Properties

Label 1190.2.e.g.239.7
Level $1190$
Weight $2$
Character 1190.239
Analytic conductor $9.502$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1190,2,Mod(239,1190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1190.239"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1190 = 2 \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1190.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,-2,-4,0,0,-14,4,-14,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.50219784053\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 28x^{12} + 292x^{10} + 1457x^{8} + 3664x^{6} + 4360x^{4} + 1856x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 239.7
Root \(2.54179i\) of defining polynomial
Character \(\chi\) \(=\) 1190.239
Dual form 1190.2.e.g.239.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +2.54179i q^{3} -1.00000 q^{4} +(-2.22979 + 0.167414i) q^{5} +2.54179 q^{6} +1.00000i q^{7} +1.00000i q^{8} -3.46070 q^{9} +(0.167414 + 2.22979i) q^{10} -5.72650 q^{11} -2.54179i q^{12} -3.48296i q^{13} +1.00000 q^{14} +(-0.425531 - 5.66767i) q^{15} +1.00000 q^{16} +1.00000i q^{17} +3.46070i q^{18} +4.55477 q^{19} +(2.22979 - 0.167414i) q^{20} -2.54179 q^{21} +5.72650i q^{22} -8.26551i q^{23} -2.54179 q^{24} +(4.94395 - 0.746596i) q^{25} -3.48296 q^{26} -1.17101i q^{27} -1.00000i q^{28} +0.990385 q^{29} +(-5.66767 + 0.425531i) q^{30} -3.99132 q^{31} -1.00000i q^{32} -14.5556i q^{33} +1.00000 q^{34} +(-0.167414 - 2.22979i) q^{35} +3.46070 q^{36} -1.96580i q^{37} -4.55477i q^{38} +8.85296 q^{39} +(-0.167414 - 2.22979i) q^{40} +7.88545 q^{41} +2.54179i q^{42} +12.2804i q^{43} +5.72650 q^{44} +(7.71665 - 0.579370i) q^{45} -8.26551 q^{46} -8.49457i q^{47} +2.54179i q^{48} -1.00000 q^{49} +(-0.746596 - 4.94395i) q^{50} -2.54179 q^{51} +3.48296i q^{52} -10.3317i q^{53} -1.17101 q^{54} +(12.7689 - 0.958695i) q^{55} -1.00000 q^{56} +11.5773i q^{57} -0.990385i q^{58} +10.1278 q^{59} +(0.425531 + 5.66767i) q^{60} -0.952226 q^{61} +3.99132i q^{62} -3.46070i q^{63} -1.00000 q^{64} +(0.583096 + 7.76628i) q^{65} -14.5556 q^{66} +3.87612i q^{67} -1.00000i q^{68} +21.0092 q^{69} +(-2.22979 + 0.167414i) q^{70} -6.23006 q^{71} -3.46070i q^{72} -7.07022i q^{73} -1.96580 q^{74} +(1.89769 + 12.5665i) q^{75} -4.55477 q^{76} -5.72650i q^{77} -8.85296i q^{78} -13.5580 q^{79} +(-2.22979 + 0.167414i) q^{80} -7.40565 q^{81} -7.88545i q^{82} -15.3925i q^{83} +2.54179 q^{84} +(-0.167414 - 2.22979i) q^{85} +12.2804 q^{86} +2.51735i q^{87} -5.72650i q^{88} -14.4517 q^{89} +(-0.579370 - 7.71665i) q^{90} +3.48296 q^{91} +8.26551i q^{92} -10.1451i q^{93} -8.49457 q^{94} +(-10.1562 + 0.762532i) q^{95} +2.54179 q^{96} -17.5462i q^{97} +1.00000i q^{98} +19.8177 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} - 2 q^{5} - 4 q^{6} - 14 q^{9} + 4 q^{10} - 14 q^{11} + 14 q^{14} + 2 q^{15} + 14 q^{16} + 4 q^{19} + 2 q^{20} + 4 q^{21} + 4 q^{24} + 14 q^{25} + 2 q^{26} + 20 q^{29} - 2 q^{30} - 36 q^{31}+ \cdots + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1190\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(171\) \(477\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.54179i 1.46750i 0.679417 + 0.733752i \(0.262233\pi\)
−0.679417 + 0.733752i \(0.737767\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.22979 + 0.167414i −0.997193 + 0.0748698i
\(6\) 2.54179 1.03768
\(7\) 1.00000i 0.377964i
\(8\) 1.00000i 0.353553i
\(9\) −3.46070 −1.15357
\(10\) 0.167414 + 2.22979i 0.0529409 + 0.705122i
\(11\) −5.72650 −1.72660 −0.863302 0.504688i \(-0.831607\pi\)
−0.863302 + 0.504688i \(0.831607\pi\)
\(12\) 2.54179i 0.733752i
\(13\) 3.48296i 0.966000i −0.875620 0.483000i \(-0.839547\pi\)
0.875620 0.483000i \(-0.160453\pi\)
\(14\) 1.00000 0.267261
\(15\) −0.425531 5.66767i −0.109872 1.46339i
\(16\) 1.00000 0.250000
\(17\) 1.00000i 0.242536i
\(18\) 3.46070i 0.815695i
\(19\) 4.55477 1.04494 0.522468 0.852659i \(-0.325011\pi\)
0.522468 + 0.852659i \(0.325011\pi\)
\(20\) 2.22979 0.167414i 0.498597 0.0374349i
\(21\) −2.54179 −0.554664
\(22\) 5.72650i 1.22089i
\(23\) 8.26551i 1.72348i −0.507352 0.861739i \(-0.669375\pi\)
0.507352 0.861739i \(-0.330625\pi\)
\(24\) −2.54179 −0.518841
\(25\) 4.94395 0.746596i 0.988789 0.149319i
\(26\) −3.48296 −0.683065
\(27\) 1.17101i 0.225361i
\(28\) 1.00000i 0.188982i
\(29\) 0.990385 0.183910 0.0919550 0.995763i \(-0.470688\pi\)
0.0919550 + 0.995763i \(0.470688\pi\)
\(30\) −5.66767 + 0.425531i −1.03477 + 0.0776910i
\(31\) −3.99132 −0.716862 −0.358431 0.933556i \(-0.616688\pi\)
−0.358431 + 0.933556i \(0.616688\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 14.5556i 2.53380i
\(34\) 1.00000 0.171499
\(35\) −0.167414 2.22979i −0.0282981 0.376904i
\(36\) 3.46070 0.576784
\(37\) 1.96580i 0.323176i −0.986858 0.161588i \(-0.948338\pi\)
0.986858 0.161588i \(-0.0516615\pi\)
\(38\) 4.55477i 0.738881i
\(39\) 8.85296 1.41761
\(40\) −0.167414 2.22979i −0.0264705 0.352561i
\(41\) 7.88545 1.23150 0.615750 0.787941i \(-0.288853\pi\)
0.615750 + 0.787941i \(0.288853\pi\)
\(42\) 2.54179i 0.392207i
\(43\) 12.2804i 1.87274i 0.351011 + 0.936371i \(0.385838\pi\)
−0.351011 + 0.936371i \(0.614162\pi\)
\(44\) 5.72650 0.863302
\(45\) 7.71665 0.579370i 1.15033 0.0863673i
\(46\) −8.26551 −1.21868
\(47\) 8.49457i 1.23906i −0.784973 0.619530i \(-0.787323\pi\)
0.784973 0.619530i \(-0.212677\pi\)
\(48\) 2.54179i 0.366876i
\(49\) −1.00000 −0.142857
\(50\) −0.746596 4.94395i −0.105585 0.699179i
\(51\) −2.54179 −0.355922
\(52\) 3.48296i 0.483000i
\(53\) 10.3317i 1.41917i −0.704619 0.709585i \(-0.748882\pi\)
0.704619 0.709585i \(-0.251118\pi\)
\(54\) −1.17101 −0.159354
\(55\) 12.7689 0.958695i 1.72176 0.129270i
\(56\) −1.00000 −0.133631
\(57\) 11.5773i 1.53345i
\(58\) 0.990385i 0.130044i
\(59\) 10.1278 1.31852 0.659262 0.751913i \(-0.270869\pi\)
0.659262 + 0.751913i \(0.270869\pi\)
