Properties

Label 598.2.h.c.277.4
Level $598$
Weight $2$
Character 598.277
Analytic conductor $4.775$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [598,2,Mod(231,598)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("598.231"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(598, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 598 = 2 \cdot 13 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 598.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.77505404087\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 277.4
Character \(\chi\) \(=\) 598.277
Dual form 598.2.h.c.231.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.0928940 - 0.160897i) q^{3} +(0.500000 + 0.866025i) q^{4} +0.931614i q^{5} +(-0.160897 + 0.0928940i) q^{6} +(3.98172 - 2.29885i) q^{7} -1.00000i q^{8} +(1.48274 + 2.56818i) q^{9} +(0.465807 - 0.806802i) q^{10} +(-2.91576 - 1.68341i) q^{11} +0.185788 q^{12} +(3.47321 + 0.967896i) q^{13} -4.59769 q^{14} +(0.149894 + 0.0865414i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.465659 + 0.806545i) q^{17} -2.96548i q^{18} +(-5.89207 + 3.40179i) q^{19} +(-0.806802 + 0.465807i) q^{20} -0.854196i q^{21} +(1.68341 + 2.91576i) q^{22} +(0.500000 - 0.866025i) q^{23} +(-0.160897 - 0.0928940i) q^{24} +4.13209 q^{25} +(-2.52394 - 2.57483i) q^{26} +1.10832 q^{27} +(3.98172 + 2.29885i) q^{28} +(4.67356 - 8.09485i) q^{29} +(-0.0865414 - 0.149894i) q^{30} +5.60799i q^{31} +(0.866025 - 0.500000i) q^{32} +(-0.541713 + 0.312758i) q^{33} -0.931318i q^{34} +(2.14164 + 3.70943i) q^{35} +(-1.48274 + 2.56818i) q^{36} +(7.57172 + 4.37154i) q^{37} +6.80357 q^{38} +(0.478372 - 0.468918i) q^{39} +0.931614 q^{40} +(-1.32898 - 0.767286i) q^{41} +(-0.427098 + 0.739756i) q^{42} +(0.537107 + 0.930297i) q^{43} -3.36683i q^{44} +(-2.39256 + 1.38134i) q^{45} +(-0.866025 + 0.500000i) q^{46} -9.75604i q^{47} +(0.0928940 + 0.160897i) q^{48} +(7.06940 - 12.2446i) q^{49} +(-3.57850 - 2.06605i) q^{50} +0.173028 q^{51} +(0.898382 + 3.49183i) q^{52} +6.13312 q^{53} +(-0.959829 - 0.554158i) q^{54} +(1.56829 - 2.71636i) q^{55} +(-2.29885 - 3.98172i) q^{56} +1.26402i q^{57} +(-8.09485 + 4.67356i) q^{58} +(-8.23076 + 4.75203i) q^{59} +0.173083i q^{60} +(4.49780 + 7.79041i) q^{61} +(2.80399 - 4.85666i) q^{62} +(11.8077 + 6.81719i) q^{63} -1.00000 q^{64} +(-0.901706 + 3.23569i) q^{65} +0.625516 q^{66} +(-4.20377 - 2.42705i) q^{67} +(-0.465659 + 0.806545i) q^{68} +(-0.0928940 - 0.160897i) q^{69} -4.28328i q^{70} +(8.63841 - 4.98739i) q^{71} +(2.56818 - 1.48274i) q^{72} -13.0992i q^{73} +(-4.37154 - 7.57172i) q^{74} +(0.383847 - 0.664842i) q^{75} +(-5.89207 - 3.40179i) q^{76} -15.4796 q^{77} +(-0.648741 + 0.166909i) q^{78} -2.71106 q^{79} +(-0.806802 - 0.465807i) q^{80} +(-4.34527 + 7.52623i) q^{81} +(0.767286 + 1.32898i) q^{82} +6.49704i q^{83} +(0.739756 - 0.427098i) q^{84} +(-0.751389 + 0.433815i) q^{85} -1.07421i q^{86} +(-0.868292 - 1.50393i) q^{87} +(-1.68341 + 2.91576i) q^{88} +(-5.82171 - 3.36116i) q^{89} +2.76269 q^{90} +(16.0544 - 4.13049i) q^{91} +1.00000 q^{92} +(0.902309 + 0.520948i) q^{93} +(-4.87802 + 8.44898i) q^{94} +(-3.16915 - 5.48913i) q^{95} -0.185788i q^{96} +(-4.90466 + 2.83171i) q^{97} +(-12.2446 + 7.06940i) q^{98} -9.98427i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{3} + 14 q^{4} - 6 q^{9} + 8 q^{10} - 8 q^{12} + 2 q^{13} + 4 q^{14} + 12 q^{15} - 14 q^{16} - 2 q^{17} - 12 q^{19} - 12 q^{22} + 14 q^{23} - 28 q^{25} - 10 q^{26} + 20 q^{27} - 14 q^{29} + 8 q^{30}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/598\mathbb{Z}\right)^\times\).

\(n\) \(93\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0.0928940 0.160897i 0.0536324 0.0928940i −0.837963 0.545727i \(-0.816253\pi\)
0.891595 + 0.452833i \(0.149587\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.931614i 0.416631i 0.978062 + 0.208315i \(0.0667980\pi\)
−0.978062 + 0.208315i \(0.933202\pi\)
\(6\) −0.160897 + 0.0928940i −0.0656860 + 0.0379238i
\(7\) 3.98172 2.29885i 1.50495 0.868883i 0.504965 0.863140i \(-0.331505\pi\)
0.999984 0.00574307i \(-0.00182809\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.48274 + 2.56818i 0.494247 + 0.856061i
\(10\) 0.465807 0.806802i 0.147301 0.255133i
\(11\) −2.91576 1.68341i −0.879134 0.507568i −0.00876135 0.999962i \(-0.502789\pi\)
−0.870373 + 0.492393i \(0.836122\pi\)
\(12\) 0.185788 0.0536324
\(13\) 3.47321 + 0.967896i 0.963295 + 0.268446i
\(14\) −4.59769 −1.22879
\(15\) 0.149894 + 0.0865414i 0.0387025 + 0.0223449i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.465659 + 0.806545i 0.112939 + 0.195616i 0.916954 0.398993i \(-0.130640\pi\)
−0.804015 + 0.594609i \(0.797307\pi\)
\(18\) 2.96548i 0.698971i
\(19\) −5.89207 + 3.40179i −1.35173 + 0.780423i −0.988492 0.151272i \(-0.951663\pi\)
−0.363241 + 0.931695i \(0.618330\pi\)
\(20\) −0.806802 + 0.465807i −0.180406 + 0.104158i
\(21\) 0.854196i 0.186401i
\(22\) 1.68341 + 2.91576i 0.358905 + 0.621642i
\(23\) 0.500000 0.866025i 0.104257 0.180579i
\(24\) −0.160897 0.0928940i −0.0328430 0.0189619i
\(25\) 4.13209 0.826419
\(26\) −2.52394 2.57483i −0.494985 0.504965i
\(27\) 1.10832 0.213295
\(28\) 3.98172 + 2.29885i 0.752474 + 0.434441i
\(29\) 4.67356 8.09485i 0.867859 1.50318i 0.00367880 0.999993i \(-0.498829\pi\)
0.864180 0.503183i \(-0.167838\pi\)
\(30\) −0.0865414 0.149894i −0.0158002 0.0273668i
\(31\) 5.60799i 1.00722i 0.863930 + 0.503612i \(0.167996\pi\)
−0.863930 + 0.503612i \(0.832004\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −0.541713 + 0.312758i −0.0943001 + 0.0544442i
\(34\) 0.931318i 0.159720i
\(35\) 2.14164 + 3.70943i 0.362003 + 0.627008i
\(36\) −1.48274 + 2.56818i −0.247124 + 0.428031i
\(37\) 7.57172 + 4.37154i 1.24478 + 0.718676i 0.970064 0.242848i \(-0.0780818\pi\)
0.274719 + 0.961525i \(0.411415\pi\)
\(38\) 6.80357 1.10369
\(39\) 0.478372 0.468918i 0.0766008 0.0750869i
\(40\) 0.931614 0.147301
\(41\) −1.32898 0.767286i −0.207552 0.119830i 0.392621 0.919700i \(-0.371568\pi\)
−0.600173 + 0.799870i \(0.704902\pi\)
\(42\) −0.427098 + 0.739756i −0.0659027 + 0.114147i
\(43\) 0.537107 + 0.930297i 0.0819081 + 0.141869i 0.904070 0.427385i \(-0.140565\pi\)
−0.822161 + 0.569254i \(0.807232\pi\)
\(44\) 3.36683i 0.507568i
\(45\) −2.39256 + 1.38134i −0.356661 + 0.205918i
\(46\) −0.866025 + 0.500000i −0.127688 + 0.0737210i
\(47\) 9.75604i 1.42306i −0.702653 0.711532i \(-0.748002\pi\)
0.702653 0.711532i \(-0.251998\pi\)
\(48\) 0.0928940 + 0.160897i 0.0134081 + 0.0232235i
\(49\) 7.06940 12.2446i 1.00991 1.74922i
\(50\) −3.57850 2.06605i −0.506076 0.292183i
\(51\) 0.173028 0.0242287
\(52\) 0.898382 + 3.49183i 0.124583 + 0.484230i
\(53\) 6.13312 0.842449 0.421224 0.906956i \(-0.361600\pi\)
0.421224 + 0.906956i \(0.361600\pi\)
\(54\) −0.959829 0.554158i −0.130616 0.0754113i
\(55\) 1.56829 2.71636i 0.211469 0.366274i
\(56\) −2.29885 3.98172i −0.307196 0.532080i
\(57\) 1.26402i 0.167424i
\(58\) −8.09485 + 4.67356i −1.06291 + 0.613669i
\(59\) −8.23076 + 4.75203i −1.07155 + 0.618662i −0.928605 0.371069i \(-0.878991\pi\)
−0.142948 + 0.989730i \(0.545658\pi\)
\(60\) 0.173083i 0.0223449i
\(61\) 4.49780 + 7.79041i 0.575884 + 0.997460i 0.995945 + 0.0899645i \(0.0286753\pi\)
−0.420061 + 0.907496i \(0.637991\pi\)
\(62\) 2.80399 4.85666i 0.356108 0.616797i
\(63\) 11.8077 + 6.81719i 1.48763 + 0.858886i
