Defining parameters
Level: | \( N \) | \(=\) | \( 5994 = 2 \cdot 3^{4} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5994.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 30 \) | ||
Sturm bound: | \(2052\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5994))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1050 | 144 | 906 |
Cusp forms | 1003 | 144 | 859 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(37\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(124\) | \(17\) | \(107\) | \(119\) | \(17\) | \(102\) | \(5\) | \(0\) | \(5\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(137\) | \(20\) | \(117\) | \(131\) | \(20\) | \(111\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(136\) | \(19\) | \(117\) | \(130\) | \(19\) | \(111\) | \(6\) | \(0\) | \(6\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(128\) | \(16\) | \(112\) | \(122\) | \(16\) | \(106\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(134\) | \(21\) | \(113\) | \(128\) | \(21\) | \(107\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(127\) | \(14\) | \(113\) | \(121\) | \(14\) | \(107\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(131\) | \(15\) | \(116\) | \(125\) | \(15\) | \(110\) | \(6\) | \(0\) | \(6\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(133\) | \(22\) | \(111\) | \(127\) | \(22\) | \(105\) | \(6\) | \(0\) | \(6\) | |||
Plus space | \(+\) | \(510\) | \(62\) | \(448\) | \(487\) | \(62\) | \(425\) | \(23\) | \(0\) | \(23\) | |||||
Minus space | \(-\) | \(540\) | \(82\) | \(458\) | \(516\) | \(82\) | \(434\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5994))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5994))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5994)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(111))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(222))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(333))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(666))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(999))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1998))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2997))\)\(^{\oplus 2}\)