\(60\) 0.425531 + 5.66767i 0.0549358 + 0.731693i
\(61\) −0.952226 −0.121920 −0.0609600 0.998140i \(-0.519416\pi\)
−0.0609600 + 0.998140i \(0.519416\pi\)
\(62\) 3.99132i 0.506898i
\(63\) 3.46070i 0.436008i
\(64\) −1.00000 −0.125000
\(65\) 0.583096 + 7.76628i 0.0723242 + 0.963288i
\(66\) −14.5556 −1.79167
\(67\) 3.87612i 0.473543i 0.971565 + 0.236772i \(0.0760893\pi\)
−0.971565 + 0.236772i \(0.923911\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 21.0092 2.52921
\(70\) −2.22979 + 0.167414i −0.266511 + 0.0200098i
\(71\) −6.23006 −0.739372 −0.369686 0.929157i \(-0.620535\pi\)
−0.369686 + 0.929157i \(0.620535\pi\)
\(72\) 3.46070i 0.407848i
\(73\) 7.07022i 0.827507i −0.910389 0.413753i \(-0.864218\pi\)
0.910389 0.413753i \(-0.135782\pi\)
\(74\) −1.96580 −0.228520
\(75\) 1.89769 + 12.5665i 0.219127 + 1.45105i
\(76\) −4.55477 −0.522468
\(77\) 5.72650i 0.652595i
\(78\) 8.85296i 1.00240i
\(79\) −13.5580 −1.52539 −0.762695 0.646759i \(-0.776124\pi\)
−0.762695 + 0.646759i \(0.776124\pi\)
\(80\) −2.22979 + 0.167414i −0.249298 + 0.0187174i
\(81\) −7.40565 −0.822850
\(82\) 7.88545i 0.870802i
\(83\) 15.3925i 1.68955i −0.535121 0.844775i \(-0.679734\pi\)
0.535121 0.844775i \(-0.320266\pi\)
\(84\) 2.54179 0.277332
\(85\) −0.167414 2.22979i −0.0181586 0.241855i
\(86\) 12.2804 1.32423
\(87\) 2.51735i 0.269889i
\(88\) 5.72650i 0.610446i
\(89\) −14.4517 −1.53188 −0.765938 0.642915i \(-0.777725\pi\)
−0.765938 + 0.642915i \(0.777725\pi\)
\(90\) −0.579370 7.71665i −0.0610709 0.813406i
\(91\) 3.48296 0.365114
\(92\) 8.26551i 0.861739i
\(93\) 10.1451i 1.05200i
\(94\) −8.49457 −0.876148
\(95\) −10.1562 + 0.762532i −1.04200 + 0.0782341i
\(96\) 2.54179 0.259420
\(97\) 17.5462i 1.78154i −0.454452 0.890771i \(-0.650165\pi\)
0.454452 0.890771i \(-0.349835\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 19.8177 1.99175
\(100\) −4.94395 + 0.746596i −0.494395 + 0.0746596i
\(101\) −3.17217 −0.315643 −0.157821 0.987468i \(-0.550447\pi\)
−0.157821 + 0.987468i \(0.550447\pi\)
\(102\) 2.54179i 0.251675i
\(103\) 1.94049i 0.191202i −0.995420 0.0956009i \(-0.969523\pi\)
0.995420 0.0956009i \(-0.0304772\pi\)
\(104\) 3.48296 0.341532
\(105\) 5.66767 0.425531i 0.553108 0.0415276i
\(106\) −10.3317 −1.00351
\(107\) 2.05039i 0.198218i 0.995077 + 0.0991091i \(0.0315993\pi\)
−0.995077 + 0.0991091i \(0.968401\pi\)
\(108\) 1.17101i 0.112680i
\(109\) 19.3457 1.85298 0.926490 0.376320i \(-0.122811\pi\)
0.926490 + 0.376320i \(0.122811\pi\)
\(110\) −0.958695 12.7689i −0.0914080 1.21747i
\(111\) 4.99666 0.474262
\(112\) 1.00000i 0.0944911i
\(113\) 6.29785i 0.592452i −0.955118 0.296226i \(-0.904272\pi\)
0.955118 0.296226i \(-0.0957282\pi\)
\(114\) 11.5773 1.08431
\(115\) 1.38376 + 18.4304i 0.129036 + 1.71864i
\(116\) −0.990385 −0.0919550
\(117\) 12.0535i 1.11435i
\(118\) 10.1278i 0.932338i
\(119\) −1.00000 −0.0916698
\(120\) 5.66767 0.425531i 0.517385 0.0388455i
\(121\) 21.7928 1.98116
\(122\) 0.952226i 0.0862105i
\(123\) 20.0432i 1.80723i
\(124\) 3.99132 0.358431
\(125\) −10.8990 + 2.49244i −0.974834 + 0.222931i
\(126\) −3.46070 −0.308304
\(127\) 3.92166i 0.347991i 0.984746 + 0.173996i \(0.0556678\pi\)
−0.984746 + 0.173996i \(0.944332\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −31.2142 −2.74826
\(130\) 7.76628 0.583096i 0.681148 0.0511409i
\(131\) −9.94843 −0.869198 −0.434599 0.900624i \(-0.643110\pi\)
−0.434599 + 0.900624i \(0.643110\pi\)
\(132\) 14.5556i 1.26690i
\(133\) 4.55477i 0.394949i
\(134\) 3.87612 0.334846
\(135\) 0.196043 + 2.61111i 0.0168727 + 0.224728i
\(136\) −1.00000 −0.0857493
\(137\) 21.0684i 1.80000i −0.435895 0.899998i \(-0.643568\pi\)
0.435895 0.899998i \(-0.356432\pi\)
\(138\) 21.0092i 1.78842i
\(139\) −1.43988 −0.122129 −0.0610643 0.998134i \(-0.519449\pi\)
−0.0610643 + 0.998134i \(0.519449\pi\)
\(140\) 0.167414 + 2.22979i 0.0141491 + 0.188452i
\(141\) 21.5914 1.81833
\(142\) 6.23006i 0.522815i
\(143\) 19.9452i 1.66790i
\(144\) −3.46070 −0.288392
\(145\) −2.20835 + 0.165804i −0.183394 + 0.0137693i
\(146\) −7.07022 −0.585136
\(147\) 2.54179i 0.209643i
\(148\) 1.96580i 0.161588i
\(149\) −22.3068 −1.82744 −0.913722 0.406339i \(-0.866805\pi\)
−0.913722 + 0.406339i \(0.866805\pi\)
\(150\) 12.5665 1.89769i 1.02605 0.154946i
\(151\) −8.43690 −0.686585 −0.343293 0.939228i \(-0.611542\pi\)
−0.343293 + 0.939228i \(0.611542\pi\)
\(152\) 4.55477i 0.369441i
\(153\) 3.46070i 0.279781i
\(154\) −5.72650 −0.461454
\(155\) 8.89981 0.668202i 0.714850 0.0536713i
\(156\) −8.85296 −0.708804
\(157\) 19.5520i 1.56042i −0.625516 0.780212i \(-0.715111\pi\)
0.625516 0.780212i \(-0.284889\pi\)
\(158\) 13.5580i 1.07861i
\(159\) 26.2611 2.08264
\(160\) 0.167414 + 2.22979i 0.0132352 + 0.176281i
\(161\) 8.26551 0.651414
\(162\) 7.40565i 0.581843i
\(163\) 15.2346i 1.19326i 0.802515 + 0.596632i \(0.203495\pi\)
−0.802515 + 0.596632i \(0.796505\pi\)
\(164\) −7.88545 −0.615750
\(165\) 2.43680 + 32.4559i 0.189705 + 2.52669i
\(166\) −15.3925 −1.19469
\(167\) 1.44115i 0.111520i 0.998444 + 0.0557598i \(0.0177581\pi\)
−0.998444 + 0.0557598i \(0.982242\pi\)
\(168\) 2.54179i 0.196103i
\(169\) 0.868981 0.0668447
\(170\) −2.22979 + 0.167414i −0.171017 + 0.0128401i
\(171\) −15.7627 −1.20540
\(172\) 12.2804i 0.936371i
\(173\) 0.0905351i 0.00688326i −0.999994 0.00344163i \(-0.998904\pi\)
0.999994 0.00344163i \(-0.00109551\pi\)
\(174\) 2.51735 0.190840
\(175\) 0.746596 + 4.94395i 0.0564374 + 0.373727i
\(176\) −5.72650 −0.431651
\(177\) 25.7427i 1.93494i
\(178\) 14.4517i 1.08320i
\(179\) 6.72039 0.502306 0.251153 0.967947i \(-0.419190\pi\)
0.251153 + 0.967947i \(0.419190\pi\)
\(180\) −7.71665 + 0.579370i −0.575165 + 0.0431837i
\(181\) −20.3547 −1.51295 −0.756476 0.654021i \(-0.773081\pi\)
−0.756476 + 0.654021i \(0.773081\pi\)
\(182\) 3.48296i 0.258174i
\(183\) 2.42036i 0.178918i
\(184\) 8.26551 0.609342
\(185\) 0.329102 + 4.38333i 0.0241961 + 0.322269i
