Properties

Label 591.2.a.e.1.14
Level $591$
Weight $2$
Character 591.1
Self dual yes
Analytic conductor $4.719$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [591,2,Mod(1,591)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("591.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(591, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 591 = 3 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 591.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.71915875946\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 24 x^{12} + 220 x^{10} - 958 x^{8} - 4 x^{7} + 2002 x^{6} + 28 x^{5} - 1792 x^{4} - 15 x^{3} + \cdots - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(-2.63646\) of defining polynomial
Character \(\chi\) \(=\) 591.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.63646 q^{2} -1.00000 q^{3} +4.95092 q^{4} -3.22792 q^{5} -2.63646 q^{6} +4.16234 q^{7} +7.78000 q^{8} +1.00000 q^{9} -8.51027 q^{10} +1.87862 q^{11} -4.95092 q^{12} +0.793698 q^{13} +10.9738 q^{14} +3.22792 q^{15} +10.6098 q^{16} +2.69723 q^{17} +2.63646 q^{18} -7.35907 q^{19} -15.9812 q^{20} -4.16234 q^{21} +4.95292 q^{22} +2.35545 q^{23} -7.78000 q^{24} +5.41944 q^{25} +2.09255 q^{26} -1.00000 q^{27} +20.6074 q^{28} -5.00698 q^{29} +8.51027 q^{30} +7.64215 q^{31} +12.4123 q^{32} -1.87862 q^{33} +7.11114 q^{34} -13.4357 q^{35} +4.95092 q^{36} -10.9646 q^{37} -19.4019 q^{38} -0.793698 q^{39} -25.1132 q^{40} -6.59144 q^{41} -10.9738 q^{42} +11.6276 q^{43} +9.30093 q^{44} -3.22792 q^{45} +6.21006 q^{46} -4.80663 q^{47} -10.6098 q^{48} +10.3251 q^{49} +14.2881 q^{50} -2.69723 q^{51} +3.92954 q^{52} -11.1174 q^{53} -2.63646 q^{54} -6.06404 q^{55} +32.3830 q^{56} +7.35907 q^{57} -13.2007 q^{58} -8.27158 q^{59} +15.9812 q^{60} -3.78786 q^{61} +20.1482 q^{62} +4.16234 q^{63} +11.5050 q^{64} -2.56199 q^{65} -4.95292 q^{66} +7.82104 q^{67} +13.3538 q^{68} -2.35545 q^{69} -35.4226 q^{70} -7.95100 q^{71} +7.78000 q^{72} -2.61774 q^{73} -28.9078 q^{74} -5.41944 q^{75} -36.4342 q^{76} +7.81947 q^{77} -2.09255 q^{78} -9.87609 q^{79} -34.2476 q^{80} +1.00000 q^{81} -17.3781 q^{82} -4.79162 q^{83} -20.6074 q^{84} -8.70643 q^{85} +30.6558 q^{86} +5.00698 q^{87} +14.6157 q^{88} -1.81390 q^{89} -8.51027 q^{90} +3.30364 q^{91} +11.6617 q^{92} -7.64215 q^{93} -12.6725 q^{94} +23.7545 q^{95} -12.4123 q^{96} +9.54088 q^{97} +27.2216 q^{98} +1.87862 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{3} + 20 q^{4} + 7 q^{7} + 14 q^{9} + 8 q^{10} + 4 q^{11} - 20 q^{12} + 8 q^{13} + 6 q^{14} + 40 q^{16} + 4 q^{17} + 15 q^{19} - 6 q^{20} - 7 q^{21} + 12 q^{22} - 3 q^{23} + 40 q^{25} + 10 q^{26}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63646 1.86426 0.932130 0.362125i \(-0.117949\pi\)
0.932130 + 0.362125i \(0.117949\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.95092 2.47546
\(5\) −3.22792 −1.44357 −0.721784 0.692118i \(-0.756678\pi\)
−0.721784 + 0.692118i \(0.756678\pi\)
\(6\) −2.63646 −1.07633
\(7\) 4.16234 1.57322 0.786608 0.617452i \(-0.211835\pi\)
0.786608 + 0.617452i \(0.211835\pi\)
\(8\) 7.78000 2.75064
\(9\) 1.00000 0.333333
\(10\) −8.51027 −2.69118
\(11\) 1.87862 0.566427 0.283213 0.959057i \(-0.408600\pi\)
0.283213 + 0.959057i \(0.408600\pi\)
\(12\) −4.95092 −1.42921
\(13\) 0.793698 0.220132 0.110066 0.993924i \(-0.464894\pi\)
0.110066 + 0.993924i \(0.464894\pi\)
\(14\) 10.9738 2.93288
\(15\) 3.22792 0.833444
\(16\) 10.6098 2.65245
