Properties

Label 598.2
Level 598
Weight 2
Dimension 3641
Nonzero newspaces 12
Newform subspaces 34
Sturm bound 44352
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 598 = 2 \cdot 13 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 34 \)
Sturm bound: \(44352\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(598))\).

Total New Old
Modular forms 11616 3641 7975
Cusp forms 10561 3641 6920
Eisenstein series 1055 0 1055

Trace form

\( 3641 q + 3 q^{2} + 12 q^{3} + 3 q^{4} + 18 q^{5} + 12 q^{6} + 16 q^{7} - 3 q^{8} + 7 q^{9} - 12 q^{10} + 12 q^{11} + 4 q^{12} - 21 q^{13} - 20 q^{15} - 5 q^{16} - 20 q^{17} - 79 q^{18} - 40 q^{19} - 32 q^{20}+ \cdots - 100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(598))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
598.2.a \(\chi_{598}(1, \cdot)\) 598.2.a.a 1 1
598.2.a.b 1
598.2.a.c 1
598.2.a.d 1
598.2.a.e 2
598.2.a.f 2
598.2.a.g 2
598.2.a.h 2
598.2.a.i 4
598.2.a.j 5
598.2.c \(\chi_{598}(415, \cdot)\) 598.2.c.a 6 1
598.2.c.b 6
598.2.c.c 12
598.2.e \(\chi_{598}(139, \cdot)\) 598.2.e.a 12 2
598.2.e.b 12
598.2.e.c 14
598.2.e.d 14
598.2.g \(\chi_{598}(229, \cdot)\) 598.2.g.a 56 2
598.2.h \(\chi_{598}(231, \cdot)\) 598.2.h.a 4 2
598.2.h.b 24
598.2.h.c 28
598.2.k \(\chi_{598}(27, \cdot)\) 598.2.k.a 10 10
598.2.k.b 10
598.2.k.c 40
598.2.k.d 60
598.2.k.e 60
598.2.k.f 60
598.2.l \(\chi_{598}(45, \cdot)\) 598.2.l.a 112 4
598.2.o \(\chi_{598}(25, \cdot)\) 598.2.o.a 280 10
598.2.q \(\chi_{598}(3, \cdot)\) 598.2.q.a 280 20
598.2.q.b 280
598.2.r \(\chi_{598}(5, \cdot)\) 598.2.r.a 560 20
598.2.v \(\chi_{598}(49, \cdot)\) 598.2.v.a 560 20
598.2.x \(\chi_{598}(7, \cdot)\) 598.2.x.a 1120 40

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(598))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(598)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(299))\)\(^{\oplus 2}\)