Properties

Label 5950.2.a.cc.1.7
Level $5950$
Weight $2$
Character 5950.1
Self dual yes
Analytic conductor $47.511$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5950,2,Mod(1,5950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5950.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5950 = 2 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5950.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,-2,7,0,-2,-7,7,7,0,-7,-2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.5109892027\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 12x^{5} + 17x^{4} + 40x^{3} - 32x^{2} - 40x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.54179\) of defining polynomial
Character \(\chi\) \(=\) 5950.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.54179 q^{3} +1.00000 q^{4} +2.54179 q^{6} -1.00000 q^{7} +1.00000 q^{8} +3.46070 q^{9} -5.72650 q^{11} +2.54179 q^{12} -3.48296 q^{13} -1.00000 q^{14} +1.00000 q^{16} -1.00000 q^{17} +3.46070 q^{18} -4.55477 q^{19} -2.54179 q^{21} -5.72650 q^{22} -8.26551 q^{23} +2.54179 q^{24} -3.48296 q^{26} +1.17101 q^{27} -1.00000 q^{28} -0.990385 q^{29} -3.99132 q^{31} +1.00000 q^{32} -14.5556 q^{33} -1.00000 q^{34} +3.46070 q^{36} +1.96580 q^{37} -4.55477 q^{38} -8.85296 q^{39} +7.88545 q^{41} -2.54179 q^{42} +12.2804 q^{43} -5.72650 q^{44} -8.26551 q^{46} +8.49457 q^{47} +2.54179 q^{48} +1.00000 q^{49} -2.54179 q^{51} -3.48296 q^{52} -10.3317 q^{53} +1.17101 q^{54} -1.00000 q^{56} -11.5773 q^{57} -0.990385 q^{58} -10.1278 q^{59} -0.952226 q^{61} -3.99132 q^{62} -3.46070 q^{63} +1.00000 q^{64} -14.5556 q^{66} -3.87612 q^{67} -1.00000 q^{68} -21.0092 q^{69} -6.23006 q^{71} +3.46070 q^{72} -7.07022 q^{73} +1.96580 q^{74} -4.55477 q^{76} +5.72650 q^{77} -8.85296 q^{78} +13.5580 q^{79} -7.40565 q^{81} +7.88545 q^{82} -15.3925 q^{83} -2.54179 q^{84} +12.2804 q^{86} -2.51735 q^{87} -5.72650 q^{88} +14.4517 q^{89} +3.48296 q^{91} -8.26551 q^{92} -10.1451 q^{93} +8.49457 q^{94} +2.54179 q^{96} +17.5462 q^{97} +1.00000 q^{98} -19.8177 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} - 2 q^{3} + 7 q^{4} - 2 q^{6} - 7 q^{7} + 7 q^{8} + 7 q^{9} - 7 q^{11} - 2 q^{12} + q^{13} - 7 q^{14} + 7 q^{16} - 7 q^{17} + 7 q^{18} - 2 q^{19} + 2 q^{21} - 7 q^{22} - 27 q^{23} - 2 q^{24}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.54179 1.46750 0.733752 0.679417i \(-0.237767\pi\)
0.733752 + 0.679417i \(0.237767\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.54179 1.03768
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 3.46070 1.15357
\(10\) 0 0
\(11\) −5.72650 −1.72660 −0.863302 0.504688i \(-0.831607\pi\)
−0.863302 + 0.504688i \(0.831607\pi\)
\(12\) 2.54179 0.733752
\(13\) −3.48296 −0.966000 −0.483000 0.875620i \(-0.660453\pi\)
−0.483000 + 0.875620i \(0.660453\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) 3.46070 0.815695
\(19\) −4.55477 −1.04494 −0.522468 0.852659i \(-0.674989\pi\)
−0.522468 + 0.852659i \(0.674989\pi\)
\(20\) 0 0
\(21\) −2.54179 −0.554664
\(22\) −5.72650 −1.22089
\(23\) −8.26551 −1.72348 −0.861739 0.507352i \(-0.830625\pi\)
−0.861739 + 0.507352i \(0.830625\pi\)
\(24\) 2.54179 0.518841
\(25\) 0 0
\(26\) −3.48296 −0.683065
\(27\) 1.17101 0.225361
\(28\) −1.00000 −0.188982
\(29\) −0.990385 −0.183910 −0.0919550 0.995763i \(-0.529312\pi\)
−0.0919550 + 0.995763i \(0.529312\pi\)
\(30\) 0 0
\(31\) −3.99132 −0.716862 −0.358431 0.933556i \(-0.616688\pi\)
−0.358431 + 0.933556i \(0.616688\pi\)
\(32\) 1.00000 0.176777
\(33\) −14.5556 −2.53380
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 3.46070 0.576784
\(37\) 1.96580 0.323176 0.161588 0.986858i \(-0.448338\pi\)
0.161588 + 0.986858i \(0.448338\pi\)
\(38\) −4.55477 −0.738881
\(39\) −8.85296 −1.41761
\(40\) 0 0
\(41\) 7.88545 1.23150 0.615750 0.787941i \(-0.288853\pi\)
0.615750 + 0.787941i \(0.288853\pi\)
\(42\) −2.54179 −0.392207
\(43\) 12.2804 1.87274 0.936371 0.351011i \(-0.114162\pi\)
0.936371 + 0.351011i \(0.114162\pi\)
\(44\) −5.72650 −0.863302
\(45\) 0 0
\(46\) −8.26551 −1.21868
\(47\) 8.49457 1.23906 0.619530 0.784973i \(-0.287323\pi\)
0.619530 + 0.784973i \(0.287323\pi\)
\(48\) 2.54179 0.366876
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.54179 −0.355922
\(52\) −3.48296 −0.483000
\(53\) −10.3317 −1.41917 −0.709585 0.704619i \(-0.751118\pi\)
−0.709585 + 0.704619i \(0.751118\pi\)
\(54\) 1.17101 0.159354
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) −11.5773 −1.53345
\(58\) −0.990385 −0.130044
\(59\) −10.1278 −1.31852 −0.659262 0.751913i \(-0.729131\pi\)
−0.659262 + 0.751913i \(0.729131\pi\)
\(60\) 0 0
\(61\) −0.952226 −0.121920 −0.0609600 0.998140i \(-0.519416\pi\)
−0.0609600 + 0.998140i \(0.519416\pi\)
\(62\) −3.99132 −0.506898
\(63\) −3.46070 −0.436008
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −14.5556 −1.79167