\(64\) −1.00000 −0.125000
\(65\) −0.901706 + 3.23569i −0.111843 + 0.401338i
\(66\) 0.625516 0.0769957
\(67\) −4.20377 2.42705i −0.513572 0.296511i 0.220729 0.975335i \(-0.429156\pi\)
−0.734301 + 0.678824i \(0.762490\pi\)
\(68\) −0.465659 + 0.806545i −0.0564695 + 0.0978080i
\(69\) −0.0928940 0.160897i −0.0111831 0.0193697i
\(70\) 4.28328i 0.511950i
\(71\) 8.63841 4.98739i 1.02519 0.591894i 0.109587 0.993977i \(-0.465047\pi\)
0.915603 + 0.402083i \(0.131714\pi\)
\(72\) 2.56818 1.48274i 0.302663 0.174743i
\(73\) 13.0992i 1.53314i −0.642161 0.766570i \(-0.721962\pi\)
0.642161 0.766570i \(-0.278038\pi\)
\(74\) −4.37154 7.57172i −0.508181 0.880195i
\(75\) 0.383847 0.664842i 0.0443228 0.0767694i
\(76\) −5.89207 3.40179i −0.675866 0.390212i
\(77\) −15.4796 −1.76407
\(78\) −0.648741 + 0.166909i −0.0734554 + 0.0188987i
\(79\) −2.71106 −0.305018 −0.152509 0.988302i \(-0.548735\pi\)
−0.152509 + 0.988302i \(0.548735\pi\)
\(80\) −0.806802 0.465807i −0.0902032 0.0520788i
\(81\) −4.34527 + 7.52623i −0.482808 + 0.836247i
\(82\) 0.767286 + 1.32898i 0.0847326 + 0.146761i
\(83\) 6.49704i 0.713143i 0.934268 + 0.356571i \(0.116054\pi\)
−0.934268 + 0.356571i \(0.883946\pi\)
\(84\) 0.739756 0.427098i 0.0807140 0.0466002i
\(85\) −0.751389 + 0.433815i −0.0814996 + 0.0470538i
\(86\) 1.07421i 0.115836i
\(87\) −0.868292 1.50393i −0.0930907 0.161238i
\(88\) −1.68341 + 2.91576i −0.179453 + 0.310821i
\(89\) −5.82171 3.36116i −0.617100 0.356283i 0.158639 0.987337i \(-0.449289\pi\)
−0.775739 + 0.631054i \(0.782623\pi\)
\(90\) 2.76269 0.291213
\(91\) 16.0544 4.13049i 1.68296 0.432992i
\(92\) 1.00000 0.104257
\(93\) 0.902309 + 0.520948i 0.0935651 + 0.0540198i
\(94\) −4.87802 + 8.44898i −0.503129 + 0.871446i
\(95\) −3.16915 5.48913i −0.325148 0.563173i
\(96\) 0.185788i 0.0189619i
\(97\) −4.90466 + 2.83171i −0.497993 + 0.287516i −0.727884 0.685700i \(-0.759496\pi\)
0.229892 + 0.973216i \(0.426163\pi\)
\(98\) −12.2446 + 7.06940i −1.23689 + 0.714117i
\(99\) 9.98427i 1.00346i
\(100\) 2.06605 + 3.57850i 0.206605 + 0.357850i
\(101\) −3.01747 + 5.22642i −0.300250 + 0.520048i −0.976192 0.216906i \(-0.930403\pi\)
0.675943 + 0.736954i \(0.263737\pi\)
\(102\) −0.149846 0.0865139i −0.0148370 0.00856615i
\(103\) −2.91580 −0.287303 −0.143651 0.989628i \(-0.545884\pi\)
−0.143651 + 0.989628i \(0.545884\pi\)
\(104\) 0.967896 3.47321i 0.0949100 0.340576i
\(105\) 0.795782 0.0776603
\(106\) −5.31144 3.06656i −0.515892 0.297851i
\(107\) −5.63193 + 9.75478i −0.544459 + 0.943030i 0.454182 + 0.890909i \(0.349932\pi\)
−0.998641 + 0.0521214i \(0.983402\pi\)
\(108\) 0.554158 + 0.959829i 0.0533238 + 0.0923596i
\(109\) 9.96692i 0.954658i −0.878725 0.477329i \(-0.841605\pi\)
0.878725 0.477329i \(-0.158395\pi\)
\(110\) −2.71636 + 1.56829i −0.258995 + 0.149531i
\(111\) 1.40673 0.812179i 0.133521 0.0770886i
\(112\) 4.59769i 0.434441i
\(113\) 8.39006 + 14.5320i 0.789270 + 1.36706i 0.926415 + 0.376505i \(0.122874\pi\)
−0.137145 + 0.990551i \(0.543793\pi\)
\(114\) 0.632011 1.09468i 0.0591933 0.102526i
\(115\) 0.806802 + 0.465807i 0.0752346 + 0.0434367i
\(116\) 9.34713 0.867859
\(117\) 2.66414 + 10.3550i 0.246299 + 0.957318i
\(118\) 9.50406 0.874920
\(119\) 3.70825 + 2.14096i 0.339935 + 0.196261i
\(120\) 0.0865414 0.149894i 0.00790011 0.0136834i
\(121\) 0.167764 + 0.290576i 0.0152513 + 0.0264160i
\(122\) 8.99560i 0.814423i
\(123\) −0.246908 + 0.142553i −0.0222630 + 0.0128535i
\(124\) −4.85666 + 2.80399i −0.436141 + 0.251806i
\(125\) 8.50759i 0.760942i
\(126\) −6.81719 11.8077i −0.607324 1.05192i
\(127\) 6.46405 11.1961i 0.573592 0.993490i −0.422601 0.906316i \(-0.638883\pi\)
0.996193 0.0871744i \(-0.0277837\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0.199576 0.0175717
\(130\) 2.39875 2.35134i 0.210384 0.206226i
\(131\) −5.98121 −0.522580 −0.261290 0.965260i \(-0.584148\pi\)
−0.261290 + 0.965260i \(0.584148\pi\)
\(132\) −0.541713 0.312758i −0.0471501 0.0272221i
\(133\) −15.6404 + 27.0899i −1.35619 + 2.34899i
\(134\) 2.42705 + 4.20377i 0.209665 + 0.363150i
\(135\) 1.03252i 0.0888654i
\(136\) 0.806545 0.465659i 0.0691607 0.0399299i
\(137\) −9.62382 + 5.55632i −0.822219 + 0.474708i −0.851181 0.524872i \(-0.824113\pi\)
0.0289622 + 0.999581i \(0.490780\pi\)
\(138\) 0.185788i 0.0158153i
\(139\) −5.32253 9.21889i −0.451451 0.781936i 0.547026 0.837116i \(-0.315760\pi\)
−0.998476 + 0.0551802i \(0.982427\pi\)
\(140\) −2.14164 + 3.70943i −0.181002 + 0.313504i
\(141\) −1.56972 0.906277i −0.132194 0.0763223i
\(142\) −9.97477 −0.837065
\(143\) −8.49767 8.66900i −0.710611 0.724938i
\(144\) −2.96548 −0.247124
\(145\) 7.54128 + 4.35396i 0.626269 + 0.361577i
\(146\) −6.54958 + 11.3442i −0.542047 + 0.938853i
\(147\) −1.31341 2.27489i −0.108328 0.187630i
\(148\) 8.74307i 0.718676i
\(149\) −1.91405 + 1.10508i −0.156805 + 0.0905315i −0.576349 0.817203i \(-0.695523\pi\)
0.419544 + 0.907735i \(0.362190\pi\)
\(150\) −0.664842 + 0.383847i −0.0542841 + 0.0313410i
\(151\) 0.0765627i 0.00623058i −0.999995 0.00311529i \(-0.999008\pi\)
0.999995 0.00311529i \(-0.000991630\pi\)
\(152\) 3.40179 + 5.89207i 0.275921 + 0.477910i
\(153\) −1.38090 + 2.39180i −0.111639 + 0.193365i
\(154\) 13.4058 + 7.73982i 1.08027 + 0.623693i
\(155\) −5.22448 −0.419641
\(156\) 0.645280 + 0.179823i 0.0516638 + 0.0143974i
\(157\) −10.7112 −0.854843 −0.427422 0.904052i \(-0.640578\pi\)
−0.427422 + 0.904052i \(0.640578\pi\)
\(158\) 2.34784 + 1.35553i 0.186784 + 0.107840i
\(159\) 0.569730 0.986801i 0.0451825 0.0782584i
\(160\) 0.465807 + 0.806802i 0.0368253 + 0.0637833i
\(161\) 4.59769i 0.362349i
\(162\) 7.52623 4.34527i 0.591316 0.341397i
\(163\) −17.2095 + 9.93590i −1.34795 + 0.778240i −0.987959 0.154716i \(-0.950554\pi\)
−0.359992 + 0.932955i \(0.617220\pi\)
\(164\) 1.53457i 0.119830i
\(165\) −0.291370 0.504667i −0.0226831 0.0392883i
\(166\) 3.24852 5.62660i 0.252134 0.436709i
\(167\) −13.2333 7.64025i −1.02402 0.591221i −0.108757 0.994068i \(-0.534687\pi\)
−0.915267 + 0.402848i \(0.868020\pi\)
\(168\) −0.854196 −0.0659027
\(169\) 11.1264 + 6.72341i 0.855873 + 0.517185i
\(170\) 0.867629 0.0665441
\(171\) −17.4728 10.0879i −1.33618 0.771444i
\(172\) −0.537107 + 0.930297i −0.0409541 + 0.0709345i
\(173\) −4.35427 7.54182i −0.331049 0.573394i 0.651669 0.758504i \(-0.274069\pi\)
−0.982718 + 0.185110i \(0.940736\pi\)
\(174\) 1.73658i 0.131650i
\(175\) 16.4528 9.49906i 1.24372 0.718061i
\(176\) 2.91576 1.68341i 0.219784 0.126892i
\(177\) 1.76574i 0.132721i
\(178\) 3.36116 + 5.82171i 0.251930 + 0.436355i
\(179\) −12.7616 + 22.1038i −0.953849 + 1.65211i −0.216868 + 0.976201i \(0.569584\pi\)
−0.736981 + 0.675914i \(0.763749\pi\)
\(180\) −2.39256 1.38134i −0.178331 0.102959i
\(181\) −13.0118 −0.967159 −0.483579 0.875300i \(-0.660664\pi\)
−0.483579 + 0.875300i \(0.660664\pi\)
\(182\) −15.9688 4.45009i −1.18368 0.329863i
\(183\) 1.67127 0.123544
\(184\) −0.866025 0.500000i −0.0638442 0.0368605i
\(185\) −4.07259 + 7.05393i −0.299422 + 0.518615i
\(186\) −0.520948 0.902309i −0.0381978 0.0661605i
\(187\) 3.13559i 0.229297i
\(188\) 8.44898 4.87802i 0.616205 0.355766i
\(189\) 4.41300 2.54785i 0.320999 0.185329i
\(190\) 6.33831i 0.459829i
\(191\) −0.362379 0.627659i −0.0262208 0.0454158i 0.852617 0.522536i \(-0.175014\pi\)
−0.878838 + 0.477120i \(0.841681\pi\)
