.0493608
371371 20.1726 1.04731
372372 0 0
373373 −20.8143 −1.07772 −0.538862 0.842394i 0.681146π-0.681146\pi
−0.538862 + 0.842394i 0.681146π0.681146\pi
374374 −13.8262 −0.714933
375375 0 0
376376 1.51051 0.0778988
377377 5.97666 0.307814
378378 0 0
379379 −24.4311 −1.25494 −0.627472 0.778639i 0.715910π-0.715910\pi
−0.627472 + 0.778639i 0.715910π0.715910\pi
380380 5.12997 0.263162
381381 0 0
382382 8.02147 0.410414
383383 17.3044 0.884216 0.442108 0.896962i 0.354231π-0.354231\pi
0.442108 + 0.896962i 0.354231π0.354231\pi
384384 0 0
385385 −6.99880 −0.356692
386386 12.2955 0.625825
387387 0 0
388388 9.33056 0.473688
389389 −5.49088 −0.278399 −0.139199 0.990264i 0.544453π-0.544453\pi
−0.139199 + 0.990264i 0.544453π0.544453\pi
390390 0 0
391391 26.8704 1.35889
392392 9.34719 0.472104
393393 0 0
394394 23.3938 1.17856
395395 −9.15312 −0.460543
396396 0 0
397397 26.3543 1.32269 0.661343 0.750084i 0.269987π-0.269987\pi
0.661343 + 0.750084i 0.269987π0.269987\pi
398398 9.00271 0.451265
399399 0 0
400400 −4.09850 −0.204925
401401 −30.3957 −1.51789 −0.758945 0.651154i 0.774285π-0.774285\pi
−0.758945 + 0.651154i 0.774285π0.774285\pi
402402 0 0
403403 −13.8764 −0.691233
404404 7.69792 0.382986
405405 0 0
406406 −9.10901 −0.452072
407407 1.82314 0.0903695
408408 0 0
409409 2.75587 0.136269 0.0681345 0.997676i 0.478295π-0.478295\pi
0.0681345 + 0.997676i 0.478295π0.478295\pi
410410 2.30469 0.113820
411411 0 0
412412 17.3840 0.856446
413413 49.3551 2.42861
414414 0 0
415415 −5.02358 −0.246598
416416 2.65283 0.130066
417417 0 0
418418 9.85034 0.481796
419419 −27.7422 −1.35529 −0.677647 0.735387i 0.737000π-0.737000\pi
−0.677647 + 0.735387i 0.737000π0.737000\pi
420420 0 0
421421 −18.9114 −0.921686 −0.460843 0.887482i 0.652453π-0.652453\pi
−0.460843 + 0.887482i 0.652453π0.652453\pi
422422 23.8522 1.16111
423423 0 0
424424 −4.98930 −0.242302
425425 −31.0819 −1.50769
426426 0 0
427427 −6.52003 −0.315526
428428 9.97908 0.482357
429429 0 0
430430 −9.30031 −0.448501
431431 −38.0148 −1.83111 −0.915555 0.402192i 0.868248π-0.868248\pi
−0.915555 + 0.402192i 0.868248π0.868248\pi
432432 0 0
433433 −36.4405 −1.75122 −0.875609 0.483021i 0.839539π-0.839539\pi
−0.875609 + 0.483021i 0.839539π0.839539\pi
434434 21.1490 1.01518
435435 0 0
436436 7.02860 0.336609
437437 −19.1436 −0.915763
438438 0 0
439439 21.3279 1.01793 0.508963 0.860789i 0.330029π-0.330029\pi
0.508963 + 0.860789i 0.330029π0.330029\pi
440440 1.73102 0.0825231
441441 0 0
442442 20.1183 0.956930
443443 8.11476 0.385544 0.192772 0.981244i 0.438252π-0.438252\pi
0.192772 + 0.981244i 0.438252π0.438252\pi
444444 0 0
445445 −14.3329 −0.679444
446446 −10.7527 −0.509154
447447 0 0