\(17\) 2.69723 0.654174 0.327087 0.944994i \(-0.393933\pi\)
0.327087 + 0.944994i \(0.393933\pi\)
\(18\) 2.63646 0.621420
\(19\) −7.35907 −1.68829 −0.844143 0.536118i \(-0.819890\pi\)
−0.844143 + 0.536118i \(0.819890\pi\)
\(20\) −15.9812 −3.57350
\(21\) −4.16234 −0.908297
\(22\) 4.95292 1.05597
\(23\) 2.35545 0.491146 0.245573 0.969378i \(-0.421024\pi\)
0.245573 + 0.969378i \(0.421024\pi\)
\(24\) −7.78000 −1.58808
\(25\) 5.41944 1.08389
\(26\) 2.09255 0.410383
\(27\) −1.00000 −0.192450
\(28\) 20.6074 3.89444
\(29\) −5.00698 −0.929772 −0.464886 0.885370i \(-0.653905\pi\)
−0.464886 + 0.885370i \(0.653905\pi\)
\(30\) 8.51027 1.55376
\(31\) 7.64215 1.37257 0.686285 0.727333i \(-0.259240\pi\)
0.686285 + 0.727333i \(0.259240\pi\)
\(32\) 12.4123 2.19421
\(33\) −1.87862 −0.327027
\(34\) 7.11114 1.21955
\(35\) −13.4357 −2.27104
\(36\) 4.95092 0.825154
\(37\) −10.9646 −1.80257 −0.901285 0.433226i \(-0.857375\pi\)
−0.901285 + 0.433226i \(0.857375\pi\)
\(38\) −19.4019 −3.14740
\(39\) −0.793698 −0.127093
\(40\) −25.1132 −3.97074
\(41\) −6.59144 −1.02941 −0.514705 0.857367i \(-0.672099\pi\)
−0.514705 + 0.857367i \(0.672099\pi\)
\(42\) −10.9738 −1.69330
\(43\) 11.6276 1.77319 0.886597 0.462542i \(-0.153062\pi\)
0.886597 + 0.462542i \(0.153062\pi\)
\(44\) 9.30093 1.40217
\(45\) −3.22792 −0.481189
\(46\) 6.21006 0.915623
\(47\) −4.80663 −0.701119 −0.350559 0.936541i \(-0.614009\pi\)
−0.350559 + 0.936541i \(0.614009\pi\)
\(48\) −10.6098 −1.53139
\(49\) 10.3251 1.47501
\(50\) 14.2881 2.02065
\(51\) −2.69723 −0.377688
\(52\) 3.92954 0.544929
\(53\) −11.1174 −1.52709 −0.763547 0.645752i \(-0.776544\pi\)
−0.763547 + 0.645752i \(0.776544\pi\)
\(54\) −2.63646 −0.358777
\(55\) −6.06404 −0.817675
\(56\) 32.3830 4.32736
\(57\) 7.35907 0.974732
\(58\) −13.2007 −1.73334
\(59\) −8.27158 −1.07687 −0.538434 0.842668i \(-0.680984\pi\)
−0.538434 + 0.842668i \(0.680984\pi\)
\(60\) 15.9812 2.06316
\(61\) −3.78786 −0.484985 −0.242493 0.970153i \(-0.577965\pi\)
−0.242493 + 0.970153i \(0.577965\pi\)
\(62\) 20.1482 2.55883
\(63\) 4.16234 0.524406
\(64\) 11.5050 1.43813
\(65\) −2.56199 −0.317776
\(66\) −4.95292 −0.609662
\(67\) 7.82104 0.955492 0.477746 0.878498i \(-0.341454\pi\)
0.477746 + 0.878498i \(0.341454\pi\)
\(68\) 13.3538 1.61938
\(69\) −2.35545 −0.283563
\(70\) −35.4226 −4.23382
\(71\) −7.95100 −0.943610 −0.471805 0.881703i \(-0.656397\pi\)
−0.471805 + 0.881703i \(0.656397\pi\)
\(72\) 7.78000 0.916881
\(73\) −2.61774 −0.306383 −0.153191 0.988197i \(-0.548955\pi\)
−0.153191 + 0.988197i \(0.548955\pi\)
\(74\) −28.9078 −3.36046
\(75\) −5.41944 −0.625783
\(76\) −36.4342 −4.17929
\(77\) 7.81947 0.891112
\(78\) −2.09255 −0.236935
\(79\) −9.87609 −1.11115 −0.555573 0.831467i \(-0.687501\pi\)
−0.555573 + 0.831467i \(0.687501\pi\)
\(80\) −34.2476 −3.82899
\(81\) 1.00000 0.111111
\(82\) −17.3781 −1.91909
\(83\) −4.79162 −0.525949 −0.262974 0.964803i \(-0.584703\pi\)
−0.262974 + 0.964803i \(0.584703\pi\)
\(84\) −20.6074 −2.24845
\(85\) −8.70643 −0.944345
\(86\) 30.6558 3.30569
\(87\) 5.00698 0.536804
\(88\) 14.6157 1.55804
\(89\) −1.81390 −0.192273 −0.0961366 0.995368i \(-0.530649\pi\)
−0.0961366 + 0.995368i \(0.530649\pi\)
\(90\) −8.51027 −0.897062
\(91\) 3.30364 0.346315
\(92\) 11.6617 1.21581
\(93\) −7.64215 −0.792454
\(94\) −12.6725 −1.30707
\(95\) 23.7545 2.43716
\(96\) −12.4123 −1.26683
\(97\) 9.54088 0.968729 0.484365 0.874866i \(-0.339051\pi\)
0.484365 + 0.874866i \(0.339051\pi\)
\(98\) 27.2216 2.74980