\(186\) −10.1451 −0.743874
\(187\) 5.72650i 0.418763i
\(188\) 8.49457i 0.619530i
\(189\) 1.17101 0.0851784
\(190\) 0.762532 + 10.1562i 0.0553199 + 0.736808i
\(191\) −5.38668 −0.389766 −0.194883 0.980826i \(-0.562433\pi\)
−0.194883 + 0.980826i \(0.562433\pi\)
\(192\) 2.54179i 0.183438i
\(193\) 0.617801i 0.0444703i 0.999753 + 0.0222351i \(0.00707825\pi\)
−0.999753 + 0.0222351i \(0.992922\pi\)
\(194\) −17.5462 −1.25974
\(195\) −19.7403 + 1.48211i −1.41363 + 0.106136i
\(196\) 1.00000 0.0714286
\(197\) 8.90420i 0.634398i 0.948359 + 0.317199i \(0.102742\pi\)
−0.948359 + 0.317199i \(0.897258\pi\)
\(198\) 19.8177i 1.40838i
\(199\) −2.74906 −0.194876 −0.0974380 0.995242i \(-0.531065\pi\)
−0.0974380 + 0.995242i \(0.531065\pi\)
\(200\) 0.746596 + 4.94395i 0.0527923 + 0.349590i
\(201\) −9.85228 −0.694926
\(202\) 3.17217i 0.223193i
\(203\) 0.990385i 0.0695114i
\(204\) 2.54179 0.177961
\(205\) −17.5829 + 1.32013i −1.22804 + 0.0922022i
\(206\) −1.94049 −0.135200
\(207\) 28.6045i 1.98815i
\(208\) 3.48296i 0.241500i
\(209\) −26.0829 −1.80419
\(210\) −0.425531 5.66767i −0.0293644 0.391106i
\(211\) −9.35373 −0.643937 −0.321969 0.946750i \(-0.604345\pi\)
−0.321969 + 0.946750i \(0.604345\pi\)
\(212\) 10.3317i 0.709585i
\(213\) 15.8355i 1.08503i
\(214\) 2.05039 0.140161
\(215\) −2.05591 27.3827i −0.140212 1.86749i
\(216\) 1.17101 0.0796771
\(217\) 3.99132i 0.270948i
\(218\) 19.3457i 1.31025i
\(219\) 17.9710 1.21437
\(220\) −12.7689 + 0.958695i −0.860879 + 0.0646352i
\(221\) 3.48296 0.234289
\(222\) 4.99666i 0.335354i
\(223\) 0.946770i 0.0634004i −0.999497 0.0317002i \(-0.989908\pi\)
0.999497 0.0317002i \(-0.0100922\pi\)
\(224\) 1.00000 0.0668153
\(225\) −17.1095 + 2.58375i −1.14063 + 0.172250i
\(226\) −6.29785 −0.418927
\(227\) 12.3408i 0.819085i 0.912291 + 0.409543i \(0.134312\pi\)
−0.912291 + 0.409543i \(0.865688\pi\)
\(228\) 11.5773i 0.766724i
\(229\) 13.3470 0.881993 0.440996 0.897509i \(-0.354625\pi\)
0.440996 + 0.897509i \(0.354625\pi\)
\(230\) 18.4304 1.38376i 1.21526 0.0912425i
\(231\) 14.5556 0.957685
\(232\) 0.990385i 0.0650220i
\(233\) 23.2229i 1.52138i 0.649114 + 0.760691i \(0.275140\pi\)
−0.649114 + 0.760691i \(0.724860\pi\)
\(234\) 12.0535 0.787961
\(235\) 1.42211 + 18.9411i 0.0927682 + 1.23558i
\(236\) −10.1278 −0.659262
\(237\) 34.4615i 2.23851i
\(238\) 1.00000i 0.0648204i
\(239\) −10.8663 −0.702880 −0.351440 0.936210i \(-0.614308\pi\)
−0.351440 + 0.936210i \(0.614308\pi\)
\(240\) −0.425531 5.66767i −0.0274679 0.365846i
\(241\) 9.61298 0.619226 0.309613 0.950863i \(-0.399800\pi\)
0.309613 + 0.950863i \(0.399800\pi\)
\(242\) 21.7928i 1.40089i
\(243\) 22.3366i 1.43290i
\(244\) 0.952226 0.0609600
\(245\) 2.22979 0.167414i 0.142456 0.0106957i
\(246\) 20.0432 1.27791
\(247\) 15.8641i 1.00941i
\(248\) 3.99132i 0.253449i
\(249\) 39.1246 2.47942
\(250\) 2.49244 + 10.8990i 0.157636 + 0.689312i
\(251\) 13.6959 0.864477 0.432239 0.901759i \(-0.357724\pi\)
0.432239 + 0.901759i \(0.357724\pi\)
\(252\) 3.46070i 0.218004i
\(253\) 47.3324i 2.97576i
\(254\) 3.92166 0.246067
\(255\) 5.66767 0.425531i 0.354923 0.0266478i
\(256\) 1.00000 0.0625000
\(257\) 19.2766i 1.20244i 0.799082 + 0.601222i \(0.205319\pi\)
−0.799082 + 0.601222i \(0.794681\pi\)
\(258\) 31.2142i 1.94331i
\(259\) 1.96580 0.122149
\(260\) −0.583096 7.76628i −0.0361621 0.481644i
\(261\) −3.42743 −0.212153
\(262\) 9.94843i 0.614616i
\(263\) 15.4341i 0.951706i −0.879525 0.475853i \(-0.842139\pi\)
0.879525 0.475853i \(-0.157861\pi\)
\(264\) 14.5556 0.895833
\(265\) 1.72967 + 23.0376i 0.106253 + 1.41519i
\(266\) 4.55477 0.279271
\(267\) 36.7332i 2.24803i
\(268\) 3.87612i 0.236772i
\(269\) −18.7045 −1.14044 −0.570218 0.821494i \(-0.693141\pi\)
−0.570218 + 0.821494i \(0.693141\pi\)
\(270\) 2.61111 0.196043i 0.158907 0.0119308i
\(271\) 27.6242 1.67805 0.839026 0.544092i \(-0.183126\pi\)
0.839026 + 0.544092i \(0.183126\pi\)
\(272\) 1.00000i 0.0606339i
\(273\) 8.85296i 0.535806i
\(274\) −21.0684 −1.27279
\(275\) −28.3115 + 4.27538i −1.70725 + 0.257815i
\(276\) −21.0092 −1.26461
\(277\) 2.15313i 0.129369i −0.997906 0.0646846i \(-0.979396\pi\)
0.997906 0.0646846i \(-0.0206041\pi\)
\(278\) 1.43988i 0.0863580i
\(279\) 13.8128 0.826948
\(280\) 2.22979 0.167414i 0.133256 0.0100049i
\(281\) 3.87390 0.231098 0.115549 0.993302i \(-0.463137\pi\)
0.115549 + 0.993302i \(0.463137\pi\)
\(282\) 21.5914i 1.28575i
\(283\) 5.48685i 0.326160i −0.986613 0.163080i \(-0.947857\pi\)
0.986613 0.163080i \(-0.0521428\pi\)
\(284\) 6.23006 0.369686
\(285\) −1.93820 25.8149i −0.114809 1.52914i
\(286\) 19.9452 1.17938
\(287\) 7.88545i 0.465463i
\(288\) 3.46070i 0.203924i
\(289\) −1.00000 −0.0588235
\(290\) 0.165804 + 2.20835i 0.00973636 + 0.129679i
\(291\) 44.5987 2.61442
\(292\) 7.07022i 0.413753i
\(293\) 21.7657i 1.27156i −0.771869 0.635782i \(-0.780678\pi\)
0.771869 0.635782i \(-0.219322\pi\)
\(294\) −2.54179 −0.148240
\(295\) −22.5828 + 1.69553i −1.31482 + 0.0987176i
\(296\) 1.96580 0.114260
\(297\) 6.70578i 0.389109i
\(298\) 22.3068i 1.29220i
\(299\) −28.7885 −1.66488
\(300\) −1.89769 12.5665i −0.109563 0.725526i
\(301\) −12.2804 −0.707830
\(302\) 8.43690i 0.485489i
\(303\) 8.06299i 0.463207i
\(304\) 4.55477 0.261234
\(305\) 2.12327 0.159416i 0.121578 0.00912812i
\(306\) −3.46070 −0.197835
\(307\) 13.1008i 0.747704i 0.927488 + 0.373852i \(0.121963\pi\)
−0.927488 + 0.373852i \(0.878037\pi\)
\(308\) 5.72650i 0.326297i
\(309\) 4.93231 0.280589
\(310\) −0.668202 8.89981i −0.0379513 0.505475i
\(311\) −4.20193 −0.238270 −0.119135 0.992878i \(-0.538012\pi\)
−0.119135 + 0.992878i \(0.538012\pi\)
\(312\) 8.85296i 0.501200i
\(313\) 11.6520i 0.658612i −0.944223 0.329306i \(-0.893185\pi\)
0.944223 0.329306i \(-0.106815\pi\)
\(314\) −19.5520 −1.10339
\(315\) 0.579370 + 7.71665i 0.0326438 + 0.434784i
\(316\) 13.5580 0.762695
\(317\) 3.45462i 0.194031i 0.995283 + 0.0970155i \(0.0309296\pi\)