448448 −4.04317 −0.191022
449449 −11.0770 −0.522757 −0.261378 0.965236i 0.584177π-0.584177\pi
−0.261378 + 0.965236i 0.584177π0.584177\pi
450450 0 0
451451 4.42536 0.208382
452452 12.7285 0.598700
453453 0 0
454454 1.16889 0.0548587
455455 10.1839 0.477428
456456 0 0
457457 18.4871 0.864788 0.432394 0.901685i 0.357669π-0.357669\pi
0.432394 + 0.901685i 0.357669π0.357669\pi
458458 17.5125 0.818304
459459 0 0
460460 −3.36414 −0.156854
461461 13.6124 0.633991 0.316996 0.948427i 0.397326π-0.397326\pi
0.316996 + 0.948427i 0.397326π0.397326\pi
462462 0 0
463463 −7.87343 −0.365909 −0.182955 0.983121i 0.558566π-0.558566\pi
−0.182955 + 0.983121i 0.558566π0.558566\pi
464464 2.25294 0.104590
465465 0 0
466466 13.6563 0.632618
467467 7.42635 0.343650 0.171825 0.985127i 0.445034π-0.445034\pi
0.171825 + 0.985127i 0.445034π0.445034\pi
468468 0 0
469469 −36.5297 −1.68678
470470 −1.43419 −0.0661544
471471 0 0
472472 −12.2070 −0.561875
473473 −17.8580 −0.821114
474474 0 0
475475 22.1441 1.01604
476476 −30.6622 −1.40540
477477 0 0
478478 −20.0715 −0.918050
479479 −24.5363 −1.12109 −0.560546 0.828123i 0.689409π-0.689409\pi
−0.560546 + 0.828123i 0.689409π0.689409\pi
480480 0 0
481481 −2.65283 −0.120959
482482 3.04219 0.138568
483483 0 0
484484 −7.67617 −0.348917
485485 −8.85912 −0.402272
486486 0 0
487487 22.7588 1.03130 0.515650 0.856800i 0.327551π-0.327551\pi
0.515650 + 0.856800i 0.327551π0.327551\pi
488488 1.61261 0.0729992
489489 0 0
490490 −8.87491 −0.400928
491491 34.1327 1.54039 0.770193 0.637811i 0.220160π-0.220160\pi
0.770193 + 0.637811i 0.220160π0.220160\pi
492492 0 0
493493 17.0856 0.769499
494494 −14.3331 −0.644878
495495 0 0
496496 −5.23080 −0.234870
497497 41.8808 1.87861
498498 0 0
499499 40.5029 1.81316 0.906580 0.422033i 0.138683π-0.138683\pi
0.906580 + 0.422033i 0.138683π0.138683\pi
500500 8.63878 0.386338
501501 0 0
502502 −30.0821 −1.34263
503503 2.32706 0.103758 0.0518792 0.998653i 0.483479π-0.483479\pi
0.0518792 + 0.998653i 0.483479π0.483479\pi
504504 0 0
505505 −7.30897 −0.325245
506506 −6.45968 −0.287168
507507 0 0
508508 −2.00548 −0.0889786
509509 −1.67955 −0.0744448 −0.0372224 0.999307i 0.511851π-0.511851\pi
−0.0372224 + 0.999307i 0.511851π0.511851\pi
510510 0 0
511511 −11.8528 −0.524337
512512 1.00000 0.0441942
513513 0 0
514514 −30.0228 −1.32425
515515 −16.5056 −0.727324
516516 0 0
517517 −2.75387 −0.121115
518518 4.04317 0.177647
519519 0 0
520520 −2.51879 −0.110456
521521 −14.0917 −0.617370 −0.308685 0.951164i 0.599889π-0.599889\pi
−0.308685 + 0.951164i 0.599889π0.599889\pi
522522 0 0
523523 14.8457 0.649159 0.324580 0.945858i 0.394777π-0.394777\pi
0.324580 + 0.945858i 0.394777π0.394777\pi