\(67\) −3.87612 −0.473543 −0.236772 0.971565i \(-0.576089\pi\)
−0.236772 + 0.971565i \(0.576089\pi\)
\(68\) −1.00000 −0.121268
\(69\) −21.0092 −2.52921
\(70\) 0 0
\(71\) −6.23006 −0.739372 −0.369686 0.929157i \(-0.620535\pi\)
−0.369686 + 0.929157i \(0.620535\pi\)
\(72\) 3.46070 0.407848
\(73\) −7.07022 −0.827507 −0.413753 0.910389i \(-0.635782\pi\)
−0.413753 + 0.910389i \(0.635782\pi\)
\(74\) 1.96580 0.228520
\(75\) 0 0
\(76\) −4.55477 −0.522468
\(77\) 5.72650 0.652595
\(78\) −8.85296 −1.00240
\(79\) 13.5580 1.52539 0.762695 0.646759i \(-0.223876\pi\)
0.762695 + 0.646759i \(0.223876\pi\)
\(80\) 0 0
\(81\) −7.40565 −0.822850
\(82\) 7.88545 0.870802
\(83\) −15.3925 −1.68955 −0.844775 0.535121i \(-0.820266\pi\)
−0.844775 + 0.535121i \(0.820266\pi\)
\(84\) −2.54179 −0.277332
\(85\) 0 0
\(86\) 12.2804 1.32423
\(87\) −2.51735 −0.269889
\(88\) −5.72650 −0.610446
\(89\) 14.4517 1.53188 0.765938 0.642915i \(-0.222275\pi\)
0.765938 + 0.642915i \(0.222275\pi\)
\(90\) 0 0
\(91\) 3.48296 0.365114
\(92\) −8.26551 −0.861739
\(93\) −10.1451 −1.05200
\(94\) 8.49457 0.876148
\(95\) 0 0
\(96\) 2.54179 0.259420
\(97\) 17.5462 1.78154 0.890771 0.454452i \(-0.150165\pi\)
0.890771 + 0.454452i \(0.150165\pi\)
\(98\) 1.00000 0.101015
\(99\) −19.8177 −1.99175
\(100\) 0 0
\(101\) −3.17217 −0.315643 −0.157821 0.987468i \(-0.550447\pi\)
−0.157821 + 0.987468i \(0.550447\pi\)
\(102\) −2.54179 −0.251675
\(103\) −1.94049 −0.191202 −0.0956009 0.995420i \(-0.530477\pi\)
−0.0956009 + 0.995420i \(0.530477\pi\)
\(104\) −3.48296 −0.341532
\(105\) 0 0
\(106\) −10.3317 −1.00351
\(107\) −2.05039 −0.198218 −0.0991091 0.995077i \(-0.531599\pi\)
−0.0991091 + 0.995077i \(0.531599\pi\)
\(108\) 1.17101 0.112680
\(109\) −19.3457 −1.85298 −0.926490 0.376320i \(-0.877189\pi\)
−0.926490 + 0.376320i \(0.877189\pi\)
\(110\) 0 0
\(111\) 4.99666 0.474262
\(112\) −1.00000 −0.0944911
\(113\) −6.29785 −0.592452 −0.296226 0.955118i \(-0.595728\pi\)
−0.296226 + 0.955118i \(0.595728\pi\)
\(114\) −11.5773 −1.08431
\(115\) 0 0
\(116\) −0.990385 −0.0919550
\(117\) −12.0535 −1.11435
\(118\) −10.1278 −0.932338
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 21.7928 1.98116
\(122\) −0.952226 −0.0862105
\(123\) 20.0432 1.80723
\(124\) −3.99132 −0.358431
\(125\) 0 0
\(126\) −3.46070 −0.308304
\(127\) −3.92166 −0.347991 −0.173996 0.984746i \(-0.555668\pi\)
−0.173996 + 0.984746i \(0.555668\pi\)
\(128\) 1.00000 0.0883883
\(129\) 31.2142 2.74826
\(130\) 0 0
\(131\) −9.94843 −0.869198 −0.434599 0.900624i \(-0.643110\pi\)
−0.434599 + 0.900624i \(0.643110\pi\)
\(132\) −14.5556 −1.26690
\(133\) 4.55477 0.394949
\(134\) −3.87612 −0.334846
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 21.0684 1.80000 0.899998 0.435895i \(-0.143568\pi\)
0.899998 + 0.435895i \(0.143568\pi\)
\(138\) −21.0092 −1.78842
\(139\) 1.43988 0.122129 0.0610643 0.998134i \(-0.480551\pi\)
0.0610643 + 0.998134i \(0.480551\pi\)
\(140\) 0 0
\(141\) 21.5914 1.81833
\(142\) −6.23006 −0.522815
\(143\) 19.9452 1.66790
\(144\) 3.46070 0.288392
\(145\) 0 0
\(146\) −7.07022 −0.585136
\(147\) 2.54179 0.209643
\(148\) 1.96580 0.161588
\(149\) 22.3068 1.82744 0.913722 0.406339i \(-0.133195\pi\)
0.913722 + 0.406339i \(0.133195\pi\)
\(150\) 0 0
\(151\) −8.43690 −0.686585 −0.343293 0.939228i \(-0.611542\pi\)
−0.343293 + 0.939228i \(0.611542\pi\)
\(152\) −4.55477 −0.369441
\(153\) −3.46070 −0.279781
\(154\) 5.72650 0.461454
\(155\) 0 0
\(156\) −8.85296 −0.708804
\(157\) 19.5520 1.56042 0.780212 0.625516i \(-0.215111\pi\)
0.780212 + 0.625516i \(0.215111\pi\)
\(158\) 13.5580 1.07861
\(159\) −26.2611 −2.08264
\(160\) 0 0
\(161\) 8.26551 0.651414
\(162\) −7.40565 −0.581843
\(163\) 15.2346 1.19326 0.596632 0.802515i \(-0.296505\pi\)
0.596632 + 0.802515i \(0.296505\pi\)
\(164\) 7.88545 0.615750
\(165\) 0 0
\(166\) −15.3925 −1.19469
\(167\) −1.44115 −0.111520 −0.0557598 0.998444i \(-0.517758\pi\)
−0.0557598 + 0.998444i \(0.517758\pi\)
\(168\) −2.54179 −0.196103
\(169\) −0.868981 −0.0668447
\(170\) 0 0
\(171\) −15.7627 −1.20540
\(172\) 12.2804 0.936371
\(173\) −0.0905351 −0.00688326 −0.00344163 0.999994i \(-0.501096\pi\)
−0.00344163 + 0.999994i \(0.501096\pi\)
\(174\) −2.51735 −0.190840
\(175\) 0 0
\(176\) −5.72650 −0.431651
\(177\) −25.7427 −1.93494
\(178\) 14.4517 1.08320
\(179\) −6.72039 −0.502306 −0.251153 0.967947i \(-0.580810\pi\)
−0.251153 + 0.967947i \(0.580810\pi\)
\(180\) 0 0
\(181\) −20.3547 −1.51295 −0.756476 0.654021i \(-0.773081\pi\)
−0.756476 + 0.654021i \(0.773081\pi\)
\(182\) 3.48296 0.258174
\(183\) −2.42036 −0.178918
\(184\) −8.26551 −0.609342
\(185\) 0 0
\(186\) −10.1451 −0.743874
\(187\) 5.72650 0.418763
\(188\) 8.49457 0.619530
\(189\) −1.17101 −0.0851784
\(190\) 0 0
\(191\) −5.38668 −0.389766 −0.194883 0.980826i \(-0.562433\pi\)