\(192\) −0.0928940 + 0.160897i −0.00670405 + 0.0116117i
\(193\) −18.1176 10.4602i −1.30414 0.752943i −0.323025 0.946390i \(-0.604700\pi\)
−0.981111 + 0.193447i \(0.938033\pi\)
\(194\) 5.66341 0.406609
\(195\) 0.436850 + 0.445658i 0.0312835 + 0.0319142i
\(196\) 14.1388 1.00991
\(197\) −15.8145 9.13052i −1.12674 0.650523i −0.183626 0.982996i \(-0.558783\pi\)
−0.943113 + 0.332473i \(0.892117\pi\)
\(198\) −4.99213 + 8.64663i −0.354776 + 0.614489i
\(199\) −5.32495 9.22308i −0.377476 0.653807i 0.613219 0.789913i \(-0.289874\pi\)
−0.990694 + 0.136106i \(0.956541\pi\)
\(200\) 4.13209i 0.292183i
\(201\) −0.781010 + 0.450916i −0.0550882 + 0.0318052i
\(202\) 5.22642 3.01747i 0.367730 0.212309i
\(203\) 42.9752i 3.01627i
\(204\) 0.0865139 + 0.149846i 0.00605718 + 0.0104913i
\(205\) 0.714815 1.23810i 0.0499248 0.0864724i
\(206\) 2.52516 + 1.45790i 0.175936 + 0.101577i
\(207\) 2.96548 0.206115
\(208\) −2.57483 + 2.52394i −0.178532 + 0.175004i
\(209\) 22.9065 1.58447
\(210\) −0.689167 0.397891i −0.0475571 0.0274571i
\(211\) 0.569311 0.986076i 0.0391930 0.0678842i −0.845764 0.533558i \(-0.820855\pi\)
0.884956 + 0.465674i \(0.154188\pi\)
\(212\) 3.06656 + 5.31144i 0.210612 + 0.364791i
\(213\) 1.85319i 0.126979i
\(214\) 9.75478 5.63193i 0.666823 0.384991i
\(215\) −0.866678 + 0.500377i −0.0591070 + 0.0341254i
\(216\) 1.10832i 0.0754113i
\(217\) 12.8919 + 22.3294i 0.875160 + 1.51582i
\(218\) −4.98346 + 8.63161i −0.337523 + 0.584606i
\(219\) −2.10762 1.21683i −0.142419 0.0822259i
\(220\) 3.13658 0.211469
\(221\) 0.836679 + 3.25201i 0.0562811 + 0.218754i
\(222\) −1.62436 −0.109020
\(223\) 5.80774 + 3.35310i 0.388915 + 0.224540i 0.681690 0.731641i \(-0.261245\pi\)
−0.292775 + 0.956181i \(0.594579\pi\)
\(224\) 2.29885 3.98172i 0.153598 0.266040i
\(225\) 6.12683 + 10.6120i 0.408455 + 0.707465i
\(226\) 16.7801i 1.11620i
\(227\) 20.2485 11.6905i 1.34394 0.775923i 0.356555 0.934274i \(-0.383951\pi\)
0.987383 + 0.158351i \(0.0506178\pi\)
\(228\) −1.09468 + 0.632011i −0.0724966 + 0.0418560i
\(229\) 17.1494i 1.13326i 0.823971 + 0.566632i \(0.191754\pi\)
−0.823971 + 0.566632i \(0.808246\pi\)
\(230\) −0.465807 0.806802i −0.0307144 0.0531989i
\(231\) −1.43797 + 2.49063i −0.0946112 + 0.163871i
\(232\) −8.09485 4.67356i −0.531453 0.306834i
\(233\) −3.47011 −0.227334 −0.113667 0.993519i \(-0.536260\pi\)
−0.113667 + 0.993519i \(0.536260\pi\)
\(234\) 2.87028 10.2997i 0.187636 0.673315i
\(235\) 9.08887 0.592892
\(236\) −8.23076 4.75203i −0.535777 0.309331i
\(237\) −0.251841 + 0.436201i −0.0163588 + 0.0283343i
\(238\) −2.14096 3.70825i −0.138778 0.240370i
\(239\) 2.81350i 0.181990i −0.995851 0.0909950i \(-0.970995\pi\)
0.995851 0.0909950i \(-0.0290047\pi\)
\(240\) −0.149894 + 0.0865414i −0.00967562 + 0.00558622i
\(241\) 20.7970 12.0071i 1.33965 0.773448i 0.352896 0.935663i \(-0.385197\pi\)
0.986755 + 0.162215i \(0.0518638\pi\)
\(242\) 0.335528i 0.0215686i
\(243\) 2.46977 + 4.27777i 0.158436 + 0.274419i
\(244\) −4.49780 + 7.79041i −0.287942 + 0.498730i
\(245\) 11.4072 + 6.58595i 0.728780 + 0.420761i
\(246\) 0.285105 0.0181776
\(247\) −23.7570 + 6.11221i −1.51162 + 0.388910i
\(248\) 5.60799 0.356108
\(249\) 1.04536 + 0.603536i 0.0662467 + 0.0382475i
\(250\) 4.25380 7.36779i 0.269034 0.465980i
\(251\) 0.392182 + 0.679279i 0.0247543 + 0.0428757i 0.878137 0.478409i \(-0.158786\pi\)
−0.853383 + 0.521285i \(0.825453\pi\)
\(252\) 13.6344i 0.858886i
\(253\) −2.91576 + 1.68341i −0.183312 + 0.105835i
\(254\) −11.1961 + 6.46405i −0.702504 + 0.405591i
\(255\) 0.161195i 0.0100944i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.763027 + 1.32160i −0.0475963 + 0.0824392i −0.888842 0.458214i \(-0.848489\pi\)
0.841246 + 0.540653i \(0.181823\pi\)
\(258\) −0.172838 0.0997881i −0.0107604 0.00621254i
\(259\) 40.1980 2.49778
\(260\) −3.25304 + 0.836945i −0.201745 + 0.0519051i
\(261\) 27.7187 1.71575
\(262\) 5.17988 + 2.99060i 0.320014 + 0.184760i
\(263\) −2.91324 + 5.04589i −0.179638 + 0.311143i −0.941757 0.336295i \(-0.890826\pi\)
0.762118 + 0.647438i \(0.224159\pi\)
\(264\) 0.312758 + 0.541713i 0.0192489 + 0.0333401i
\(265\) 5.71370i 0.350990i
\(266\) 27.0899 15.6404i 1.66099 0.958973i
\(267\) −1.08160 + 0.624464i −0.0661930 + 0.0382166i
\(268\) 4.85409i 0.296511i
\(269\) −7.39939 12.8161i −0.451149 0.781413i 0.547309 0.836931i \(-0.315652\pi\)
−0.998458 + 0.0555181i \(0.982319\pi\)
\(270\) 0.516261 0.894190i 0.0314187 0.0544187i
\(271\) 18.2337 + 10.5272i 1.10762 + 0.639482i 0.938211 0.346064i \(-0.112482\pi\)
0.169405 + 0.985547i \(0.445815\pi\)
\(272\) −0.931318 −0.0564695
\(273\) 0.826773 2.96680i 0.0500386 0.179559i
\(274\) 11.1126 0.671339
\(275\) −12.0482 6.95603i −0.726533 0.419464i
\(276\) 0.0928940 0.160897i 0.00559156 0.00968487i
\(277\) 11.0097 + 19.0694i 0.661510 + 1.14577i 0.980219 + 0.197916i \(0.0634175\pi\)
−0.318709 + 0.947853i \(0.603249\pi\)
\(278\) 10.6451i 0.638448i
\(279\) −14.4023 + 8.31520i −0.862246 + 0.497818i
\(280\) 3.70943 2.14164i 0.221681 0.127987i
\(281\) 8.53270i 0.509018i −0.967070 0.254509i \(-0.918086\pi\)
0.967070 0.254509i \(-0.0819139\pi\)
\(282\) 0.906277 + 1.56972i 0.0539680 + 0.0934754i
\(283\) 5.12331 8.87384i 0.304549 0.527495i −0.672612 0.739996i \(-0.734827\pi\)
0.977161 + 0.212501i \(0.0681608\pi\)
\(284\) 8.63841 + 4.98739i 0.512595 + 0.295947i
\(285\) −1.17758 −0.0697539
\(286\) 3.02470 + 11.7564i 0.178854 + 0.695171i
\(287\) −7.05550 −0.416473
\(288\) 2.56818 + 1.48274i 0.151332 + 0.0873714i
\(289\) 8.06632 13.9713i 0.474490 0.821840i
\(290\) −4.35396 7.54128i −0.255673 0.442839i
\(291\) 1.05219i 0.0616807i
\(292\) 11.3442 6.54958i 0.663869 0.383285i
\(293\) −15.5608 + 8.98405i −0.909073 + 0.524854i −0.880133 0.474728i \(-0.842547\pi\)
−0.0289403 + 0.999581i \(0.509213\pi\)
\(294\) 2.62682i 0.153199i
\(295\) −4.42706 7.66789i −0.257753 0.446442i
\(296\) 4.37154 7.57172i 0.254090 0.440097i
\(297\) −3.23158 1.86575i −0.187515 0.108262i
\(298\) 2.21015 0.128031
\(299\) 2.57483 2.52394i 0.148906 0.145963i
\(300\) 0.767694 0.0443228
\(301\) 4.27722 + 2.46946i 0.246535 + 0.142337i
\(302\) −0.0382813 + 0.0663052i −0.00220284 + 0.00381544i
\(303\) 0.560610 + 0.971006i 0.0322062 + 0.0557828i
\(304\) 6.80357i 0.390212i
\(305\) −7.25766 + 4.19021i −0.415573 + 0.239931i
\(306\) 2.39180 1.38090i 0.136730 0.0789410i
\(307\) 22.4041i 1.27867i −0.768930 0.639333i \(-0.779210\pi\)
0.768930 0.639333i \(-0.220790\pi\)
\(308\) −7.73982 13.4058i −0.441017 0.763864i
\(309\) −0.270861 + 0.469144i −0.0154087 + 0.0266887i
\(310\) 4.52454 + 2.61224i 0.256976 + 0.148365i
\(311\) 7.11927 0.403696 0.201848 0.979417i \(-0.435305\pi\)
0.201848 + 0.979417i \(0.435305\pi\)
\(312\) −0.468918 0.478372i −0.0265472 0.0270825i
\(313\) −1.06576 −0.0602404 −0.0301202 0.999546i \(-0.509589\pi\)
−0.0301202 + 0.999546i \(0.509589\pi\)
\(314\) 9.27613 + 5.35558i 0.523482 + 0.302233i
\(315\) −6.35099 + 11.0002i −0.357838 + 0.619794i
\(316\) −1.35553 2.34784i −0.0762544 0.132077i
\(317\) 26.1585i 1.46921i −0.678497 0.734603i \(-0.737368\pi\)
0.678497 0.734603i \(-0.262632\pi\)
\(318\) −0.986801 + 0.569730i −0.0553371 + 0.0319489i
\(319\) −27.2540 + 15.7351i −1.52593 + 0.880995i
\(320\) 0.931614i 0.0520788i
\(321\) 1.04634 + 1.81232i 0.0584012 + 0.101154i
\(322\) −2.29885 + 3.98172i −0.128110 + 0.221893i
\(323\) −5.48739 3.16815i −0.305327 0.176280i
