Properties

Label 591.2.a.e.1.9
Level $591$
Weight $2$
Character 591.1
Self dual yes
Analytic conductor $4.719$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [591,2,Mod(1,591)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("591.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(591, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 591 = 3 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 591.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.71915875946\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 24 x^{12} + 220 x^{10} - 958 x^{8} - 4 x^{7} + 2002 x^{6} + 28 x^{5} - 1792 x^{4} - 15 x^{3} + \cdots - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.507888\) of defining polynomial
Character \(\chi\) \(=\) 591.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.507888 q^{2} -1.00000 q^{3} -1.74205 q^{4} -3.87524 q^{5} -0.507888 q^{6} +1.74487 q^{7} -1.90054 q^{8} +1.00000 q^{9} -1.96819 q^{10} -4.22106 q^{11} +1.74205 q^{12} +5.10306 q^{13} +0.886200 q^{14} +3.87524 q^{15} +2.51883 q^{16} +7.21103 q^{17} +0.507888 q^{18} +3.54054 q^{19} +6.75087 q^{20} -1.74487 q^{21} -2.14383 q^{22} -0.786215 q^{23} +1.90054 q^{24} +10.0175 q^{25} +2.59179 q^{26} -1.00000 q^{27} -3.03965 q^{28} -8.18532 q^{29} +1.96819 q^{30} -5.37761 q^{31} +5.08037 q^{32} +4.22106 q^{33} +3.66240 q^{34} -6.76180 q^{35} -1.74205 q^{36} +3.37387 q^{37} +1.79820 q^{38} -5.10306 q^{39} +7.36507 q^{40} +4.87320 q^{41} -0.886200 q^{42} -2.35251 q^{43} +7.35329 q^{44} -3.87524 q^{45} -0.399310 q^{46} +5.49738 q^{47} -2.51883 q^{48} -3.95543 q^{49} +5.08778 q^{50} -7.21103 q^{51} -8.88978 q^{52} +11.8690 q^{53} -0.507888 q^{54} +16.3576 q^{55} -3.31620 q^{56} -3.54054 q^{57} -4.15723 q^{58} +11.9278 q^{59} -6.75087 q^{60} -12.2493 q^{61} -2.73123 q^{62} +1.74487 q^{63} -2.45741 q^{64} -19.7756 q^{65} +2.14383 q^{66} +13.4293 q^{67} -12.5620 q^{68} +0.786215 q^{69} -3.43424 q^{70} +2.80305 q^{71} -1.90054 q^{72} +10.5857 q^{73} +1.71355 q^{74} -10.0175 q^{75} -6.16780 q^{76} -7.36520 q^{77} -2.59179 q^{78} +5.74443 q^{79} -9.76110 q^{80} +1.00000 q^{81} +2.47504 q^{82} -14.8889 q^{83} +3.03965 q^{84} -27.9445 q^{85} -1.19481 q^{86} +8.18532 q^{87} +8.02230 q^{88} -1.54824 q^{89} -1.96819 q^{90} +8.90418 q^{91} +1.36963 q^{92} +5.37761 q^{93} +2.79205 q^{94} -13.7205 q^{95} -5.08037 q^{96} -2.98646 q^{97} -2.00892 q^{98} -4.22106 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{3} + 20 q^{4} + 7 q^{7} + 14 q^{9} + 8 q^{10} + 4 q^{11} - 20 q^{12} + 8 q^{13} + 6 q^{14} + 40 q^{16} + 4 q^{17} + 15 q^{19} - 6 q^{20} - 7 q^{21} + 12 q^{22} - 3 q^{23} + 40 q^{25} + 10 q^{26}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.507888 0.359131 0.179566 0.983746i \(-0.442531\pi\)
0.179566 + 0.983746i \(0.442531\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.74205 −0.871025
\(5\) −3.87524 −1.73306 −0.866531 0.499123i \(-0.833656\pi\)
−0.866531 + 0.499123i \(0.833656\pi\)
\(6\) −0.507888 −0.207345
\(7\) 1.74487 0.659499 0.329750 0.944068i \(-0.393036\pi\)
0.329750 + 0.944068i \(0.393036\pi\)
\(8\) −1.90054 −0.671944
\(9\) 1.00000 0.333333
\(10\) −1.96819 −0.622397
\(11\) −4.22106 −1.27270 −0.636348 0.771402i \(-0.719556\pi\)
−0.636348 + 0.771402i \(0.719556\pi\)
\(12\) 1.74205 0.502886
\(13\) 5.10306 1.41533 0.707667 0.706546i \(-0.249748\pi\)
0.707667 + 0.706546i \(0.249748\pi\)
\(14\) 0.886200 0.236847
\(15\) 3.87524 1.00058
\(16\) 2.51883 0.629709
\(17\) 7.21103 1.74893 0.874466 0.485088i \(-0.161212\pi\)
0.874466 + 0.485088i \(0.161212\pi\)
\(18\) 0.507888 0.119710
\(19\) 3.54054 0.812256 0.406128 0.913816i \(-0.366879\pi\)
0.406128 + 0.913816i \(0.366879\pi\)
\(20\) 6.75087 1.50954
\(21\) −1.74487 −0.380762
\(22\) −2.14383 −0.457065
\(23\) −0.786215 −0.163937 −0.0819686 0.996635i \(-0.526121\pi\)
−0.0819686 + 0.996635i \(0.526121\pi\)
\(24\) 1.90054 0.387947
\(25\) 10.0175 2.00350
\(26\) 2.59179 0.508291
\(27\) −1.00000 −0.192450
\(28\) −3.03965 −0.574440
\(29\) −8.18532 −1.51998 −0.759988 0.649937i \(-0.774795\pi\)
−0.759988 + 0.649937i \(0.774795\pi\)
\(30\) 1.96819 0.359341
\(31\) −5.37761 −0.965848 −0.482924 0.875662i \(-0.660425\pi\)
−0.482924 + 0.875662i \(0.660425\pi\)
\(32\) 5.08037 0.898092
\(33\) 4.22106 0.734791
\(34\) 3.66240 0.628096
\(35\) −6.76180 −1.14295
\(36\) −1.74205 −0.290342
\(37\) 3.37387 0.554661 0.277331 0.960775i \(-0.410550\pi\)
0.277331 + 0.960775i \(0.410550\pi\)
\(38\) 1.79820 0.291707
\(39\) −5.10306 −0.817144
\(40\) 7.36507 1.16452
\(41\) 4.87320 0.761065 0.380533 0.924767i \(-0.375741\pi\)
0.380533 + 0.924767i \(0.375741\pi\)
\(42\) −0.886200 −0.136744
\(43\) −2.35251 −0.358755 −0.179377 0.983780i \(-0.557408\pi\)
−0.179377 + 0.983780i \(0.557408\pi\)
\(44\) 7.35329 1.10855
\(45\) −3.87524 −0.577687
\(46\) −0.399310 −0.0588750
\(47\) 5.49738 0.801875 0.400937 0.916105i \(-0.368684\pi\)
0.400937 + 0.916105i \(0.368684\pi\)
\(48\) −2.51883 −0.363562
\(49\) −3.95543 −0.565061
\(50\) 5.08778 0.719521
\(51\) −7.21103 −1.00975
\(52\) −8.88978 −1.23279
\(53\) 11.8690 1.63033 0.815164 0.579230i \(-0.196647\pi\)
0.815164 + 0.579230i \(0.196647\pi\)
\(54\) −0.507888 −0.0691149
\(55\) 16.3576 2.20566