−0.194883 + 0.980826i \(0.562433\pi\)
\(192\) 2.54179 0.183438
\(193\) 0.617801 0.0444703 0.0222351 0.999753i \(-0.492922\pi\)
0.0222351 + 0.999753i \(0.492922\pi\)
\(194\) 17.5462 1.25974
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −8.90420 −0.634398 −0.317199 0.948359i \(-0.602742\pi\)
−0.317199 + 0.948359i \(0.602742\pi\)
\(198\) −19.8177 −1.40838
\(199\) 2.74906 0.194876 0.0974380 0.995242i \(-0.468935\pi\)
0.0974380 + 0.995242i \(0.468935\pi\)
\(200\) 0 0
\(201\) −9.85228 −0.694926
\(202\) −3.17217 −0.223193
\(203\) 0.990385 0.0695114
\(204\) −2.54179 −0.177961
\(205\) 0 0
\(206\) −1.94049 −0.135200
\(207\) −28.6045 −1.98815
\(208\) −3.48296 −0.241500
\(209\) 26.0829 1.80419
\(210\) 0 0
\(211\) −9.35373 −0.643937 −0.321969 0.946750i \(-0.604345\pi\)
−0.321969 + 0.946750i \(0.604345\pi\)
\(212\) −10.3317 −0.709585
\(213\) −15.8355 −1.08503
\(214\) −2.05039 −0.140161
\(215\) 0 0
\(216\) 1.17101 0.0796771
\(217\) 3.99132 0.270948
\(218\) −19.3457 −1.31025
\(219\) −17.9710 −1.21437
\(220\) 0 0
\(221\) 3.48296 0.234289
\(222\) 4.99666 0.335354
\(223\) −0.946770 −0.0634004 −0.0317002 0.999497i \(-0.510092\pi\)
−0.0317002 + 0.999497i \(0.510092\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −6.29785 −0.418927
\(227\) −12.3408 −0.819085 −0.409543 0.912291i \(-0.634312\pi\)
−0.409543 + 0.912291i \(0.634312\pi\)
\(228\) −11.5773 −0.766724
\(229\) −13.3470 −0.881993 −0.440996 0.897509i \(-0.645375\pi\)
−0.440996 + 0.897509i \(0.645375\pi\)
\(230\) 0 0
\(231\) 14.5556 0.957685
\(232\) −0.990385 −0.0650220
\(233\) 23.2229 1.52138 0.760691 0.649114i \(-0.224860\pi\)
0.760691 + 0.649114i \(0.224860\pi\)
\(234\) −12.0535 −0.787961
\(235\) 0 0
\(236\) −10.1278 −0.659262
\(237\) 34.4615 2.23851
\(238\) 1.00000 0.0648204
\(239\) 10.8663 0.702880 0.351440 0.936210i \(-0.385692\pi\)
0.351440 + 0.936210i \(0.385692\pi\)
\(240\) 0 0
\(241\) 9.61298 0.619226 0.309613 0.950863i \(-0.399800\pi\)
0.309613 + 0.950863i \(0.399800\pi\)
\(242\) 21.7928 1.40089
\(243\) −22.3366 −1.43290
\(244\) −0.952226 −0.0609600
\(245\) 0 0
\(246\) 20.0432 1.27791
\(247\) 15.8641 1.00941
\(248\) −3.99132 −0.253449
\(249\) −39.1246 −2.47942
\(250\) 0 0
\(251\) 13.6959 0.864477 0.432239 0.901759i \(-0.357724\pi\)
0.432239 + 0.901759i \(0.357724\pi\)
\(252\) −3.46070 −0.218004
\(253\) 47.3324 2.97576
\(254\) −3.92166 −0.246067
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −19.2766 −1.20244 −0.601222 0.799082i \(-0.705319\pi\)
−0.601222 + 0.799082i \(0.705319\pi\)
\(258\) 31.2142 1.94331
\(259\) −1.96580 −0.122149
\(260\) 0 0
\(261\) −3.42743 −0.212153
\(262\) −9.94843 −0.614616
\(263\) −15.4341 −0.951706 −0.475853 0.879525i \(-0.657861\pi\)
−0.475853 + 0.879525i \(0.657861\pi\)
\(264\) −14.5556 −0.895833
\(265\) 0 0
\(266\) 4.55477 0.279271
\(267\) 36.7332 2.24803
\(268\) −3.87612 −0.236772
\(269\) 18.7045 1.14044 0.570218 0.821494i \(-0.306859\pi\)
0.570218 + 0.821494i \(0.306859\pi\)
\(270\) 0 0
\(271\) 27.6242 1.67805 0.839026 0.544092i \(-0.183126\pi\)
0.839026 + 0.544092i \(0.183126\pi\)
\(272\) −1.00000 −0.0606339
\(273\) 8.85296 0.535806
\(274\) 21.0684 1.27279
\(275\) 0 0
\(276\) −21.0092 −1.26461
\(277\) 2.15313 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(278\) 1.43988 0.0863580
\(279\) −13.8128 −0.826948
\(280\) 0 0
\(281\) 3.87390 0.231098 0.115549 0.993302i \(-0.463137\pi\)
0.115549 + 0.993302i \(0.463137\pi\)
\(282\) 21.5914 1.28575
\(283\) −5.48685 −0.326160 −0.163080 0.986613i \(-0.552143\pi\)
−0.163080 + 0.986613i \(0.552143\pi\)
\(284\) −6.23006 −0.369686
\(285\) 0 0
\(286\) 19.9452 1.17938
\(287\) −7.88545 −0.465463
\(288\) 3.46070 0.203924
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 44.5987 2.61442
\(292\) −7.07022 −0.413753
\(293\) −21.7657 −1.27156 −0.635782 0.771869i \(-0.719322\pi\)
−0.635782 + 0.771869i \(0.719322\pi\)
\(294\) 2.54179 0.148240
\(295\) 0 0
\(296\) 1.96580 0.114260
\(297\) −6.70578 −0.389109
\(298\) 22.3068 1.29220
\(299\) 28.7885 1.66488
\(300\) 0 0
\(301\) −12.2804 −0.707830
\(302\) −8.43690 −0.485489
\(303\) −8.06299 −0.463207
\(304\) −4.55477 −0.261234
\(305\) 0 0
\(306\) −3.46070 −0.197835
\(307\) −13.1008 −0.747704 −0.373852 0.927488i \(-0.621963\pi\)
−0.373852 + 0.927488i \(0.621963\pi\)
\(308\) 5.72650 0.326297
\(309\) −4.93231 −0.280589
\(310\) 0 0
\(311\) −4.20193 −0.238270 −0.119135 0.992878i \(-0.538012\pi\)
−0.119135 + 0.992878i \(0.538012\pi\)
\(312\) −8.85296 −0.501200
\(313\) −11.6520 −0.658612 −0.329306 0.944223i \(-0.606815\pi\)
−0.329306 + 0.944223i \(0.606815\pi\)
\(314\) 19.5520 1.10339
\(315\) 0 0
\(316\) 13.5580 0.762695
\(317\) −3.45462 −0.194031 −0.0970155 0.995283i \(-0.530930\pi\)
−0.0970155 + 0.995283i \(0.530930\pi\)
\(318\) −26.2611 −1.47265
\(319\) 5.67144 0.317540
\(320\) 0 0
\(321\) −5.21165 −0.290886
