Properties

Label 5994.2.a
Level $5994$
Weight $2$
Character orbit 5994.a
Rep. character $\chi_{5994}(1,\cdot)$
Character field $\Q$
Dimension $144$
Newform subspaces $30$
Sturm bound $2052$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5994 = 2 \cdot 3^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5994.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 30 \)
Sturm bound: \(2052\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5994))\).

Total New Old
Modular forms 1050 144 906
Cusp forms 1003 144 859
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(37\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(124\)\(17\)\(107\)\(119\)\(17\)\(102\)\(5\)\(0\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(137\)\(20\)\(117\)\(131\)\(20\)\(111\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(+\)\(-\)\(136\)\(19\)\(117\)\(130\)\(19\)\(111\)\(6\)\(0\)\(6\)
\(+\)\(-\)\(-\)\(+\)\(128\)\(16\)\(112\)\(122\)\(16\)\(106\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(+\)\(-\)\(134\)\(21\)\(113\)\(128\)\(21\)\(107\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(127\)\(14\)\(113\)\(121\)\(14\)\(107\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(131\)\(15\)\(116\)\(125\)\(15\)\(110\)\(6\)\(0\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(133\)\(22\)\(111\)\(127\)\(22\)\(105\)\(6\)\(0\)\(6\)
Plus space\(+\)\(510\)\(62\)\(448\)\(487\)\(62\)\(425\)\(23\)\(0\)\(23\)
Minus space\(-\)\(540\)\(82\)\(458\)\(516\)\(82\)\(434\)\(24\)\(0\)\(24\)

