Properties

Label 591.2.a.e
Level $591$
Weight $2$
Character orbit 591.a
Self dual yes
Analytic conductor $4.719$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [591,2,Mod(1,591)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("591.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(591, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 591 = 3 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 591.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.71915875946\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 24 x^{12} + 220 x^{10} - 958 x^{8} - 4 x^{7} + 2002 x^{6} + 28 x^{5} - 1792 x^{4} - 15 x^{3} + \cdots - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} + \beta_{6} q^{5} + \beta_1 q^{6} - \beta_{13} q^{7} + ( - \beta_{11} + \beta_{10} - 2 \beta_1) q^{8} + q^{9} + ( - \beta_{12} - 2 \beta_{10} + \cdots + 2) q^{10}+ \cdots + (\beta_{12} + \beta_{11} + \cdots + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{3} + 20 q^{4} + 7 q^{7} + 14 q^{9} + 8 q^{10} + 4 q^{11} - 20 q^{12} + 8 q^{13} + 6 q^{14} + 40 q^{16} + 4 q^{17} + 15 q^{19} - 6 q^{20} - 7 q^{21} + 12 q^{22} - 3 q^{23} + 40 q^{25} + 10 q^{26}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} - 24 x^{12} + 220 x^{10} - 958 x^{8} - 4 x^{7} + 2002 x^{6} + 28 x^{5} - 1792 x^{4} - 15 x^{3} + \cdots - 26 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 48068 \nu^{13} - 115577 \nu^{12} - 937256 \nu^{11} + 2161255 \nu^{10} + 7005751 \nu^{9} + \cdots - 21240222 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 48684 \nu^{13} - 85814 \nu^{12} - 1137083 \nu^{11} + 2511925 \nu^{10} + 9332822 \nu^{9} + \cdots - 19085557 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 86549 \nu^{13} - 52119 \nu^{12} + 2031265 \nu^{11} + 1559682 \nu^{10} - 18070456 \nu^{9} + \cdots - 19474129 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 87900 \nu^{13} + 165334 \nu^{12} - 1750432 \nu^{11} - 4146352 \nu^{10} + 12291918 \nu^{9} + \cdots + 21275402 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 131182 \nu^{13} + 195183 \nu^{12} + 2545922 \nu^{11} - 4083822 \nu^{10} - 17585393 \nu^{9} + \cdots + 23101924 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 154463 \nu^{13} - 169494 \nu^{12} + 4023552 \nu^{11} + 2975594 \nu^{10} - 39439683 \nu^{9} + \cdots + 1367041 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 197509 \nu^{13} - 120244 \nu^{12} - 4715091 \nu^{11} + 2983508 \nu^{10} + 42663680 \nu^{9} + \cdots + 8683646 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 246481 \nu^{13} + 136584 \nu^{12} - 5836024 \nu^{11} - 2887515 \nu^{10} + 52591393 \nu^{9} + \cdots - 16188223 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 246481 \nu^{13} + 136584 \nu^{12} - 5836024 \nu^{11} - 2887515 \nu^{10} + 52591393 \nu^{9} + \cdots - 16188223 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 414793 \nu^{13} + 4118 \nu^{12} + 9756788 \nu^{11} - 62040 \nu^{10} - 87020029 \nu^{9} + \cdots + 21470374 ) / 4218661 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 429001 \nu^{13} - 24910 \nu^{12} + 10366275 \nu^{11} + 67950 \nu^{10} - 95274680 \nu^{9} + \cdots + 4591061 ) / 4218661 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{11} - \beta_{10} + 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{13} + \beta_{10} + \beta_{9} - \beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} - 2\beta_{3} + 8\beta_{2} - \beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{13} - \beta_{12} + 9\beta_{11} - 9\beta_{10} + \beta_{9} + \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} + 38\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 11 \beta_{13} - \beta_{12} + \beta_{11} + 11 \beta_{10} + 11 \beta_{9} + 2 \beta_{8} - 10 \beta_{7} + \cdots + 96 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 13 \beta_{13} - 14 \beta_{12} + 69 \beta_{11} - 71 \beta_{10} + 11 \beta_{9} - 2 \beta_{8} - 2 \beta_{7} + \cdots + 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 91 \beta_{13} - 14 \beta_{12} + 15 \beta_{11} + 90 \beta_{10} + 93 \beta_{9} + 29 \beta_{8} - 81 \beta_{7} + \cdots + 606 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 118 \beta_{13} - 139 \beta_{12} + 508 \beta_{11} - 546 \beta_{10} + 89 \beta_{9} - 34 \beta_{8} + \cdots + 75 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 682 \beta_{13} - 140 \beta_{12} + 159 \beta_{11} + 661 \beta_{10} + 716 \beta_{9} + 292 \beta_{8} + \cdots + 3943 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 936 \beta_{13} - 1209 \beta_{12} + 3690 \beta_{11} - 4153 \beta_{10} + 644 \beta_{9} - 383 \beta_{8} + \cdots + 927 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 4890 \beta_{13} - 1231 \beta_{12} + 1484 \beta_{11} + 4587 \beta_{10} + 5273 \beta_{9} + 2531 \beta_{8} + \cdots + 26194 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 6968 \beta_{13} - 9853 \beta_{12} + 26674 \beta_{11} - 31322 \beta_{10} + 4437 \beta_{9} - 3620 \beta_{8} + \cdots + 9523 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.73586