\(322\) 8.26551 0.460619
\(323\) 4.55477 0.253434
\(324\) −7.40565 −0.411425
\(325\) 0 0
\(326\) 15.2346 0.843766
\(327\) −49.1727 −2.71925
\(328\) 7.88545 0.435401
\(329\) −8.49457 −0.468321
\(330\) 0 0
\(331\) 12.4973 0.686911 0.343456 0.939169i \(-0.388403\pi\)
0.343456 + 0.939169i \(0.388403\pi\)
\(332\) −15.3925 −0.844775
\(333\) 6.80305 0.372805
\(334\) −1.44115 −0.0788562
\(335\) 0 0
\(336\) −2.54179 −0.138666
\(337\) −8.93416 −0.486675 −0.243337 0.969942i \(-0.578242\pi\)
−0.243337 + 0.969942i \(0.578242\pi\)
\(338\) −0.868981 −0.0472663
\(339\) −16.0078 −0.869426
\(340\) 0 0
\(341\) 22.8563 1.23774
\(342\) −15.7627 −0.852350
\(343\) −1.00000 −0.0539949
\(344\) 12.2804 0.662115
\(345\) 0 0
\(346\) −0.0905351 −0.00486720
\(347\) −19.0850 −1.02454 −0.512269 0.858825i \(-0.671195\pi\)
−0.512269 + 0.858825i \(0.671195\pi\)
\(348\) −2.51735 −0.134944
\(349\) 15.3497 0.821652 0.410826 0.911714i \(-0.365240\pi\)
0.410826 + 0.911714i \(0.365240\pi\)
\(350\) 0 0
\(351\) −4.07858 −0.217698
\(352\) −5.72650 −0.305223
\(353\) −3.33185 −0.177337 −0.0886684 0.996061i \(-0.528261\pi\)
−0.0886684 + 0.996061i \(0.528261\pi\)
\(354\) −25.7427 −1.36821
\(355\) 0 0
\(356\) 14.4517 0.765938
\(357\) 2.54179 0.134526
\(358\) −6.72039 −0.355184
\(359\) −10.1746 −0.536995 −0.268498 0.963280i \(-0.586527\pi\)
−0.268498 + 0.963280i \(0.586527\pi\)
\(360\) 0 0
\(361\) 1.74594 0.0918915
\(362\) −20.3547 −1.06982
\(363\) 55.3926 2.90736
\(364\) 3.48296 0.182557
\(365\) 0 0
\(366\) −2.42036 −0.126514
\(367\) 11.2202 0.585688 0.292844 0.956160i \(-0.405398\pi\)
0.292844 + 0.956160i \(0.405398\pi\)
\(368\) −8.26551 −0.430870
\(369\) 27.2892 1.42062
\(370\) 0 0
\(371\) 10.3317 0.536396
\(372\) −10.1451 −0.525999
\(373\) −19.7975 −1.02508 −0.512538 0.858665i \(-0.671295\pi\)
−0.512538 + 0.858665i \(0.671295\pi\)
\(374\) 5.72650 0.296110
\(375\) 0 0
\(376\) 8.49457 0.438074
\(377\) 3.44947 0.177657
\(378\) −1.17101 −0.0602302
\(379\) −33.0938 −1.69992 −0.849958 0.526851i \(-0.823373\pi\)
−0.849958 + 0.526851i \(0.823373\pi\)
\(380\) 0 0
\(381\) −9.96804 −0.510678
\(382\) −5.38668 −0.275606
\(383\) −17.2749 −0.882706 −0.441353 0.897333i \(-0.645501\pi\)
−0.441353 + 0.897333i \(0.645501\pi\)
\(384\) 2.54179 0.129710
\(385\) 0 0
\(386\) 0.617801 0.0314452
\(387\) 42.4988 2.16034
\(388\) 17.5462 0.890771
\(389\) 5.88067 0.298162 0.149081 0.988825i \(-0.452369\pi\)
0.149081 + 0.988825i \(0.452369\pi\)
\(390\) 0 0
\(391\) 8.26551 0.418005
\(392\) 1.00000 0.0505076
\(393\) −25.2868 −1.27555
\(394\) −8.90420 −0.448587
\(395\) 0 0
\(396\) −19.8177 −0.995877
\(397\) −17.3518 −0.870859 −0.435430 0.900223i \(-0.643404\pi\)
−0.435430 + 0.900223i \(0.643404\pi\)
\(398\) 2.74906 0.137798
\(399\) 11.5773 0.579589
\(400\) 0 0
\(401\) −19.9909 −0.998299 −0.499149 0.866516i \(-0.666354\pi\)
−0.499149 + 0.866516i \(0.666354\pi\)
\(402\) −9.85228 −0.491387
\(403\) 13.9016 0.692488
\(404\) −3.17217 −0.157821
\(405\) 0 0
\(406\) 0.990385 0.0491520
\(407\) −11.2572 −0.557996
\(408\) −2.54179 −0.125837
\(409\) 35.3383 1.74737 0.873683 0.486495i \(-0.161725\pi\)
0.873683 + 0.486495i \(0.161725\pi\)
\(410\) 0 0
\(411\) 53.5515 2.64150
\(412\) −1.94049 −0.0956009
\(413\) 10.1278 0.498355
\(414\) −28.6045 −1.40583
\(415\) 0 0
\(416\) −3.48296 −0.170766
\(417\) 3.65986 0.179224
\(418\) 26.0829 1.27576
\(419\) −27.0860 −1.32324 −0.661619 0.749841i \(-0.730130\pi\)
−0.661619 + 0.749841i \(0.730130\pi\)
\(420\) 0 0
\(421\) 12.6808 0.618025 0.309013 0.951058i \(-0.400001\pi\)
0.309013 + 0.951058i \(0.400001\pi\)
\(422\) −9.35373 −0.455332
\(423\) 29.3972 1.42934
\(424\) −10.3317 −0.501753
\(425\) 0 0
\(426\) −15.8355 −0.767233
\(427\) 0.952226 0.0460814
\(428\) −2.05039 −0.0991091
\(429\) 50.6964 2.44765
\(430\) 0 0
\(431\) −2.22147 −0.107005 −0.0535023 0.998568i \(-0.517038\pi\)
−0.0535023 + 0.998568i \(0.517038\pi\)
\(432\) 1.17101 0.0563402
\(433\) −29.8916 −1.43650 −0.718249 0.695786i \(-0.755056\pi\)
−0.718249 + 0.695786i \(0.755056\pi\)
\(434\) 3.99132 0.191589
\(435\) 0 0
\(436\) −19.3457 −0.926490
\(437\) 37.6475 1.80092
\(438\) −17.9710 −0.858689
\(439\) −14.5552 −0.694683 −0.347342 0.937739i \(-0.612916\pi\)
−0.347342 + 0.937739i \(0.612916\pi\)
\(440\) 0 0
\(441\) 3.46070 0.164795
\(442\) 3.48296 0.165668
\(443\) −6.99922 −0.332543 −0.166271 0.986080i \(-0.553173\pi\)
−0.166271 + 0.986080i \(0.553173\pi\)
\(444\) 4.99666 0.237131
\(445\) 0 0
\(446\) −0.946770 −0.0448309
\(447\) 56.6992 2.68178
\(448\) −1.00000 −0.0472456
\(449\) −4.29546 −0.202715 −0.101358 0.994850i \(-0.532319\pi\)
−0.101358 + 0.994850i \(0.532319\pi\)
\(450\) 0 0
\(451\) −45.1560 −2.12631
\(452\) −6.29785 −0.296226
\(453\) −21.4448 −1.00757
\(454\) −12.3408 −0.579181
\(455\) 0 0
\(456\) −11.5773 −0.542156