524524 −5.60693 −0.244940
525525 0 0
526526 5.85068 0.255102
527527 −39.6689 −1.72800
528528 0 0
529529 −10.4460 −0.454172
530530 4.73721 0.205771
531531 0 0
532532 21.8451 0.947105
533533 −6.43929 −0.278917
534534 0 0
535535 −9.47487 −0.409634
536536 9.03491 0.390249
537537 0 0
538538 −13.2488 −0.571197
539539 −17.0412 −0.734017
540540 0 0
541541 −25.4514 −1.09424 −0.547120 0.837054i 0.684276π-0.684276\pi
−0.547120 + 0.837054i 0.684276π0.684276\pi
542542 28.1980 1.21121
543543 0 0
544544 7.58372 0.325149
545545 −6.67347 −0.285860
546546 0 0
547547 −40.3821 −1.72662 −0.863308 0.504678i 0.831611π-0.831611\pi
−0.863308 + 0.504678i 0.831611π0.831611\pi
548548 −6.11247 −0.261112
549549 0 0
550550 7.47213 0.318613
551551 −12.1726 −0.518568
552552 0 0
553553 −38.9769 −1.65747
554554 16.5354 0.702520
555555 0 0
556556 9.39268 0.398338
557557 14.3391 0.607568 0.303784 0.952741i 0.401750π-0.401750\pi
0.303784 + 0.952741i 0.401750π0.401750\pi
558558 0 0
559559 25.9851 1.09905
560560 3.83888 0.162222
561561 0 0
562562 20.5622 0.867364
563563 4.16081 0.175357 0.0876785 0.996149i 0.472055π-0.472055\pi
0.0876785 + 0.996149i 0.472055π0.472055\pi
564564 0 0
565565 −12.0854 −0.508437
566566 −28.6982 −1.20628
567567 0 0
568568 −10.3584 −0.434629
569569 −14.1606 −0.593645 −0.296822 0.954933i 0.595927π-0.595927\pi
−0.296822 + 0.954933i 0.595927π0.595927\pi
570570 0 0
571571 −6.79736 −0.284461 −0.142230 0.989834i 0.545427π-0.545427\pi
−0.142230 + 0.989834i 0.545427π0.545427\pi
572572 −4.83647 −0.202223
573573 0 0
574574 9.81411 0.409633
575575 −14.5217 −0.605596
576576 0 0
577577 42.6431 1.77526 0.887628 0.460561i 0.152352π-0.152352\pi
0.887628 + 0.460561i 0.152352π0.152352\pi
578578 40.5127 1.68511
579579 0 0
580580 −2.13911 −0.0888215
581581 −21.3920 −0.887491
582582 0 0
583583 9.09617 0.376725
584584 2.93156 0.121309
585585 0 0
586586 −12.4437 −0.514045
587587 −2.93783 −0.121257 −0.0606286 0.998160i 0.519311π-0.519311\pi
−0.0606286 + 0.998160i 0.519311π0.519311\pi
588588 0 0
589589 28.2618 1.16451
590590 11.5903 0.477164
591591 0 0
592592 −1.00000 −0.0410997
593593 7.58214 0.311361 0.155681 0.987807i 0.450243π-0.450243\pi
0.155681 + 0.987807i 0.450243π0.450243\pi
594594 0 0
595595 29.1130 1.19352
596596 5.31790 0.217830
597597 0 0
598598 9.39941 0.384371
599599 12.4825 0.510021 0.255011 0.966938i 0.417921π-0.417921\pi
0.255011 + 0.966938i 0.417921π0.417921\pi
600600 0 0
601601 25.7914 1.05205 0.526027 0.850468i 0.323681π-0.323681\pi
0.526027 + 0.850468i 0.323681π0.323681\pi
602602 −39.6037 −1.61413
603603 0 0
604604 4.07823 0.165941
605605 7.28832 0.296312
606606 0 0
607607 41.7117 1.69303 0.846513 0.532368i 0.178698π-0.178698\pi