−0.995283 + 0.0970155i \(0.969070\pi\)
\(318\) 26.2611i 1.47265i
\(319\) −5.67144 −0.317540
\(320\) 2.22979 0.167414i 0.124649 0.00935872i
\(321\) −5.21165 −0.290886
\(322\) 8.26551i 0.460619i
\(323\) 4.55477i 0.253434i
\(324\) 7.40565 0.411425
\(325\) −2.60037 17.2196i −0.144242 0.955170i
\(326\) 15.2346 0.843766
\(327\) 49.1727i 2.71925i
\(328\) 7.88545i 0.435401i
\(329\) 8.49457 0.468321
\(330\) 32.4559 2.43680i 1.78664 0.134142i
\(331\) 12.4973 0.686911 0.343456 0.939169i \(-0.388403\pi\)
0.343456 + 0.939169i \(0.388403\pi\)
\(332\) 15.3925i 0.844775i
\(333\) 6.80305i 0.372805i
\(334\) 1.44115 0.0788562
\(335\) −0.648916 8.64294i −0.0354541 0.472214i
\(336\) −2.54179 −0.138666
\(337\) 8.93416i 0.486675i 0.969942 + 0.243337i \(0.0782422\pi\)
−0.969942 + 0.243337i \(0.921758\pi\)
\(338\) 0.868981i 0.0472663i
\(339\) 16.0078 0.869426
\(340\) 0.167414 + 2.22979i 0.00907929 + 0.120927i
\(341\) 22.8563 1.23774
\(342\) 15.7627i 0.852350i
\(343\) 1.00000i 0.0539949i
\(344\) −12.2804 −0.662115
\(345\) −46.8462 + 3.51723i −2.52211 + 0.189361i
\(346\) −0.0905351 −0.00486720
\(347\) 19.0850i 1.02454i 0.858825 + 0.512269i \(0.171195\pi\)
−0.858825 + 0.512269i \(0.828805\pi\)
\(348\) 2.51735i 0.134944i
\(349\) −15.3497 −0.821652 −0.410826 0.911714i \(-0.634760\pi\)
−0.410826 + 0.911714i \(0.634760\pi\)
\(350\) 4.94395 0.746596i 0.264265 0.0399073i
\(351\) −4.07858 −0.217698
\(352\) 5.72650i 0.305223i
\(353\) 3.33185i 0.177337i −0.996061 0.0886684i \(-0.971739\pi\)
0.996061 0.0886684i \(-0.0282611\pi\)
\(354\) 25.7427 1.36821
\(355\) 13.8917 1.04300i 0.737297 0.0553566i
\(356\) 14.4517 0.765938
\(357\) 2.54179i 0.134526i
\(358\) 6.72039i 0.355184i
\(359\) 10.1746 0.536995 0.268498 0.963280i \(-0.413473\pi\)
0.268498 + 0.963280i \(0.413473\pi\)
\(360\) 0.579370 + 7.71665i 0.0305355 + 0.406703i
\(361\) 1.74594 0.0918915
\(362\) 20.3547i 1.06982i
\(363\) 55.3926i 2.90736i
\(364\) −3.48296 −0.182557
\(365\) 1.18365 + 15.7651i 0.0619553 + 0.825184i
\(366\) −2.42036 −0.126514
\(367\) 11.2202i 0.585688i −0.956160 0.292844i \(-0.905398\pi\)
0.956160 0.292844i \(-0.0946017\pi\)
\(368\) 8.26551i 0.430870i
\(369\) −27.2892 −1.42062
\(370\) 4.38333 0.329102i 0.227878 0.0171092i
\(371\) 10.3317 0.536396
\(372\) 10.1451i 0.525999i
\(373\) 19.7975i 1.02508i −0.858665 0.512538i \(-0.828705\pi\)
0.858665 0.512538i \(-0.171295\pi\)
\(374\) −5.72650 −0.296110
\(375\) −6.33526 27.7029i −0.327152 1.43057i
\(376\) 8.49457 0.438074
\(377\) 3.44947i 0.177657i
\(378\) 1.17101i 0.0602302i
\(379\) 33.0938 1.69992 0.849958 0.526851i \(-0.176627\pi\)
0.849958 + 0.526851i \(0.176627\pi\)
\(380\) 10.1562 0.762532i 0.521002 0.0391171i
\(381\) −9.96804 −0.510678
\(382\) 5.38668i 0.275606i
\(383\) 17.2749i 0.882706i −0.897333 0.441353i \(-0.854499\pi\)
0.897333 0.441353i \(-0.145501\pi\)
\(384\) −2.54179 −0.129710
\(385\) 0.958695 + 12.7689i 0.0488596 + 0.650763i
\(386\) 0.617801 0.0314452
\(387\) 42.4988i 2.16034i
\(388\) 17.5462i 0.890771i
\(389\) −5.88067 −0.298162 −0.149081 0.988825i \(-0.547631\pi\)
−0.149081 + 0.988825i \(0.547631\pi\)
\(390\) 1.48211 + 19.7403i 0.0750495 + 0.999587i
\(391\) 8.26551 0.418005
\(392\) 1.00000i 0.0505076i
\(393\) 25.2868i 1.27555i
\(394\) 8.90420 0.448587
\(395\) 30.2314 2.26979i 1.52111 0.114206i
\(396\) −19.8177 −0.995877
\(397\) 17.3518i 0.870859i 0.900223 + 0.435430i \(0.143404\pi\)
−0.900223 + 0.435430i \(0.856596\pi\)
\(398\) 2.74906i 0.137798i
\(399\) −11.5773 −0.579589
\(400\) 4.94395 0.746596i 0.247197 0.0373298i
\(401\) −19.9909 −0.998299 −0.499149 0.866516i \(-0.666354\pi\)
−0.499149 + 0.866516i \(0.666354\pi\)
\(402\) 9.85228i 0.491387i
\(403\) 13.9016i 0.692488i
\(404\) 3.17217 0.157821
\(405\) 16.5131 1.23981i 0.820540 0.0616066i
\(406\) 0.990385 0.0491520
\(407\) 11.2572i 0.557996i
\(408\) 2.54179i 0.125837i
\(409\) −35.3383 −1.74737 −0.873683 0.486495i \(-0.838275\pi\)
−0.873683 + 0.486495i \(0.838275\pi\)
\(410\) 1.32013 + 17.5829i 0.0651968 + 0.868358i
\(411\) 53.5515 2.64150
\(412\) 1.94049i 0.0956009i
\(413\) 10.1278i 0.498355i
\(414\) 28.6045 1.40583
\(415\) 2.57693 + 34.3222i 0.126496 + 1.68481i
\(416\) −3.48296 −0.170766
\(417\) 3.65986i 0.179224i
\(418\) 26.0829i 1.27576i
\(419\) 27.0860 1.32324 0.661619 0.749841i \(-0.269870\pi\)
0.661619 + 0.749841i \(0.269870\pi\)
\(420\) −5.66767 + 0.425531i −0.276554 + 0.0207638i
\(421\) 12.6808 0.618025 0.309013 0.951058i \(-0.400001\pi\)
0.309013 + 0.951058i \(0.400001\pi\)
\(422\) 9.35373i 0.455332i
\(423\) 29.3972i 1.42934i
\(424\) 10.3317 0.501753
\(425\) 0.746596 + 4.94395i 0.0362152 + 0.239817i
\(426\) −15.8355 −0.767233
\(427\) 0.952226i 0.0460814i
\(428\) 2.05039i 0.0991091i
\(429\) −50.6964 −2.44765
\(430\) −27.3827 + 2.05591i −1.32051 + 0.0991447i
\(431\) −2.22147 −0.107005 −0.0535023 0.998568i \(-0.517038\pi\)
−0.0535023 + 0.998568i \(0.517038\pi\)
\(432\) 1.17101i 0.0563402i
\(433\) 29.8916i 1.43650i −0.695786 0.718249i \(-0.744944\pi\)
0.695786 0.718249i \(-0.255056\pi\)
\(434\) −3.99132 −0.191589
\(435\) −0.421440 5.61317i −0.0202065 0.269131i
\(436\) −19.3457 −0.926490
\(437\) 37.6475i 1.80092i
\(438\) 17.9710i 0.858689i
\(439\) 14.5552 0.694683 0.347342 0.937739i \(-0.387084\pi\)
0.347342 + 0.937739i \(0.387084\pi\)
\(440\) 0.958695 + 12.7689i 0.0457040 + 0.608733i
\(441\) 3.46070 0.164795
\(442\) 3.48296i 0.165668i
\(443\) 6.99922i 0.332543i −0.986080 0.166271i \(-0.946827\pi\)
0.986080 0.166271i \(-0.0531728\pi\)
\(444\) −4.99666 −0.237131
\(445\) 32.2242 2.41941i 1.52758 0.114691i
\(446\) −0.946770 −0.0448309
\(447\) 56.6992i 2.68178i
\(448\) 1.00000i 0.0472456i
\(449\) 4.29546 0.202715 0.101358 0.994850i \(-0.467681\pi\)
0.101358 + 0.994850i \(0.467681\pi\)
\(450\) 2.58375 + 17.1095i 0.121799 + 0.806551i
\(451\) −45.1560 −2.12631
\(452\) 6.29785i 0.296226i
\(453\) 21.4448i 1.00757i
\(454\) 12.3408 0.579181