2.58738
2.09820
1.94322
1.02711
0.756413
0.200273
−0.340520
−0.507888
−1.30329
−1.56512
−2.38358
−2.61158
−2.63646
−2.73586 −1.00000 5.48491 −2.56045 2.73586 2.13954 −9.53420 1.00000 7.00501
1.2 −2.58738 −1.00000 4.69451 −0.0129831 2.58738 −4.50255 −6.97171 1.00000 0.0335922
1.3 −2.09820 −1.00000 2.40243 2.80027 2.09820 4.46840 −0.844386 1.00000 −5.87552
1.4 −1.94322 −1.00000 1.77609 −2.46899 1.94322 2.99013 0.435099 1.00000 4.79779
1.5 −1.02711 −1.00000 −0.945042 4.10142 1.02711 −2.75116 3.02489 1.00000 −4.21262
1.6 −0.756413 −1.00000 −1.42784 −4.20254 0.756413 −3.69759 2.59286 1.00000 3.17886
1.7 −0.200273 −1.00000 −1.95989 2.68647 0.200273 5.17201 0.793058 1.00000 −0.538026
1.8 0.340520 −1.00000 −1.88405 0.479903 −0.340520 −4.78860 −1.32260 1.00000 0.163417
1.9 0.507888 −1.00000 −1.74205 −3.87524 −0.507888 1.74487 −1.90054 1.00000 −1.96819
1.10 1.30329 −1.00000 −0.301447 −1.26824 −1.30329 2.79646 −2.99944 1.00000 −1.65288
1.11 1.56512 −1.00000 0.449610 3.41005 −1.56512 1.36753 −2.42655 1.00000 5.33715
1.12 2.38358 −1.00000 3.68147 2.48122 −2.38358 −1.21276 4.00794 1.00000 5.91421
1.13 2.61158 −1.00000 4.82036 1.65704 −2.61158 −0.888628 7.36560 1.00000 4.32748
1.14 2.63646 −1.00000 4.95092 −3.22792 −2.63646 4.16234 7.78000 1.00000 −8.51027
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.14
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(197\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 591.2.a.e 14
3.b odd 2 1 1773.2.a.h 14
4.b odd 2 1 9456.2.a.bd 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
591.2.a.e 14 1.a even 1 1 trivial
1773.2.a.h 14 3.b odd 2 1
9456.2.a.bd 14 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{14} - 24 T_{2}^{12} + 220 T_{2}^{10} - 958 T_{2}^{8} + 4 T_{2}^{7} + 2002 T_{2}^{6} - 28 T_{2}^{5} + \cdots - 26 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(591))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} - 24 T^{12} + \cdots - 26 \) Copy content Toggle raw display
$3$ \( (T + 1)^{14} \) Copy content Toggle raw display
$5$ \( T^{14} - 55 T^{12} + \cdots - 1136 \) Copy content Toggle raw display
$7$ \( T^{14} - 7 T^{13} + \cdots + 970664 \) Copy content Toggle raw display
$11$ \( T^{14} - 4 T^{13} + \cdots - 4126904 \) Copy content Toggle raw display
$13$ \( T^{14} - 8 T^{13} + \cdots + 28307456 \) Copy content Toggle raw display
$17$ \( T^{14} - 4 T^{13} + \cdots + 20324944 \) Copy content Toggle raw display
$19$ \( T^{14} + \cdots - 253550756 \) Copy content Toggle raw display
$23$ \( T^{14} + 3 T^{13} + \cdots + 991232 \) Copy content Toggle raw display
$29$ \( T^{14} - 7 T^{13} + \cdots + 145408 \) Copy content Toggle raw display
$31$ \( T^{14} + \cdots + 6682722304 \) Copy content Toggle raw display
$37$ \( T^{14} + \cdots - 189846502 \) Copy content Toggle raw display
$41$ \( T^{14} - 23 T^{13} + \cdots - 16893952 \) Copy content Toggle raw display
$43$ \( T^{14} + \cdots - 26585850316 \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots - 56345575424 \) Copy content Toggle raw display
$53$ \( T^{14} + \cdots - 232574697472 \) Copy content Toggle raw display
$59$ \( T^{14} + \cdots - 11351179264 \) Copy content Toggle raw display
$61$ \( T^{14} + \cdots + 41225752726 \) Copy content Toggle raw display
$67$ \( T^{14} + \cdots - 43054686208 \) Copy content Toggle raw display
$71$ \( T^{14} + \cdots - 15405571072 \) Copy content Toggle raw display
$73$ \( T^{14} + \cdots - 5194379264 \) Copy content Toggle raw display
$79$ \( T^{14} + \cdots - 13915068710912 \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots - 111499268096 \) Copy content Toggle raw display
$89$ \( T^{14} + \cdots + 3407458444 \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots + 6809860552 \) Copy content Toggle raw display
show more
show less