\(56\) −3.31620 −0.443146
\(57\) −3.54054 −0.468956
\(58\) −4.15723 −0.545871
\(59\) 11.9278 1.55287 0.776433 0.630200i \(-0.217027\pi\)
0.776433 + 0.630200i \(0.217027\pi\)
\(60\) −6.75087 −0.871533
\(61\) −12.2493 −1.56836 −0.784180 0.620534i \(-0.786916\pi\)
−0.784180 + 0.620534i \(0.786916\pi\)
\(62\) −2.73123 −0.346866
\(63\) 1.74487 0.219833
\(64\) −2.45741 −0.307176
\(65\) −19.7756 −2.45286
\(66\) 2.14383 0.263887
\(67\) 13.4293 1.64065 0.820326 0.571896i \(-0.193792\pi\)
0.820326 + 0.571896i \(0.193792\pi\)
\(68\) −12.5620 −1.52336
\(69\) 0.786215 0.0946492
\(70\) −3.43424 −0.410470
\(71\) 2.80305 0.332661 0.166330 0.986070i \(-0.446808\pi\)
0.166330 + 0.986070i \(0.446808\pi\)
\(72\) −1.90054 −0.223981
\(73\) 10.5857 1.23896 0.619482 0.785011i \(-0.287343\pi\)
0.619482 + 0.785011i \(0.287343\pi\)
\(74\) 1.71355 0.199196
\(75\) −10.0175 −1.15672
\(76\) −6.16780 −0.707495
\(77\) −7.36520 −0.839342
\(78\) −2.59179 −0.293462
\(79\) 5.74443 0.646299 0.323149 0.946348i \(-0.395258\pi\)
0.323149 + 0.946348i \(0.395258\pi\)
\(80\) −9.76110 −1.09132
\(81\) 1.00000 0.111111
\(82\) 2.47504 0.273322
\(83\) −14.8889 −1.63427 −0.817134 0.576448i \(-0.804438\pi\)
−0.817134 + 0.576448i \(0.804438\pi\)
\(84\) 3.03965 0.331653
\(85\) −27.9445 −3.03101
\(86\) −1.19481 −0.128840
\(87\) 8.18532 0.877558
\(88\) 8.02230 0.855180
\(89\) −1.54824 −0.164113 −0.0820563 0.996628i \(-0.526149\pi\)
−0.0820563 + 0.996628i \(0.526149\pi\)
\(90\) −1.96819 −0.207466
\(91\) 8.90418 0.933412
\(92\) 1.36963 0.142793
\(93\) 5.37761 0.557632
\(94\) 2.79205 0.287978
\(95\) −13.7205 −1.40769
\(96\) −5.08037 −0.518514
\(97\) −2.98646 −0.303229 −0.151615 0.988440i \(-0.548447\pi\)
−0.151615 + 0.988440i \(0.548447\pi\)
\(98\) −2.00892 −0.202931
\(99\) −4.22106 −0.424232
\(100\) −17.4510 −1.74510
\(101\) 6.19360 0.616287 0.308143 0.951340i \(-0.400292\pi\)
0.308143 + 0.951340i \(0.400292\pi\)
\(102\) −3.66240 −0.362631
\(103\) 5.59688 0.551477 0.275739 0.961233i \(-0.411078\pi\)
0.275739 + 0.961233i \(0.411078\pi\)
\(104\) −9.69859 −0.951025
\(105\) 6.76180 0.659884
\(106\) 6.02811 0.585502
\(107\) 1.30505 0.126164 0.0630821 0.998008i \(-0.479907\pi\)
0.0630821 + 0.998008i \(0.479907\pi\)
\(108\) 1.74205 0.167629
\(109\) 9.71705 0.930725 0.465362 0.885120i \(-0.345924\pi\)
0.465362 + 0.885120i \(0.345924\pi\)
\(110\) 8.30785 0.792122
\(111\) −3.37387 −0.320234
\(112\) 4.39504 0.415292
\(113\) 14.4373 1.35814 0.679072 0.734072i \(-0.262383\pi\)
0.679072 + 0.734072i \(0.262383\pi\)
\(114\) −1.79820 −0.168417
\(115\) 3.04678 0.284113
\(116\) 14.2592 1.32394
\(117\) 5.10306 0.471778
\(118\) 6.05799 0.557683
\(119\) 12.5823 1.15342
\(120\) −7.36507 −0.672336
\(121\) 6.81731 0.619755
\(122\) −6.22127 −0.563247
\(123\) −4.87320 −0.439401
\(124\) 9.36806 0.841277
\(125\) −19.4441 −1.73913
\(126\) 0.886200 0.0789489
\(127\) 3.65387 0.324229 0.162114 0.986772i \(-0.448169\pi\)
0.162114 + 0.986772i \(0.448169\pi\)
\(128\) −11.4088 −1.00841
\(129\) 2.35251 0.207127
\(130\) −10.0438 −0.880900
\(131\) −11.7673 −1.02811 −0.514056 0.857756i \(-0.671858\pi\)
−0.514056 + 0.857756i \(0.671858\pi\)
\(132\) −7.35329 −0.640021
\(133\) 6.17779 0.535682
\(134\) 6.82059 0.589210
\(135\) 3.87524 0.333528
\(136\) −13.7049 −1.17518
\(137\) 15.4294 1.31822 0.659111 0.752045i \(-0.270933\pi\)
0.659111 + 0.752045i \(0.270933\pi\)
\(138\) 0.399310 0.0339915
\(139\) 4.37359 0.370963 0.185481 0.982648i \(-0.440616\pi\)
0.185481 + 0.982648i \(0.440616\pi\)
\(140\) 11.7794 0.995540
\(141\) −5.49738 −0.462963
\(142\) 1.42364 0.119469
\(143\) −21.5403 −1.80129
\(144\) 2.51883 0.209903
\(145\) 31.7201 2.63421
\(146\) 5.37636 0.444951
\(147\) 3.95543 0.326238
\(148\) −5.87745 −0.483124
\(149\) −20.1278 −1.64893 −0.824467 0.565910i \(-0.808525\pi\)
−0.824467 + 0.565910i \(0.808525\pi\)
\(150\) −5.08778 −0.415416
\(151\) −15.1523 −1.23307 −0.616536 0.787326i \(-0.711465\pi\)
−0.616536 + 0.787326i \(0.711465\pi\)
\(152\) −6.72896 −0.545790
\(153\) 7.21103 0.582977
\(154\) −3.74070 −0.301434
\(155\) 20.8396 1.67387
\(156\) 8.88978 0.711752
\(157\) 0.652471 0.0520728 0.0260364 0.999661i \(-0.491711\pi\)
0.0260364 + 0.999661i \(0.491711\pi\)
\(158\) 2.91753 0.232106
\(159\) −11.8690 −0.941271
\(160\) −19.6877 −1.55645
\(161\) −1.37184 −0.108116
\(162\) 0.507888 0.0399035
\(163\) −14.4535 −1.13208 −0.566041 0.824377i \(-0.691526\pi\)
−0.566041 + 0.824377i \(0.691526\pi\)
\(164\) −8.48935 −0.662907
\(165\) −16.3576 −1.27344
\(166\) −7.56189 −0.586917
\(167\) −10.4070 −0.805320 −0.402660 0.915350i \(-0.631914\pi\)
−0.402660 + 0.915350i \(0.631914\pi\)
\(168\) 3.31620 0.255851
\(169\) 13.0412 1.00317
\(170\) −14.1927 −1.08853
\(171\) 3.54054 0.270752
\(172\) 4.09819 0.312484
\(173\) 13.4897 1.02560 0.512801 0.858507i \(-0.328608\pi\)
0.512801 + 0.858507i \(0.328608\pi\)
\(174\) 4.15723 0.315159
\(175\) 17.4793 1.32131
\(176\) −10.6321 −0.801428
\(177\) −11.9278 −0.896548
\(178\) −0.786331 −0.0589380
\(179\) 21.4402 1.60252 0.801259 0.598317i \(-0.204164\pi\)
0.801259 + 0.598317i \(0.204164\pi\)
\(180\) 6.75087 0.503180
\(181\) 0.730083 0.0542667 0.0271333 0.999632i \(-0.491362\pi\)
0.0271333 + 0.999632i \(0.491362\pi\)