0.846513 + 0.532368i 0.178698π0.178698\pi
608608 −5.40297 −0.219119
609609 0 0
610610 −1.53113 −0.0619935
611611 4.00713 0.162111
612612 0 0
613613 −17.2841 −0.698099 −0.349049 0.937104i 0.613495π-0.613495\pi
−0.349049 + 0.937104i 0.613495π0.613495\pi
614614 0.945546 0.0381591
615615 0 0
616616 7.37124 0.296996
617617 33.3670 1.34330 0.671651 0.740867i 0.265585π-0.265585\pi
0.671651 + 0.740867i 0.265585π0.265585\pi
618618 0 0
619619 29.6455 1.19155 0.595776 0.803150i 0.296844π-0.296844\pi
0.595776 + 0.803150i 0.296844π0.296844\pi
620620 4.96650 0.199460
621621 0 0
622622 −0.353447 −0.0141719
623623 −61.0341 −2.44528
624624 0 0
625625 12.2902 0.491608
626626 13.2578 0.529889
627627 0 0
628628 22.3662 0.892509
629629 −7.58372 −0.302383
630630 0 0
631631 1.45670 0.0579903 0.0289952 0.999580i 0.490769π-0.490769\pi
0.0289952 + 0.999580i 0.490769π0.490769\pi
632632 9.64020 0.383467
633633 0 0
634634 11.3256 0.449798
635635 1.90415 0.0755637
636636 0 0
637637 24.7965 0.982473
638638 −4.10742 −0.162614
639639 0 0
640640 −0.949474 −0.0375312
641641 −3.92506 −0.155031 −0.0775154 0.996991i 0.524699π-0.524699\pi
−0.0775154 + 0.996991i 0.524699π0.524699\pi
642642 0 0
643643 −24.8996 −0.981943 −0.490971 0.871176i 0.663358π-0.663358\pi
−0.490971 + 0.871176i 0.663358π0.663358\pi
644644 −14.3256 −0.564508
645645 0 0
646646 −40.9746 −1.61212
647647 2.56819 0.100966 0.0504829 0.998725i 0.483924π-0.483924\pi
0.0504829 + 0.998725i 0.483924π0.483924\pi
648648 0 0
649649 22.2551 0.873590
650650 −10.8726 −0.426459
651651 0 0
652652 −3.87053 −0.151582
653653 0.768873 0.0300883 0.0150442 0.999887i 0.495211π-0.495211\pi
0.0150442 + 0.999887i 0.495211π0.495211\pi
654654 0 0
655655 5.32363 0.208012
656656 −2.42733 −0.0947714
657657 0 0
658658 −6.10726 −0.238086
659659 9.64449 0.375696 0.187848 0.982198i 0.439849π-0.439849\pi
0.187848 + 0.982198i 0.439849π0.439849\pi
660660 0 0
661661 −3.86806 −0.150450 −0.0752250 0.997167i 0.523968π-0.523968\pi
−0.0752250 + 0.997167i 0.523968π0.523968\pi
662662 −26.7870 −1.04111
663663 0 0
664664 5.29091 0.205327
665665 −20.7413 −0.804314
666666 0 0
667667 7.98254 0.309085
668668 17.2998 0.669349
669669 0 0
670670 −8.57841 −0.331413
671671 −2.94000 −0.113497
672672 0 0
673673 40.2074 1.54988 0.774940 0.632035i 0.217780π-0.217780\pi
0.774940 + 0.632035i 0.217780π0.217780\pi
674674 −20.0579 −0.772600
675675 0 0
676676 −5.96251 −0.229327
677677 −17.4762 −0.671665 −0.335832 0.941922i 0.609018π-0.609018\pi
−0.335832 + 0.941922i 0.609018π0.609018\pi
678678 0 0
679679 −37.7250 −1.44775
680680 −7.20054 −0.276128
681681 0 0
682682 9.53646 0.365170
683683 7.05834 0.270080 0.135040 0.990840i 0.456884π-0.456884\pi
