Newspace parameters
| Level: | \( N \) | \(=\) | \( 598 = 2 \cdot 13 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 598.h (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.77505404087\) |
| Analytic rank: | \(0\) |
| Dimension: | \(28\) |
| Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 231.1 | −0.866025 | + | 0.500000i | −1.46307 | − | 2.53412i | 0.500000 | − | 0.866025i | 1.30968i | 2.53412 | + | 1.46307i | −0.0644396 | − | 0.0372042i | 1.00000i | −2.78116 | + | 4.81712i | −0.654838 | − | 1.13421i | ||||
| 231.2 | −0.866025 | + | 0.500000i | −1.29716 | − | 2.24675i | 0.500000 | − | 0.866025i | − | 1.63382i | 2.24675 | + | 1.29716i | −2.94907 | − | 1.70264i | 1.00000i | −1.86526 | + | 3.23073i | 0.816909 | + | 1.41493i | |||
| 231.3 | −0.866025 | + | 0.500000i | −0.314251 | − | 0.544299i | 0.500000 | − | 0.866025i | − | 4.29224i | 0.544299 | + | 0.314251i | 0.281733 | + | 0.162659i | 1.00000i | 1.30249 | − | 2.25598i | 2.14612 | + | 3.71719i | |||
| 231.4 | −0.866025 | + | 0.500000i | 0.0928940 | + | 0.160897i | 0.500000 | − | 0.866025i | − | 0.931614i | −0.160897 | − | 0.0928940i | 3.98172 | + | 2.29885i | 1.00000i | 1.48274 | − | 2.56818i | 0.465807 | + | 0.806802i | |||
| 231.5 | −0.866025 | + | 0.500000i | 0.163491 | + | 0.283175i | 0.500000 | − | 0.866025i | 2.43918i | −0.283175 | − | 0.163491i | −2.12792 | − | 1.22855i | 1.00000i | 1.44654 | − | 2.50548i | −1.21959 | − | 2.11239i | ||||
| 231.6 | −0.866025 | + | 0.500000i | 0.467505 | + | 0.809743i | 0.500000 | − | 0.866025i | 0.444674i | −0.809743 | − | 0.467505i | −3.03452 | − | 1.75198i | 1.00000i | 1.06288 | − | 1.84096i | −0.222337 | − | 0.385099i | ||||
| 231.7 | −0.866025 | + | 0.500000i | 1.35060 | + | 2.33930i | 0.500000 | − | 0.866025i | − | 1.33585i | −2.33930 | − | 1.35060i | 3.04647 | + | 1.75888i | 1.00000i | −2.14822 | + | 3.72083i | 0.667927 | + | 1.15688i | |||
| 231.8 | 0.866025 | − | 0.500000i | −1.34433 | − | 2.32845i | 0.500000 | − | 0.866025i | 3.77055i | −2.32845 | − | 1.34433i | −3.89872 | − | 2.25093i | − | 1.00000i | −2.11445 | + | 3.66234i | 1.88528 | + | 3.26540i | |||
| 231.9 | 0.866025 | − | 0.500000i | −1.03572 | − | 1.79392i | 0.500000 | − | 0.866025i | 1.91535i | −1.79392 | − | 1.03572i | 1.82221 | + | 1.05206i | − | 1.00000i | −0.645424 | + | 1.11791i | 0.957675 | + | 1.65874i | |||
| 231.10 | 0.866025 | − | 0.500000i | −0.860950 | − | 1.49121i | 0.500000 | − | 0.866025i | − | 3.67067i | −1.49121 | − | 0.860950i | 0.545394 | + | 0.314883i | − | 1.00000i | 0.0175311 | − | 0.0303648i | −1.83533 | − | 3.17889i | ||
| 231.11 | 0.866025 | − | 0.500000i | −0.0779423 | − | 0.135000i | 0.500000 | − | 0.866025i | 3.04588i | −0.135000 | − | 0.0779423i | 3.79453 | + | 2.19078i | − | 1.00000i | 1.48785 | − | 2.57703i | 1.52294 | + | 2.63781i | |||