Trace form

\( 144 q + 144 q^{4} + 144 q^{16} + 12 q^{19} + 12 q^{22} + 144 q^{25} + 12 q^{34} - 36 q^{43} + 24 q^{46} + 120 q^{49} - 24 q^{55} + 24 q^{58} + 24 q^{61} + 144 q^{64} + 12 q^{67} + 48 q^{70} - 36 q^{73}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5994))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 37
5994.2.a.a 5994.a 1.a $1$ $47.862$ \(\Q\) None 666.2.e.b \(-1\) \(0\) \(-4\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{5}-q^{8}+4q^{10}-q^{11}+\cdots\)
5994.2.a.b 5994.a 1.a $1$ $47.862$ \(\Q\) None 666.2.e.a \(-1\) \(0\) \(-2\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}+2q^{7}-q^{8}+2q^{10}+\cdots\)
5994.2.a.c 5994.a 1.a $1$ $47.862$ \(\Q\) None 5994.2.a.c \(-1\) \(0\) \(-2\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}+2q^{7}-q^{8}+2q^{10}+\cdots\)
5994.2.a.d 5994.a 1.a $1$ $47.862$ \(\Q\) None 5994.2.a.d \(-1\) \(0\) \(-1\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+2q^{11}+\cdots\)
5994.2.a.e 5994.a 1.a $1$ $47.862$ \(\Q\) None 5994.2.a.d \(1\) \(0\) \(1\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-2q^{11}+\cdots\)
5994.2.a.f 5994.a 1.a $1$ $47.862$ \(\Q\) None 5994.2.a.c \(1\) \(0\) \(2\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+2q^{7}+q^{8}+2q^{10}+\cdots\)
5994.2.a.g 5994.a 1.a $1$ $47.862$ \(\Q\) None 666.2.e.a \(1\) \(0\) \(2\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}+2q^{7}+q^{8}+2q^{10}+\cdots\)
5994.2.a.h 5994.a 1.a $1$ $47.862$ \(\Q\) None 666.2.e.b \(1\) \(0\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+4q^{5}+q^{8}+4q^{10}+q^{11}+\cdots\)
5994.2.a.i 5994.a 1.a $2$ $47.862$ \(\Q(\sqrt{3}) \) None 5994.2.a.i \(-2\) \(0\) \(0\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta q^{5}+2q^{7}-q^{8}-\beta q^{10}+\cdots\)
5994.2.a.j 5994.a 1.a $2$ $47.862$ \(\Q(\sqrt{3}) \) None 5994.2.a.i \(2\) \(0\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta q^{5}+2q^{7}+q^{8}+\beta q^{10}+\cdots\)
5994.2.a.k 5994.a 1.a $3$ $47.862$ 3.3.321.1 None 5994.2.a.k \(-3\) \(0\) \(2\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1-\beta _{1})q^{5}+(-\beta _{1}+\beta _{2})q^{7}+\cdots\)
5994.2.a.l 5994.a 1.a $3$ $47.862$ 3.3.321.1 None 5994.2.a.k \(3\) \(0\) \(-2\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1+\beta _{1})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
5994.2.a.m 5994.a 1.a $4$ $47.862$ 4.4.43569.1 None 5994.2.a.m \(-4\) \(0\) \(1\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-\beta _{3}q^{5}-\beta _{2}q^{7}-q^{8}+\cdots\)
5994.2.a.n 5994.a 1.a $4$ $47.862$ 4.4.22545.1 None 5994.2.a.n \(-4\) \(0\) \(5\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1+\beta _{1})q^{5}+(-\beta _{1}-\beta _{3})q^{7}+\cdots\)
5994.2.a.o 5994.a 1.a $4$ $47.862$ 4.4.22545.1 None 5994.2.a.n \(4\) \(0\) \(-5\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1-\beta _{1})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
5994.2.a.p 5994.a 1.a $4$ $47.862$ 4.4.43569.1 None 5994.2.a.m \(4\) \(0\) \(-1\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta _{3}q^{5}-\beta _{2}q^{7}+q^{8}+\cdots\)
5994.2.a.q 5994.a 1.a $5$ $47.862$ 5.5.9204129.1 None 5994.2.a.q \(-5\) \(0\) \(-5\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1+\beta _{2})q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
5994.2.a.r 5994.a 1.a $5$ $47.862$ 5.5.9204129.1 None 5994.2.a.q \(5\) \(0\) \(5\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1-\beta _{2})q^{5}+(1-\beta _{1}-\beta _{3}+\cdots)q^{7}+\cdots\)
5994.2.a.s 5994.a 1.a $6$ $47.862$ 6.6.17271549.1 None 666.2.e.c \(-6\) \(0\) \(5\) \(-5\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1-\beta _{4})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)
5994.2.a.t 5994.a 1.a $6$ $47.862$ 6.6.17271549.1 None 666.2.e.c \(6\) \(0\) \(-5\) \(-5\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1+\beta _{4})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)
5994.2.a.u 5994.a 1.a $7$ $47.862$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 666.2.e.d \(-7\) \(0\) \(3\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta _{6}q^{5}+(\beta _{1}+\beta _{5})q^{7}+\cdots\)
5994.2.a.v 5994.a 1.a $7$ $47.862$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 666.2.e.d \(7\) \(0\) \(-3\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-\beta _{6}q^{5}+(\beta _{1}+\beta _{5})q^{7}+\cdots\)
5994.2.a.w 5994.a 1.a $8$ $47.862$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 5994.2.a.w \(-8\) \(0\) \(-6\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(-1+\beta _{1})q^{5}-\beta _{4}q^{7}+\cdots\)
5994.2.a.x 5994.a 1.a $8$ $47.862$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 5994.2.a.x \(-8\) \(0\) \(6\) \(-6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+(1-\beta _{6})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)
5994.2.a.y 5994.a 1.a $8$ $47.862$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 5994.2.a.x \(8\) \(0\) \(-6\) \(-6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(-1+\beta _{6})q^{5}+(-1+\beta _{1}+\cdots)q^{7}+\cdots\)
5994.2.a.z 5994.a 1.a $8$ $47.862$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 5994.2.a.w \(8\) \(0\) \(6\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+(1-\beta _{1})q^{5}-\beta _{4}q^{7}+q^{8}+\cdots\)
5994.2.a.ba 5994.a 1.a $10$ $47.862$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 666.2.e.e \(-10\) \(0\) \(-1\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta _{6}q^{5}-\beta _{9}q^{7}-q^{8}+\cdots\)
5994.2.a.bb 5994.a 1.a $10$ $47.862$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 666.2.e.e \(10\) \(0\) \(1\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-\beta _{6}q^{5}-\beta _{9}q^{7}+q^{8}+\cdots\)
5994.2.a.bc 5994.a 1.a $11$ $47.862$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 666.2.e.f \(-11\) \(0\) \(-1\) \(5\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-\beta _{8}q^{5}-\beta _{2}q^{7}-q^{8}+\cdots\)
5994.2.a.bd 5994.a 1.a $11$ $47.862$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 666.2.e.f \(11\) \(0\) \(1\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+\beta _{8}q^{5}-\beta _{2}q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5994))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(5994)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(111))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(162))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(222))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(333))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(666))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(999))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1998))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2997))\)\(^{\oplus 2}\)