\(99\) 1.87862 0.188809
\(100\) 26.8312 2.68312
\(101\) 10.7161 1.06629 0.533144 0.846025i \(-0.321011\pi\)
0.533144 + 0.846025i \(0.321011\pi\)
\(102\) −7.11114 −0.704107
\(103\) 6.64416 0.654669 0.327334 0.944909i \(-0.393850\pi\)
0.327334 + 0.944909i \(0.393850\pi\)
\(104\) 6.17496 0.605505
\(105\) 13.4357 1.31119
\(106\) −29.3106 −2.84690
\(107\) −4.55812 −0.440650 −0.220325 0.975427i \(-0.570712\pi\)
−0.220325 + 0.975427i \(0.570712\pi\)
\(108\) −4.95092 −0.476403
\(109\) 13.5708 1.29984 0.649922 0.760001i \(-0.274802\pi\)
0.649922 + 0.760001i \(0.274802\pi\)
\(110\) −15.9876 −1.52436
\(111\) 10.9646 1.04071
\(112\) 44.1616 4.17288
\(113\) −6.69475 −0.629789 −0.314895 0.949127i \(-0.601969\pi\)
−0.314895 + 0.949127i \(0.601969\pi\)
\(114\) 19.4019 1.81715
\(115\) −7.60320 −0.709002
\(116\) −24.7892 −2.30162
\(117\) 0.793698 0.0733774
\(118\) −21.8077 −2.00756
\(119\) 11.2268 1.02916
\(120\) 25.1132 2.29251
\(121\) −7.47077 −0.679161
\(122\) −9.98654 −0.904138
\(123\) 6.59144 0.594330
\(124\) 37.8357 3.39775
\(125\) −1.35392 −0.121099
\(126\) 10.9738 0.977628
\(127\) 15.9350 1.41400 0.707002 0.707212i \(-0.250047\pi\)
0.707002 + 0.707212i \(0.250047\pi\)
\(128\) 5.50788 0.486833
\(129\) −11.6276 −1.02375
\(130\) −6.75458 −0.592416
\(131\) 0.452946 0.0395741 0.0197870 0.999804i \(-0.493701\pi\)
0.0197870 + 0.999804i \(0.493701\pi\)
\(132\) −9.30093 −0.809542
\(133\) −30.6309 −2.65604
\(134\) 20.6199 1.78129
\(135\) 3.22792 0.277815
\(136\) 20.9844 1.79940
\(137\) 22.1705 1.89415 0.947075 0.321012i \(-0.104023\pi\)
0.947075 + 0.321012i \(0.104023\pi\)
\(138\) −6.21006 −0.528635
\(139\) −4.73765 −0.401842 −0.200921 0.979607i \(-0.564393\pi\)
−0.200921 + 0.979607i \(0.564393\pi\)
\(140\) −66.5191 −5.62189
\(141\) 4.80663 0.404791
\(142\) −20.9625 −1.75913
\(143\) 1.49106 0.124689
\(144\) 10.6098 0.884150
\(145\) 16.1621 1.34219
\(146\) −6.90156 −0.571177
\(147\) −10.3251 −0.851598
\(148\) −54.2849 −4.46220
\(149\) 8.48697 0.695280 0.347640 0.937628i \(-0.386983\pi\)
0.347640 + 0.937628i \(0.386983\pi\)
\(150\) −14.2881 −1.16662
\(151\) 12.2584 0.997575 0.498788 0.866724i \(-0.333779\pi\)
0.498788 + 0.866724i \(0.333779\pi\)
\(152\) −57.2535 −4.64387
\(153\) 2.69723 0.218058
\(154\) 20.6157 1.66126
\(155\) −24.6682 −1.98140
\(156\) −3.92954 −0.314615
\(157\) 19.9649 1.59338 0.796688 0.604391i \(-0.206584\pi\)
0.796688 + 0.604391i \(0.206584\pi\)
\(158\) −26.0379 −2.07147
\(159\) 11.1174 0.881668
\(160\) −40.0660 −3.16749
\(161\) 9.80419 0.772679
\(162\) 2.63646 0.207140
\(163\) 14.1934 1.11172 0.555858 0.831278i \(-0.312390\pi\)
0.555858 + 0.831278i \(0.312390\pi\)
\(164\) −32.6337 −2.54827
\(165\) 6.06404 0.472085
\(166\) −12.6329 −0.980505
\(167\) −1.88394 −0.145784 −0.0728919 0.997340i \(-0.523223\pi\)
−0.0728919 + 0.997340i \(0.523223\pi\)
\(168\) −32.3830 −2.49840
\(169\) −12.3700 −0.951542
\(170\) −22.9542 −1.76050
\(171\) −7.35907 −0.562762
\(172\) 57.5675 4.38948
\(173\) −9.62129 −0.731493 −0.365747 0.930714i \(-0.619186\pi\)
−0.365747 + 0.930714i \(0.619186\pi\)
\(174\) 13.2007 1.00074
\(175\) 22.5576 1.70519
\(176\) 19.9318 1.50242
\(177\) 8.27158 0.621730
\(178\) −4.78228 −0.358447
\(179\) −4.25271 −0.317862 −0.158931 0.987290i \(-0.550805\pi\)
−0.158931 + 0.987290i \(0.550805\pi\)
\(180\) −15.9812 −1.19117
\(181\) 16.0908 1.19602 0.598009 0.801490i \(-0.295959\pi\)
0.598009 + 0.801490i \(0.295959\pi\)
\(182\) 8.70991 0.645622