\(324\) −8.69054 −0.482808
\(325\) 14.3516 + 3.99944i 0.796085 + 0.221849i
\(326\) 19.8718 1.10060
\(327\) −1.60365 0.925867i −0.0886820 0.0512006i
\(328\) −0.767286 + 1.32898i −0.0423663 + 0.0733806i
\(329\) −22.4276 38.8458i −1.23648 2.14164i
\(330\) 0.582740i 0.0320788i
\(331\) 1.97362 1.13947i 0.108480 0.0626310i −0.444778 0.895641i \(-0.646718\pi\)
0.553258 + 0.833010i \(0.313384\pi\)
\(332\) −5.62660 + 3.24852i −0.308800 + 0.178286i
\(333\) 25.9274i 1.42081i
\(334\) 7.64025 + 13.2333i 0.418056 + 0.724094i
\(335\) 2.26107 3.91629i 0.123536 0.213970i
\(336\) 0.739756 + 0.427098i 0.0403570 + 0.0233001i
\(337\) −7.83952 −0.427046 −0.213523 0.976938i \(-0.568494\pi\)
−0.213523 + 0.976938i \(0.568494\pi\)
\(338\) −6.27400 11.3858i −0.341261 0.619307i
\(339\) 3.11754 0.169322
\(340\) −0.751389 0.433815i −0.0407498 0.0235269i
\(341\) 9.44057 16.3515i 0.511235 0.885486i
\(342\) 10.0879 + 17.4728i 0.545493 + 0.944822i
\(343\) 32.8220i 1.77222i
\(344\) 0.930297 0.537107i 0.0501583 0.0289589i
\(345\) 0.149894 0.0865414i 0.00807003 0.00465923i
\(346\) 8.70854i 0.468174i
\(347\) 2.19018 + 3.79350i 0.117575 + 0.203646i 0.918806 0.394709i \(-0.129155\pi\)
−0.801231 + 0.598355i \(0.795821\pi\)
\(348\) 0.868292 1.50393i 0.0465453 0.0806189i
\(349\) −21.9366 12.6651i −1.17424 0.677948i −0.219565 0.975598i \(-0.570464\pi\)
−0.954675 + 0.297650i \(0.903797\pi\)
\(350\) −18.9981 −1.01549
\(351\) 3.84941 + 1.07273i 0.205466 + 0.0572583i
\(352\) −3.36683 −0.179453
\(353\) 19.4262 + 11.2157i 1.03395 + 0.596954i 0.918115 0.396314i \(-0.129711\pi\)
0.115840 + 0.993268i \(0.463044\pi\)
\(354\) 0.882870 1.52918i 0.0469240 0.0812748i
\(355\) 4.64632 + 8.04767i 0.246601 + 0.427126i
\(356\) 6.72233i 0.356283i
\(357\) 0.688948 0.397764i 0.0364630 0.0210519i
\(358\) 22.1038 12.7616i 1.16822 0.674473i
\(359\) 18.4969i 0.976232i 0.872779 + 0.488116i \(0.162316\pi\)
−0.872779 + 0.488116i \(0.837684\pi\)
\(360\) 1.38134 + 2.39256i 0.0728032 + 0.126099i
\(361\) 13.6443 23.6326i 0.718121 1.24382i
\(362\) 11.2685 + 6.50590i 0.592261 + 0.341942i
\(363\) 0.0623371 0.00327185
\(364\) 11.6043 + 11.8383i 0.608231 + 0.620494i
\(365\) 12.2034 0.638753
\(366\) −1.44737 0.835637i −0.0756550 0.0436794i
\(367\) −14.9564 + 25.9052i −0.780715 + 1.35224i 0.150810 + 0.988563i \(0.451812\pi\)
−0.931526 + 0.363676i \(0.881522\pi\)
\(368\) 0.500000 + 0.866025i 0.0260643 + 0.0451447i
\(369\) 4.55075i 0.236903i
\(370\) 7.05393 4.07259i 0.366716 0.211724i
\(371\) 24.4204 14.0991i 1.26784 0.731989i
\(372\) 1.04190i 0.0540198i
\(373\) −1.35010 2.33845i −0.0699057 0.121080i 0.828954 0.559317i \(-0.188937\pi\)
−0.898860 + 0.438237i \(0.855603\pi\)
\(374\) −1.56779 + 2.71550i −0.0810687 + 0.140415i
\(375\) 1.36885 + 0.790304i 0.0706869 + 0.0408111i
\(376\) −9.75604 −0.503129
\(377\) 24.0672 23.5916i 1.23953 1.21503i
\(378\) −5.09569 −0.262094
\(379\) −14.3272 8.27181i −0.735938 0.424894i 0.0846524 0.996411i \(-0.473022\pi\)
−0.820591 + 0.571516i \(0.806355\pi\)
\(380\) 3.16915 5.48913i 0.162574 0.281587i
\(381\) −1.20094 2.08009i −0.0615262 0.106566i
\(382\) 0.724759i 0.0370819i
\(383\) −13.0948 + 7.56030i −0.669114 + 0.386313i −0.795741 0.605637i \(-0.792918\pi\)
0.126627 + 0.991950i \(0.459585\pi\)
\(384\) 0.160897 0.0928940i 0.00821075 0.00474048i
\(385\) 14.4211i 0.734965i
\(386\) 10.4602 + 18.1176i 0.532411 + 0.922163i
\(387\) −1.59278 + 2.75878i −0.0809657 + 0.140237i
\(388\) −4.90466 2.83171i −0.248996 0.143758i
\(389\) 5.24377 0.265870 0.132935 0.991125i \(-0.457560\pi\)
0.132935 + 0.991125i \(0.457560\pi\)
\(390\) −0.155494 0.604376i −0.00787376 0.0306038i
\(391\) 0.931318 0.0470988
\(392\) −12.2446 7.06940i −0.618444 0.357059i
\(393\) −0.555618 + 0.962359i −0.0280272 + 0.0485446i
\(394\) 9.13052 + 15.8145i 0.459989 + 0.796724i
\(395\) 2.52566i 0.127080i
\(396\) 8.64663 4.99213i 0.434510 0.250864i
\(397\) −20.4554 + 11.8099i −1.02663 + 0.592724i −0.916017 0.401140i \(-0.868614\pi\)
−0.110611 + 0.993864i \(0.535281\pi\)
\(398\) 10.6499i 0.533831i
\(399\) 2.90579 + 5.03298i 0.145472 + 0.251964i
\(400\) −2.06605 + 3.57850i −0.103302 + 0.178925i
\(401\) 30.6608 + 17.7020i 1.53113 + 0.883996i 0.999310 + 0.0371363i \(0.0118236\pi\)
0.531816 + 0.846860i \(0.321510\pi\)
\(402\) 0.901832 0.0449793
\(403\) −5.42795 + 19.4777i −0.270385 + 0.970254i
\(404\) −6.03495 −0.300250
\(405\) −7.01154 4.04811i −0.348406 0.201152i
\(406\) −21.4876 + 37.2176i −1.06641 + 1.84708i
\(407\) −14.7182 25.4927i −0.729554 1.26363i
\(408\) 0.173028i 0.00856615i
\(409\) −30.9710 + 17.8811i −1.53142 + 0.884163i −0.532119 + 0.846670i \(0.678604\pi\)
−0.999297 + 0.0374933i \(0.988063\pi\)
\(410\) −1.23810 + 0.714815i −0.0611452 + 0.0353022i
\(411\) 2.06459i 0.101839i
\(412\) −1.45790 2.52516i −0.0718257 0.124406i
\(413\) −21.8484 + 37.8425i −1.07509 + 1.86211i
\(414\) −2.56818 1.48274i −0.126219 0.0728728i
\(415\) −6.05274 −0.297117
\(416\) 3.49183 0.898382i 0.171201 0.0440468i
\(417\) −1.97772 −0.0968495
\(418\) −19.8376 11.4532i −0.970288 0.560196i
\(419\) −4.43283 + 7.67789i −0.216558 + 0.375089i −0.953753 0.300590i \(-0.902816\pi\)
0.737195 + 0.675680i \(0.236150\pi\)
\(420\) 0.397891 + 0.689167i 0.0194151 + 0.0336279i
\(421\) 11.7495i 0.572636i −0.958135 0.286318i \(-0.907569\pi\)
0.958135 0.286318i \(-0.0924313\pi\)
\(422\) −0.986076 + 0.569311i −0.0480014 + 0.0277136i
\(423\) 25.0553 14.4657i 1.21823 0.703346i
\(424\) 6.13312i 0.297851i
\(425\) 1.92415 + 3.33272i 0.0933349 + 0.161661i
\(426\) −0.926597 + 1.60491i −0.0448938 + 0.0777583i
\(427\) 35.8179 + 20.6795i 1.73335 + 1.00075i
\(428\) −11.2639 −0.544459
\(429\) −2.18420 + 0.561952i −0.105454 + 0.0271313i
\(430\) 1.00075 0.0482606
\(431\) 16.9054 + 9.76035i 0.814306 + 0.470140i 0.848449 0.529277i \(-0.177537\pi\)
−0.0341432 + 0.999417i \(0.510870\pi\)
\(432\) −0.554158 + 0.959829i −0.0266619 + 0.0461798i
\(433\) −4.59001 7.95013i −0.220582 0.382059i 0.734403 0.678714i \(-0.237462\pi\)
−0.954985 + 0.296655i \(0.904129\pi\)
\(434\) 25.7838i 1.23766i
\(435\) 1.40108 0.808913i 0.0671766 0.0387844i
\(436\) 8.63161 4.98346i 0.413379 0.238664i
\(437\) 6.80357i 0.325459i
\(438\) 1.21683 + 2.10762i 0.0581425 + 0.100706i
\(439\) 3.54694 6.14348i 0.169286 0.293212i −0.768883 0.639390i \(-0.779187\pi\)
0.938169 + 0.346177i \(0.112520\pi\)
\(440\) −2.71636 1.56829i −0.129497 0.0747654i
\(441\) 41.9284 1.99659
\(442\) 0.901419 3.23466i 0.0428761 0.153857i
\(443\) −9.68048 −0.459934 −0.229967 0.973198i \(-0.573862\pi\)
−0.229967 + 0.973198i \(0.573862\pi\)
\(444\) 1.40673 + 0.812179i 0.0667607 + 0.0385443i
\(445\) 3.13131 5.42359i 0.148438 0.257103i
\(446\) −3.35310 5.80774i −0.158774 0.275005i
\(447\) 0.410620i 0.0194217i
\(448\) −3.98172 + 2.29885i −0.188119 + 0.108610i
\(449\) −28.2676 + 16.3203i −1.33403 + 0.770203i −0.985915 0.167249i \(-0.946512\pi\)
−0.348115 + 0.937452i \(0.613178\pi\)
\(450\) 12.2537i 0.577643i
\(451\) 2.58332 + 4.47444i 0.121644 + 0.210693i
\(452\) −8.39006 + 14.5320i −0.394635 + 0.683528i
\(453\) −0.0123187 0.00711221i −0.000578784 0.000334161i
\(454\) −23.3809 −1.09732
\(455\) 3.84802 + 14.9565i 0.180398 + 0.701172i
\(456\) 1.26402 0.0591933
\(457\) −33.4141 19.2916i −1.56305 0.902425i −0.996947 0.0780875i \(-0.975119\pi\)
−0.566099 0.824337i \(-0.691548\pi\)