\(457\) −0.936921 −0.0438273 −0.0219137 0.999760i \(-0.506976\pi\)
−0.0219137 + 0.999760i \(0.506976\pi\)
\(458\) −13.3470 −0.623663
\(459\) −1.17101 −0.0546580
\(460\) 0 0
\(461\) 24.6279 1.14704 0.573518 0.819193i \(-0.305578\pi\)
0.573518 + 0.819193i \(0.305578\pi\)
\(462\) 14.5556 0.677186
\(463\) −29.9356 −1.39122 −0.695612 0.718418i \(-0.744867\pi\)
−0.695612 + 0.718418i \(0.744867\pi\)
\(464\) −0.990385 −0.0459775
\(465\) 0 0
\(466\) 23.2229 1.07578
\(467\) −9.31665 −0.431123 −0.215562 0.976490i \(-0.569158\pi\)
−0.215562 + 0.976490i \(0.569158\pi\)
\(468\) −12.0535 −0.557173
\(469\) 3.87612 0.178982
\(470\) 0 0
\(471\) 49.6972 2.28993
\(472\) −10.1278 −0.466169
\(473\) −70.3236 −3.23348
\(474\) 34.4615 1.58287
\(475\) 0 0
\(476\) 1.00000 0.0458349
\(477\) −35.7550 −1.63711
\(478\) 10.8663 0.497011
\(479\) 12.2197 0.558333 0.279167 0.960243i \(-0.409942\pi\)
0.279167 + 0.960243i \(0.409942\pi\)
\(480\) 0 0
\(481\) −6.84681 −0.312188
\(482\) 9.61298 0.437859
\(483\) 21.0092 0.955952
\(484\) 21.7928 0.990580
\(485\) 0 0
\(486\) −22.3366 −1.01321
\(487\) −2.11355 −0.0957739 −0.0478870 0.998853i \(-0.515249\pi\)
−0.0478870 + 0.998853i \(0.515249\pi\)
\(488\) −0.952226 −0.0431052
\(489\) 38.7231 1.75112
\(490\) 0 0
\(491\) −6.35587 −0.286836 −0.143418 0.989662i \(-0.545809\pi\)
−0.143418 + 0.989662i \(0.545809\pi\)
\(492\) 20.0432 0.903616
\(493\) 0.990385 0.0446047
\(494\) 15.8641 0.713759
\(495\) 0 0
\(496\) −3.99132 −0.179215
\(497\) 6.23006 0.279456
\(498\) −39.1246 −1.75322
\(499\) 42.4519 1.90041 0.950204 0.311627i \(-0.100874\pi\)
0.950204 + 0.311627i \(0.100874\pi\)
\(500\) 0 0
\(501\) −3.66310 −0.163655
\(502\) 13.6959 0.611278
\(503\) −20.9628 −0.934683 −0.467342 0.884077i \(-0.654788\pi\)
−0.467342 + 0.884077i \(0.654788\pi\)
\(504\) −3.46070 −0.154152
\(505\) 0 0
\(506\) 47.3324 2.10418
\(507\) −2.20877 −0.0980948
\(508\) −3.92166 −0.173996
\(509\) −3.66956 −0.162650 −0.0813251 0.996688i \(-0.525915\pi\)
−0.0813251 + 0.996688i \(0.525915\pi\)
\(510\) 0 0
\(511\) 7.07022 0.312768
\(512\) 1.00000 0.0441942
\(513\) −5.33368 −0.235488
\(514\) −19.2766 −0.850256
\(515\) 0 0
\(516\) 31.2142 1.37413
\(517\) −48.6441 −2.13937
\(518\) −1.96580 −0.0863723
\(519\) −0.230121 −0.0101012
\(520\) 0 0
\(521\) 21.8630 0.957836 0.478918 0.877860i \(-0.341029\pi\)
0.478918 + 0.877860i \(0.341029\pi\)
\(522\) −3.42743 −0.150014
\(523\) −2.31826 −0.101370 −0.0506852 0.998715i \(-0.516141\pi\)
−0.0506852 + 0.998715i \(0.516141\pi\)
\(524\) −9.94843 −0.434599
\(525\) 0 0
\(526\) −15.4341 −0.672958
\(527\) 3.99132 0.173864
\(528\) −14.5556 −0.633449
\(529\) 45.3187 1.97038
\(530\) 0 0
\(531\) −35.0492 −1.52101
\(532\) 4.55477 0.197474
\(533\) −27.4647 −1.18963
\(534\) 36.7332 1.58960
\(535\) 0 0
\(536\) −3.87612 −0.167423
\(537\) −17.0818 −0.737136
\(538\) 18.7045 0.806409
\(539\) −5.72650 −0.246658
\(540\) 0 0
\(541\) −26.3538 −1.13304 −0.566520 0.824048i \(-0.691711\pi\)
−0.566520 + 0.824048i \(0.691711\pi\)
\(542\) 27.6242 1.18656
\(543\) −51.7374 −2.22026
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) 8.85296 0.378872
\(547\) 20.5567 0.878943 0.439471 0.898257i \(-0.355166\pi\)
0.439471 + 0.898257i \(0.355166\pi\)
\(548\) 21.0684 0.899998
\(549\) −3.29537 −0.140643
\(550\) 0 0
\(551\) 4.51098 0.192174
\(552\) −21.0092 −0.894211
\(553\) −13.5580 −0.576543
\(554\) 2.15313 0.0914778
\(555\) 0 0
\(556\) 1.43988 0.0610643
\(557\) −30.1050 −1.27559 −0.637794 0.770207i \(-0.720153\pi\)
−0.637794 + 0.770207i \(0.720153\pi\)
\(558\) −13.8128 −0.584741
\(559\) −42.7721 −1.80907
\(560\) 0 0
\(561\) 14.5556 0.614536
\(562\) 3.87390 0.163411
\(563\) −13.4551 −0.567065 −0.283532 0.958963i \(-0.591506\pi\)
−0.283532 + 0.958963i \(0.591506\pi\)
\(564\) 21.5914 0.909163
\(565\) 0 0
\(566\) −5.48685 −0.230630
\(567\) 7.40565 0.311008
\(568\) −6.23006 −0.261407
\(569\) 14.1962 0.595135 0.297567 0.954701i \(-0.403825\pi\)
0.297567 + 0.954701i \(0.403825\pi\)
\(570\) 0 0
\(571\) 4.06927 0.170294 0.0851469 0.996368i \(-0.472864\pi\)
0.0851469 + 0.996368i \(0.472864\pi\)
\(572\) 19.9452 0.833949
\(573\) −13.6918 −0.571984
\(574\) −7.88545 −0.329132
\(575\) 0 0
\(576\) 3.46070 0.144196
\(577\) 23.0464 0.959433 0.479716 0.877424i \(-0.340740\pi\)
0.479716 + 0.877424i \(0.340740\pi\)
\(578\) 1.00000 0.0415945
\(579\) 1.57032 0.0652603
\(580\) 0 0
\(581\) 15.3925 0.638590
\(582\) 44.5987 1.84867
\(583\) 59.1645 2.45035
\(584\) −7.07022 −0.292568
\(585\) 0 0
\(586\) −21.7657 −0.899131
\(587\) 9.46700 0.390745 0.195372 0.980729i \(-0.437408\pi\)
0.195372 + 0.980729i \(0.437408\pi\)
\(588\) 2.54179 0.104822
\(589\) 18.1795 0.749075
\(590\) 0 0
\(591\) −22.6326 −0.930981
\(592\) 1.96580 0.0807939
\(593\) 0.297927 0.0122344 0.00611719 0.999981i \(-0.498053\pi\)
0.00611719 + 0.999981i \(0.498053\pi\)