0.135040 + 0.990840i 0.456884π0.456884\pi
684684 0 0
685685 5.80363 0.221745
686686 −9.49008 −0.362333
687687 0 0
688688 9.79523 0.373440
689689 −13.2357 −0.504242
690690 0 0
691691 18.8279 0.716246 0.358123 0.933674i 0.383417π-0.383417\pi
0.358123 + 0.933674i 0.383417π0.383417\pi
692692 10.2202 0.388515
693693 0 0
694694 −16.2126 −0.615420
695695 −8.91810 −0.338283
696696 0 0
697697 −18.4082 −0.697260
698698 −17.3932 −0.658344
699699 0 0
700700 16.5709 0.626322
701701 35.9910 1.35936 0.679681 0.733507i 0.262118π-0.262118\pi
0.679681 + 0.733507i 0.262118π0.262118\pi
702702 0 0
703703 5.40297 0.203777
704704 −1.82314 −0.0687121
705705 0 0
706706 −12.6778 −0.477136
707707 −31.1240 −1.17054
708708 0 0
709709 −19.3572 −0.726976 −0.363488 0.931599i 0.618414π-0.618414\pi
−0.363488 + 0.931599i 0.618414π0.618414\pi
710710 9.83503 0.369102
711711 0 0
712712 15.0956 0.565732
713713 −18.5336 −0.694088
714714 0 0
715715 4.59210 0.171735
716716 −21.1620 −0.790861
717717 0 0
718718 −15.4716 −0.577395
719719 −0.921503 −0.0343663 −0.0171831 0.999852i 0.505470π-0.505470\pi
−0.0171831 + 0.999852i 0.505470π0.505470\pi
720720 0 0
721721 −70.2862 −2.61760
722722 10.1920 0.379308
723723 0 0
724724 −9.76447 −0.362894
725725 −9.23367 −0.342930
726726 0 0
727727 −37.7887 −1.40151 −0.700753 0.713404i 0.747152π-0.747152\pi
−0.700753 + 0.713404i 0.747152π0.747152\pi
728728 −10.7258 −0.397525
729729 0 0
730730 −2.78344 −0.103020
731731 74.2843 2.74750
732732 0 0
733733 40.3737 1.49124 0.745619 0.666373i 0.232154π-0.232154\pi
0.745619 + 0.666373i 0.232154π0.232154\pi
734734 −17.9237 −0.661577
735735 0 0
736736 3.54317 0.130603
737737 −16.4719 −0.606750
738738 0 0
739739 40.9013 1.50458 0.752290 0.658832i 0.228949π-0.228949\pi
0.752290 + 0.658832i 0.228949π0.228949\pi
740740 0.949474 0.0349033
741741 0 0
742742 20.1726 0.740558
743743 −35.1813 −1.29068 −0.645338 0.763897i 0.723283π-0.723283\pi
−0.645338 + 0.763897i 0.723283π0.723283\pi
744744 0 0
745745 −5.04920 −0.184989
746746 −20.8143 −0.762066
747747 0 0
748748 −13.8262 −0.505534
749749 −40.3471 −1.47425
750750 0 0
751751 31.5323 1.15063 0.575315 0.817932i 0.304879π-0.304879\pi
0.575315 + 0.817932i 0.304879π0.304879\pi
752752 1.51051 0.0550828
753753 0 0
754754 5.97666 0.217657
755755 −3.87217 −0.140923
756756 0 0
757757 −21.9828 −0.798980 −0.399490 0.916738i 0.630813π-0.630813\pi
−0.399490 + 0.916738i 0.630813π0.630813\pi
758758 −24.4311 −0.887379
759759 0 0
760760 5.12997 0.186084
761761 0.722838 0.0262029 0.0131014 0.999914i 0.495830π-0.495830\pi
0.0131014 + 0.999914i 0.495830π0.495830\pi
762762 0 0
763763 −28.4178 −1.02879
764764 8.02147 0.290206
765765 0 0