\(182\) 4.52233 0.335217
\(183\) 12.2493 0.905493
\(184\) 1.49424 0.110157
\(185\) −13.0746 −0.961262
\(186\) 2.73123 0.200263
\(187\) −30.4381 −2.22586
\(188\) −9.57670 −0.698453
\(189\) −1.74487 −0.126921
\(190\) −6.96847 −0.505546
\(191\) −6.92113 −0.500796 −0.250398 0.968143i \(-0.580561\pi\)
−0.250398 + 0.968143i \(0.580561\pi\)
\(192\) 2.45741 0.177348
\(193\) 21.2432 1.52912 0.764558 0.644555i \(-0.222957\pi\)
0.764558 + 0.644555i \(0.222957\pi\)
\(194\) −1.51679 −0.108899
\(195\) 19.7756 1.41616
\(196\) 6.89055 0.492182
\(197\) 1.00000 0.0712470
\(198\) −2.14383 −0.152355
\(199\) 10.5620 0.748718 0.374359 0.927284i \(-0.377863\pi\)
0.374359 + 0.927284i \(0.377863\pi\)
\(200\) −19.0387 −1.34624
\(201\) −13.4293 −0.947231
\(202\) 3.14566 0.221328
\(203\) −14.2823 −1.00242
\(204\) 12.5620 0.879514
\(205\) −18.8848 −1.31897
\(206\) 2.84259 0.198053
\(207\) −0.786215 −0.0546457
\(208\) 12.8538 0.891248
\(209\) −14.9448 −1.03376
\(210\) 3.43424 0.236985
\(211\) −8.14376 −0.560639 −0.280320 0.959907i \(-0.590440\pi\)
−0.280320 + 0.959907i \(0.590440\pi\)
\(212\) −20.6763 −1.42006
\(213\) −2.80305 −0.192062
\(214\) 0.662821 0.0453095
\(215\) 9.11656 0.621744
\(216\) 1.90054 0.129316
\(217\) −9.38324 −0.636976
\(218\) 4.93518 0.334252
\(219\) −10.5857 −0.715316
\(220\) −28.4958 −1.92119
\(221\) 36.7983 2.47532
\(222\) −1.71355 −0.115006
\(223\) 25.0228 1.67565 0.837827 0.545936i \(-0.183826\pi\)
0.837827 + 0.545936i \(0.183826\pi\)
\(224\) 8.86460 0.592291
\(225\) 10.0175 0.667835
\(226\) 7.33252 0.487752
\(227\) −13.8495 −0.919226 −0.459613 0.888119i \(-0.652012\pi\)
−0.459613 + 0.888119i \(0.652012\pi\)
\(228\) 6.16780 0.408473
\(229\) 17.3127 1.14405 0.572027 0.820235i \(-0.306157\pi\)
0.572027 + 0.820235i \(0.306157\pi\)
\(230\) 1.54742 0.102034
\(231\) 7.36520 0.484594
\(232\) 15.5566 1.02134
\(233\) 15.1037 0.989476 0.494738 0.869042i \(-0.335264\pi\)
0.494738 + 0.869042i \(0.335264\pi\)
\(234\) 2.59179 0.169430
\(235\) −21.3037 −1.38970
\(236\) −20.7788 −1.35258
\(237\) −5.74443 −0.373141
\(238\) 6.39041 0.414229
\(239\) 9.33833 0.604047 0.302023 0.953301i \(-0.402338\pi\)
0.302023 + 0.953301i \(0.402338\pi\)
\(240\) 9.76110 0.630076
\(241\) −12.6052 −0.811970 −0.405985 0.913880i \(-0.633072\pi\)
−0.405985 + 0.913880i \(0.633072\pi\)
\(242\) 3.46243 0.222574
\(243\) −1.00000 −0.0641500
\(244\) 21.3388 1.36608
\(245\) 15.3282 0.979286
\(246\) −2.47504 −0.157803
\(247\) 18.0676 1.14961
\(248\) 10.2204 0.648995
\(249\) 14.8889 0.943545
\(250\) −9.87544 −0.624578
\(251\) 6.14687 0.387987 0.193994 0.981003i \(-0.437856\pi\)
0.193994 + 0.981003i \(0.437856\pi\)
\(252\) −3.03965 −0.191480
\(253\) 3.31866 0.208642
\(254\) 1.85576 0.116441
\(255\) 27.9445 1.74995
\(256\) −0.879604 −0.0549752
\(257\) −14.7480 −0.919957 −0.459978 0.887930i \(-0.652143\pi\)
−0.459978 + 0.887930i \(0.652143\pi\)
\(258\) 1.19481 0.0743858
\(259\) 5.88697 0.365799
\(260\) 34.4501 2.13650
\(261\) −8.18532 −0.506659
\(262\) −5.97647 −0.369227
\(263\) 6.33007 0.390329 0.195165 0.980771i \(-0.437476\pi\)
0.195165 + 0.980771i \(0.437476\pi\)
\(264\) −8.02230 −0.493738
\(265\) −45.9952 −2.82546
\(266\) 3.13763 0.192380
\(267\) 1.54824 0.0947505
\(268\) −23.3945 −1.42905
\(269\) −0.463551 −0.0282632 −0.0141316 0.999900i \(-0.504498\pi\)
−0.0141316 + 0.999900i \(0.504498\pi\)
\(270\) 1.96819 0.119780
\(271\) −6.49925 −0.394801 −0.197401 0.980323i \(-0.563250\pi\)
−0.197401 + 0.980323i \(0.563250\pi\)
\(272\) 18.1634 1.10132
\(273\) −8.90418 −0.538906
\(274\) 7.83641 0.473415
\(275\) −42.2845 −2.54985
\(276\) −1.36963 −0.0824418
\(277\) −22.1114 −1.32855 −0.664273 0.747490i \(-0.731259\pi\)
−0.664273 + 0.747490i \(0.731259\pi\)
\(278\) 2.22129 0.133224
\(279\) −5.37761 −0.321949
\(280\) 12.8511 0.768000
\(281\) 8.76446 0.522844 0.261422 0.965225i \(-0.415809\pi\)
0.261422 + 0.965225i \(0.415809\pi\)
\(282\) −2.79205 −0.166264
\(283\) −10.8794 −0.646716 −0.323358 0.946277i \(-0.604812\pi\)
−0.323358 + 0.946277i \(0.604812\pi\)
\(284\) −4.88305 −0.289756
\(285\) 13.7205 0.812731
\(286\) −10.9401 −0.646900
\(287\) 8.50310 0.501922
\(288\) 5.08037 0.299364
\(289\) 34.9989 2.05876
\(290\) 16.1103 0.946028
\(291\) 2.98646 0.175069
\(292\) −18.4408 −1.07917
\(293\) 18.5628 1.08445 0.542226 0.840233i \(-0.317582\pi\)
0.542226 + 0.840233i \(0.317582\pi\)
\(294\) 2.00892 0.117162
\(295\) −46.2231 −2.69121
\(296\) −6.41219 −0.372701
\(297\) 4.22106 0.244930
\(298\) −10.2227 −0.592184
\(299\) −4.01211 −0.232026
\(300\) 17.4510 1.00753
\(301\) −4.10483 −0.236598
\(302\) −7.69565 −0.442835
\(303\) −6.19360 −0.355813
\(304\) 8.91804 0.511485
\(305\) 47.4689 2.71806
\(306\) 3.66240 0.209365
\(307\) −28.2122 −1.61015 −0.805077 0.593170i \(-0.797876\pi\)
−0.805077 + 0.593170i \(0.797876\pi\)
\(308\) 12.8305 0.731088
\(309\) −5.59688 −0.318396
\(310\) 10.5842 0.601141
\(311\) −17.9758 −1.01932 −0.509658 0.860377i \(-0.670228\pi\)
−0.509658 + 0.860377i \(0.670228\pi\)
\(312\) 9.69859 0.549075
\(313\) −23.2208 −1.31252 −0.656258 0.754536i \(-0.727862\pi\)
−0.656258 + 0.754536i \(0.727862\pi\)
\(314\) 0.331382 0.0187010
\(315\) −6.76180 −0.380984
\(316\) −10.0071 −0.562942