\(183\) 3.78786 0.280006
\(184\) 18.3254 1.35097
\(185\) 35.3928 2.60213
\(186\) −20.1482 −1.47734
\(187\) 5.06708 0.370542
\(188\) −23.7972 −1.73559
\(189\) −4.16234 −0.302766
\(190\) 62.6277 4.54349
\(191\) 3.51981 0.254684 0.127342 0.991859i \(-0.459355\pi\)
0.127342 + 0.991859i \(0.459355\pi\)
\(192\) −11.5050 −0.830304
\(193\) −25.9175 −1.86558 −0.932792 0.360415i \(-0.882635\pi\)
−0.932792 + 0.360415i \(0.882635\pi\)
\(194\) 25.1541 1.80596
\(195\) 2.56199 0.183468
\(196\) 51.1186 3.65133
\(197\) 1.00000 0.0712470
\(198\) 4.95292 0.351989
\(199\) −25.3974 −1.80037 −0.900185 0.435507i \(-0.856569\pi\)
−0.900185 + 0.435507i \(0.856569\pi\)
\(200\) 42.1632 2.98139
\(201\) −7.82104 −0.551654
\(202\) 28.2525 1.98784
\(203\) −20.8407 −1.46273
\(204\) −13.3538 −0.934951
\(205\) 21.2766 1.48602
\(206\) 17.5171 1.22047
\(207\) 2.35545 0.163715
\(208\) 8.42098 0.583890
\(209\) −13.8249 −0.956290
\(210\) 35.4226 2.44440
\(211\) −15.5397 −1.06979 −0.534897 0.844917i \(-0.679650\pi\)
−0.534897 + 0.844917i \(0.679650\pi\)
\(212\) −55.0415 −3.78026
\(213\) 7.95100 0.544793
\(214\) −12.0173 −0.821485
\(215\) −37.5330 −2.55973
\(216\) −7.78000 −0.529362
\(217\) 31.8092 2.15935
\(218\) 35.7788 2.42324
\(219\) 2.61774 0.176890
\(220\) −30.0226 −2.02412
\(221\) 2.14078 0.144005
\(222\) 28.9078 1.94016
\(223\) −3.67297 −0.245960 −0.122980 0.992409i \(-0.539245\pi\)
−0.122980 + 0.992409i \(0.539245\pi\)
\(224\) 51.6644 3.45197
\(225\) 5.41944 0.361296
\(226\) −17.6504 −1.17409
\(227\) 15.5218 1.03022 0.515109 0.857125i \(-0.327751\pi\)
0.515109 + 0.857125i \(0.327751\pi\)
\(228\) 36.4342 2.41291
\(229\) 13.9823 0.923976 0.461988 0.886886i \(-0.347136\pi\)
0.461988 + 0.886886i \(0.347136\pi\)
\(230\) −20.0455 −1.32176
\(231\) −7.81947 −0.514484
\(232\) −38.9543 −2.55747
\(233\) 11.9895 0.785460 0.392730 0.919654i \(-0.371531\pi\)
0.392730 + 0.919654i \(0.371531\pi\)
\(234\) 2.09255 0.136794
\(235\) 15.5154 1.01211
\(236\) −40.9519 −2.66574
\(237\) 9.87609 0.641521
\(238\) 29.5990 1.91862
\(239\) −9.86897 −0.638370 −0.319185 0.947692i \(-0.603409\pi\)
−0.319185 + 0.947692i \(0.603409\pi\)
\(240\) 34.2476 2.21067
\(241\) −13.2215 −0.851671 −0.425836 0.904800i \(-0.640020\pi\)
−0.425836 + 0.904800i \(0.640020\pi\)
\(242\) −19.6964 −1.26613
\(243\) −1.00000 −0.0641500
\(244\) −18.7534 −1.20056
\(245\) −33.3285 −2.12928
\(246\) 17.3781 1.10799
\(247\) −5.84087 −0.371646
\(248\) 59.4559 3.77545
\(249\) 4.79162 0.303657
\(250\) −3.56957 −0.225759
\(251\) 28.1423 1.77633 0.888164 0.459526i \(-0.151981\pi\)
0.888164 + 0.459526i \(0.151981\pi\)
\(252\) 20.6074 1.29815
\(253\) 4.42501 0.278198
\(254\) 42.0120 2.63607
\(255\) 8.70643 0.545218
\(256\) −8.48874 −0.530546
\(257\) −0.787993 −0.0491536 −0.0245768 0.999698i \(-0.507824\pi\)
−0.0245768 + 0.999698i \(0.507824\pi\)
\(258\) −30.6558 −1.90854
\(259\) −45.6384 −2.83583
\(260\) −12.6842 −0.786642
\(261\) −5.00698 −0.309924
\(262\) 1.19417 0.0737764
\(263\) −22.2559 −1.37235 −0.686177 0.727434i \(-0.740713\pi\)
−0.686177 + 0.727434i \(0.740713\pi\)
\(264\) −14.6157 −0.899534
\(265\) 35.8861 2.20446
\(266\) −80.7573 −4.95155
\(267\) 1.81390 0.111009
\(268\) 38.7214 2.36528
\(269\) 12.3562 0.753372 0.376686 0.926341i \(-0.377064\pi\)
0.376686 + 0.926341i \(0.377064\pi\)
\(270\) 8.51027 0.517919
\(271\) −30.4307 −1.84853 −0.924267 0.381746i \(-0.875323\pi\)
−0.924267 + 0.381746i \(0.875323\pi\)
\(272\) 28.6171 1.73516