\(458\) 8.57470 14.8518i 0.400669 0.693980i
\(459\) 0.516097 + 0.893906i 0.0240893 + 0.0417240i
\(460\) 0.931614i 0.0434367i
\(461\) −6.02606 + 3.47915i −0.280661 + 0.162040i −0.633723 0.773560i \(-0.718474\pi\)
0.353061 + 0.935600i \(0.385141\pi\)
\(462\) 2.49063 1.43797i 0.115875 0.0669002i
\(463\) 36.8005i 1.71026i −0.518411 0.855132i \(-0.673476\pi\)
0.518411 0.855132i \(-0.326524\pi\)
\(464\) 4.67356 + 8.09485i 0.216965 + 0.375794i
\(465\) −0.485323 + 0.840604i −0.0225063 + 0.0389821i
\(466\) 3.00520 + 1.73506i 0.139213 + 0.0803749i
\(467\) 6.06650 0.280724 0.140362 0.990100i \(-0.455173\pi\)
0.140362 + 0.990100i \(0.455173\pi\)
\(468\) −7.63560 + 7.48470i −0.352956 + 0.345980i
\(469\) −22.3176 −1.03053
\(470\) −7.87119 4.54443i −0.363071 0.209619i
\(471\) −0.995002 + 1.72339i −0.0458473 + 0.0794098i
\(472\) 4.75203 + 8.23076i 0.218730 + 0.378851i
\(473\) 3.61670i 0.166296i
\(474\) 0.436201 0.251841i 0.0200354 0.0115674i
\(475\) −24.3466 + 14.0565i −1.11710 + 0.644957i
\(476\) 4.28192i 0.196261i
\(477\) 9.09383 + 15.7510i 0.416378 + 0.721188i
\(478\) −1.40675 + 2.43656i −0.0643432 + 0.111446i
\(479\) 24.5871 + 14.1954i 1.12342 + 0.648604i 0.942271 0.334852i \(-0.108686\pi\)
0.181145 + 0.983456i \(0.442020\pi\)
\(480\) 0.173083 0.00790011
\(481\) 22.0670 + 22.5119i 1.00617 + 1.02645i
\(482\) −24.0143 −1.09382
\(483\) −0.739756 0.427098i −0.0336601 0.0194336i
\(484\) −0.167764 + 0.290576i −0.00762564 + 0.0132080i
\(485\) −2.63806 4.56925i −0.119788 0.207479i
\(486\) 4.93954i 0.224062i
\(487\) −6.26791 + 3.61878i −0.284026 + 0.163983i −0.635245 0.772311i \(-0.719101\pi\)
0.351219 + 0.936294i \(0.385767\pi\)
\(488\) 7.79041 4.49780i 0.352655 0.203606i
\(489\) 3.69194i 0.166955i
\(490\) −6.58595 11.4072i −0.297523 0.515325i
\(491\) 15.4442 26.7501i 0.696985 1.20721i −0.272522 0.962150i \(-0.587858\pi\)
0.969507 0.245064i \(-0.0788090\pi\)
\(492\) −0.246908 0.142553i −0.0111315 0.00642677i
\(493\) 8.70515 0.392060
\(494\) 23.6302 + 6.58515i 1.06317 + 0.296280i
\(495\) 9.30149 0.418071
\(496\) −4.85666 2.80399i −0.218071 0.125903i
\(497\) 22.9305 39.7168i 1.02857 1.78154i
\(498\) −0.603536 1.04536i −0.0270451 0.0468435i
\(499\) 6.00635i 0.268881i 0.990922 + 0.134441i \(0.0429238\pi\)
−0.990922 + 0.134441i \(0.957076\pi\)
\(500\) −7.36779 + 4.25380i −0.329498 + 0.190236i
\(501\) −2.45859 + 1.41947i −0.109842 + 0.0634171i
\(502\) 0.784363i 0.0350078i
\(503\) 15.3353 + 26.5615i 0.683766 + 1.18432i 0.973823 + 0.227308i \(0.0729924\pi\)
−0.290057 + 0.957009i \(0.593674\pi\)
\(504\) 6.81719 11.8077i 0.303662 0.525958i
\(505\) −4.86901 2.81112i −0.216668 0.125093i
\(506\) 3.36683 0.149674
\(507\) 2.11535 1.16563i 0.0939459 0.0517676i
\(508\) 12.9281 0.573592
\(509\) −20.6506 11.9227i −0.915324 0.528462i −0.0331836 0.999449i \(-0.510565\pi\)
−0.882140 + 0.470987i \(0.843898\pi\)
\(510\) 0.0805976 0.139599i 0.00356892 0.00618155i
\(511\) −30.1130 52.1572i −1.33212 2.30730i
\(512\) 1.00000i 0.0441942i
\(513\) −6.53027 + 3.77025i −0.288318 + 0.166461i
\(514\) 1.32160 0.763027i 0.0582933 0.0336557i
\(515\) 2.71640i 0.119699i
\(516\) 0.0997881 + 0.172838i 0.00439293 + 0.00760877i
\(517\) −16.4235 + 28.4463i −0.722303 + 1.25106i
\(518\) −34.8125 20.0990i −1.52957 0.883099i
\(519\) −1.61794 −0.0710198
\(520\) 3.23569 + 0.901706i 0.141894 + 0.0395424i
\(521\) −0.0678549 −0.00297278 −0.00148639 0.999999i \(-0.500473\pi\)
−0.00148639 + 0.999999i \(0.500473\pi\)
\(522\) −24.0051 13.8594i −1.05068 0.606608i
\(523\) −22.3100 + 38.6421i −0.975550 + 1.68970i −0.297442 + 0.954740i \(0.596133\pi\)
−0.678108 + 0.734962i \(0.737200\pi\)
\(524\) −2.99060 5.17988i −0.130645 0.226284i
\(525\) 3.52962i 0.154045i
\(526\) 5.04589 2.91324i 0.220011 0.127023i
\(527\) −4.52310 + 2.61141i −0.197029 + 0.113755i
\(528\) 0.625516i 0.0272221i
\(529\) −0.500000 0.866025i −0.0217391 0.0376533i
\(530\) 2.85685 4.94821i 0.124094 0.214937i
\(531\) −24.4082 14.0921i −1.05922 0.611543i
\(532\) −31.2808 −1.35619
\(533\) −3.87317 3.95126i −0.167766 0.171148i
\(534\) 1.24893 0.0540464
\(535\) −9.08769 5.24678i −0.392895 0.226838i
\(536\) −2.42705 + 4.20377i −0.104832 + 0.181575i
\(537\) 2.37096 + 4.10662i 0.102314 + 0.177214i
\(538\) 14.7988i 0.638021i
\(539\) −41.2253 + 23.8014i −1.77570 + 1.02520i
\(540\) −0.894190 + 0.516261i −0.0384798 + 0.0222163i
\(541\) 15.8698i 0.682295i −0.940010 0.341148i \(-0.889184\pi\)
0.940010 0.341148i \(-0.110816\pi\)
\(542\) −10.5272 18.2337i −0.452182 0.783203i
\(543\) −1.20872 + 2.09356i −0.0518710 + 0.0898433i
\(544\) 0.806545 + 0.465659i 0.0345803 + 0.0199650i
\(545\) 9.28533 0.397740
\(546\) −2.19941 + 2.15594i −0.0941260 + 0.0922657i
\(547\) 32.0177 1.36898 0.684490 0.729022i \(-0.260025\pi\)
0.684490 + 0.729022i \(0.260025\pi\)
\(548\) −9.62382 5.55632i −0.411109 0.237354i
\(549\) −13.3381 + 23.1023i −0.569258 + 0.985984i
\(550\) 6.95603 + 12.0482i 0.296606 + 0.513737i
\(551\) 63.5939i 2.70919i
\(552\) −0.160897 + 0.0928940i −0.00684824 + 0.00395383i
\(553\) −10.7947 + 6.23231i −0.459036 + 0.265025i
\(554\) 22.0194i 0.935517i
\(555\) 0.756637 + 1.31053i 0.0321175 + 0.0556291i
\(556\) 5.32253 9.21889i 0.225725 0.390968i
\(557\) 11.8284 + 6.82913i 0.501185 + 0.289359i 0.729203 0.684298i \(-0.239891\pi\)
−0.228018 + 0.973657i \(0.573224\pi\)
\(558\) 16.6304 0.704021
\(559\) 0.965055 + 3.75098i 0.0408175 + 0.158650i
\(560\) −4.28328 −0.181002
\(561\) −0.504507 0.291277i −0.0213003 0.0122977i
\(562\) −4.26635 + 7.38953i −0.179965 + 0.311709i
\(563\) −20.0183 34.6727i −0.843671 1.46128i −0.886770 0.462210i \(-0.847057\pi\)
0.0430995 0.999071i \(-0.486277\pi\)
\(564\) 1.81255i 0.0763223i
\(565\) −13.5382 + 7.81630i −0.569557 + 0.328834i
\(566\) −8.87384 + 5.12331i −0.372995 + 0.215349i
\(567\) 39.9564i 1.67801i
\(568\) −4.98739 8.63841i −0.209266 0.362460i
\(569\) −9.53431 + 16.5139i −0.399699 + 0.692299i −0.993689 0.112174i \(-0.964219\pi\)
0.593989 + 0.804473i \(0.297552\pi\)
\(570\) 1.01982 + 0.588791i 0.0427154 + 0.0246617i
\(571\) 20.7997 0.870442 0.435221 0.900324i \(-0.356670\pi\)
0.435221 + 0.900324i \(0.356670\pi\)
\(572\) 3.25874 11.6937i 0.136255 0.488938i
\(573\) −0.134651 −0.00562514
\(574\) 6.11024 + 3.52775i 0.255036 + 0.147245i
\(575\) 2.06605 3.57850i 0.0861601 0.149234i
\(576\) −1.48274 2.56818i −0.0617809 0.107008i
\(577\) 34.9614i 1.45546i 0.685863 + 0.727731i \(0.259425\pi\)
−0.685863 + 0.727731i \(0.740575\pi\)
\(578\) −13.9713 + 8.06632i −0.581129 + 0.335515i
\(579\) −3.36604 + 1.94338i −0.139888 + 0.0807642i
\(580\) 8.70792i 0.361577i
\(581\) 14.9357 + 25.8694i 0.619637 + 1.07324i
\(582\) 0.526097 0.911227i 0.0218074 0.0377716i
\(583\) −17.8827 10.3246i −0.740626 0.427600i
\(584\) −13.0992 −0.542047
\(585\) −9.64684 + 2.48195i −0.398848 + 0.102616i
\(586\) 17.9681 0.742255
\(587\) 12.9709 + 7.48873i 0.535365 + 0.309093i 0.743198 0.669071i \(-0.233308\pi\)
−0.207834 + 0.978164i \(0.566641\pi\)
\(588\) 1.31341 2.27489i 0.0541641 0.0938150i
\(589\) −19.0772 33.0426i −0.786062 1.36150i
\(590\) 8.85412i 0.364518i
\(591\) −2.93815 + 1.69634i −0.120859 + 0.0697782i
\(592\) −7.57172 + 4.37154i −0.311196 + 0.179669i
\(593\) 10.9637i 0.450227i 0.974333 + 0.225113i \(0.0722753\pi\)
−0.974333 + 0.225113i \(0.927725\pi\)
\(594\) 1.86575 + 3.23158i 0.0765528 + 0.132593i