\(317\) 15.1085 0.848580 0.424290 0.905526i \(-0.360524\pi\)
0.424290 + 0.905526i \(0.360524\pi\)
\(318\) −6.02811 −0.338040
\(319\) 34.5507 1.93447
\(320\) 9.52305 0.532355
\(321\) −1.30505 −0.0728409
\(322\) −0.696744 −0.0388280
\(323\) 25.5310 1.42058
\(324\) −1.74205 −0.0967805
\(325\) 51.1200 2.83563
\(326\) −7.34075 −0.406566
\(327\) −9.71705 −0.537354
\(328\) −9.26172 −0.511393
\(329\) 9.59221 0.528836
\(330\) −8.30785 −0.457332
\(331\) 21.6433 1.18963 0.594813 0.803864i \(-0.297226\pi\)
0.594813 + 0.803864i \(0.297226\pi\)
\(332\) 25.9372 1.42349
\(333\) 3.37387 0.184887
\(334\) −5.28561 −0.289216
\(335\) −52.0419 −2.84335
\(336\) −4.39504 −0.239769
\(337\) 10.2754 0.559736 0.279868 0.960038i \(-0.409709\pi\)
0.279868 + 0.960038i \(0.409709\pi\)
\(338\) 6.62349 0.360270
\(339\) −14.4373 −0.784125
\(340\) 48.6807 2.64008
\(341\) 22.6992 1.22923
\(342\) 1.79820 0.0972356
\(343\) −19.1158 −1.03216
\(344\) 4.47105 0.241063
\(345\) −3.04678 −0.164033
\(346\) 6.85126 0.368326
\(347\) −2.75521 −0.147908 −0.0739538 0.997262i \(-0.523562\pi\)
−0.0739538 + 0.997262i \(0.523562\pi\)
\(348\) −14.2592 −0.764375
\(349\) 7.94937 0.425520 0.212760 0.977105i \(-0.431755\pi\)
0.212760 + 0.977105i \(0.431755\pi\)
\(350\) 8.87752 0.474524
\(351\) −5.10306 −0.272381
\(352\) −21.4445 −1.14300
\(353\) 17.0858 0.909384 0.454692 0.890649i \(-0.349749\pi\)
0.454692 + 0.890649i \(0.349749\pi\)
\(354\) −6.05799 −0.321978
\(355\) −10.8625 −0.576522
\(356\) 2.69710 0.142946
\(357\) −12.5823 −0.665926
\(358\) 10.8892 0.575515
\(359\) −22.6716 −1.19656 −0.598280 0.801287i \(-0.704149\pi\)
−0.598280 + 0.801287i \(0.704149\pi\)
\(360\) 7.36507 0.388173
\(361\) −6.46455 −0.340240
\(362\) 0.370801 0.0194889
\(363\) −6.81731 −0.357816
\(364\) −15.5115 −0.813025
\(365\) −41.0222 −2.14720
\(366\) 6.22127 0.325191
\(367\) −1.17680 −0.0614287 −0.0307143 0.999528i \(-0.509778\pi\)
−0.0307143 + 0.999528i \(0.509778\pi\)
\(368\) −1.98035 −0.103233
\(369\) 4.87320 0.253688
\(370\) −6.64043 −0.345219
\(371\) 20.7098 1.07520
\(372\) −9.36806 −0.485712
\(373\) −26.0858 −1.35067 −0.675335 0.737511i \(-0.736001\pi\)
−0.675335 + 0.737511i \(0.736001\pi\)
\(374\) −15.4592 −0.799375
\(375\) 19.4441 1.00409
\(376\) −10.4480 −0.538815
\(377\) −41.7702 −2.15127
\(378\) −0.886200 −0.0455812
\(379\) −0.744035 −0.0382185 −0.0191093 0.999817i \(-0.506083\pi\)
−0.0191093 + 0.999817i \(0.506083\pi\)
\(380\) 23.9017 1.22613
\(381\) −3.65387 −0.187194
\(382\) −3.51516 −0.179851
\(383\) −33.4359 −1.70849 −0.854247 0.519867i \(-0.825982\pi\)
−0.854247 + 0.519867i \(0.825982\pi\)
\(384\) 11.4088 0.582205
\(385\) 28.5419 1.45463
\(386\) 10.7892 0.549153
\(387\) −2.35251 −0.119585
\(388\) 5.20256 0.264120
\(389\) 15.2125 0.771302 0.385651 0.922645i \(-0.373977\pi\)
0.385651 + 0.922645i \(0.373977\pi\)
\(390\) 10.0438 0.508588
\(391\) −5.66942 −0.286715
\(392\) 7.51746 0.379689
\(393\) 11.7673 0.593581
\(394\) 0.507888 0.0255870
\(395\) −22.2611 −1.12008
\(396\) 7.35329 0.369517
\(397\) 13.0861 0.656774 0.328387 0.944543i \(-0.393495\pi\)
0.328387 + 0.944543i \(0.393495\pi\)
\(398\) 5.36430 0.268888
\(399\) −6.17779 −0.309276
\(400\) 25.2325 1.26162
\(401\) 24.0711 1.20205 0.601027 0.799229i \(-0.294758\pi\)
0.601027 + 0.799229i \(0.294758\pi\)
\(402\) −6.82059 −0.340180
\(403\) −27.4423 −1.36700
\(404\) −10.7896 −0.536801
\(405\) −3.87524 −0.192562
\(406\) −7.25383 −0.360001
\(407\) −14.2413 −0.705915
\(408\) 13.7049 0.678492
\(409\) −7.15990 −0.354034 −0.177017 0.984208i \(-0.556645\pi\)
−0.177017 + 0.984208i \(0.556645\pi\)
\(410\) −9.59138 −0.473685
\(411\) −15.4294 −0.761076
\(412\) −9.75005 −0.480350
\(413\) 20.8125 1.02411
\(414\) −0.399310 −0.0196250
\(415\) 57.6981 2.83229
\(416\) 25.9255 1.27110
\(417\) −4.37359 −0.214175
\(418\) −7.59031 −0.371254
\(419\) 22.8993 1.11870 0.559351 0.828931i \(-0.311050\pi\)
0.559351 + 0.828931i \(0.311050\pi\)
\(420\) −11.7794 −0.574775
\(421\) −3.08401 −0.150306 −0.0751528 0.997172i \(-0.523944\pi\)
−0.0751528 + 0.997172i \(0.523944\pi\)
\(422\) −4.13612 −0.201343
\(423\) 5.49738 0.267292
\(424\) −22.5575 −1.09549
\(425\) 72.2366 3.50399
\(426\) −1.42364 −0.0689754
\(427\) −21.3734 −1.03433
\(428\) −2.27347 −0.109892
\(429\) 21.5403 1.03998
\(430\) 4.63019 0.223288
\(431\) 14.2950 0.688565 0.344283 0.938866i \(-0.388122\pi\)
0.344283 + 0.938866i \(0.388122\pi\)
\(432\) −2.51883 −0.121187
\(433\) 12.8831 0.619122 0.309561 0.950880i \(-0.399818\pi\)
0.309561 + 0.950880i \(0.399818\pi\)
\(434\) −4.76564 −0.228758
\(435\) −31.7201 −1.52086
\(436\) −16.9276 −0.810684
\(437\) −2.78363 −0.133159
\(438\) −5.37636 −0.256892
\(439\) −8.19967 −0.391349 −0.195675 0.980669i \(-0.562690\pi\)
−0.195675 + 0.980669i \(0.562690\pi\)
\(440\) −31.0884 −1.48208
\(441\) −3.95543 −0.188354
\(442\) 18.6894 0.888966
\(443\) 28.7053 1.36383 0.681915 0.731432i \(-0.261148\pi\)
0.681915 + 0.731432i \(0.261148\pi\)
\(444\) 5.87745 0.278931
\(445\) 5.99979 0.284417
\(446\) 12.7088 0.601780
\(447\) 20.1278 0.952013
\(448\) −4.28786 −0.202582
\(449\) −8.72830 −0.411914 −0.205957 0.978561i \(-0.566031\pi\)
−0.205957 + 0.978561i \(0.566031\pi\)
\(450\) 5.08778 0.239840
\(451\) −20.5700 −0.968605