\(273\) −3.30364 −0.199945
\(274\) 58.4515 3.53119
\(275\) 10.1811 0.613943
\(276\) −11.6617 −0.701950
\(277\) −5.42218 −0.325787 −0.162893 0.986644i \(-0.552083\pi\)
−0.162893 + 0.986644i \(0.552083\pi\)
\(278\) −12.4906 −0.749137
\(279\) 7.64215 0.457523
\(280\) −104.530 −6.24684
\(281\) 19.7236 1.17661 0.588306 0.808638i \(-0.299795\pi\)
0.588306 + 0.808638i \(0.299795\pi\)
\(282\) 12.6725 0.754635
\(283\) −5.20677 −0.309511 −0.154755 0.987953i \(-0.549459\pi\)
−0.154755 + 0.987953i \(0.549459\pi\)
\(284\) −39.3648 −2.33587
\(285\) −23.7545 −1.40709
\(286\) 3.93112 0.232452
\(287\) −27.4358 −1.61949
\(288\) 12.4123 0.731404
\(289\) −9.72496 −0.572056
\(290\) 42.6107 2.50219
\(291\) −9.54088 −0.559296
\(292\) −12.9602 −0.758439
\(293\) 6.91198 0.403802 0.201901 0.979406i \(-0.435288\pi\)
0.201901 + 0.979406i \(0.435288\pi\)
\(294\) −27.2216 −1.58760
\(295\) 26.7000 1.55453
\(296\) −85.3046 −4.95823
\(297\) −1.87862 −0.109009
\(298\) 22.3756 1.29618
\(299\) 1.86952 0.108117
\(300\) −26.8312 −1.54910
\(301\) 48.3981 2.78962
\(302\) 32.3188 1.85974
\(303\) −10.7161 −0.615621
\(304\) −78.0783 −4.47810
\(305\) 12.2269 0.700109
\(306\) 7.11114 0.406517
\(307\) −4.23368 −0.241629 −0.120814 0.992675i \(-0.538551\pi\)
−0.120814 + 0.992675i \(0.538551\pi\)
\(308\) 38.7136 2.20591
\(309\) −6.64416 −0.377973
\(310\) −65.0368 −3.69384
\(311\) −5.82561 −0.330340 −0.165170 0.986265i \(-0.552817\pi\)
−0.165170 + 0.986265i \(0.552817\pi\)
\(312\) −6.17496 −0.349589
\(313\) −2.43633 −0.137710 −0.0688549 0.997627i \(-0.521935\pi\)
−0.0688549 + 0.997627i \(0.521935\pi\)
\(314\) 52.6368 2.97046
\(315\) −13.4357 −0.757015
\(316\) −48.8958 −2.75060
\(317\) −14.9599 −0.840232 −0.420116 0.907470i \(-0.638011\pi\)
−0.420116 + 0.907470i \(0.638011\pi\)
\(318\) 29.3106 1.64366
\(319\) −9.40623 −0.526648
\(320\) −37.1373 −2.07604
\(321\) 4.55812 0.254409
\(322\) 25.8484 1.44047
\(323\) −19.8491 −1.10443
\(324\) 4.95092 0.275051
\(325\) 4.30140 0.238599
\(326\) 37.4204 2.07253
\(327\) −13.5708 −0.750465
\(328\) −51.2814 −2.83154
\(329\) −20.0068 −1.10301
\(330\) 15.9876 0.880089
\(331\) 2.82638 0.155352 0.0776760 0.996979i \(-0.475250\pi\)
0.0776760 + 0.996979i \(0.475250\pi\)
\(332\) −23.7230 −1.30197
\(333\) −10.9646 −0.600857
\(334\) −4.96694 −0.271779
\(335\) −25.2457 −1.37932
\(336\) −44.1616 −2.40921
\(337\) −21.6507 −1.17939 −0.589695 0.807626i \(-0.700752\pi\)
−0.589695 + 0.807626i \(0.700752\pi\)
\(338\) −32.6131 −1.77392
\(339\) 6.69475 0.363609
\(340\) −43.1049 −2.33769
\(341\) 14.3567 0.777460
\(342\) −19.4019 −1.04913
\(343\) 13.8401 0.747294
\(344\) 90.4628 4.87743
\(345\) 7.60320 0.409343
\(346\) −25.3661 −1.36369
\(347\) 8.13586 0.436756 0.218378 0.975864i \(-0.429923\pi\)
0.218378 + 0.975864i \(0.429923\pi\)
\(348\) 24.7892 1.32884
\(349\) 18.3719 0.983427 0.491714 0.870757i \(-0.336371\pi\)
0.491714 + 0.870757i \(0.336371\pi\)
\(350\) 59.4721 3.17892
\(351\) −0.793698 −0.0423644
\(352\) 23.3181 1.24286
\(353\) 21.3682 1.13732 0.568658 0.822574i \(-0.307463\pi\)
0.568658 + 0.822574i \(0.307463\pi\)
\(354\) 21.8077 1.15907
\(355\) 25.6651 1.36216
\(356\) −8.98049 −0.475965
\(357\) −11.2268 −0.594184
\(358\) −11.2121 −0.592578
\(359\) 13.3118 0.702567 0.351284 0.936269i \(-0.385745\pi\)
0.351284 + 0.936269i \(0.385745\pi\)
\(360\) −25.1132 −1.32358
\(361\) 35.1559 1.85031
\(362\) 42.4227 2.22969
\(363\) 7.47077 0.392114
\(364\) 16.3561 0.857291
\(365\) 8.44984 0.442285