\(455\) −7.76628 + 0.583096i −0.364089 + 0.0273360i
\(456\) −11.5773 −0.542156
\(457\) 0.936921i 0.0438273i 0.999760 + 0.0219137i \(0.00697589\pi\)
−0.999760 + 0.0219137i \(0.993024\pi\)
\(458\) 13.3470i 0.623663i
\(459\) 1.17101 0.0546580
\(460\) −1.38376 18.4304i −0.0645182 0.859321i
\(461\) 24.6279 1.14704 0.573518 0.819193i \(-0.305578\pi\)
0.573518 + 0.819193i \(0.305578\pi\)
\(462\) 14.5556i 0.677186i
\(463\) 29.9356i 1.39122i −0.718418 0.695612i \(-0.755133\pi\)
0.718418 0.695612i \(-0.244867\pi\)
\(464\) 0.990385 0.0459775
\(465\) 1.69843 + 22.6214i 0.0787628 + 1.04904i
\(466\) 23.2229 1.07578
\(467\) 9.31665i 0.431123i 0.976490 + 0.215562i \(0.0691582\pi\)
−0.976490 + 0.215562i \(0.930842\pi\)
\(468\) 12.0535i 0.557173i
\(469\) −3.87612 −0.178982
\(470\) 18.9411 1.42211i 0.873689 0.0655970i
\(471\) 49.6972 2.28993
\(472\) 10.1278i 0.466169i
\(473\) 70.3236i 3.23348i
\(474\) −34.4615 −1.58287
\(475\) 22.5185 3.40058i 1.03322 0.156029i
\(476\) 1.00000 0.0458349
\(477\) 35.7550i 1.63711i
\(478\) 10.8663i 0.497011i
\(479\) −12.2197 −0.558333 −0.279167 0.960243i \(-0.590058\pi\)
−0.279167 + 0.960243i \(0.590058\pi\)
\(480\) −5.66767 + 0.425531i −0.258692 + 0.0194228i
\(481\) −6.84681 −0.312188
\(482\) 9.61298i 0.437859i
\(483\) 21.0092i 0.955952i
\(484\) −21.7928 −0.990580
\(485\) 2.93747 + 39.1243i 0.133384 + 1.77654i
\(486\) −22.3366 −1.01321
\(487\) 2.11355i 0.0957739i 0.998853 + 0.0478870i \(0.0152487\pi\)
−0.998853 + 0.0478870i \(0.984751\pi\)
\(488\) 0.952226i 0.0431052i
\(489\) −38.7231 −1.75112
\(490\) −0.167414 2.22979i −0.00756299 0.100732i
\(491\) −6.35587 −0.286836 −0.143418 0.989662i \(-0.545809\pi\)
−0.143418 + 0.989662i \(0.545809\pi\)
\(492\) 20.0432i 0.903616i
\(493\) 0.990385i 0.0446047i
\(494\) −15.8641 −0.713759
\(495\) −44.1893 + 3.31776i −1.98616 + 0.149122i
\(496\) −3.99132 −0.179215
\(497\) 6.23006i 0.279456i
\(498\) 39.1246i 1.75322i
\(499\) −42.4519 −1.90041 −0.950204 0.311627i \(-0.899126\pi\)
−0.950204 + 0.311627i \(0.899126\pi\)
\(500\) 10.8990 2.49244i 0.487417 0.111465i
\(501\) −3.66310 −0.163655
\(502\) 13.6959i 0.611278i
\(503\) 20.9628i 0.934683i −0.884077 0.467342i \(-0.845212\pi\)
0.884077 0.467342i \(-0.154788\pi\)
\(504\) 3.46070 0.154152
\(505\) 7.07328 0.531065i 0.314757 0.0236321i
\(506\) 47.3324 2.10418
\(507\) 2.20877i 0.0980948i
\(508\) 3.92166i 0.173996i
\(509\) 3.66956 0.162650 0.0813251 0.996688i \(-0.474085\pi\)
0.0813251 + 0.996688i \(0.474085\pi\)
\(510\) −0.425531 5.66767i −0.0188428 0.250968i
\(511\) 7.07022 0.312768
\(512\) 1.00000i 0.0441942i
\(513\) 5.33368i 0.235488i
\(514\) 19.2766 0.850256
\(515\) 0.324864 + 4.32688i 0.0143152 + 0.190665i
\(516\) 31.2142 1.37413
\(517\) 48.6441i 2.13937i
\(518\) 1.96580i 0.0863723i
\(519\) 0.230121 0.0101012
\(520\) −7.76628 + 0.583096i −0.340574 + 0.0255705i
\(521\) 21.8630 0.957836 0.478918 0.877860i \(-0.341029\pi\)
0.478918 + 0.877860i \(0.341029\pi\)
\(522\) 3.42743i 0.150014i
\(523\) 2.31826i 0.101370i −0.998715 0.0506852i \(-0.983859\pi\)
0.998715 0.0506852i \(-0.0161405\pi\)
\(524\) 9.94843 0.434599
\(525\) −12.5665 + 1.89769i −0.548446 + 0.0828221i
\(526\) −15.4341 −0.672958
\(527\) 3.99132i 0.173864i
\(528\) 14.5556i 0.633449i
\(529\) −45.3187 −1.97038
\(530\) 23.0376 1.72967i 1.00069 0.0751322i
\(531\) −35.0492 −1.52101
\(532\) 4.55477i 0.197474i
\(533\) 27.4647i 1.18963i
\(534\) −36.7332 −1.58960
\(535\) −0.343263 4.57193i −0.0148406 0.197662i
\(536\) −3.87612 −0.167423
\(537\) 17.0818i 0.737136i
\(538\) 18.7045i 0.806409i
\(539\) 5.72650 0.246658
\(540\) −0.196043 2.61111i −0.00843636 0.112364i
\(541\) −26.3538 −1.13304 −0.566520 0.824048i \(-0.691711\pi\)
−0.566520 + 0.824048i \(0.691711\pi\)
\(542\) 27.6242i 1.18656i
\(543\) 51.7374i 2.22026i
\(544\) 1.00000 0.0428746
\(545\) −43.1368 + 3.23873i −1.84778 + 0.138732i
\(546\) 8.85296 0.378872
\(547\) 20.5567i 0.878943i −0.898257 0.439471i \(-0.855166\pi\)
0.898257 0.439471i \(-0.144834\pi\)
\(548\) 21.0684i 0.899998i
\(549\) 3.29537 0.140643
\(550\) 4.27538 + 28.3115i 0.182303 + 1.20721i
\(551\) 4.51098 0.192174
\(552\) 21.0092i 0.894211i
\(553\) 13.5580i 0.576543i
\(554\) −2.15313 −0.0914778
\(555\) −11.1415 + 0.836510i −0.472931 + 0.0355079i
\(556\) 1.43988 0.0610643
\(557\) 30.1050i 1.27559i 0.770207 + 0.637794i \(0.220153\pi\)
−0.770207 + 0.637794i \(0.779847\pi\)
\(558\) 13.8128i 0.584741i
\(559\) 42.7721 1.80907
\(560\) −0.167414 2.22979i −0.00707453 0.0942259i
\(561\) 14.5556 0.614536
\(562\) 3.87390i 0.163411i
\(563\) 13.4551i 0.567065i −0.958963 0.283532i \(-0.908494\pi\)
0.958963 0.283532i \(-0.0915063\pi\)
\(564\) −21.5914 −0.909163
\(565\) 1.05435 + 14.0429i 0.0443568 + 0.590789i
\(566\) −5.48685 −0.230630
\(567\) 7.40565i 0.311008i
\(568\) 6.23006i 0.261407i
\(569\) −14.1962 −0.595135 −0.297567 0.954701i \(-0.596175\pi\)
−0.297567 + 0.954701i \(0.596175\pi\)
\(570\) −25.8149 + 1.93820i −1.08127 + 0.0811821i
\(571\) 4.06927 0.170294 0.0851469 0.996368i \(-0.472864\pi\)
0.0851469 + 0.996368i \(0.472864\pi\)
\(572\) 19.9452i 0.833949i
\(573\) 13.6918i 0.571984i
\(574\) 7.88545 0.329132
\(575\) −6.17100 40.8642i −0.257349 1.70416i
\(576\) 3.46070 0.144196
\(577\) 23.0464i 0.959433i −0.877424 0.479716i \(-0.840740\pi\)
0.877424 0.479716i \(-0.159260\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) −1.57032 −0.0652603
\(580\) 2.20835 0.165804i 0.0916969 0.00688465i
\(581\) 15.3925 0.638590
\(582\) 44.5987i 1.84867i
\(583\) 59.1645i 2.45035i
\(584\) 7.07022 0.292568
\(585\) −2.01792 26.8768i −0.0834308 1.11122i
\(586\) −21.7657 −0.899131
\(587\) 9.46700i 0.390745i −0.980729 0.195372i \(-0.937408\pi\)
0.980729 0.195372i \(-0.0625916\pi\)
\(588\) 2.54179i 0.104822i
\(589\) −18.1795 −0.749075
\(590\) 1.69553 + 22.5828i 0.0698039 + 0.929721i
\(591\) −22.6326 −0.930981
\(592\) 1.96580i 0.0807939i