\(452\) −25.1504 −1.18298
\(453\) 15.1523 0.711915
\(454\) −7.03402 −0.330123
\(455\) −34.5059 −1.61766
\(456\) 6.72896 0.315112
\(457\) 11.0307 0.515997 0.257998 0.966145i \(-0.416937\pi\)
0.257998 + 0.966145i \(0.416937\pi\)
\(458\) 8.79291 0.410866
\(459\) −7.21103 −0.336582
\(460\) −5.30764 −0.247470
\(461\) −22.4098 −1.04373 −0.521865 0.853028i \(-0.674763\pi\)
−0.521865 + 0.853028i \(0.674763\pi\)
\(462\) 3.74070 0.174033
\(463\) 16.9812 0.789183 0.394592 0.918857i \(-0.370886\pi\)
0.394592 + 0.918857i \(0.370886\pi\)
\(464\) −20.6175 −0.957142
\(465\) −20.8396 −0.966411
\(466\) 7.67099 0.355352
\(467\) −21.4828 −0.994104 −0.497052 0.867721i \(-0.665584\pi\)
−0.497052 + 0.867721i \(0.665584\pi\)
\(468\) −8.88978 −0.410930
\(469\) 23.4324 1.08201
\(470\) −10.8199 −0.499084
\(471\) −0.652471 −0.0300643
\(472\) −22.6693 −1.04344
\(473\) 9.93008 0.456586
\(474\) −2.91753 −0.134007
\(475\) 35.4675 1.62736
\(476\) −21.9190 −1.00466
\(477\) 11.8690 0.543443
\(478\) 4.74283 0.216932
\(479\) 8.77656 0.401011 0.200506 0.979693i \(-0.435742\pi\)
0.200506 + 0.979693i \(0.435742\pi\)
\(480\) 19.6877 0.898616
\(481\) 17.2171 0.785031
\(482\) −6.40202 −0.291604
\(483\) 1.37184 0.0624211
\(484\) −11.8761 −0.539822
\(485\) 11.5733 0.525515
\(486\) −0.507888 −0.0230383
\(487\) 27.2078 1.23290 0.616451 0.787394i \(-0.288570\pi\)
0.616451 + 0.787394i \(0.288570\pi\)
\(488\) 23.2803 1.05385
\(489\) 14.4535 0.653608
\(490\) 7.78504 0.351692
\(491\) 0.852587 0.0384767 0.0192384 0.999815i \(-0.493876\pi\)
0.0192384 + 0.999815i \(0.493876\pi\)
\(492\) 8.48935 0.382729
\(493\) −59.0246 −2.65833
\(494\) 9.17633 0.412863
\(495\) 16.3576 0.735220
\(496\) −13.5453 −0.608203
\(497\) 4.89096 0.219390
\(498\) 7.56189 0.338857
\(499\) −3.00160 −0.134370 −0.0671850 0.997741i \(-0.521402\pi\)
−0.0671850 + 0.997741i \(0.521402\pi\)
\(500\) 33.8726 1.51483
\(501\) 10.4070 0.464952
\(502\) 3.12193 0.139338
\(503\) −16.8007 −0.749105 −0.374552 0.927206i \(-0.622204\pi\)
−0.374552 + 0.927206i \(0.622204\pi\)
\(504\) −3.31620 −0.147715
\(505\) −24.0017 −1.06806
\(506\) 1.68551 0.0749300
\(507\) −13.0412 −0.579182
\(508\) −6.36523 −0.282411
\(509\) 9.57205 0.424274 0.212137 0.977240i \(-0.431958\pi\)
0.212137 + 0.977240i \(0.431958\pi\)
\(510\) 14.1927 0.628463
\(511\) 18.4707 0.817096
\(512\) 22.3709 0.988665
\(513\) −3.54054 −0.156319
\(514\) −7.49035 −0.330385
\(515\) −21.6893 −0.955744
\(516\) −4.09819 −0.180413
\(517\) −23.2047 −1.02054
\(518\) 2.98992 0.131370
\(519\) −13.4897 −0.592132
\(520\) 37.5844 1.64819
\(521\) −7.40942 −0.324613 −0.162306 0.986740i \(-0.551893\pi\)
−0.162306 + 0.986740i \(0.551893\pi\)
\(522\) −4.15723 −0.181957
\(523\) −11.7495 −0.513769 −0.256885 0.966442i \(-0.582696\pi\)
−0.256885 + 0.966442i \(0.582696\pi\)
\(524\) 20.4992 0.895511
\(525\) −17.4793 −0.762858
\(526\) 3.21497 0.140179
\(527\) −38.7781 −1.68920
\(528\) 10.6321 0.462705
\(529\) −22.3819 −0.973125
\(530\) −23.3604 −1.01471
\(531\) 11.9278 0.517622
\(532\) −10.7620 −0.466593
\(533\) 24.8682 1.07716
\(534\) 0.786331 0.0340279
\(535\) −5.05740 −0.218650
\(536\) −25.5230 −1.10243
\(537\) −21.4402 −0.925215
\(538\) −0.235432 −0.0101502
\(539\) 16.6961 0.719151
\(540\) −6.75087 −0.290511
\(541\) −25.1858 −1.08282 −0.541411 0.840758i \(-0.682110\pi\)
−0.541411 + 0.840758i \(0.682110\pi\)
\(542\) −3.30089 −0.141785
\(543\) −0.730083 −0.0313309
\(544\) 36.6347 1.57070
\(545\) −37.6559 −1.61300
\(546\) −4.52233 −0.193538
\(547\) −5.01027 −0.214224 −0.107112 0.994247i \(-0.534160\pi\)
−0.107112 + 0.994247i \(0.534160\pi\)
\(548\) −26.8788 −1.14820
\(549\) −12.2493 −0.522786
\(550\) −21.4758 −0.915732
\(551\) −28.9805 −1.23461
\(552\) −1.49424 −0.0635989
\(553\) 10.0233 0.426233
\(554\) −11.2301 −0.477123
\(555\) 13.0746 0.554985
\(556\) −7.61900 −0.323118
\(557\) 13.3412 0.565284 0.282642 0.959225i \(-0.408789\pi\)
0.282642 + 0.959225i \(0.408789\pi\)
\(558\) −2.73123 −0.115622
\(559\) −12.0050 −0.507758
\(560\) −17.0319 −0.719727
\(561\) 30.4381 1.28510
\(562\) 4.45137 0.187770
\(563\) −15.9846 −0.673670 −0.336835 0.941564i \(-0.609356\pi\)
−0.336835 + 0.941564i \(0.609356\pi\)
\(564\) 9.57670 0.403252
\(565\) −55.9479 −2.35375
\(566\) −5.52554 −0.232256
\(567\) 1.74487 0.0732777
\(568\) −5.32732 −0.223529
\(569\) 32.6744 1.36978 0.684891 0.728646i \(-0.259850\pi\)
0.684891 + 0.728646i \(0.259850\pi\)
\(570\) 6.96847 0.291877
\(571\) −8.21244 −0.343680 −0.171840 0.985125i \(-0.554971\pi\)
−0.171840 + 0.985125i \(0.554971\pi\)
\(572\) 37.5243 1.56897
\(573\) 6.92113 0.289135
\(574\) 4.31862 0.180256
\(575\) −7.87593 −0.328449
\(576\) −2.45741 −0.102392
\(577\) 10.2414 0.426354 0.213177 0.977014i \(-0.431619\pi\)
0.213177 + 0.977014i \(0.431619\pi\)
\(578\) 17.7755 0.739365
\(579\) −21.2432 −0.882835
\(580\) −55.2580 −2.29446
\(581\) −25.9792 −1.07780
\(582\) 1.51679 0.0628729
\(583\) −50.0996 −2.07491
\(584\) −20.1186 −0.832514
\(585\) −19.7756 −0.817621
\(586\) 9.42785 0.389461
\(587\) −7.61757 −0.314411 −0.157205 0.987566i \(-0.550248\pi\)
−0.157205 + 0.987566i \(0.550248\pi\)
\(588\) −6.89055 −0.284161
\(589\) −19.0397 −0.784516
\(590\) −23.4762 −0.966499
\(591\) −1.00000 −0.0411345