| 231.12 | 0.866025 | − | 0.500000i | 0.219223 | + | 0.379705i | 0.500000 | − | 0.866025i | − | 0.411787i | 0.379705 | + | 0.219223i | −3.89325 | − | 2.24777i | − | 1.00000i | 1.40388 | − | 2.43160i | −0.205894 | − | 0.356618i | ||
| 231.13 | 0.866025 | − | 0.500000i | 0.804621 | + | 1.39364i | 0.500000 | − | 0.866025i | − | 2.70952i | 1.39364 | + | 0.804621i | 2.07244 | + | 1.19652i | − | 1.00000i | 0.205169 | − | 0.355363i | −1.35476 | − | 2.34652i | ||
| 231.14 | 0.866025 | − | 0.500000i | 1.29510 | + | 2.24317i | 0.500000 | − | 0.866025i | 2.06019i | 2.24317 | + | 1.29510i | 0.423414 | + | 0.244458i | − | 1.00000i | −1.85455 | + | 3.21218i | 1.03009 | + | 1.78418i | |||
| 277.1 | −0.866025 | − | 0.500000i | −1.46307 | + | 2.53412i | 0.500000 | + | 0.866025i | − | 1.30968i | 2.53412 | − | 1.46307i | −0.0644396 | + | 0.0372042i | − | 1.00000i | −2.78116 | − | 4.81712i | −0.654838 | + | 1.13421i | ||
| 277.2 | −0.866025 | − | 0.500000i | −1.29716 | + | 2.24675i | 0.500000 | + | 0.866025i | 1.63382i | 2.24675 | − | 1.29716i | −2.94907 | + | 1.70264i | − | 1.00000i | −1.86526 | − | 3.23073i | 0.816909 | − | 1.41493i | |||
| 277.3 | −0.866025 | − | 0.500000i | −0.314251 | + | 0.544299i | 0.500000 | + | 0.866025i | 4.29224i | 0.544299 | − | 0.314251i | 0.281733 | − | 0.162659i | − | 1.00000i | 1.30249 | + | 2.25598i | 2.14612 | − | 3.71719i | |||
| 277.4 | −0.866025 | − | 0.500000i | 0.0928940 | − | 0.160897i | 0.500000 | + | 0.866025i | 0.931614i | −0.160897 | + | 0.0928940i | 3.98172 | − | 2.29885i | − | 1.00000i | 1.48274 | + | 2.56818i | 0.465807 | − | 0.806802i | |||
| 277.5 | −0.866025 | − | 0.500000i | 0.163491 | − | 0.283175i | 0.500000 | + | 0.866025i | − | 2.43918i | −0.283175 | + | 0.163491i | −2.12792 | + | 1.22855i | − | 1.00000i | 1.44654 | + | 2.50548i | −1.21959 | + | 2.11239i | ||
| 277.6 | −0.866025 | − | 0.500000i | 0.467505 | − | 0.809743i | 0.500000 | + | 0.866025i | − | 0.444674i | −0.809743 | + | 0.467505i | −3.03452 | + | 1.75198i | − | 1.00000i | 1.06288 | + | 1.84096i | −0.222337 | + | 0.385099i | ||
| See all 28 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 13.e | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 598.2.h.c | ✓ | 28 |
| 13.e | even | 6 | 1 | inner | 598.2.h.c | ✓ | 28 |
| 13.f | odd | 12 | 1 | 7774.2.a.bl | 14 | ||
| 13.f | odd | 12 | 1 | 7774.2.a.bm | 14 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 598.2.h.c | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
| 598.2.h.c | ✓ | 28 | 13.e | even | 6 | 1 | inner |
| 7774.2.a.bl | 14 | 13.f | odd | 12 | 1 | ||
| 7774.2.a.bm | 14 | 13.f | odd | 12 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{28} + 4 T_{3}^{27} + 32 T_{3}^{26} + 84 T_{3}^{25} + 476 T_{3}^{24} + 1046 T_{3}^{23} + 4636 T_{3}^{22} + \cdots + 4 \)
acting on \(S_{2}^{\mathrm{new}}(598, [\chi])\).