\(366\) 9.98654 0.522005
\(367\) −9.82996 −0.513120 −0.256560 0.966528i \(-0.582589\pi\)
−0.256560 + 0.966528i \(0.582589\pi\)
\(368\) 24.9909 1.30274
\(369\) −6.59144 −0.343137
\(370\) 93.3118 4.85105
\(371\) −46.2744 −2.40245
\(372\) −37.8357 −1.96169
\(373\) −12.7297 −0.659117 −0.329558 0.944135i \(-0.606900\pi\)
−0.329558 + 0.944135i \(0.606900\pi\)
\(374\) 13.3592 0.690786
\(375\) 1.35392 0.0699164
\(376\) −37.3955 −1.92853
\(377\) −3.97403 −0.204673
\(378\) −10.9738 −0.564434
\(379\) −9.81525 −0.504175 −0.252088 0.967704i \(-0.581117\pi\)
−0.252088 + 0.967704i \(0.581117\pi\)
\(380\) 117.607 6.03309
\(381\) −15.9350 −0.816375
\(382\) 9.27983 0.474797
\(383\) −2.51875 −0.128702 −0.0643511 0.997927i \(-0.520498\pi\)
−0.0643511 + 0.997927i \(0.520498\pi\)
\(384\) −5.50788 −0.281073
\(385\) −25.2406 −1.28638
\(386\) −68.3305 −3.47793
\(387\) 11.6276 0.591065
\(388\) 47.2362 2.39805
\(389\) −16.0953 −0.816062 −0.408031 0.912968i \(-0.633785\pi\)
−0.408031 + 0.912968i \(0.633785\pi\)
\(390\) 6.75458 0.342032
\(391\) 6.35319 0.321295
\(392\) 80.3290 4.05723
\(393\) −0.452946 −0.0228481
\(394\) 2.63646 0.132823
\(395\) 31.8792 1.60402
\(396\) 9.30093 0.467389
\(397\) 10.8550 0.544796 0.272398 0.962185i \(-0.412183\pi\)
0.272398 + 0.962185i \(0.412183\pi\)
\(398\) −66.9591 −3.35636
\(399\) 30.6309 1.53347
\(400\) 57.4992 2.87496
\(401\) 37.9098 1.89313 0.946564 0.322517i \(-0.104529\pi\)
0.946564 + 0.322517i \(0.104529\pi\)
\(402\) −20.6199 −1.02843
\(403\) 6.06555 0.302147
\(404\) 53.0544 2.63955
\(405\) −3.22792 −0.160396
\(406\) −54.9458 −2.72691
\(407\) −20.5984 −1.02102
\(408\) −20.9844 −1.03888
\(409\) 3.74914 0.185383 0.0926915 0.995695i \(-0.470453\pi\)
0.0926915 + 0.995695i \(0.470453\pi\)
\(410\) 56.0950 2.77033
\(411\) −22.1705 −1.09359
\(412\) 32.8948 1.62061
\(413\) −34.4291 −1.69415
\(414\) 6.21006 0.305208
\(415\) 15.4670 0.759243
\(416\) 9.85164 0.483017
\(417\) 4.73765 0.232004
\(418\) −36.4489 −1.78277
\(419\) 36.6087 1.78845 0.894226 0.447615i \(-0.147727\pi\)
0.894226 + 0.447615i \(0.147727\pi\)
\(420\) 66.5191 3.24580
\(421\) −12.4754 −0.608012 −0.304006 0.952670i \(-0.598324\pi\)
−0.304006 + 0.952670i \(0.598324\pi\)
\(422\) −40.9697 −1.99437
\(423\) −4.80663 −0.233706
\(424\) −86.4934 −4.20049
\(425\) 14.6175 0.709052
\(426\) 20.9625 1.01564
\(427\) −15.7663 −0.762987
\(428\) −22.5669 −1.09081
\(429\) −1.49106 −0.0719891
\(430\) −98.9542 −4.77200
\(431\) 1.89641 0.0913469 0.0456735 0.998956i \(-0.485457\pi\)
0.0456735 + 0.998956i \(0.485457\pi\)
\(432\) −10.6098 −0.510464
\(433\) 21.2823 1.02276 0.511381 0.859354i \(-0.329134\pi\)
0.511381 + 0.859354i \(0.329134\pi\)
\(434\) 83.8637 4.02559
\(435\) −16.1621 −0.774913
\(436\) 67.1878 3.21771
\(437\) −17.3339 −0.829194
\(438\) 6.90156 0.329769
\(439\) −9.07839 −0.433288 −0.216644 0.976251i \(-0.569511\pi\)
−0.216644 + 0.976251i \(0.569511\pi\)
\(440\) −47.1782 −2.24913
\(441\) 10.3251 0.491670
\(442\) 5.64409 0.268462
\(443\) 4.20405 0.199740 0.0998702 0.995000i \(-0.468157\pi\)
0.0998702 + 0.995000i \(0.468157\pi\)
\(444\) 54.2849 2.57625
\(445\) 5.85512 0.277559
\(446\) −9.68364 −0.458534
\(447\) −8.48697 −0.401420
\(448\) 47.8878 2.26249
\(449\) 36.0225 1.70001 0.850004 0.526776i \(-0.176599\pi\)
0.850004 + 0.526776i \(0.176599\pi\)
\(450\) 14.2881 0.673550
\(451\) −12.3828 −0.583085
\(452\) −33.1452 −1.55902
\(453\) −12.2584 −0.575950
\(454\) 40.9226 1.92059