\(593\) 0.297927i 0.0122344i 0.999981 + 0.00611719i \(0.00194717\pi\)
−0.999981 + 0.00611719i \(0.998053\pi\)
\(594\) 6.70578 0.275141
\(595\) 2.22979 0.167414i 0.0914126 0.00686330i
\(596\) 22.3068 0.913722
\(597\) 6.98754i 0.285981i
\(598\) 28.7885i 1.17725i
\(599\) −30.4804 −1.24539 −0.622697 0.782463i \(-0.713963\pi\)
−0.622697 + 0.782463i \(0.713963\pi\)
\(600\) −12.5665 + 1.89769i −0.513024 + 0.0774730i
\(601\) −11.4524 −0.467154 −0.233577 0.972338i \(-0.575043\pi\)
−0.233577 + 0.972338i \(0.575043\pi\)
\(602\) 12.2804i 0.500512i
\(603\) 13.4141i 0.546264i
\(604\) 8.43690 0.343293
\(605\) −48.5933 + 3.64841i −1.97560 + 0.148329i
\(606\) −8.06299 −0.327537
\(607\) 16.7894i 0.681461i 0.940161 + 0.340730i \(0.110674\pi\)
−0.940161 + 0.340730i \(0.889326\pi\)
\(608\) 4.55477i 0.184720i
\(609\) −2.51735 −0.102008
\(610\) −0.159416 2.12327i −0.00645456 0.0859685i
\(611\) −29.5863 −1.19693
\(612\) 3.46070i 0.139891i
\(613\) 4.05568i 0.163808i 0.996640 + 0.0819038i \(0.0261000\pi\)
−0.996640 + 0.0819038i \(0.973900\pi\)
\(614\) 13.1008 0.528707
\(615\) −3.35551 44.6921i −0.135307 1.80216i
\(616\) 5.72650 0.230727
\(617\) 31.7150i 1.27680i −0.769706 0.638399i \(-0.779597\pi\)
0.769706 0.638399i \(-0.220403\pi\)
\(618\) 4.93231i 0.198407i
\(619\) 10.3777 0.417114 0.208557 0.978010i \(-0.433123\pi\)
0.208557 + 0.978010i \(0.433123\pi\)
\(620\) −8.89981 + 0.668202i −0.357425 + 0.0268356i
\(621\) −9.67899 −0.388405
\(622\) 4.20193i 0.168482i
\(623\) 14.4517i 0.578994i
\(624\) 8.85296 0.354402
\(625\) 23.8852 7.38226i 0.955408 0.295291i
\(626\) −11.6520 −0.465709
\(627\) 66.2972i 2.64766i
\(628\) 19.5520i 0.780212i
\(629\) 1.96580 0.0783816
\(630\) 7.71665 0.579370i 0.307439 0.0230826i
\(631\) 13.3731 0.532373 0.266187 0.963922i \(-0.414236\pi\)
0.266187 + 0.963922i \(0.414236\pi\)
\(632\) 13.5580i 0.539307i
\(633\) 23.7752i 0.944980i
\(634\) 3.45462 0.137201
\(635\) −0.656540 8.74449i −0.0260540 0.347014i
\(636\) −26.2611 −1.04132
\(637\) 3.48296i 0.138000i
\(638\) 5.67144i 0.224534i
\(639\) 21.5604 0.852915
\(640\) −0.167414 2.22979i −0.00661762 0.0881403i
\(641\) −44.6667 −1.76423 −0.882113 0.471037i \(-0.843880\pi\)
−0.882113 + 0.471037i \(0.843880\pi\)
\(642\) 5.21165i 0.205688i
\(643\) 3.96886i 0.156517i 0.996933 + 0.0782583i \(0.0249359\pi\)
−0.996933 + 0.0782583i \(0.975064\pi\)
\(644\) −8.26551 −0.325707
\(645\) 69.6012 5.22569i 2.74054 0.205761i
\(646\) 4.55477 0.179205
\(647\) 8.10463i 0.318626i 0.987228 + 0.159313i \(0.0509279\pi\)
−0.987228 + 0.159313i \(0.949072\pi\)
\(648\) 7.40565i 0.290921i
\(649\) −57.9967 −2.27657
\(650\) −17.2196 + 2.60037i −0.675407 + 0.101995i
\(651\) 10.1451 0.397618
\(652\) 15.2346i 0.596632i
\(653\) 14.6228i 0.572235i −0.958194 0.286118i \(-0.907635\pi\)
0.958194 0.286118i \(-0.0923648\pi\)
\(654\) 49.1727 1.92280
\(655\) 22.1829 1.66551i 0.866759 0.0650767i
\(656\) 7.88545 0.307875
\(657\) 24.4679i 0.954585i
\(658\) 8.49457i 0.331153i
\(659\) −10.9571 −0.426829 −0.213414 0.976962i \(-0.568458\pi\)
−0.213414 + 0.976962i \(0.568458\pi\)
\(660\) −2.43680 32.4559i −0.0948524 1.26334i
\(661\) 41.7506 1.62391 0.811955 0.583720i \(-0.198404\pi\)
0.811955 + 0.583720i \(0.198404\pi\)
\(662\) 12.4973i 0.485720i
\(663\) 8.85296i 0.343820i
\(664\) 15.3925 0.597346
\(665\) −0.762532 10.1562i −0.0295697 0.393840i
\(666\) 6.80305 0.263613
\(667\) 8.18604i 0.316965i
\(668\) 1.44115i 0.0557598i
\(669\) 2.40649 0.0930403
\(670\) −8.64294 + 0.648916i −0.333906 + 0.0250698i
\(671\) 5.45292 0.210508
\(672\) 2.54179i 0.0980517i
\(673\) 7.26123i 0.279900i −0.990159 0.139950i \(-0.955306\pi\)
0.990159 0.139950i \(-0.0446941\pi\)
\(674\) 8.93416 0.344131
\(675\) −0.874271 5.78941i −0.0336507 0.222834i
\(676\) −0.868981 −0.0334223
\(677\) 32.7711i 1.25950i 0.776799 + 0.629748i \(0.216842\pi\)
−0.776799 + 0.629748i \(0.783158\pi\)
\(678\) 16.0078i 0.614777i
\(679\) 17.5462 0.673360
\(680\) 2.22979 0.167414i 0.0855086 0.00642003i
\(681\) −31.3676 −1.20201
\(682\) 22.8563i 0.875211i
\(683\) 1.54929i 0.0592818i −0.999561 0.0296409i \(-0.990564\pi\)
0.999561 0.0296409i \(-0.00943637\pi\)
\(684\) 15.7627 0.602702
\(685\) 3.52714 + 46.9782i 0.134765 + 1.79494i
\(686\) −1.00000 −0.0381802
\(687\) 33.9252i 1.29433i
\(688\) 12.2804i 0.468186i
\(689\) −35.9850 −1.37092
\(690\) 3.51723 + 46.8462i 0.133899 + 1.78340i
\(691\) −31.3105 −1.19111 −0.595554 0.803315i \(-0.703068\pi\)
−0.595554 + 0.803315i \(0.703068\pi\)
\(692\) 0.0905351i 0.00344163i
\(693\) 19.8177i 0.752812i
\(694\) 19.0850 0.724457
\(695\) 3.21062 0.241055i 0.121786 0.00914375i
\(696\) −2.51735 −0.0954200
\(697\) 7.88545i 0.298683i
\(698\) 15.3497i 0.580996i
\(699\) −59.0277 −2.23263
\(700\) −0.746596 4.94395i −0.0282187 0.186864i
\(701\) −26.7200 −1.00920 −0.504601 0.863353i \(-0.668360\pi\)
−0.504601 + 0.863353i \(0.668360\pi\)
\(702\) 4.07858i 0.153936i
\(703\) 8.95377i 0.337698i
\(704\) 5.72650 0.215825
\(705\) −48.1444 + 3.61470i −1.81322 + 0.136138i
\(706\) −3.33185 −0.125396
\(707\) 3.17217i 0.119302i
\(708\) 25.7427i 0.967470i
\(709\) 18.5720 0.697486 0.348743 0.937218i \(-0.386609\pi\)
0.348743 + 0.937218i \(0.386609\pi\)
\(710\) −1.04300 13.8917i −0.0391430 0.521348i
\(711\) 46.9200 1.75964
\(712\) 14.4517i 0.541600i
\(713\) 32.9903i 1.23550i
\(714\) −2.54179 −0.0951241
\(715\) −3.33910 44.4736i −0.124875 1.66322i
\(716\) −6.72039 −0.251153
\(717\) 27.6198i 1.03148i
\(718\) 10.1746i 0.379713i
\(719\) −6.42124 −0.239472 −0.119736 0.992806i \(-0.538205\pi\)
−0.119736 + 0.992806i \(0.538205\pi\)
\(720\) 7.71665 0.579370i 0.287582 0.0215918i
\(721\) 1.94049 0.0722675
\(722\) 1.74594i 0.0649771i
\(723\) 24.4342i 0.908717i
\(724\) 20.3547 0.756476
\(725\) 4.89641 0.739418i 0.181848 0.0274613i
\(726\) 55.3926 2.05581
\(727\) 41.2275i 1.52904i 0.644598 + 0.764522i \(0.277025\pi\)
−0.644598 + 0.764522i \(0.722975\pi\)