\(594\) −6.70578 −0.275141
\(595\) 0 0
\(596\) 22.3068 0.913722
\(597\) 6.98754 0.285981
\(598\) 28.7885 1.17725
\(599\) 30.4804 1.24539 0.622697 0.782463i \(-0.286037\pi\)
0.622697 + 0.782463i \(0.286037\pi\)
\(600\) 0 0
\(601\) −11.4524 −0.467154 −0.233577 0.972338i \(-0.575043\pi\)
−0.233577 + 0.972338i \(0.575043\pi\)
\(602\) −12.2804 −0.500512
\(603\) −13.4141 −0.546264
\(604\) −8.43690 −0.343293
\(605\) 0 0
\(606\) −8.06299 −0.327537
\(607\) −16.7894 −0.681461 −0.340730 0.940161i \(-0.610674\pi\)
−0.340730 + 0.940161i \(0.610674\pi\)
\(608\) −4.55477 −0.184720
\(609\) 2.51735 0.102008
\(610\) 0 0
\(611\) −29.5863 −1.19693
\(612\) −3.46070 −0.139891
\(613\) 4.05568 0.163808 0.0819038 0.996640i \(-0.473900\pi\)
0.0819038 + 0.996640i \(0.473900\pi\)
\(614\) −13.1008 −0.528707
\(615\) 0 0
\(616\) 5.72650 0.230727
\(617\) 31.7150 1.27680 0.638399 0.769706i \(-0.279597\pi\)
0.638399 + 0.769706i \(0.279597\pi\)
\(618\) −4.93231 −0.198407
\(619\) −10.3777 −0.417114 −0.208557 0.978010i \(-0.566877\pi\)
−0.208557 + 0.978010i \(0.566877\pi\)
\(620\) 0 0
\(621\) −9.67899 −0.388405
\(622\) −4.20193 −0.168482
\(623\) −14.4517 −0.578994
\(624\) −8.85296 −0.354402
\(625\) 0 0
\(626\) −11.6520 −0.465709
\(627\) 66.2972 2.64766
\(628\) 19.5520 0.780212
\(629\) −1.96580 −0.0783816
\(630\) 0 0
\(631\) 13.3731 0.532373 0.266187 0.963922i \(-0.414236\pi\)
0.266187 + 0.963922i \(0.414236\pi\)
\(632\) 13.5580 0.539307
\(633\) −23.7752 −0.944980
\(634\) −3.45462 −0.137201
\(635\) 0 0
\(636\) −26.2611 −1.04132
\(637\) −3.48296 −0.138000
\(638\) 5.67144 0.224534
\(639\) −21.5604 −0.852915
\(640\) 0 0
\(641\) −44.6667 −1.76423 −0.882113 0.471037i \(-0.843880\pi\)
−0.882113 + 0.471037i \(0.843880\pi\)
\(642\) −5.21165 −0.205688
\(643\) 3.96886 0.156517 0.0782583 0.996933i \(-0.475064\pi\)
0.0782583 + 0.996933i \(0.475064\pi\)
\(644\) 8.26551 0.325707
\(645\) 0 0
\(646\) 4.55477 0.179205
\(647\) −8.10463 −0.318626 −0.159313 0.987228i \(-0.550928\pi\)
−0.159313 + 0.987228i \(0.550928\pi\)
\(648\) −7.40565 −0.290921
\(649\) 57.9967 2.27657
\(650\) 0 0
\(651\) 10.1451 0.397618
\(652\) 15.2346 0.596632
\(653\) −14.6228 −0.572235 −0.286118 0.958194i \(-0.592365\pi\)
−0.286118 + 0.958194i \(0.592365\pi\)
\(654\) −49.1727 −1.92280
\(655\) 0 0
\(656\) 7.88545 0.307875
\(657\) −24.4679 −0.954585
\(658\) −8.49457 −0.331153
\(659\) 10.9571 0.426829 0.213414 0.976962i \(-0.431542\pi\)
0.213414 + 0.976962i \(0.431542\pi\)
\(660\) 0 0
\(661\) 41.7506 1.62391 0.811955 0.583720i \(-0.198404\pi\)
0.811955 + 0.583720i \(0.198404\pi\)
\(662\) 12.4973 0.485720
\(663\) 8.85296 0.343820
\(664\) −15.3925 −0.597346
\(665\) 0 0
\(666\) 6.80305 0.263613
\(667\) 8.18604 0.316965
\(668\) −1.44115 −0.0557598
\(669\) −2.40649 −0.0930403
\(670\) 0 0
\(671\) 5.45292 0.210508
\(672\) −2.54179 −0.0980517
\(673\) −7.26123 −0.279900 −0.139950 0.990159i \(-0.544694\pi\)
−0.139950 + 0.990159i \(0.544694\pi\)
\(674\) −8.93416 −0.344131
\(675\) 0 0
\(676\) −0.868981 −0.0334223
\(677\) −32.7711 −1.25950 −0.629748 0.776799i \(-0.716842\pi\)
−0.629748 + 0.776799i \(0.716842\pi\)
\(678\) −16.0078 −0.614777
\(679\) −17.5462 −0.673360
\(680\) 0 0
\(681\) −31.3676 −1.20201
\(682\) 22.8563 0.875211
\(683\) −1.54929 −0.0592818 −0.0296409 0.999561i \(-0.509436\pi\)
−0.0296409 + 0.999561i \(0.509436\pi\)
\(684\) −15.7627 −0.602702
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) −33.9252 −1.29433
\(688\) 12.2804 0.468186
\(689\) 35.9850 1.37092
\(690\) 0 0
\(691\) −31.3105 −1.19111 −0.595554 0.803315i \(-0.703068\pi\)
−0.595554 + 0.803315i \(0.703068\pi\)
\(692\) −0.0905351 −0.00344163
\(693\) 19.8177 0.752812
\(694\) −19.0850 −0.724457
\(695\) 0 0
\(696\) −2.51735 −0.0954200
\(697\) −7.88545 −0.298683
\(698\) 15.3497 0.580996
\(699\) 59.0277 2.23263
\(700\) 0 0
\(701\) −26.7200 −1.00920 −0.504601 0.863353i \(-0.668360\pi\)
−0.504601 + 0.863353i \(0.668360\pi\)
\(702\) −4.07858 −0.153936
\(703\) −8.95377 −0.337698
\(704\) −5.72650 −0.215825
\(705\) 0 0
\(706\) −3.33185 −0.125396
\(707\) 3.17217 0.119302
\(708\) −25.7427 −0.967470
\(709\) −18.5720 −0.697486 −0.348743 0.937218i \(-0.613391\pi\)
−0.348743 + 0.937218i \(0.613391\pi\)
\(710\) 0 0
\(711\) 46.9200 1.75964
\(712\) 14.4517 0.541600
\(713\) 32.9903 1.23550
\(714\) 2.54179 0.0951241
\(715\) 0 0
\(716\) −6.72039 −0.251153
\(717\) 27.6198 1.03148
\(718\) −10.1746 −0.379713
\(719\) 6.42124 0.239472 0.119736 0.992806i \(-0.461795\pi\)
0.119736 + 0.992806i \(0.461795\pi\)
\(720\) 0 0
\(721\) 1.94049 0.0722675
\(722\) 1.74594 0.0649771
\(723\) 24.4342 0.908717
\(724\) −20.3547 −0.756476
\(725\) 0 0
\(726\) 55.3926 2.05581
\(727\) −41.2275 −1.52904 −0.764522 0.644598i \(-0.777025\pi\)
−0.764522 + 0.644598i \(0.777025\pi\)
\(728\) 3.48296 0.129087
\(729\) −34.5581 −1.27993
\(730\) 0 0