\(455\) −10.6639 −0.499930
\(456\) 57.2535 2.68114
\(457\) 8.02783 0.375526 0.187763 0.982214i \(-0.439876\pi\)
0.187763 + 0.982214i \(0.439876\pi\)
\(458\) 36.8638 1.72253
\(459\) −2.69723 −0.125896
\(460\) −37.6429 −1.75511
\(461\) 25.7478 1.19919 0.599597 0.800302i \(-0.295328\pi\)
0.599597 + 0.800302i \(0.295328\pi\)
\(462\) −20.6157 −0.959131
\(463\) 23.4403 1.08936 0.544681 0.838643i \(-0.316651\pi\)
0.544681 + 0.838643i \(0.316651\pi\)
\(464\) −53.1230 −2.46618
\(465\) 24.6682 1.14396
\(466\) 31.6099 1.46430
\(467\) −16.6388 −0.769952 −0.384976 0.922927i \(-0.625790\pi\)
−0.384976 + 0.922927i \(0.625790\pi\)
\(468\) 3.92954 0.181643
\(469\) 32.5538 1.50320
\(470\) 40.9057 1.88684
\(471\) −19.9649 −0.919936
\(472\) −64.3528 −2.96208
\(473\) 21.8439 1.00438
\(474\) 26.0379 1.19596
\(475\) −39.8820 −1.82991
\(476\) 55.5829 2.54764
\(477\) −11.1174 −0.509031
\(478\) −26.0191 −1.19009
\(479\) −14.6877 −0.671100 −0.335550 0.942022i \(-0.608922\pi\)
−0.335550 + 0.942022i \(0.608922\pi\)
\(480\) 40.0660 1.82875
\(481\) −8.70258 −0.396804
\(482\) −34.8580 −1.58774
\(483\) −9.80419 −0.446106
\(484\) −36.9872 −1.68124
\(485\) −30.7971 −1.39843
\(486\) −2.63646 −0.119592
\(487\) −23.8384 −1.08022 −0.540110 0.841594i \(-0.681617\pi\)
−0.540110 + 0.841594i \(0.681617\pi\)
\(488\) −29.4695 −1.33402
\(489\) −14.1934 −0.641849
\(490\) −87.8692 −3.96953
\(491\) 19.9839 0.901859 0.450930 0.892560i \(-0.351093\pi\)
0.450930 + 0.892560i \(0.351093\pi\)
\(492\) 32.6337 1.47124
\(493\) −13.5050 −0.608233
\(494\) −15.3992 −0.692844
\(495\) −6.06404 −0.272558
\(496\) 81.0817 3.64068
\(497\) −33.0947 −1.48450
\(498\) 12.6329 0.566095
\(499\) 35.2779 1.57926 0.789628 0.613586i \(-0.210273\pi\)
0.789628 + 0.613586i \(0.210273\pi\)
\(500\) −6.70318 −0.299775
\(501\) 1.88394 0.0841683
\(502\) 74.1962 3.31154
\(503\) −16.6401 −0.741945 −0.370973 0.928644i \(-0.620976\pi\)
−0.370973 + 0.928644i \(0.620976\pi\)
\(504\) 32.3830 1.44245
\(505\) −34.5905 −1.53926
\(506\) 11.6664 0.518633
\(507\) 12.3700 0.549373
\(508\) 78.8930 3.50031
\(509\) 18.7666 0.831815 0.415907 0.909407i \(-0.363464\pi\)
0.415907 + 0.909407i \(0.363464\pi\)
\(510\) 22.9542 1.01643
\(511\) −10.8959 −0.482007
\(512\) −33.3960 −1.47591
\(513\) 7.35907 0.324911
\(514\) −2.07751 −0.0916351
\(515\) −21.4468 −0.945059
\(516\) −57.5675 −2.53427
\(517\) −9.02985 −0.397132
\(518\) −120.324 −5.28673
\(519\) 9.62129 0.422328
\(520\) −19.9323 −0.874088
\(521\) −0.436656 −0.0191302 −0.00956512 0.999954i \(-0.503045\pi\)
−0.00956512 + 0.999954i \(0.503045\pi\)
\(522\) −13.2007 −0.577779
\(523\) 1.76362 0.0771179 0.0385590 0.999256i \(-0.487723\pi\)
0.0385590 + 0.999256i \(0.487723\pi\)
\(524\) 2.24250 0.0979642
\(525\) −22.5576 −0.984493
\(526\) −58.6767 −2.55843
\(527\) 20.6126 0.897900
\(528\) −19.9318 −0.867422
\(529\) −17.4518 −0.758776
\(530\) 94.6122 4.10969
\(531\) −8.27158 −0.358956
\(532\) −151.651 −6.57492
\(533\) −5.23161 −0.226606
\(534\) 4.78228 0.206950
\(535\) 14.7132 0.636108
\(536\) 60.8477 2.62822
\(537\) 4.25271 0.183518
\(538\) 32.5767 1.40448
\(539\) 19.3969 0.835485
\(540\) 15.9812 0.687720
\(541\) −14.6569 −0.630151 −0.315075 0.949067i \(-0.602030\pi\)
−0.315075 + 0.949067i \(0.602030\pi\)
\(542\) −80.2294 −3.44615
\(543\) −16.0908 −0.690521
\(544\) 33.4789 1.43540
\(545\) −43.8053 −1.87641
\(546\) −8.70991 −0.372750
\(547\) −31.0188 −1.32627 −0.663135 0.748500i \(-0.730774\pi\)
−0.663135 + 0.748500i \(0.730774\pi\)