\(728\) 3.48296i 0.129087i
\(729\) 34.5581 1.27993
\(730\) 15.7651 1.18365i 0.583493 0.0438090i
\(731\) −12.2804 −0.454207
\(732\) 2.42036i 0.0894590i
\(733\) 16.0832i 0.594048i −0.954870 0.297024i \(-0.904006\pi\)
0.954870 0.297024i \(-0.0959942\pi\)
\(734\) −11.2202 −0.414144
\(735\) 0.425531 + 5.66767i 0.0156960 + 0.209055i
\(736\) −8.26551 −0.304671
\(737\) 22.1966i 0.817621i
\(738\) 27.2892i 1.00453i
\(739\) −24.2742 −0.892941 −0.446470 0.894798i \(-0.647319\pi\)
−0.446470 + 0.894798i \(0.647319\pi\)
\(740\) −0.329102 4.38333i −0.0120980 0.161134i
\(741\) 40.3232 1.48131
\(742\) 10.3317i 0.379289i
\(743\) 13.4662i 0.494027i 0.969012 + 0.247013i \(0.0794492\pi\)
−0.969012 + 0.247013i \(0.920551\pi\)
\(744\) 10.1451 0.371937
\(745\) 49.7395 3.73447i 1.82232 0.136820i
\(746\) −19.7975 −0.724838
\(747\) 53.2690i 1.94901i
\(748\) 5.72650i 0.209381i
\(749\) −2.05039 −0.0749195
\(750\) −27.7029 + 6.33526i −1.01157 + 0.231331i
\(751\) 38.8084 1.41614 0.708069 0.706144i \(-0.249567\pi\)
0.708069 + 0.706144i \(0.249567\pi\)
\(752\) 8.49457i 0.309765i
\(753\) 34.8121i 1.26862i
\(754\) −3.44947 −0.125622
\(755\) 18.8125 1.41245i 0.684658 0.0514045i
\(756\) −1.17101 −0.0425892
\(757\) 35.9312i 1.30594i 0.757384 + 0.652970i \(0.226477\pi\)
−0.757384 + 0.652970i \(0.773523\pi\)
\(758\) 33.0938i 1.20202i
\(759\) −120.309 −4.36694
\(760\) −0.762532 10.1562i −0.0276599 0.368404i
\(761\) 44.4288 1.61054 0.805272 0.592906i \(-0.202020\pi\)
0.805272 + 0.592906i \(0.202020\pi\)
\(762\) 9.96804i 0.361104i
\(763\) 19.3457i 0.700360i
\(764\) 5.38668 0.194883
\(765\) 0.579370 + 7.71665i 0.0209472 + 0.278996i
\(766\) −17.2749 −0.624168
\(767\) 35.2747i 1.27369i
\(768\) 2.54179i 0.0917190i
\(769\) −0.248795 −0.00897177 −0.00448589 0.999990i \(-0.501428\pi\)
−0.00448589 + 0.999990i \(0.501428\pi\)
\(770\) 12.7689 0.958695i 0.460159 0.0345490i
\(771\) −48.9972 −1.76459
\(772\) 0.617801i 0.0222351i
\(773\) 13.7137i 0.493248i 0.969111 + 0.246624i \(0.0793212\pi\)
−0.969111 + 0.246624i \(0.920679\pi\)
\(774\) −42.4988 −1.52759
\(775\) −19.7328 + 2.97990i −0.708825 + 0.107041i
\(776\) 17.5462 0.629870
\(777\) 4.99666i 0.179254i
\(778\) 5.88067i 0.210832i
\(779\) 35.9164 1.28684
\(780\) 19.7403 1.48211i 0.706815 0.0530680i
\(781\) 35.6764 1.27660
\(782\) 8.26551i 0.295574i
\(783\) 1.15975i 0.0414461i
\(784\) −1.00000 −0.0357143
\(785\) 3.27328 + 43.5970i 0.116829 + 1.55604i
\(786\) −25.2868 −0.901951
\(787\) 39.3773i 1.40365i −0.712350 0.701824i \(-0.752369\pi\)
0.712350 0.701824i \(-0.247631\pi\)
\(788\) 8.90420i 0.317199i
\(789\) 39.2302 1.39663
\(790\) −2.26979 30.2314i −0.0807555 1.07559i
\(791\) 6.29785 0.223926
\(792\) 19.8177i 0.704191i
\(793\) 3.31657i 0.117775i
\(794\) 17.3518 0.615791
\(795\) −58.5567 + 4.39647i −2.07679 + 0.155927i
\(796\) 2.74906 0.0974380
\(797\) 28.4245i 1.00685i 0.864039 + 0.503424i \(0.167927\pi\)
−0.864039 + 0.503424i \(0.832073\pi\)
\(798\) 11.5773i 0.409831i
\(799\) 8.49457 0.300516
\(800\) −0.746596 4.94395i −0.0263962 0.174795i
\(801\) 50.0130 1.76712
\(802\) 19.9909i 0.705904i
\(803\) 40.4876i 1.42878i
\(804\) 9.85228 0.347463
\(805\) −18.4304 + 1.38376i −0.649585 + 0.0487712i
\(806\) 13.9016 0.489663
\(807\) 47.5430i 1.67359i
\(808\) 3.17217i 0.111597i
\(809\) 36.4046 1.27992 0.639958 0.768410i \(-0.278952\pi\)
0.639958 + 0.768410i \(0.278952\pi\)
\(810\) −1.23981 16.5131i −0.0435624 0.580209i
\(811\) 29.5590 1.03796 0.518978 0.854787i \(-0.326312\pi\)
0.518978 + 0.854787i \(0.326312\pi\)
\(812\) 0.990385i 0.0347557i
\(813\) 70.2150i 2.46255i
\(814\) 11.2572 0.394563
\(815\) −2.55048 33.9700i −0.0893395 1.18992i
\(816\) −2.54179 −0.0889805
\(817\) 55.9344i 1.95690i
\(818\) 35.3383i 1.23557i
\(819\) −12.0535 −0.421183
\(820\) 17.5829 1.32013i 0.614022 0.0461011i
\(821\) −7.70862 −0.269033 −0.134516 0.990911i \(-0.542948\pi\)
−0.134516 + 0.990911i \(0.542948\pi\)
\(822\) 53.5515i 1.86782i
\(823\) 28.4869i 0.992990i −0.868040 0.496495i \(-0.834620\pi\)
0.868040 0.496495i \(-0.165380\pi\)
\(824\) 1.94049 0.0676000
\(825\) −10.8671 71.9619i −0.378345 2.50539i
\(826\) 10.1278 0.352390
\(827\) 34.5262i 1.20060i 0.799777 + 0.600298i \(0.204951\pi\)
−0.799777 + 0.600298i \(0.795049\pi\)
\(828\) 28.6045i 0.994074i
\(829\) 19.5009 0.677293 0.338647 0.940914i \(-0.390031\pi\)
0.338647 + 0.940914i \(0.390031\pi\)
\(830\) 34.3222 2.57693i 1.19134 0.0894464i
\(831\) 5.47281 0.189850
\(832\) 3.48296i 0.120750i
\(833\) 1.00000i 0.0346479i
\(834\) −3.65986 −0.126731
\(835\) −0.241269 3.21347i −0.00834945 0.111207i
\(836\) 26.0829 0.902095
\(837\) 4.67387i 0.161553i
\(838\) 27.0860i 0.935670i
\(839\) 33.4690 1.15548 0.577738 0.816222i \(-0.303935\pi\)
0.577738 + 0.816222i \(0.303935\pi\)
\(840\) 0.425531 + 5.66767i 0.0146822 + 0.195553i
\(841\) −28.0191 −0.966177
\(842\) 12.6808i 0.437010i
\(843\) 9.84665i 0.339137i
\(844\) 9.35373 0.321969
\(845\) −1.93765 + 0.145479i −0.0666570 + 0.00500464i
\(846\) 29.3972 1.01070
\(847\) 21.7928i 0.748808i
\(848\) 10.3317i 0.354793i
\(849\) 13.9464 0.478641
\(850\) 4.94395 0.746596i 0.169576 0.0256080i
\(851\) −16.2484 −0.556986
\(852\) 15.8355i 0.542516i
\(853\) 13.7146i 0.469580i −0.972046 0.234790i \(-0.924560\pi\)
0.972046 0.234790i \(-0.0754402\pi\)
\(854\) −0.952226 −0.0325845
\(855\) 35.1476 2.63890i 1.20202 0.0902484i
\(856\) −2.05039 −0.0700807
\(857\) 42.1511i 1.43986i −0.694049 0.719928i \(-0.744175\pi\)
0.694049 0.719928i \(-0.255825\pi\)
\(858\) 50.6964i 1.73075i
\(859\) −45.9832 −1.56893 −0.784463 0.620176i \(-0.787061\pi\)
−0.784463 + 0.620176i \(0.787061\pi\)
\(860\) 2.05591 + 27.3827i 0.0701059 + 0.933743i
\(861\) −20.0432 −0.683069
\(862\) 2.22147i 0.0756637i
\(863\) 21.0234i 0.715644i 0.933790 + 0.357822i \(0.116481\pi\)
−0.933790 + 0.357822i \(0.883519\pi\)
\(864\) −1.17101 −0.0398385
\(865\) 0.0151568 + 0.201874i 0.000515348 + 0.00686394i