\(731\) −12.2804 −0.454207
\(732\) −2.42036 −0.0894590
\(733\) −16.0832 −0.594048 −0.297024 0.954870i \(-0.595994\pi\)
−0.297024 + 0.954870i \(0.595994\pi\)
\(734\) 11.2202 0.414144
\(735\) 0 0
\(736\) −8.26551 −0.304671
\(737\) 22.1966 0.817621
\(738\) 27.2892 1.00453
\(739\) 24.2742 0.892941 0.446470 0.894798i \(-0.352681\pi\)
0.446470 + 0.894798i \(0.352681\pi\)
\(740\) 0 0
\(741\) 40.3232 1.48131
\(742\) 10.3317 0.379289
\(743\) 13.4662 0.494027 0.247013 0.969012i \(-0.420551\pi\)
0.247013 + 0.969012i \(0.420551\pi\)
\(744\) −10.1451 −0.371937
\(745\) 0 0
\(746\) −19.7975 −0.724838
\(747\) −53.2690 −1.94901
\(748\) 5.72650 0.209381
\(749\) 2.05039 0.0749195
\(750\) 0 0
\(751\) 38.8084 1.41614 0.708069 0.706144i \(-0.249567\pi\)
0.708069 + 0.706144i \(0.249567\pi\)
\(752\) 8.49457 0.309765
\(753\) 34.8121 1.26862
\(754\) 3.44947 0.125622
\(755\) 0 0
\(756\) −1.17101 −0.0425892
\(757\) −35.9312 −1.30594 −0.652970 0.757384i \(-0.726477\pi\)
−0.652970 + 0.757384i \(0.726477\pi\)
\(758\) −33.0938 −1.20202
\(759\) 120.309 4.36694
\(760\) 0 0
\(761\) 44.4288 1.61054 0.805272 0.592906i \(-0.202020\pi\)
0.805272 + 0.592906i \(0.202020\pi\)
\(762\) −9.96804 −0.361104
\(763\) 19.3457 0.700360
\(764\) −5.38668 −0.194883
\(765\) 0 0
\(766\) −17.2749 −0.624168
\(767\) 35.2747 1.27369
\(768\) 2.54179 0.0917190
\(769\) 0.248795 0.00897177 0.00448589 0.999990i \(-0.498572\pi\)
0.00448589 + 0.999990i \(0.498572\pi\)
\(770\) 0 0
\(771\) −48.9972 −1.76459
\(772\) 0.617801 0.0222351
\(773\) 13.7137 0.493248 0.246624 0.969111i \(-0.420679\pi\)
0.246624 + 0.969111i \(0.420679\pi\)
\(774\) 42.4988 1.52759
\(775\) 0 0
\(776\) 17.5462 0.629870
\(777\) −4.99666 −0.179254
\(778\) 5.88067 0.210832
\(779\) −35.9164 −1.28684
\(780\) 0 0
\(781\) 35.6764 1.27660
\(782\) 8.26551 0.295574
\(783\) −1.15975 −0.0414461
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) −25.2868 −0.901951
\(787\) 39.3773 1.40365 0.701824 0.712350i \(-0.252369\pi\)
0.701824 + 0.712350i \(0.252369\pi\)
\(788\) −8.90420 −0.317199
\(789\) −39.2302 −1.39663
\(790\) 0 0
\(791\) 6.29785 0.223926
\(792\) −19.8177 −0.704191
\(793\) 3.31657 0.117775
\(794\) −17.3518 −0.615791
\(795\) 0 0
\(796\) 2.74906 0.0974380
\(797\) −28.4245 −1.00685 −0.503424 0.864039i \(-0.667927\pi\)
−0.503424 + 0.864039i \(0.667927\pi\)
\(798\) 11.5773 0.409831
\(799\) −8.49457 −0.300516
\(800\) 0 0
\(801\) 50.0130 1.76712
\(802\) −19.9909 −0.705904
\(803\) 40.4876 1.42878
\(804\) −9.85228 −0.347463
\(805\) 0 0
\(806\) 13.9016 0.489663
\(807\) 47.5430 1.67359
\(808\) −3.17217 −0.111597
\(809\) −36.4046 −1.27992 −0.639958 0.768410i \(-0.721048\pi\)
−0.639958 + 0.768410i \(0.721048\pi\)
\(810\) 0 0
\(811\) 29.5590 1.03796 0.518978 0.854787i \(-0.326312\pi\)
0.518978 + 0.854787i \(0.326312\pi\)
\(812\) 0.990385 0.0347557
\(813\) 70.2150 2.46255
\(814\) −11.2572 −0.394563
\(815\) 0 0
\(816\) −2.54179 −0.0889805
\(817\) −55.9344 −1.95690
\(818\) 35.3383 1.23557
\(819\) 12.0535 0.421183
\(820\) 0 0
\(821\) −7.70862 −0.269033 −0.134516 0.990911i \(-0.542948\pi\)
−0.134516 + 0.990911i \(0.542948\pi\)
\(822\) 53.5515 1.86782
\(823\) −28.4869 −0.992990 −0.496495 0.868040i \(-0.665380\pi\)
−0.496495 + 0.868040i \(0.665380\pi\)
\(824\) −1.94049 −0.0676000
\(825\) 0 0
\(826\) 10.1278 0.352390
\(827\) −34.5262 −1.20060 −0.600298 0.799777i \(-0.704951\pi\)
−0.600298 + 0.799777i \(0.704951\pi\)
\(828\) −28.6045 −0.994074
\(829\) −19.5009 −0.677293 −0.338647 0.940914i \(-0.609969\pi\)
−0.338647 + 0.940914i \(0.609969\pi\)
\(830\) 0 0
\(831\) 5.47281 0.189850
\(832\) −3.48296 −0.120750
\(833\) −1.00000 −0.0346479
\(834\) 3.65986 0.126731
\(835\) 0 0
\(836\) 26.0829 0.902095
\(837\) −4.67387 −0.161553
\(838\) −27.0860 −0.935670
\(839\) −33.4690 −1.15548 −0.577738 0.816222i \(-0.696065\pi\)
−0.577738 + 0.816222i \(0.696065\pi\)
\(840\) 0 0
\(841\) −28.0191 −0.966177
\(842\) 12.6808 0.437010
\(843\) 9.84665 0.339137
\(844\) −9.35373 −0.321969
\(845\) 0 0
\(846\) 29.3972 1.01070
\(847\) −21.7928 −0.748808
\(848\) −10.3317 −0.354793
\(849\) −13.9464 −0.478641
\(850\) 0 0
\(851\) −16.2484 −0.556986
\(852\) −15.8355 −0.542516
\(853\) −13.7146 −0.469580 −0.234790 0.972046i \(-0.575440\pi\)
−0.234790 + 0.972046i \(0.575440\pi\)
\(854\) 0.952226 0.0325845
\(855\) 0 0
\(856\) −2.05039 −0.0700807
\(857\) 42.1511 1.43986 0.719928 0.694049i \(-0.244175\pi\)
0.719928 + 0.694049i \(0.244175\pi\)
\(858\) 50.6964 1.73075
\(859\) 45.9832 1.56893 0.784463 0.620176i \(-0.212939\pi\)
0.784463 + 0.620176i \(0.212939\pi\)
\(860\) 0 0
\(861\) −20.0432 −0.683069
\(862\) −2.22147 −0.0756637
\(863\) 21.0234 0.715644 0.357822 0.933790i \(-0.383519\pi\)
0.357822 + 0.933790i \(0.383519\pi\)
\(864\) 1.17101 0.0398385
\(865\) 0 0
\(866\) −29.8916 −1.01576
\(867\) 2.54179 0.0863238