\(595\) −1.99455 + 3.45466i −0.0817685 + 0.141627i
\(596\) −1.91405 1.10508i −0.0784025 0.0452657i
\(597\) −1.97862 −0.0809797
\(598\) −3.49183 + 0.898382i −0.142792 + 0.0367376i
\(599\) −18.6340 −0.761366 −0.380683 0.924706i \(-0.624311\pi\)
−0.380683 + 0.924706i \(0.624311\pi\)
\(600\) −0.664842 0.383847i −0.0271421 0.0156705i
\(601\) 12.0526 20.8758i 0.491638 0.851541i −0.508316 0.861171i \(-0.669732\pi\)
0.999954 + 0.00962921i \(0.00306512\pi\)
\(602\) −2.46946 4.27722i −0.100648 0.174327i
\(603\) 14.3947i 0.586199i
\(604\) 0.0663052 0.0382813i 0.00269792 0.00155765i
\(605\) −0.270705 + 0.156291i −0.0110057 + 0.00635415i
\(606\) 1.12122i 0.0455465i
\(607\) 2.47781 + 4.29170i 0.100571 + 0.174195i 0.911920 0.410368i \(-0.134600\pi\)
−0.811349 + 0.584562i \(0.801266\pi\)
\(608\) −3.40179 + 5.89207i −0.137961 + 0.238955i
\(609\) −6.91459 3.99214i −0.280193 0.161770i
\(610\) 8.38043 0.339314
\(611\) 9.44283 33.8848i 0.382016 1.37083i
\(612\) −2.76181 −0.111639
\(613\) 41.1190 + 23.7400i 1.66078 + 0.958851i 0.972344 + 0.233553i \(0.0750353\pi\)
0.688435 + 0.725298i \(0.258298\pi\)
\(614\) −11.2020 + 19.4025i −0.452077 + 0.783020i
\(615\) −0.132804 0.230023i −0.00535518 0.00927544i
\(616\) 15.4796i 0.623693i
\(617\) 32.1053 18.5360i 1.29251 0.746231i 0.313412 0.949617i \(-0.398528\pi\)
0.979099 + 0.203386i \(0.0651946\pi\)
\(618\) 0.469144 0.270861i 0.0188718 0.0108956i
\(619\) 32.5360i 1.30773i −0.756611 0.653866i \(-0.773146\pi\)
0.756611 0.653866i \(-0.226854\pi\)
\(620\) −2.61224 4.52454i −0.104910 0.181710i
\(621\) 0.554158 0.959829i 0.0222376 0.0385166i
\(622\) −6.16546 3.55963i −0.247213 0.142728i
\(623\) −30.9072 −1.23827
\(624\) 0.166909 + 0.648741i 0.00668169 + 0.0259704i
\(625\) 12.7347 0.509387
\(626\) 0.922977 + 0.532881i 0.0368896 + 0.0212982i
\(627\) 2.12787 3.68558i 0.0849790 0.147188i
\(628\) −5.35558 9.27613i −0.213711 0.370158i
\(629\) 8.14258i 0.324666i
\(630\) 11.0002 6.35099i 0.438260 0.253030i
\(631\) 8.65720 4.99824i 0.344638 0.198977i −0.317683 0.948197i \(-0.602905\pi\)
0.662321 + 0.749220i \(0.269572\pi\)
\(632\) 2.71106i 0.107840i
\(633\) −0.105771 0.183201i −0.00420403 0.00728159i
\(634\) −13.0792 + 22.6539i −0.519443 + 0.899701i
\(635\) 10.4304 + 6.02200i 0.413918 + 0.238976i
\(636\) 1.13946 0.0451825
\(637\) 36.4050 35.6855i 1.44242 1.41391i
\(638\) 31.4702 1.24592
\(639\) 25.6171 + 14.7900i 1.01339 + 0.585084i
\(640\) −0.465807 + 0.806802i −0.0184126 + 0.0318916i
\(641\) 14.0752 + 24.3790i 0.555938 + 0.962913i 0.997830 + 0.0658450i \(0.0209743\pi\)
−0.441892 + 0.897068i \(0.645692\pi\)
\(642\) 2.09269i 0.0825918i
\(643\) 19.4660 11.2387i 0.767664 0.443211i −0.0643764 0.997926i \(-0.520506\pi\)
0.832041 + 0.554714i \(0.187172\pi\)
\(644\) 3.98172 2.29885i 0.156902 0.0905873i
\(645\) 0.185928i 0.00732091i
\(646\) 3.16815 + 5.48739i 0.124649 + 0.215898i
\(647\) 17.5083 30.3252i 0.688321 1.19221i −0.284059 0.958807i \(-0.591681\pi\)
0.972381 0.233401i \(-0.0749854\pi\)
\(648\) 7.52623 + 4.34527i 0.295658 + 0.170698i
\(649\) 31.9985 1.25605
\(650\) −10.4292 10.6394i −0.409065 0.417313i
\(651\) 4.79032 0.187748
\(652\) −17.2095 9.93590i −0.673975 0.389120i
\(653\) −22.8877 + 39.6427i −0.895666 + 1.55134i −0.0626879 + 0.998033i \(0.519967\pi\)
−0.832978 + 0.553306i \(0.813366\pi\)
\(654\) 0.925867 + 1.60365i 0.0362043 + 0.0627076i
\(655\) 5.57218i 0.217723i
\(656\) 1.32898 0.767286i 0.0518879 0.0299575i
\(657\) 33.6410 19.4227i 1.31246 0.757750i
\(658\) 44.8553i 1.74864i
\(659\) −8.03364 13.9147i −0.312946 0.542039i 0.666053 0.745905i \(-0.267983\pi\)
−0.978999 + 0.203866i \(0.934649\pi\)
\(660\) 0.291370 0.504667i 0.0113416 0.0196442i
\(661\) −25.8895 14.9473i −1.00698 0.581382i −0.0966767 0.995316i \(-0.530821\pi\)
−0.910307 + 0.413933i \(0.864155\pi\)
\(662\) −2.27894 −0.0885737
\(663\) 0.600961 + 0.167473i 0.0233394 + 0.00650411i
\(664\) 6.49704 0.252134
\(665\) −25.2374 14.5708i −0.978663 0.565031i
\(666\) 12.9637 22.4538i 0.502334 0.870068i
\(667\) −4.67356 8.09485i −0.180961 0.313434i
\(668\) 15.2805i 0.591221i
\(669\) 1.07901 0.622966i 0.0417169 0.0240853i
\(670\) −3.91629 + 2.26107i −0.151300 + 0.0873528i
\(671\) 30.2866i 1.16920i
\(672\) −0.427098 0.739756i −0.0164757 0.0285367i
\(673\) 7.61605 13.1914i 0.293577 0.508491i −0.681076 0.732213i \(-0.738488\pi\)
0.974653 + 0.223722i \(0.0718209\pi\)
\(674\) 6.78922 + 3.91976i 0.261511 + 0.150984i
\(675\) 4.57966 0.176271
\(676\) −0.259466 + 12.9974i −0.00997945 + 0.499900i
\(677\) −17.0655 −0.655881 −0.327941 0.944698i \(-0.606355\pi\)
−0.327941 + 0.944698i \(0.606355\pi\)
\(678\) −2.69987 1.55877i −0.103688 0.0598643i
\(679\) −13.0193 + 22.5501i −0.499636 + 0.865394i
\(680\) 0.433815 + 0.751389i 0.0166360 + 0.0288145i
\(681\) 4.34389i 0.166458i
\(682\) −16.3515 + 9.44057i −0.626133 + 0.361498i
\(683\) 38.0096 21.9448i 1.45440 0.839695i 0.455669 0.890149i \(-0.349400\pi\)
0.998726 + 0.0504539i \(0.0160668\pi\)
\(684\) 20.1759i 0.771444i
\(685\) −5.17635 8.96569i −0.197778 0.342562i
\(686\) −16.4110 + 28.4247i −0.626575 + 1.08526i
\(687\) 2.75929 + 1.59308i 0.105273 + 0.0607796i
\(688\) −1.07421 −0.0409541
\(689\) 21.3016 + 5.93622i 0.811526 + 0.226152i
\(690\) −0.173083 −0.00658915
\(691\) 27.9512 + 16.1376i 1.06331 + 0.613905i 0.926347 0.376671i \(-0.122931\pi\)
0.136967 + 0.990576i \(0.456264\pi\)
\(692\) 4.35427 7.54182i 0.165525 0.286697i
\(693\) −22.9523 39.7546i −0.871886 1.51015i
\(694\) 4.38036i 0.166276i
\(695\) 8.58845 4.95854i 0.325778 0.188088i
\(696\) −1.50393 + 0.868292i −0.0570062 + 0.0329125i
\(697\) 1.42918i 0.0541339i
\(698\) 12.6651 + 21.9366i 0.479382 + 0.830313i
\(699\) −0.322352 + 0.558331i −0.0121925 + 0.0211180i
\(700\) 16.4528 + 9.49906i 0.621859 + 0.359031i
\(701\) 0.905975 0.0342182 0.0171091 0.999854i \(-0.494554\pi\)
0.0171091 + 0.999854i \(0.494554\pi\)
\(702\) −2.79732 2.85372i −0.105578 0.107707i
\(703\) −59.4841 −2.24349
\(704\) 2.91576 + 1.68341i 0.109892 + 0.0634460i
\(705\) 0.844301 1.46237i 0.0317982 0.0550761i
\(706\) −11.2157 19.4262i −0.422110 0.731117i
\(707\) 27.7468i 1.04353i
\(708\) −1.52918 + 0.882870i −0.0574700 + 0.0331803i
\(709\) 1.65110 0.953261i 0.0620082 0.0358005i −0.468675 0.883370i \(-0.655269\pi\)
0.530684 + 0.847570i \(0.321935\pi\)
\(710\) 9.29264i 0.348747i
\(711\) −4.01980 6.96249i −0.150754 0.261114i
\(712\) −3.36116 + 5.82171i −0.125965 + 0.218178i
\(713\) 4.85666 + 2.80399i 0.181883 + 0.105010i
\(714\) −0.795529 −0.0297719
\(715\) 8.07616 7.91655i 0.302031 0.296062i
\(716\) −25.5233 −0.953849
\(717\) −0.452683 0.261357i −0.0169058 0.00976055i
\(718\) 9.24847 16.0188i 0.345150 0.597817i
\(719\) 3.88449 + 6.72813i 0.144867 + 0.250917i 0.929323 0.369267i \(-0.120391\pi\)
−0.784456 + 0.620184i \(0.787058\pi\)
\(720\) 2.76269i 0.102959i
\(721\) −11.6099 + 6.70299i −0.432376 + 0.249632i
\(722\) −23.6326 + 13.6443i −0.879515 + 0.507788i
\(723\) 4.46156i 0.165927i
\(724\) −6.50590 11.2685i −0.241790 0.418792i
\(725\) 19.3116 33.4487i 0.717215 1.24225i
\(726\) −0.0539855 0.0311685i −0.00200359 0.00115677i
\(727\) 2.07837 0.0770824 0.0385412 0.999257i \(-0.487729\pi\)
0.0385412 + 0.999257i \(0.487729\pi\)
\(728\) −4.13049 16.0544i −0.153086 0.595015i
\(729\) −25.1539 −0.931626
\(730\) −10.5684 6.10168i −0.391155 0.225833i