\(866\) −29.8916 −1.01576
\(867\) 2.54179i 0.0863238i
\(868\) 3.99132i 0.135474i
\(869\) 77.6396 2.63374
\(870\) −5.61317 + 0.421440i −0.190304 + 0.0142882i
\(871\) 13.5004 0.457443
\(872\) 19.3457i 0.655127i
\(873\) 60.7220i 2.05513i
\(874\) −37.6475 −1.27345
\(875\) −2.49244 10.8990i −0.0842598 0.368453i
\(876\) −17.9710 −0.607185
\(877\) 3.93131i 0.132751i 0.997795 + 0.0663754i \(0.0211435\pi\)
−0.997795 + 0.0663754i \(0.978857\pi\)
\(878\) 14.5552i 0.491215i
\(879\) 55.3238 1.86602
\(880\) 12.7689 0.958695i 0.430439 0.0323176i
\(881\) 5.41729 0.182513 0.0912566 0.995827i \(-0.470912\pi\)
0.0912566 + 0.995827i \(0.470912\pi\)
\(882\) 3.46070i 0.116528i
\(883\) 33.5752i 1.12990i 0.825127 + 0.564948i \(0.191104\pi\)
−0.825127 + 0.564948i \(0.808896\pi\)
\(884\) −3.48296 −0.117145
\(885\) −4.30969 57.4009i −0.144868 1.92951i
\(886\) −6.99922 −0.235143
\(887\) 2.92415i 0.0981834i 0.998794 + 0.0490917i \(0.0156327\pi\)
−0.998794 + 0.0490917i \(0.984367\pi\)
\(888\) 4.99666i 0.167677i
\(889\) −3.92166 −0.131528
\(890\) −2.41941 32.2242i −0.0810989 1.08016i
\(891\) 42.4084 1.42073
\(892\) 0.946770i 0.0317002i
\(893\) 38.6908i 1.29474i
\(894\) −56.6992 −1.89631
\(895\) −14.9851 + 1.12509i −0.500896 + 0.0376075i
\(896\) −1.00000 −0.0334077
\(897\) 73.1742i 2.44322i
\(898\) 4.29546i 0.143341i
\(899\) −3.95294 −0.131838
\(900\) 17.1095 2.58375i 0.570317 0.0861249i
\(901\) 10.3317 0.344199
\(902\) 45.1560i 1.50353i
\(903\) 31.2142i 1.03874i
\(904\) 6.29785 0.209464
\(905\) 45.3867 3.40766i 1.50871 0.113274i
\(906\) −21.4448 −0.712457
\(907\) 27.5005i 0.913138i −0.889688 0.456569i \(-0.849078\pi\)
0.889688 0.456569i \(-0.150922\pi\)
\(908\) 12.3408i 0.409543i
\(909\) 10.9779 0.364115
\(910\) 0.583096 + 7.76628i 0.0193294 + 0.257450i
\(911\) −5.75095 −0.190537 −0.0952687 0.995452i \(-0.530371\pi\)
−0.0952687 + 0.995452i \(0.530371\pi\)
\(912\) 11.5773i 0.383362i
\(913\) 88.1453i 2.91718i
\(914\) 0.936921 0.0309906
\(915\) 0.405202 + 5.39690i 0.0133956 + 0.178416i
\(916\) −13.3470 −0.440996
\(917\) 9.94843i 0.328526i
\(918\) 1.17101i 0.0386491i
\(919\) 6.18604 0.204059 0.102029 0.994781i \(-0.467466\pi\)
0.102029 + 0.994781i \(0.467466\pi\)
\(920\) −18.4304 + 1.38376i −0.607631 + 0.0456213i
\(921\) −33.2996 −1.09726
\(922\) 24.6279i 0.811077i
\(923\) 21.6991i 0.714233i
\(924\) −14.5556 −0.478843
\(925\) −1.46766 9.71881i −0.0482564 0.319553i
\(926\) −29.9356 −0.983744
\(927\) 6.71544i 0.220564i
\(928\) 0.990385i 0.0325110i
\(929\) −44.0088 −1.44388 −0.721941 0.691955i \(-0.756750\pi\)
−0.721941 + 0.691955i \(0.756750\pi\)
\(930\) 22.6214 1.69843i 0.741786 0.0556937i
\(931\) −4.55477 −0.149277
\(932\) 23.2229i 0.760691i
\(933\) 10.6804i 0.349662i
\(934\) 9.31665 0.304850
\(935\) 0.958695 + 12.7689i 0.0313527 + 0.417588i
\(936\) −12.0535 −0.393981
\(937\) 27.3208i 0.892533i 0.894900 + 0.446266i \(0.147247\pi\)
−0.894900 + 0.446266i \(0.852753\pi\)
\(938\) 3.87612i 0.126560i
\(939\) 29.6170 0.966515
\(940\) −1.42211 18.9411i −0.0463841 0.617791i
\(941\) 44.8806 1.46306 0.731532 0.681807i \(-0.238806\pi\)
0.731532 + 0.681807i \(0.238806\pi\)
\(942\) 49.6972i 1.61922i
\(943\) 65.1773i 2.12246i
\(944\) 10.1278 0.329631
\(945\) −2.61111 + 0.196043i −0.0849393 + 0.00637729i
\(946\) −70.3236 −2.28642
\(947\) 32.0215i 1.04056i 0.853996 + 0.520279i \(0.174172\pi\)
−0.853996 + 0.520279i \(0.825828\pi\)
\(948\) 34.4615i 1.11926i
\(949\) −24.6253 −0.799371
\(950\) −3.40058 22.5185i −0.110329 0.730598i
\(951\) −8.78093 −0.284741
\(952\) 1.00000i 0.0324102i
\(953\) 6.66420i 0.215875i −0.994158 0.107937i \(-0.965575\pi\)
0.994158 0.107937i \(-0.0344246\pi\)
\(954\) 35.7550 1.15761
\(955\) 12.0112 0.901805i 0.388672 0.0291817i
\(956\) 10.8663 0.351440
\(957\) 14.4156i 0.465991i
\(958\) 12.2197i 0.394801i
\(959\) 21.0684 0.680334
\(960\) 0.425531 + 5.66767i 0.0137340 + 0.182923i
\(961\) −15.0694 −0.486109
\(962\) 6.84681i 0.220750i
\(963\) 7.09577i 0.228658i
\(964\) −9.61298 −0.309613
\(965\) −0.103428 1.37757i −0.00332948 0.0443455i
\(966\) 21.0092 0.675960
\(967\) 32.3370i 1.03989i 0.854200 + 0.519944i \(0.174047\pi\)
−0.854200 + 0.519944i \(0.825953\pi\)
\(968\) 21.7928i 0.700446i
\(969\) −11.5773 −0.371916
\(970\) 39.1243 2.93747i 1.25621 0.0943165i
\(971\) 26.8528 0.861747 0.430873 0.902412i \(-0.358206\pi\)
0.430873 + 0.902412i \(0.358206\pi\)
\(972\) 22.3366i 0.716448i
\(973\) 1.43988i 0.0461603i
\(974\) 2.11355 0.0677224
\(975\) 43.7686 6.60959i 1.40172 0.211676i
\(976\) −0.952226 −0.0304800
\(977\) 14.3089i 0.457783i −0.973452 0.228892i \(-0.926490\pi\)
0.973452 0.228892i \(-0.0735102\pi\)
\(978\) 38.7231i 1.23823i
\(979\) 82.7575 2.64494
\(980\) −2.22979 + 0.167414i −0.0712281 + 0.00534784i
\(981\) −66.9496 −2.13754
\(982\) 6.35587i 0.202824i
\(983\) 10.9246i 0.348442i −0.984707 0.174221i \(-0.944259\pi\)
0.984707 0.174221i \(-0.0557407\pi\)
\(984\) −20.0432 −0.638953
\(985\) −1.49069 19.8545i −0.0474972 0.632617i
\(986\) 0.990385 0.0315403
\(987\) 21.5914i 0.687262i
\(988\) 15.8641i 0.504704i
\(989\) 101.504 3.22763
\(990\) 3.31776 + 44.1893i 0.105445 + 1.40443i
\(991\) 46.6895 1.48314 0.741570 0.670876i \(-0.234082\pi\)
0.741570 + 0.670876i \(0.234082\pi\)
\(992\) 3.99132i 0.126724i
\(993\) 31.7654i 1.00804i
\(994\) −6.23006 −0.197605
\(995\) 6.12984 0.460231i 0.194329 0.0145903i
\(996\) −39.1246 −1.23971
\(997\) 7.52339i 0.238268i 0.992878 + 0.119134i \(0.0380119\pi\)
−0.992878 + 0.119134i \(0.961988\pi\)
\(998\) 42.4519i 1.34379i
\(999\) −2.30197 −0.0728312
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1190.2.e.g.239.7 14
5.2 odd 4 5950.2.a.cc.1.7 7
5.3 odd 4 5950.2.a.cb.1.1 7
5.4 even 2 inner 1190.2.e.g.239.8 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.e.g.239.7 14 1.1 even 1 trivial
1190.2.e.g.239.8 yes 14 5.4 even 2 inner
5950.2.a.cb.1.1 7 5.3 odd 4
5950.2.a.cc.1.7 7 5.2 odd 4