766766 17.3044 0.625235
767767 −32.3832 −1.16929
768768 0 0
769769 5.21208 0.187952 0.0939761 0.995574i 0.470042π-0.470042\pi
0.0939761 + 0.995574i 0.470042π0.470042\pi
770770 −6.99880 −0.252219
771771 0 0
772772 12.2955 0.442525
773773 −14.8217 −0.533100 −0.266550 0.963821i 0.585884π-0.585884\pi
−0.266550 + 0.963821i 0.585884π0.585884\pi
774774 0 0
775775 21.4384 0.770091
776776 9.33056 0.334948
777777 0 0
778778 −5.49088 −0.196858
779779 13.1148 0.469886
780780 0 0
781781 18.8848 0.675751
782782 26.8704 0.960883
783783 0 0
784784 9.34719 0.333828
785785 −21.2361 −0.757950
786786 0 0
787787 24.4344 0.870992 0.435496 0.900191i 0.356573π-0.356573\pi
0.435496 + 0.900191i 0.356573π0.356573\pi
788788 23.3938 0.833370
789789 0 0
790790 −9.15312 −0.325653
791791 −51.4636 −1.82983
792792 0 0
793793 4.27796 0.151915
794794 26.3543 0.935280
795795 0 0
796796 9.00271 0.319092
797797 −2.52142 −0.0893134 −0.0446567 0.999002i 0.514219π-0.514219\pi
−0.0446567 + 0.999002i 0.514219π0.514219\pi
798798 0 0
799799 11.4553 0.405260
800800 −4.09850 −0.144904
801801 0 0
802802 −30.3957 −1.07331
803803 −5.34464 −0.188608
804804 0 0
805805 13.6018 0.479400
806806 −13.8764 −0.488775
807807 0 0
808808 7.69792 0.270812
809809 −15.8013 −0.555543 −0.277771 0.960647i 0.589596π-0.589596\pi
−0.277771 + 0.960647i 0.589596π0.589596\pi
810810 0 0
811811 −8.96155 −0.314683 −0.157341 0.987544i 0.550292π-0.550292\pi
−0.157341 + 0.987544i 0.550292π0.550292\pi
812812 −9.10901 −0.319663
813813 0 0
814814 1.82314 0.0639009
815815 3.67497 0.128729
816816 0 0
817817 −52.9233 −1.85155
818818 2.75587 0.0963567
819819 0 0
820820 2.30469 0.0804832
821821 −47.9438 −1.67325 −0.836625 0.547777i 0.815474π-0.815474\pi
−0.836625 + 0.547777i 0.815474π0.815474\pi
822822 0 0
823823 29.0381 1.01220 0.506102 0.862473i 0.331086π-0.331086\pi
0.506102 + 0.862473i 0.331086π0.331086\pi
824824 17.3840 0.605599
825825 0 0
826826 49.3551 1.71728
827827 21.6384 0.752442 0.376221 0.926530i 0.377223π-0.377223\pi
0.376221 + 0.926530i 0.377223π0.377223\pi
828828 0 0
829829 47.7197 1.65737 0.828687 0.559712i 0.189088π-0.189088\pi
0.828687 + 0.559712i 0.189088π0.189088\pi
830830 −5.02358 −0.174371
831831 0 0
832832 2.65283 0.0919703
833833 70.8864 2.45607
834834 0 0
835835 −16.4257 −0.568435
836836 9.85034 0.340681
837837 0 0
838838 −27.7422 −0.958338
839839 −24.4739 −0.844932 −0.422466 0.906379i 0.638835π-0.638835\pi
−0.422466 + 0.906379i 0.638835π0.638835\pi
840840 0 0
841841 −23.9243 −0.824975
842842 −18.9114 −0.651730
843843 0 0
844844 23.8522 0.821025
845845 5.66124 0.194753
846846 0 0
847847 31.0360 1.06641
848848 −4.98930 −0.171333
849849 0 0
850850 −31.0819 −1.06610