\(592\) 8.49823 0.349275
\(593\) −36.6921 −1.50676 −0.753382 0.657584i \(-0.771579\pi\)
−0.753382 + 0.657584i \(0.771579\pi\)
\(594\) 2.14383 0.0879622
\(595\) −48.7595 −1.99895
\(596\) 35.0636 1.43626
\(597\) −10.5620 −0.432273
\(598\) −2.03770 −0.0833278
\(599\) −19.7280 −0.806063 −0.403032 0.915186i \(-0.632044\pi\)
−0.403032 + 0.915186i \(0.632044\pi\)
\(600\) 19.0387 0.777253
\(601\) −2.54191 −0.103686 −0.0518432 0.998655i \(-0.516510\pi\)
−0.0518432 + 0.998655i \(0.516510\pi\)
\(602\) −2.08480 −0.0849699
\(603\) 13.4293 0.546884
\(604\) 26.3960 1.07404
\(605\) −26.4187 −1.07407
\(606\) −3.14566 −0.127784
\(607\) 13.2925 0.539525 0.269763 0.962927i \(-0.413055\pi\)
0.269763 + 0.962927i \(0.413055\pi\)
\(608\) 17.9873 0.729481
\(609\) 14.2823 0.578749
\(610\) 24.1089 0.976142
\(611\) 28.0534 1.13492
\(612\) −12.5620 −0.507787
\(613\) 5.38710 0.217583 0.108791 0.994065i \(-0.465302\pi\)
0.108791 + 0.994065i \(0.465302\pi\)
\(614\) −14.3286 −0.578257
\(615\) 18.8848 0.761510
\(616\) 13.9979 0.563990
\(617\) 29.6708 1.19450 0.597250 0.802055i \(-0.296260\pi\)
0.597250 + 0.802055i \(0.296260\pi\)
\(618\) −2.84259 −0.114346
\(619\) −5.77137 −0.231971 −0.115986 0.993251i \(-0.537003\pi\)
−0.115986 + 0.993251i \(0.537003\pi\)
\(620\) −36.3035 −1.45799
\(621\) 0.786215 0.0315497
\(622\) −9.12971 −0.366068
\(623\) −2.70147 −0.108232
\(624\) −12.8538 −0.514563
\(625\) 25.2631 1.01052
\(626\) −11.7936 −0.471366
\(627\) 14.9448 0.596839
\(628\) −1.13664 −0.0453567
\(629\) 24.3291 0.970064
\(630\) −3.43424 −0.136823
\(631\) −47.2099 −1.87940 −0.939698 0.342005i \(-0.888894\pi\)
−0.939698 + 0.342005i \(0.888894\pi\)
\(632\) −10.9175 −0.434276
\(633\) 8.14376 0.323685
\(634\) 7.67345 0.304752
\(635\) −14.1597 −0.561909
\(636\) 20.6763 0.819870
\(637\) −20.1848 −0.799750
\(638\) 17.5479 0.694728
\(639\) 2.80305 0.110887
\(640\) 44.2120 1.74763
\(641\) 16.5361 0.653135 0.326567 0.945174i \(-0.394108\pi\)
0.326567 + 0.945174i \(0.394108\pi\)
\(642\) −0.662821 −0.0261595
\(643\) 45.5661 1.79695 0.898475 0.439025i \(-0.144676\pi\)
0.898475 + 0.439025i \(0.144676\pi\)
\(644\) 2.38982 0.0941721
\(645\) −9.11656 −0.358964
\(646\) 12.9669 0.510175
\(647\) −29.1494 −1.14598 −0.572991 0.819562i \(-0.694217\pi\)
−0.572991 + 0.819562i \(0.694217\pi\)
\(648\) −1.90054 −0.0746604
\(649\) −50.3479 −1.97633
\(650\) 25.9633 1.01836
\(651\) 9.38324 0.367758
\(652\) 25.1786 0.986072
\(653\) 20.6527 0.808204 0.404102 0.914714i \(-0.367584\pi\)
0.404102 + 0.914714i \(0.367584\pi\)
\(654\) −4.93518 −0.192981
\(655\) 45.6011 1.78178
\(656\) 12.2748 0.479249
\(657\) 10.5857 0.412988
\(658\) 4.87177 0.189921
\(659\) −12.2614 −0.477636 −0.238818 0.971064i \(-0.576760\pi\)
−0.238818 + 0.971064i \(0.576760\pi\)
\(660\) 28.4958 1.10920
\(661\) −41.5946 −1.61784 −0.808921 0.587918i \(-0.799948\pi\)
−0.808921 + 0.587918i \(0.799948\pi\)
\(662\) 10.9924 0.427232
\(663\) −36.7983 −1.42913
\(664\) 28.2970 1.09814
\(665\) −23.9404 −0.928371
\(666\) 1.71355 0.0663987
\(667\) 6.43542 0.249181
\(668\) 18.1296 0.701454
\(669\) −25.0228 −0.967439
\(670\) −26.4315 −1.02114
\(671\) 51.7049 1.99604
\(672\) −8.86460 −0.341959
\(673\) 33.1385 1.27740 0.638698 0.769458i \(-0.279474\pi\)
0.638698 + 0.769458i \(0.279474\pi\)
\(674\) 5.21875 0.201019
\(675\) −10.0175 −0.385575
\(676\) −22.7185 −0.873788
\(677\) −0.810846 −0.0311633 −0.0155817 0.999879i \(-0.504960\pi\)
−0.0155817 + 0.999879i \(0.504960\pi\)
\(678\) −7.33252 −0.281604
\(679\) −5.21099 −0.199979
\(680\) 53.1097 2.03667
\(681\) 13.8495 0.530715
\(682\) 11.5287 0.441455
\(683\) −22.6705 −0.867462 −0.433731 0.901042i \(-0.642803\pi\)
−0.433731 + 0.901042i \(0.642803\pi\)
\(684\) −6.16780 −0.235832
\(685\) −59.7927 −2.28456
\(686\) −9.70869 −0.370680
\(687\) −17.3127 −0.660520
\(688\) −5.92559 −0.225911
\(689\) 60.5681 2.30746
\(690\) −1.54742 −0.0589094
\(691\) 40.8647 1.55457 0.777283 0.629152i \(-0.216598\pi\)
0.777283 + 0.629152i \(0.216598\pi\)
\(692\) −23.4997 −0.893325
\(693\) −7.36520 −0.279781
\(694\) −1.39934 −0.0531182
\(695\) −16.9487 −0.642901
\(696\) −15.5566 −0.589670
\(697\) 35.1407 1.33105
\(698\) 4.03739 0.152818
\(699\) −15.1037 −0.571274
\(700\) −30.4498 −1.15089
\(701\) −37.2339 −1.40631 −0.703153 0.711039i \(-0.748225\pi\)
−0.703153 + 0.711039i \(0.748225\pi\)
\(702\) −2.59179 −0.0978207
\(703\) 11.9453 0.450527
\(704\) 10.3728 0.390941
\(705\) 21.3037 0.802343
\(706\) 8.67767 0.326588
\(707\) 10.8070 0.406441
\(708\) 20.7788 0.780915
\(709\) 21.2722 0.798895 0.399448 0.916756i \(-0.369202\pi\)
0.399448 + 0.916756i \(0.369202\pi\)
\(710\) −5.51694 −0.207047
\(711\) 5.74443 0.215433
\(712\) 2.94249 0.110274
\(713\) 4.22796 0.158338
\(714\) −6.39041 −0.239155
\(715\) 83.4739 3.12175
\(716\) −37.3500 −1.39583
\(717\) −9.33833 −0.348746
\(718\) −11.5146 −0.429722
\(719\) −19.1782 −0.715227 −0.357613 0.933870i \(-0.616409\pi\)
−0.357613 + 0.933870i \(0.616409\pi\)
\(720\) −9.76110 −0.363775
\(721\) 9.76584 0.363699
\(722\) −3.28327 −0.122191
\(723\) 12.6052 0.468791
\(724\) −1.27184 −0.0472676
\(725\) −81.9966 −3.04528
\(726\) −3.46243 −0.128503
\(727\) −7.92808 −0.294036 −0.147018 0.989134i \(-0.546968\pi\)