\(731\) −0.500218 + 0.866403i −0.0185012 + 0.0320451i
\(732\) 0.835637 + 1.44737i 0.0308860 + 0.0534962i
\(733\) 16.2092i 0.598701i 0.954143 + 0.299351i \(0.0967700\pi\)
−0.954143 + 0.299351i \(0.903230\pi\)
\(734\) 25.9052 14.9564i 0.956177 0.552049i
\(735\) 2.11932 1.22359i 0.0781724 0.0451328i
\(736\) 1.00000i 0.0368605i
\(737\) 8.17145 + 14.1534i 0.300999 + 0.521346i
\(738\) −2.27537 + 3.94106i −0.0837577 + 0.145073i
\(739\) 33.7886 + 19.5078i 1.24293 + 0.717608i 0.969690 0.244338i \(-0.0785705\pi\)
0.273243 + 0.961945i \(0.411904\pi\)
\(740\) −8.14517 −0.299422
\(741\) −1.22344 + 4.39021i −0.0449443 + 0.161278i
\(742\) −28.1982 −1.03519
\(743\) −0.284535 0.164276i −0.0104386 0.00602672i 0.494772 0.869023i \(-0.335252\pi\)
−0.505210 + 0.862996i \(0.668585\pi\)
\(744\) 0.520948 0.902309i 0.0190989 0.0330803i
\(745\) −1.02951 1.78316i −0.0377182 0.0653298i
\(746\) 2.70021i 0.0988616i
\(747\) −16.6856 + 9.63343i −0.610494 + 0.352469i
\(748\) 2.71550 1.56779i 0.0992885 0.0573242i
\(749\) 51.7878i 1.89228i
\(750\) −0.790304 1.36885i −0.0288578 0.0499832i
\(751\) 23.3685 40.4754i 0.852729 1.47697i −0.0260071 0.999662i \(-0.508279\pi\)
0.878736 0.477308i \(-0.158387\pi\)
\(752\) 8.44898 + 4.87802i 0.308103 + 0.177883i
\(753\) 0.145725 0.00531052
\(754\) −32.6386 + 8.39729i −1.18863 + 0.305811i
\(755\) 0.0713269 0.00259585
\(756\) 4.41300 + 2.54785i 0.160499 + 0.0926643i
\(757\) 6.54429 11.3350i 0.237856 0.411979i −0.722243 0.691640i \(-0.756889\pi\)
0.960099 + 0.279661i \(0.0902219\pi\)
\(758\) 8.27181 + 14.3272i 0.300446 + 0.520387i
\(759\) 0.625516i 0.0227048i
\(760\) −5.48913 + 3.16915i −0.199112 + 0.114957i
\(761\) −35.6831 + 20.6017i −1.29351 + 0.746810i −0.979275 0.202535i \(-0.935082\pi\)
−0.314237 + 0.949345i \(0.601749\pi\)
\(762\) 2.40189i 0.0870112i
\(763\) −22.9124 39.6855i −0.829486 1.43671i
\(764\) 0.362379 0.627659i 0.0131104 0.0227079i
\(765\) −2.22823 1.28647i −0.0805619 0.0465124i
\(766\) 15.1206 0.546330
\(767\) −33.1866 + 8.53827i −1.19830 + 0.308299i
\(768\) −0.185788 −0.00670405
\(769\) −12.2346 7.06367i −0.441192 0.254722i 0.262911 0.964820i \(-0.415317\pi\)
−0.704103 + 0.710098i \(0.748651\pi\)
\(770\) −7.21053 + 12.4890i −0.259849 + 0.450072i
\(771\) 0.141761 + 0.245538i 0.00510540 + 0.00884282i
\(772\) 20.9204i 0.752943i
\(773\) −2.27414 + 1.31297i −0.0817951 + 0.0472244i −0.540340 0.841447i \(-0.681704\pi\)
0.458545 + 0.888671i \(0.348371\pi\)
\(774\) 2.75878 1.59278i 0.0991623 0.0572514i
\(775\) 23.1727i 0.832389i
\(776\) 2.83171 + 4.90466i 0.101652 + 0.176067i
\(777\) 3.73415 6.46774i 0.133962 0.232029i
\(778\) −4.54124 2.62189i −0.162811 0.0939992i
\(779\) 10.4406 0.374073
\(780\) −0.167526 + 0.601153i −0.00599840 + 0.0215247i
\(781\) −33.5833 −1.20171
\(782\) −0.806545 0.465659i −0.0288420 0.0166519i
\(783\) 5.17978 8.97164i 0.185110 0.320620i
\(784\) 7.06940 + 12.2446i 0.252479 + 0.437306i
\(785\) 9.97866i 0.356154i
\(786\) 0.962359 0.555618i 0.0343262 0.0198182i
\(787\) −34.1808 + 19.7343i −1.21841 + 0.703451i −0.964578 0.263797i \(-0.915025\pi\)
−0.253834 + 0.967248i \(0.581692\pi\)
\(788\) 18.2610i 0.650523i
\(789\) 0.541246 + 0.937465i 0.0192689 + 0.0333746i
\(790\) −1.26283 + 2.18729i −0.0449295 + 0.0778201i
\(791\) 66.8137 + 38.5749i 2.37562 + 1.37157i
\(792\) −9.98427 −0.354776
\(793\) 8.08148 + 31.4111i 0.286982 + 1.11544i
\(794\) 23.6199 0.838238
\(795\) 0.919318 + 0.530769i 0.0326049 + 0.0188244i
\(796\) 5.32495 9.22308i 0.188738 0.326904i
\(797\) 9.75133 + 16.8898i 0.345410 + 0.598267i 0.985428 0.170092i \(-0.0544066\pi\)
−0.640018 + 0.768360i \(0.721073\pi\)
\(798\) 5.81159i 0.205728i
\(799\) 7.86869 4.54299i 0.278374 0.160719i
\(800\) 3.57850 2.06605i 0.126519 0.0730458i
\(801\) 19.9349i 0.704367i
\(802\) −17.7020 30.6608i −0.625080 1.08267i
\(803\) −22.0513 + 38.1940i −0.778173 + 1.34784i
\(804\) −0.781010 0.450916i −0.0275441 0.0159026i
\(805\) 4.28328 0.150966
\(806\) 14.4396 14.1542i 0.508613 0.498561i
\(807\) −2.74944 −0.0967847
\(808\) 5.22642 + 3.01747i 0.183865 + 0.106154i
\(809\) 2.54265 4.40400i 0.0893949 0.154837i −0.817861 0.575416i \(-0.804840\pi\)
0.907256 + 0.420580i \(0.138173\pi\)
\(810\) 4.04811 + 7.01154i 0.142236 + 0.246360i
\(811\) 18.0206i 0.632790i 0.948627 + 0.316395i \(0.102473\pi\)
−0.948627 + 0.316395i \(0.897527\pi\)
\(812\) 37.2176 21.4876i 1.30608 0.754068i
\(813\) 3.38759 1.95583i 0.118808 0.0685939i
\(814\) 29.4364i 1.03175i
\(815\) −9.25643 16.0326i −0.324239 0.561598i
\(816\) −0.0865139 + 0.149846i −0.00302859 + 0.00524567i
\(817\) −6.32935 3.65425i −0.221436 0.127846i
\(818\) 35.7622 1.25040
\(819\) 34.4124 + 35.1062i 1.20246 + 1.22671i
\(820\) 1.42963 0.0499248
\(821\) −3.18243 1.83738i −0.111068 0.0641250i 0.443437 0.896306i \(-0.353759\pi\)
−0.554505 + 0.832181i \(0.687092\pi\)
\(822\) 1.03230 1.78799i 0.0360055 0.0623633i
\(823\) 17.5423 + 30.3841i 0.611485 + 1.05912i 0.990990 + 0.133934i \(0.0427609\pi\)
−0.379505 + 0.925190i \(0.623906\pi\)
\(824\) 2.91580i 0.101577i
\(825\) −2.23841 + 1.29235i −0.0779314 + 0.0449937i
\(826\) 37.8425 21.8484i 1.31671 0.760203i
\(827\) 1.82423i 0.0634346i 0.999497 + 0.0317173i \(0.0100976\pi\)
−0.999497 + 0.0317173i \(0.989902\pi\)
\(828\) 1.48274 + 2.56818i 0.0515288 + 0.0892505i
\(829\) 22.8679 39.6083i 0.794233 1.37565i −0.129092 0.991633i \(-0.541206\pi\)
0.923325 0.384020i \(-0.125461\pi\)
\(830\) 5.24182 + 3.02637i 0.181946 + 0.105047i
\(831\) 4.09095 0.141913
\(832\) −3.47321 0.967896i −0.120412 0.0335558i
\(833\) 13.1677 0.456234
\(834\) 1.71276 + 0.988861i 0.0593080 + 0.0342415i
\(835\) 7.11777 12.3283i 0.246321 0.426640i
\(836\) 11.4532 + 19.8376i 0.396118 + 0.686097i
\(837\) 6.21542i 0.214836i
\(838\) 7.67789 4.43283i 0.265228 0.153130i
\(839\) 10.2455 5.91523i 0.353713 0.204216i −0.312606 0.949883i \(-0.601202\pi\)
0.666319 + 0.745666i \(0.267869\pi\)
\(840\) 0.795782i 0.0274571i
\(841\) −29.1844 50.5488i −1.00636 1.74306i
\(842\) −5.87475 + 10.1754i −0.202457 + 0.350666i
\(843\) −1.37289 0.792636i −0.0472847 0.0272998i
\(844\) 1.13862 0.0391930
\(845\) −6.26362 + 10.3655i −0.215475 + 0.356583i
\(846\) −28.9314 −0.994681
\(847\) 1.33598 + 0.771328i 0.0459048 + 0.0265031i
\(848\) −3.06656 + 5.31144i −0.105306 + 0.182396i
\(849\) −0.951850 1.64865i −0.0326674 0.0565816i
\(850\) 3.84829i 0.131995i
\(851\) 7.57172 4.37154i 0.259555 0.149854i
\(852\) 1.60491 0.926597i 0.0549834 0.0317447i
\(853\) 20.9822i 0.718416i −0.933258 0.359208i \(-0.883047\pi\)
0.933258 0.359208i \(-0.116953\pi\)
\(854\) −20.6795 35.8179i −0.707638 1.22566i
\(855\) 9.39807 16.2779i 0.321407 0.556694i
\(856\) 9.75478 + 5.63193i 0.333412 + 0.192495i
\(857\) 21.8764 0.747283 0.373641 0.927573i \(-0.378109\pi\)
0.373641 + 0.927573i \(0.378109\pi\)
\(858\) 2.17255 + 0.605435i 0.0741696 + 0.0206692i
\(859\) −7.73002 −0.263745 −0.131872 0.991267i \(-0.542099\pi\)
−0.131872 + 0.991267i \(0.542099\pi\)
\(860\) −0.866678 0.500377i −0.0295535 0.0170627i
\(861\) −0.655413 + 1.13521i −0.0223364 + 0.0386878i
\(862\) −9.76035 16.9054i −0.332439 0.575801i
\(863\) 25.6702i 0.873823i 0.899505 + 0.436911i \(0.143928\pi\)
−0.899505 + 0.436911i \(0.856072\pi\)
\(864\) 0.959829 0.554158i 0.0326540 0.0188528i
\(865\) 7.02607 4.05650i 0.238893 0.137925i
\(866\) 9.18001i 0.311950i