\(868\) 3.99132 0.135474
\(869\) −77.6396 −2.63374
\(870\) 0 0
\(871\) 13.5004 0.457443
\(872\) −19.3457 −0.655127
\(873\) 60.7220 2.05513
\(874\) 37.6475 1.27345
\(875\) 0 0
\(876\) −17.9710 −0.607185
\(877\) −3.93131 −0.132751 −0.0663754 0.997795i \(-0.521143\pi\)
−0.0663754 + 0.997795i \(0.521143\pi\)
\(878\) −14.5552 −0.491215
\(879\) −55.3238 −1.86602
\(880\) 0 0
\(881\) 5.41729 0.182513 0.0912566 0.995827i \(-0.470912\pi\)
0.0912566 + 0.995827i \(0.470912\pi\)
\(882\) 3.46070 0.116528
\(883\) 33.5752 1.12990 0.564948 0.825127i \(-0.308896\pi\)
0.564948 + 0.825127i \(0.308896\pi\)
\(884\) 3.48296 0.117145
\(885\) 0 0
\(886\) −6.99922 −0.235143
\(887\) −2.92415 −0.0981834 −0.0490917 0.998794i \(-0.515633\pi\)
−0.0490917 + 0.998794i \(0.515633\pi\)
\(888\) 4.99666 0.167677
\(889\) 3.92166 0.131528
\(890\) 0 0
\(891\) 42.4084 1.42073
\(892\) −0.946770 −0.0317002
\(893\) −38.6908 −1.29474
\(894\) 56.6992 1.89631
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 73.1742 2.44322
\(898\) −4.29546 −0.143341
\(899\) 3.95294 0.131838
\(900\) 0 0
\(901\) 10.3317 0.344199
\(902\) −45.1560 −1.50353
\(903\) −31.2142 −1.03874
\(904\) −6.29785 −0.209464
\(905\) 0 0
\(906\) −21.4448 −0.712457
\(907\) 27.5005 0.913138 0.456569 0.889688i \(-0.349078\pi\)
0.456569 + 0.889688i \(0.349078\pi\)
\(908\) −12.3408 −0.409543
\(909\) −10.9779 −0.364115
\(910\) 0 0
\(911\) −5.75095 −0.190537 −0.0952687 0.995452i \(-0.530371\pi\)
−0.0952687 + 0.995452i \(0.530371\pi\)
\(912\) −11.5773 −0.383362
\(913\) 88.1453 2.91718
\(914\) −0.936921 −0.0309906
\(915\) 0 0
\(916\) −13.3470 −0.440996
\(917\) 9.94843 0.328526
\(918\) −1.17101 −0.0386491
\(919\) −6.18604 −0.204059 −0.102029 0.994781i \(-0.532534\pi\)
−0.102029 + 0.994781i \(0.532534\pi\)
\(920\) 0 0
\(921\) −33.2996 −1.09726
\(922\) 24.6279 0.811077
\(923\) 21.6991 0.714233
\(924\) 14.5556 0.478843
\(925\) 0 0
\(926\) −29.9356 −0.983744
\(927\) −6.71544 −0.220564
\(928\) −0.990385 −0.0325110
\(929\) 44.0088 1.44388 0.721941 0.691955i \(-0.243250\pi\)
0.721941 + 0.691955i \(0.243250\pi\)
\(930\) 0 0
\(931\) −4.55477 −0.149277
\(932\) 23.2229 0.760691
\(933\) −10.6804 −0.349662
\(934\) −9.31665 −0.304850
\(935\) 0 0
\(936\) −12.0535 −0.393981
\(937\) −27.3208 −0.892533 −0.446266 0.894900i \(-0.647247\pi\)
−0.446266 + 0.894900i \(0.647247\pi\)
\(938\) 3.87612 0.126560
\(939\) −29.6170 −0.966515
\(940\) 0 0
\(941\) 44.8806 1.46306 0.731532 0.681807i \(-0.238806\pi\)
0.731532 + 0.681807i \(0.238806\pi\)
\(942\) 49.6972 1.61922
\(943\) −65.1773 −2.12246
\(944\) −10.1278 −0.329631
\(945\) 0 0
\(946\) −70.3236 −2.28642
\(947\) −32.0215 −1.04056 −0.520279 0.853996i \(-0.674172\pi\)
−0.520279 + 0.853996i \(0.674172\pi\)
\(948\) 34.4615 1.11926
\(949\) 24.6253 0.799371
\(950\) 0 0
\(951\) −8.78093 −0.284741
\(952\) 1.00000 0.0324102
\(953\) −6.66420 −0.215875 −0.107937 0.994158i \(-0.534425\pi\)
−0.107937 + 0.994158i \(0.534425\pi\)
\(954\) −35.7550 −1.15761
\(955\) 0 0
\(956\) 10.8663 0.351440
\(957\) 14.4156 0.465991
\(958\) 12.2197 0.394801
\(959\) −21.0684 −0.680334
\(960\) 0 0
\(961\) −15.0694 −0.486109
\(962\) −6.84681 −0.220750
\(963\) −7.09577 −0.228658
\(964\) 9.61298 0.309613
\(965\) 0 0
\(966\) 21.0092 0.675960
\(967\) −32.3370 −1.03989 −0.519944 0.854200i \(-0.674047\pi\)
−0.519944 + 0.854200i \(0.674047\pi\)
\(968\) 21.7928 0.700446
\(969\) 11.5773 0.371916
\(970\) 0 0
\(971\) 26.8528 0.861747 0.430873 0.902412i \(-0.358206\pi\)
0.430873 + 0.902412i \(0.358206\pi\)
\(972\) −22.3366 −0.716448
\(973\) −1.43988 −0.0461603
\(974\) −2.11355 −0.0677224
\(975\) 0 0
\(976\) −0.952226 −0.0304800
\(977\) 14.3089 0.457783 0.228892 0.973452i \(-0.426490\pi\)
0.228892 + 0.973452i \(0.426490\pi\)
\(978\) 38.7231 1.23823
\(979\) −82.7575 −2.64494
\(980\) 0 0
\(981\) −66.9496 −2.13754
\(982\) −6.35587 −0.202824
\(983\) −10.9246 −0.348442 −0.174221 0.984707i \(-0.555741\pi\)
−0.174221 + 0.984707i \(0.555741\pi\)
\(984\) 20.0432 0.638953
\(985\) 0 0
\(986\) 0.990385 0.0315403
\(987\) −21.5914 −0.687262
\(988\) 15.8641 0.504704
\(989\) −101.504 −3.22763
\(990\) 0 0
\(991\) 46.6895 1.48314 0.741570 0.670876i \(-0.234082\pi\)
0.741570 + 0.670876i \(0.234082\pi\)
\(992\) −3.99132 −0.126724
\(993\) 31.7654 1.00804
\(994\) 6.23006 0.197605
\(995\) 0 0
\(996\) −39.1246 −1.23971
\(997\) −7.52339 −0.238268 −0.119134 0.992878i \(-0.538012\pi\)
−0.119134 + 0.992878i \(0.538012\pi\)
\(998\) 42.4519 1.34379
\(999\) 2.30197 0.0728312
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5950.2.a.cc.1.7 7
5.2 odd 4 1190.2.e.g.239.8 yes 14
5.3 odd 4 1190.2.e.g.239.7 14
5.4 even 2 5950.2.a.cb.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.e.g.239.7 14 5.3 odd 4
1190.2.e.g.239.8 yes 14 5.2 odd 4
5950.2.a.cb.1.1 7 5.4 even 2
5950.2.a.cc.1.7 7 1.1 even 1 trivial