−0.147018 + 0.989134i \(0.546968\pi\)
\(728\) −16.9228 −0.627200
\(729\) 1.00000 0.0370370
\(730\) −20.8347 −0.771127
\(731\) −16.9640 −0.627437
\(732\) −21.3388 −0.788706
\(733\) 36.4914 1.34784 0.673921 0.738803i \(-0.264609\pi\)
0.673921 + 0.738803i \(0.264609\pi\)
\(734\) −0.597685 −0.0220610
\(735\) −15.3282 −0.565391
\(736\) −3.99427 −0.147231
\(737\) −56.6859 −2.08805
\(738\) 2.47504 0.0911075
\(739\) −46.2736 −1.70220 −0.851101 0.525002i \(-0.824065\pi\)
−0.851101 + 0.525002i \(0.824065\pi\)
\(740\) 22.7766 0.837283
\(741\) −18.0676 −0.663730
\(742\) 10.5183 0.386138
\(743\) −13.5188 −0.495955 −0.247978 0.968766i \(-0.579766\pi\)
−0.247978 + 0.968766i \(0.579766\pi\)
\(744\) −10.2204 −0.374697
\(745\) 78.0002 2.85771
\(746\) −13.2487 −0.485068
\(747\) −14.8889 −0.544756
\(748\) 53.0248 1.93878
\(749\) 2.27715 0.0832052
\(750\) 9.87544 0.360600
\(751\) 12.2198 0.445908 0.222954 0.974829i \(-0.428430\pi\)
0.222954 + 0.974829i \(0.428430\pi\)
\(752\) 13.8470 0.504947
\(753\) −6.14687 −0.224004
\(754\) −21.2146 −0.772590
\(755\) 58.7187 2.13699
\(756\) 3.03965 0.110551
\(757\) 1.89559 0.0688963 0.0344481 0.999406i \(-0.489033\pi\)
0.0344481 + 0.999406i \(0.489033\pi\)
\(758\) −0.377887 −0.0137255
\(759\) −3.31866 −0.120460
\(760\) 26.0764 0.945889
\(761\) 40.4538 1.46645 0.733224 0.679987i \(-0.238015\pi\)
0.733224 + 0.679987i \(0.238015\pi\)
\(762\) −1.85576 −0.0672271
\(763\) 16.9550 0.613812
\(764\) 12.0570 0.436205
\(765\) −27.9445 −1.01034
\(766\) −16.9817 −0.613574
\(767\) 60.8683 2.19783
\(768\) 0.879604 0.0317400
\(769\) −36.1808 −1.30471 −0.652357 0.757912i \(-0.726220\pi\)
−0.652357 + 0.757912i \(0.726220\pi\)
\(770\) 14.4961 0.522404
\(771\) 14.7480 0.531137
\(772\) −37.0066 −1.33190
\(773\) −9.95164 −0.357936 −0.178968 0.983855i \(-0.557276\pi\)
−0.178968 + 0.983855i \(0.557276\pi\)
\(774\) −1.19481 −0.0429467
\(775\) −53.8703 −1.93508
\(776\) 5.67590 0.203753
\(777\) −5.88697 −0.211194
\(778\) 7.72623 0.276999
\(779\) 17.2538 0.618180
\(780\) −34.4501 −1.23351
\(781\) −11.8318 −0.423376
\(782\) −2.87943 −0.102968
\(783\) 8.18532 0.292519
\(784\) −9.96306 −0.355824
\(785\) −2.52848 −0.0902454
\(786\) 5.97647 0.213174
\(787\) 31.3670 1.11811 0.559057 0.829129i \(-0.311163\pi\)
0.559057 + 0.829129i \(0.311163\pi\)
\(788\) −1.74205 −0.0620579
\(789\) −6.33007 −0.225357
\(790\) −11.3061 −0.402254
\(791\) 25.1912 0.895694
\(792\) 8.02230 0.285060
\(793\) −62.5088 −2.21975
\(794\) 6.64629 0.235868
\(795\) 45.9952 1.63128
\(796\) −18.3995 −0.652152
\(797\) −15.3571 −0.543978 −0.271989 0.962300i \(-0.587681\pi\)
−0.271989 + 0.962300i \(0.587681\pi\)
\(798\) −3.13763 −0.111071
\(799\) 39.6417 1.40242
\(800\) 50.8928 1.79933
\(801\) −1.54824 −0.0547042
\(802\) 12.2254 0.431695
\(803\) −44.6829 −1.57682
\(804\) 23.3945 0.825061
\(805\) 5.31623 0.187373
\(806\) −13.9376 −0.490932
\(807\) 0.463551 0.0163178
\(808\) −11.7712 −0.414110
\(809\) 9.82774 0.345525 0.172763 0.984964i \(-0.444731\pi\)
0.172763 + 0.984964i \(0.444731\pi\)
\(810\) −1.96819 −0.0691552
\(811\) 35.9132 1.26108 0.630542 0.776155i \(-0.282833\pi\)
0.630542 + 0.776155i \(0.282833\pi\)
\(812\) 24.8805 0.873135
\(813\) 6.49925 0.227939
\(814\) −7.23299 −0.253516
\(815\) 56.0107 1.96197
\(816\) −18.1634 −0.635846
\(817\) −8.32917 −0.291401
\(818\) −3.63643 −0.127145
\(819\) 8.90418 0.311137
\(820\) 32.8983 1.14886
\(821\) −35.8676 −1.25179 −0.625895 0.779908i \(-0.715266\pi\)
−0.625895 + 0.779908i \(0.715266\pi\)
\(822\) −7.83641 −0.273326
\(823\) −43.1858 −1.50536 −0.752680 0.658386i \(-0.771239\pi\)
−0.752680 + 0.658386i \(0.771239\pi\)
\(824\) −10.6371 −0.370562
\(825\) 42.2845 1.47216
\(826\) 10.5704 0.367791
\(827\) 33.2194 1.15515 0.577576 0.816337i \(-0.303999\pi\)
0.577576 + 0.816337i \(0.303999\pi\)
\(828\) 1.36963 0.0475978
\(829\) −12.7297 −0.442120 −0.221060 0.975260i \(-0.570952\pi\)
−0.221060 + 0.975260i \(0.570952\pi\)
\(830\) 29.3042 1.01716
\(831\) 22.1114 0.767037
\(832\) −12.5403 −0.434756
\(833\) −28.5227 −0.988253
\(834\) −2.22129 −0.0769171
\(835\) 40.3298 1.39567
\(836\) 26.0346 0.900427
\(837\) 5.37761 0.185877
\(838\) 11.6303 0.401761
\(839\) 7.84886 0.270973 0.135486 0.990779i \(-0.456740\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(840\) −12.8511 −0.443405
\(841\) 37.9995 1.31033
\(842\) −1.56634 −0.0539795
\(843\) −8.76446 −0.301864
\(844\) 14.1868 0.488331
\(845\) −50.5380 −1.73856
\(846\) 2.79205 0.0959928
\(847\) 11.8953 0.408728
\(848\) 29.8960 1.02663
\(849\) 10.8794 0.373382
\(850\) 36.6881 1.25839
\(851\) −2.65259 −0.0909296
\(852\) 4.88305 0.167291
\(853\) −24.7803 −0.848460 −0.424230 0.905554i \(-0.639455\pi\)
−0.424230 + 0.905554i \(0.639455\pi\)
\(854\) −10.8553 −0.371461
\(855\) −13.7205 −0.469230
\(856\) −2.48031 −0.0847752
\(857\) 28.2845 0.966181 0.483090 0.875571i \(-0.339514\pi\)
0.483090 + 0.875571i \(0.339514\pi\)
\(858\) 10.9401 0.373488
\(859\) 42.8116 1.46071 0.730356 0.683066i \(-0.239354\pi\)
0.730356 + 0.683066i \(0.239354\pi\)
\(860\) −15.8815 −0.541555
\(861\) −8.50310 −0.289785
\(862\) 7.26026 0.247285
\(863\) −34.4867 −1.17394 −0.586970 0.809609i \(-0.699679\pi\)
−0.586970 + 0.809609i \(0.699679\pi\)