\(867\) −1.49863 2.59570i −0.0508960 0.0881545i
\(868\) −12.8919 + 22.3294i −0.437580 + 0.757911i
\(869\) 7.90479 + 4.56383i 0.268151 + 0.154817i
\(870\) −1.61783 −0.0548495
\(871\) −12.2514 12.4984i −0.415124 0.423494i
\(872\) −9.96692 −0.337523
\(873\) −14.5447 8.39737i −0.492263 0.284208i
\(874\) 3.40179 5.89207i 0.115067 0.199302i
\(875\) 19.5577 + 33.8748i 0.661169 + 1.14518i
\(876\) 2.43367i 0.0822259i
\(877\) 43.6437 25.1977i 1.47374 0.850866i 0.474181 0.880427i \(-0.342744\pi\)
0.999563 + 0.0295610i \(0.00941092\pi\)
\(878\) −6.14348 + 3.54694i −0.207333 + 0.119703i
\(879\) 3.33826i 0.112597i
\(880\) 1.56829 + 2.71636i 0.0528671 + 0.0915686i
\(881\) −7.84484 + 13.5877i −0.264299 + 0.457780i −0.967380 0.253330i \(-0.918474\pi\)
0.703080 + 0.711110i \(0.251807\pi\)
\(882\) −36.3110 20.9642i −1.22266 0.705901i
\(883\) −29.3676 −0.988299 −0.494150 0.869377i \(-0.664521\pi\)
−0.494150 + 0.869377i \(0.664521\pi\)
\(884\) −2.39798 + 2.35059i −0.0806529 + 0.0790589i
\(885\) −1.64499 −0.0552957
\(886\) 8.38355 + 4.84024i 0.281651 + 0.162611i
\(887\) 19.4662 33.7165i 0.653611 1.13209i −0.328629 0.944459i \(-0.606587\pi\)
0.982240 0.187629i \(-0.0600801\pi\)
\(888\) −0.812179 1.40673i −0.0272549 0.0472069i
\(889\) 59.4395i 1.99354i
\(890\) −5.42359 + 3.13131i −0.181799 + 0.104962i
\(891\) 25.3395 14.6298i 0.848905 0.490116i
\(892\) 6.70621i 0.224540i
\(893\) 33.1880 + 57.4832i 1.11059 + 1.92360i
\(894\) 0.205310 0.355607i 0.00686660 0.0118933i
\(895\) −20.5922 11.8889i −0.688322 0.397403i
\(896\) 4.59769 0.153598
\(897\) −0.166909 0.648741i −0.00557291 0.0216608i
\(898\) 32.6406 1.08923
\(899\) 45.3958 + 26.2093i 1.51404 + 0.874129i
\(900\) −6.12683 + 10.6120i −0.204228 + 0.353733i
\(901\) 2.85594 + 4.94664i 0.0951453 + 0.164796i
\(902\) 5.16664i 0.172030i
\(903\) 0.794657 0.458795i 0.0264445 0.0152677i
\(904\) 14.5320 8.39006i 0.483327 0.279049i
\(905\) 12.1220i 0.402948i
\(906\) 0.00711221 + 0.0123187i 0.000236287 + 0.000409262i
\(907\) −16.8542 + 29.1923i −0.559634 + 0.969315i 0.437892 + 0.899027i \(0.355725\pi\)
−0.997527 + 0.0702879i \(0.977608\pi\)
\(908\) 20.2485 + 11.6905i 0.671969 + 0.387962i
\(909\) −17.8965 −0.593591
\(910\) 4.14577 14.8767i 0.137431 0.493158i
\(911\) −46.7305 −1.54825 −0.774126 0.633032i \(-0.781810\pi\)
−0.774126 + 0.633032i \(0.781810\pi\)
\(912\) −1.09468 0.632011i −0.0362483 0.0209280i
\(913\) 10.9372 18.9438i 0.361969 0.626948i
\(914\) 19.2916 + 33.4141i 0.638111 + 1.10524i
\(915\) 1.55698i 0.0514723i
\(916\) −14.8518 + 8.57470i −0.490718 + 0.283316i
\(917\) −23.8155 + 13.7499i −0.786457 + 0.454061i
\(918\) 1.03219i 0.0340675i
\(919\) −1.60639 2.78236i −0.0529901 0.0917815i 0.838314 0.545188i \(-0.183542\pi\)
−0.891304 + 0.453407i \(0.850208\pi\)
\(920\) 0.465807 0.806802i 0.0153572 0.0265995i
\(921\) −3.60475 2.08120i −0.118780 0.0685779i
\(922\) 6.95829 0.229159
\(923\) 34.8303 8.96116i 1.14645 0.294960i
\(924\) −2.87593 −0.0946112
\(925\) 31.2871 + 18.0636i 1.02871 + 0.593927i
\(926\) −18.4002 + 31.8702i −0.604670 + 1.04732i
\(927\) −4.32338 7.48832i −0.141999 0.245949i
\(928\) 9.34713i 0.306834i
\(929\) 3.13481 1.80988i 0.102850 0.0593803i −0.447693 0.894187i \(-0.647754\pi\)
0.550543 + 0.834807i \(0.314421\pi\)
\(930\) 0.840604 0.485323i 0.0275645 0.0159144i
\(931\) 96.1943i 3.15264i
\(932\) −1.73506 3.00520i −0.0568336 0.0984387i
\(933\) 0.661337 1.14547i 0.0216512 0.0375010i
\(934\) −5.25374 3.03325i −0.171908 0.0992510i
\(935\) 2.92116 0.0955321
\(936\) 10.3550 2.66414i 0.338463 0.0870800i
\(937\) 39.2422 1.28199 0.640993 0.767546i \(-0.278523\pi\)
0.640993 + 0.767546i \(0.278523\pi\)
\(938\) 19.3276 + 11.1588i 0.631070 + 0.364348i
\(939\) −0.0990029 + 0.171478i −0.00323084 + 0.00559597i
\(940\) 4.54443 + 7.87119i 0.148223 + 0.256730i
\(941\) 24.3513i 0.793830i 0.917855 + 0.396915i \(0.129919\pi\)
−0.917855 + 0.396915i \(0.870081\pi\)
\(942\) 1.72339 0.995002i 0.0561512 0.0324189i
\(943\) −1.32898 + 0.767286i −0.0432775 + 0.0249863i
\(944\) 9.50406i 0.309331i
\(945\) 2.37361 + 4.11121i 0.0772136 + 0.133738i
\(946\) −1.80835 + 3.13215i −0.0587945 + 0.101835i
\(947\) 28.2109 + 16.2876i 0.916732 + 0.529276i 0.882591 0.470141i \(-0.155797\pi\)
0.0341411 + 0.999417i \(0.489130\pi\)
\(948\) −0.503682 −0.0163588
\(949\) 12.6786 45.4961i 0.411565 1.47687i
\(950\) 28.1130 0.912106
\(951\) −4.20882 2.42997i −0.136480 0.0787970i
\(952\) 2.14096 3.70825i 0.0693889 0.120185i
\(953\) −14.0971 24.4169i −0.456649 0.790939i 0.542132 0.840293i \(-0.317617\pi\)
−0.998781 + 0.0493537i \(0.984284\pi\)
\(954\) 18.1877i 0.588847i
\(955\) 0.584736 0.337598i 0.0189216 0.0109244i
\(956\) 2.43656 1.40675i 0.0788040 0.0454975i
\(957\) 5.84678i 0.189000i
\(958\) −14.1954 24.5871i −0.458632 0.794375i
\(959\) −25.5463 + 44.2474i −0.824932 + 1.42882i
\(960\) −0.149894 0.0865414i −0.00483781 0.00279311i
\(961\) −0.449541 −0.0145013
\(962\) −7.85462 30.5294i −0.253243 0.984306i
\(963\) −33.4028 −1.07639
\(964\) 20.7970 + 12.0071i 0.669825 + 0.386724i
\(965\) 9.74489 16.8786i 0.313699 0.543343i
\(966\) 0.427098 + 0.739756i 0.0137417 + 0.0238013i
\(967\) 29.0095i 0.932881i 0.884552 + 0.466441i \(0.154464\pi\)
−0.884552 + 0.466441i \(0.845536\pi\)
\(968\) 0.290576 0.167764i 0.00933946 0.00539214i
\(969\) −1.01949 + 0.588603i −0.0327508 + 0.0189087i
\(970\) 5.27612i 0.169406i
\(971\) −3.57926 6.19946i −0.114864 0.198950i 0.802861 0.596166i \(-0.203310\pi\)
−0.917725 + 0.397216i \(0.869977\pi\)
\(972\) −2.46977 + 4.27777i −0.0792179 + 0.137210i
\(973\) −42.3856 24.4713i −1.35882 0.784515i
\(974\) 7.23756 0.231906
\(975\) 1.97668 1.93761i 0.0633044 0.0620532i
\(976\) −8.99560 −0.287942
\(977\) −40.8978 23.6124i −1.30844 0.755427i −0.326603 0.945162i \(-0.605904\pi\)
−0.981835 + 0.189735i \(0.939237\pi\)
\(978\) 1.84597 3.19732i 0.0590276 0.102239i
\(979\) 11.3165 + 19.6007i 0.361676 + 0.626441i
\(980\) 13.1719i 0.420761i
\(981\) 25.5969 14.7784i 0.817245 0.471837i
\(982\) −26.7501 + 15.4442i −0.853629 + 0.492843i
\(983\) 27.0467i 0.862654i −0.902196 0.431327i \(-0.858045\pi\)
0.902196 0.431327i \(-0.141955\pi\)
\(984\) 0.142553 + 0.246908i 0.00454441 + 0.00787115i
\(985\) 8.50613 14.7330i 0.271028 0.469434i
\(986\) −7.53888 4.35257i −0.240087 0.138614i
\(987\) −8.33357 −0.265261
\(988\) −17.1718 17.5180i −0.546308 0.557323i
\(989\) 1.07421 0.0341580
\(990\) −8.05533 4.65074i −0.256015 0.147810i
\(991\) 12.4604 21.5820i 0.395817 0.685576i −0.597388 0.801953i \(-0.703795\pi\)
0.993205 + 0.116377i \(0.0371280\pi\)
\(992\) 2.80399 + 4.85666i 0.0890269 + 0.154199i
\(993\) 0.423400i 0.0134362i
\(994\) −39.7168 + 22.9305i −1.25974 + 0.727311i
\(995\) 8.59236 4.96080i 0.272396 0.157268i
\(996\) 1.20707i 0.0382475i
\(997\) −2.55695 4.42877i −0.0809794 0.140260i 0.822691 0.568488i \(-0.192471\pi\)
−0.903671 + 0.428228i \(0.859138\pi\)
\(998\) 3.00318 5.20166i 0.0950639 0.164656i
\(999\) 8.39185 + 4.84504i 0.265506 + 0.153290i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 598.2.h.c.277.4 yes 28
13.6 odd 12 7774.2.a.bm.1.7 14
13.7 odd 12 7774.2.a.bl.1.7 14
13.10 even 6 inner 598.2.h.c.231.4 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
598.2.h.c.231.4 28 13.10 even 6 inner
598.2.h.c.277.4 yes 28 1.1 even 1 trivial
7774.2.a.bl.1.7 14 13.7 odd 12
7774.2.a.bm.1.7 14 13.6 odd 12