851851 −3.54317 −0.121458
852852 0 0
853853 −33.2211 −1.13747 −0.568735 0.822521i 0.692567π-0.692567\pi
−0.568735 + 0.822521i 0.692567π0.692567\pi
854854 −6.52003 −0.223111
855855 0 0
856856 9.97908 0.341078
857857 26.1000 0.891560 0.445780 0.895143i 0.352926π-0.352926\pi
0.445780 + 0.895143i 0.352926π0.352926\pi
858858 0 0
859859 −10.8040 −0.368627 −0.184314 0.982867i 0.559006π-0.559006\pi
−0.184314 + 0.982867i 0.559006π0.559006\pi
860860 −9.30031 −0.317138
861861 0 0
862862 −38.0148 −1.29479
863863 53.9732 1.83727 0.918634 0.395110i 0.129294π-0.129294\pi
0.918634 + 0.395110i 0.129294π0.129294\pi
864864 0 0
865865 −9.70383 −0.329940
866866 −36.4405 −1.23830
867867 0 0
868868 21.1490 0.717843
869869 −17.5754 −0.596205
870870 0 0
871871 23.9681 0.812127
872872 7.02860 0.238019
873873 0 0
874874 −19.1436 −0.647542
875875 −34.9280 −1.18078
876876 0 0
877877 −36.8411 −1.24404 −0.622018 0.783003i 0.713687π-0.713687\pi
−0.622018 + 0.783003i 0.713687π0.713687\pi
878878 21.3279 0.719782
879879 0 0
880880 1.73102 0.0583527
881881 −9.98724 −0.336479 −0.168239 0.985746i 0.553808π-0.553808\pi
−0.168239 + 0.985746i 0.553808π0.553808\pi
882882 0 0
883883 14.4722 0.487029 0.243514 0.969897i 0.421700π-0.421700\pi
0.243514 + 0.969897i 0.421700π0.421700\pi
884884 20.1183 0.676651
885885 0 0
886886 8.11476 0.272621
887887 51.9741 1.74512 0.872559 0.488508i 0.162459π-0.162459\pi
0.872559 + 0.488508i 0.162459π0.162459\pi
888888 0 0
889889 8.10847 0.271949
890890 −14.3329 −0.480440
891891 0 0
892892 −10.7527 −0.360026
893893 −8.16126 −0.273106
894894 0 0
895895 20.0928 0.671627
896896 −4.04317 −0.135073
897897 0 0
898898 −11.0770 −0.369645
899899 −11.7847 −0.393041
900900 0 0
901901 −37.8374 −1.26055
902902 4.42536 0.147348
903903 0 0
904904 12.7285 0.423345
905905 9.27110 0.308182
906906 0 0
907907 36.9710 1.22760 0.613801 0.789461i 0.289640π-0.289640\pi
0.613801 + 0.789461i 0.289640π0.289640\pi
908908 1.16889 0.0387910
909909 0 0
910910 10.1839 0.337592
911911 5.80919 0.192467 0.0962335 0.995359i 0.469320π-0.469320\pi
0.0962335 + 0.995359i 0.469320π0.469320\pi
912912 0 0
913913 −9.64605 −0.319238
914914 18.4871 0.611498
915915 0 0
916916 17.5125 0.578628
917917 22.6698 0.748621
918918 0 0
919919 −44.1079 −1.45499 −0.727493 0.686115i 0.759315π-0.759315\pi
−0.727493 + 0.686115i 0.759315π0.759315\pi
920920 −3.36414 −0.110913
921921 0 0
922922 13.6124 0.448299
923923 −27.4791 −0.904485
924924 0 0
925925 4.09850 0.134758
926926 −7.87343 −0.258737
927927 0 0
928928 2.25294 0.0739563
929929 −14.0254 −0.460159 −0.230080 0.973172i 0.573899π-0.573899\pi
−0.230080 + 0.973172i 0.573899π0.573899\pi
930930 0 0
931931 −50.5025 −1.65515