\(864\) −5.08037 −0.172838
\(865\) −52.2758 −1.77743
\(866\) 6.54318 0.222346
\(867\) −34.9989 −1.18863
\(868\) 16.3461 0.554821
\(869\) −24.2476 −0.822542
\(870\) −16.1103 −0.546190
\(871\) 68.5306 2.32207
\(872\) −18.4677 −0.625394
\(873\) −2.98646 −0.101076
\(874\) −1.41377 −0.0478216
\(875\) −33.9275 −1.14696
\(876\) 18.4408 0.623058
\(877\) 53.6975 1.81324 0.906619 0.421951i \(-0.138655\pi\)
0.906619 + 0.421951i \(0.138655\pi\)
\(878\) −4.16452 −0.140546
\(879\) −18.5628 −0.626109
\(880\) 41.2021 1.38892
\(881\) 10.6692 0.359455 0.179728 0.983716i \(-0.442478\pi\)
0.179728 + 0.983716i \(0.442478\pi\)
\(882\) −2.00892 −0.0676437
\(883\) −30.2821 −1.01907 −0.509536 0.860449i \(-0.670183\pi\)
−0.509536 + 0.860449i \(0.670183\pi\)
\(884\) −64.1045 −2.15607
\(885\) 46.2231 1.55377
\(886\) 14.5791 0.489794
\(887\) −8.27169 −0.277736 −0.138868 0.990311i \(-0.544346\pi\)
−0.138868 + 0.990311i \(0.544346\pi\)
\(888\) 6.41219 0.215179
\(889\) 6.37554 0.213829
\(890\) 3.04723 0.102143
\(891\) −4.22106 −0.141411
\(892\) −43.5910 −1.45954
\(893\) 19.4637 0.651328
\(894\) 10.2227 0.341898
\(895\) −83.0862 −2.77726
\(896\) −19.9069 −0.665044
\(897\) 4.01211 0.133960
\(898\) −4.43300 −0.147931
\(899\) 44.0175 1.46806
\(900\) −17.4510 −0.581701
\(901\) 85.5875 2.85133
\(902\) −10.4473 −0.347856
\(903\) 4.10483 0.136600
\(904\) −27.4386 −0.912596
\(905\) −2.82925 −0.0940475
\(906\) 7.69565 0.255671
\(907\) 10.3820 0.344728 0.172364 0.985033i \(-0.444860\pi\)
0.172364 + 0.985033i \(0.444860\pi\)
\(908\) 24.1266 0.800668
\(909\) 6.19360 0.205429
\(910\) −17.5251 −0.580953
\(911\) 18.6371 0.617476 0.308738 0.951147i \(-0.400093\pi\)
0.308738 + 0.951147i \(0.400093\pi\)
\(912\) −8.91804 −0.295306
\(913\) 62.8468 2.07993
\(914\) 5.60239 0.185311
\(915\) −47.4689 −1.56928
\(916\) −30.1595 −0.996499
\(917\) −20.5324 −0.678039
\(918\) −3.66240 −0.120877
\(919\) 14.3615 0.473743 0.236871 0.971541i \(-0.423878\pi\)
0.236871 + 0.971541i \(0.423878\pi\)
\(920\) −5.79053 −0.190908
\(921\) 28.2122 0.929623
\(922\) −11.3817 −0.374836
\(923\) 14.3041 0.470826
\(924\) −12.8305 −0.422094
\(925\) 33.7978 1.11127
\(926\) 8.62455 0.283420
\(927\) 5.59688 0.183826
\(928\) −41.5845 −1.36508
\(929\) 35.1809 1.15425 0.577125 0.816656i \(-0.304175\pi\)
0.577125 + 0.816656i \(0.304175\pi\)
\(930\) −10.5842 −0.347069
\(931\) −14.0044 −0.458974
\(932\) −26.3114 −0.861858
\(933\) 17.9758 0.588502
\(934\) −10.9108 −0.357014
\(935\) 117.955 3.85755
\(936\) −9.69859 −0.317008
\(937\) −1.31084 −0.0428234 −0.0214117 0.999771i \(-0.506816\pi\)
−0.0214117 + 0.999771i \(0.506816\pi\)
\(938\) 11.9011 0.388583
\(939\) 23.2208 0.757782
\(940\) 37.1121 1.21046
\(941\) 19.6544 0.640717 0.320358 0.947296i \(-0.396197\pi\)
0.320358 + 0.947296i \(0.396197\pi\)
\(942\) −0.331382 −0.0107970
\(943\) −3.83138 −0.124767
\(944\) 30.0441 0.977853
\(945\) 6.76180 0.219961
\(946\) 5.04337 0.163974
\(947\) −29.2100 −0.949197 −0.474598 0.880203i \(-0.657407\pi\)
−0.474598 + 0.880203i \(0.657407\pi\)
\(948\) 10.0071 0.325015
\(949\) 54.0195 1.75355
\(950\) 18.0135 0.584436
\(951\) −15.1085 −0.489928
\(952\) −23.9132 −0.775032
\(953\) −58.8054 −1.90490 −0.952448 0.304703i \(-0.901443\pi\)
−0.952448 + 0.304703i \(0.901443\pi\)
\(954\) 6.02811 0.195167
\(955\) 26.8211 0.867910
\(956\) −16.2678 −0.526140
\(957\) −34.5507 −1.11687
\(958\) 4.45751 0.144016
\(959\) 26.9223 0.869367
\(960\) −9.52305 −0.307355
\(961\) −2.08129 −0.0671385
\(962\) 8.74435 0.281929
\(963\) 1.30505 0.0420547
\(964\) 21.9588 0.707246
\(965\) −82.3224 −2.65005
\(966\) 0.696744 0.0224174
\(967\) −45.3531 −1.45846 −0.729228 0.684271i \(-0.760121\pi\)
−0.729228 + 0.684271i \(0.760121\pi\)
\(968\) −12.9566 −0.416441
\(969\) −25.5310 −0.820172
\(970\) 5.87793 0.188729
\(971\) 20.6246 0.661876 0.330938 0.943652i \(-0.392635\pi\)
0.330938 + 0.943652i \(0.392635\pi\)
\(972\) 1.74205 0.0558763
\(973\) 7.63134 0.244650
\(974\) 13.8185 0.442774
\(975\) −51.1200 −1.63715
\(976\) −30.8539 −0.987609
\(977\) 23.2450 0.743673 0.371837 0.928298i \(-0.378728\pi\)
0.371837 + 0.928298i \(0.378728\pi\)
\(978\) 7.34075 0.234731
\(979\) 6.53519 0.208866
\(980\) −26.7026 −0.852982
\(981\) 9.71705 0.310242
\(982\) 0.433019 0.0138182
\(983\) 16.2850 0.519410 0.259705 0.965688i \(-0.416375\pi\)
0.259705 + 0.965688i \(0.416375\pi\)
\(984\) 9.26172 0.295253
\(985\) −3.87524 −0.123476
\(986\) −29.9779 −0.954691
\(987\) −9.59221 −0.305323
\(988\) −31.4747 −1.00134
\(989\) 1.84958 0.0588133
\(990\) 8.30785 0.264041
\(991\) 37.1058 1.17870 0.589352 0.807876i \(-0.299383\pi\)
0.589352 + 0.807876i \(0.299383\pi\)
\(992\) −27.3203 −0.867420
\(993\) −21.6433 −0.686830
\(994\) 2.48406 0.0787897
\(995\) −40.9302 −1.29758
\(996\) −25.9372 −0.821851
\(997\) −6.52582 −0.206675 −0.103337 0.994646i \(-0.532952\pi\)
−0.103337 + 0.994646i \(0.532952\pi\)
\(998\) −1.52448 −0.0482565
\(999\) −3.37387 −0.106745
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 591.2.a.e.1.9 14
3.2 odd 2 1773.2.a.h.1.6 14
4.3 odd 2 9456.2.a.bd.1.2 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
591.2.a.e.1.9 14 1.1 even 1 trivial
1773.2.a.h.1.6 14 3.2 odd 2
9456.2.a.bd.1.2 14 4.3 odd 2