932932 13.6563 0.447328
933933 0 0
934934 7.42635 0.242997
935935 13.1276 0.429317
936936 0 0
937937 −26.5435 −0.867138 −0.433569 0.901120i 0.642746π-0.642746\pi
−0.433569 + 0.901120i 0.642746π0.642746\pi
938938 −36.5297 −1.19274
939939 0 0
940940 −1.43419 −0.0467782
941941 15.4165 0.502562 0.251281 0.967914i 0.419148π-0.419148\pi
0.251281 + 0.967914i 0.419148π0.419148\pi
942942 0 0
943943 −8.60045 −0.280069
944944 −12.2070 −0.397305
945945 0 0
946946 −17.8580 −0.580615
947947 −12.5592 −0.408119 −0.204060 0.978958i 0.565414π-0.565414\pi
−0.204060 + 0.978958i 0.565414π0.565414\pi
948948 0 0
949949 7.77693 0.252450
950950 22.1441 0.718448
951951 0 0
952952 −30.6622 −0.993768
953953 41.9349 1.35841 0.679203 0.733951i 0.262326π-0.262326\pi
0.679203 + 0.733951i 0.262326π0.262326\pi
954954 0 0
955955 −7.61617 −0.246453
956956 −20.0715 −0.649160
957957 0 0
958958 −24.5363 −0.792732
959959 24.7137 0.798049
960960 0 0
961961 −3.63877 −0.117380
962962 −2.65283 −0.0855306
963963 0 0
964964 3.04219 0.0979822
965965 −11.6743 −0.375808
966966 0 0
967967 7.33982 0.236033 0.118016 0.993012i 0.462346π-0.462346\pi
0.118016 + 0.993012i 0.462346π0.462346\pi
968968 −7.67617 −0.246722
969969 0 0
970970 −8.85912 −0.284449
971971 9.43859 0.302899 0.151449 0.988465i 0.451606π-0.451606\pi
0.151449 + 0.988465i 0.451606π0.451606\pi
972972 0 0
973973 −37.9762 −1.21746
974974 22.7588 0.729239
975975 0 0
976976 1.61261 0.0516182
977977 43.2930 1.38507 0.692533 0.721386i 0.256495π-0.256495\pi
0.692533 + 0.721386i 0.256495π0.256495\pi
978978 0 0
979979 −27.5214 −0.879587
980980 −8.87491 −0.283499
981981 0 0
982982 34.1327 1.08922
983983 46.3782 1.47923 0.739617 0.673028i 0.235007π-0.235007\pi
0.739617 + 0.673028i 0.235007π0.235007\pi
984984 0 0
985985 −22.2118 −0.707727
986986 17.0856 0.544118
987987 0 0
988988 −14.3331 −0.455998
989989 34.7061 1.10359
990990 0 0
991991 56.1550 1.78382 0.891911 0.452211i 0.149365π-0.149365\pi
0.891911 + 0.452211i 0.149365π0.149365\pi
992992 −5.23080 −0.166078
993993 0 0
994994 41.8808 1.32838
995995 −8.54783 −0.270984
996996 0 0
997997 39.1868 1.24106 0.620529 0.784184i 0.286918π-0.286918\pi
0.620529 + 0.784184i 0.286918π0.286918\pi
998998 40.5029 1.28210
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5994.2.a.bb.1.4 10
3.2 odd 2 5994.2.a.ba.1.7 10
9.2 odd 6 1998.2.e.e.1333.4 20
9.4 even 3 666.2.e.e.223.9 20
9.5 odd 6 1998.2.e.e.667.4 20
9.7 even 3 666.2.e.e.445.9 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.e.e.223.9 20 9.4 even 3
666.2.e.e.445.9 yes 20 9.7 even 3
1998.2.e.e.667.4 20 9.5 odd 6
1998.2.e.e.1333.4 20 9.2 odd 6
5994.2.a.ba.1.7 10 3.2 odd 2
5994.2.a.bb.1.4 10 1.1 even 1 trivial