\(548\) 109.764 4.68890
\(549\) −3.78786 −0.161662
\(550\) 26.8421 1.14455
\(551\) 36.8467 1.56972
\(552\) −18.3254 −0.779981
\(553\) −41.1076 −1.74807
\(554\) −14.2954 −0.607351
\(555\) −35.3928 −1.50234
\(556\) −23.4557 −0.994744
\(557\) 35.8222 1.51783 0.758917 0.651187i \(-0.225729\pi\)
0.758917 + 0.651187i \(0.225729\pi\)
\(558\) 20.1482 0.852942
\(559\) 9.22881 0.390337
\(560\) −142.550 −6.02384
\(561\) −5.06708 −0.213932
\(562\) 52.0005 2.19351
\(563\) −16.9634 −0.714921 −0.357461 0.933928i \(-0.616357\pi\)
−0.357461 + 0.933928i \(0.616357\pi\)
\(564\) 23.7972 1.00204
\(565\) 21.6101 0.909143
\(566\) −13.7275 −0.577008
\(567\) 4.16234 0.174802
\(568\) −61.8587 −2.59553
\(569\) 23.0310 0.965510 0.482755 0.875755i \(-0.339636\pi\)
0.482755 + 0.875755i \(0.339636\pi\)
\(570\) −62.6277 −2.62318
\(571\) 16.5583 0.692944 0.346472 0.938060i \(-0.387380\pi\)
0.346472 + 0.938060i \(0.387380\pi\)
\(572\) 7.38213 0.308662
\(573\) −3.51981 −0.147042
\(574\) −72.3335 −3.01914
\(575\) 12.7652 0.532347
\(576\) 11.5050 0.479376
\(577\) 25.2903 1.05285 0.526424 0.850222i \(-0.323532\pi\)
0.526424 + 0.850222i \(0.323532\pi\)
\(578\) −25.6395 −1.06646
\(579\) 25.9175 1.07710
\(580\) 80.0173 3.32254
\(581\) −19.9444 −0.827431
\(582\) −25.1541 −1.04267
\(583\) −20.8854 −0.864987
\(584\) −20.3660 −0.842750
\(585\) −2.56199 −0.105925
\(586\) 18.2232 0.752792
\(587\) −22.9785 −0.948426 −0.474213 0.880410i \(-0.657267\pi\)
−0.474213 + 0.880410i \(0.657267\pi\)
\(588\) −51.1186 −2.10810
\(589\) −56.2391 −2.31729
\(590\) 70.3934 2.89805
\(591\) −1.00000 −0.0411345
\(592\) −116.332 −4.78123
\(593\) 23.8369 0.978865 0.489432 0.872041i \(-0.337204\pi\)
0.489432 + 0.872041i \(0.337204\pi\)
\(594\) −4.95292 −0.203221
\(595\) −36.2391 −1.48566
\(596\) 42.0184 1.72114
\(597\) 25.3974 1.03944
\(598\) 4.92891 0.201558
\(599\) 11.3883 0.465312 0.232656 0.972559i \(-0.425258\pi\)
0.232656 + 0.972559i \(0.425258\pi\)
\(600\) −42.1632 −1.72131
\(601\) −7.25578 −0.295970 −0.147985 0.988990i \(-0.547279\pi\)
−0.147985 + 0.988990i \(0.547279\pi\)
\(602\) 127.600 5.20057
\(603\) 7.82104 0.318497
\(604\) 60.6905 2.46946
\(605\) 24.1150 0.980415
\(606\) −28.2525 −1.14768
\(607\) 13.7595 0.558483 0.279241 0.960221i \(-0.409917\pi\)
0.279241 + 0.960221i \(0.409917\pi\)
\(608\) −91.3432 −3.70446
\(609\) 20.8407 0.844509
\(610\) 32.2357 1.30519
\(611\) −3.81501 −0.154339
\(612\) 13.3538 0.539794
\(613\) 19.2914 0.779172 0.389586 0.920990i \(-0.372618\pi\)
0.389586 + 0.920990i \(0.372618\pi\)
\(614\) −11.1619 −0.450459
\(615\) −21.2766 −0.857956
\(616\) 60.8355 2.45113
\(617\) −0.403695 −0.0162521 −0.00812607 0.999967i \(-0.502587\pi\)
−0.00812607 + 0.999967i \(0.502587\pi\)
\(618\) −17.5171 −0.704640
\(619\) 38.5935 1.55120 0.775601 0.631223i \(-0.217447\pi\)
0.775601 + 0.631223i \(0.217447\pi\)
\(620\) −122.130 −4.90488
\(621\) −2.35545 −0.0945210
\(622\) −15.3590 −0.615840
\(623\) −7.55008 −0.302487
\(624\) −8.42098 −0.337109
\(625\) −22.7269 −0.909074
\(626\) −6.42330 −0.256727
\(627\) 13.8249 0.552114
\(628\) 98.8449 3.94434
\(629\) −29.5741 −1.17919
\(630\) −35.4226 −1.41127
\(631\) −26.9257 −1.07190 −0.535948 0.844251i \(-0.680046\pi\)
−0.535948 + 0.844251i \(0.680046\pi\)
\(632\) −76.8359 −3.05637
\(633\) 15.5397 0.617646
\(634\) −39.4412 −1.56641
\(635\) −51.4369 −2.04121
\(636\) 55.0415 2.18254
\(637\) 8.19498 0.324697
\(638\) −24.7992 −0.981808
\(639\) −7.95100 −0.314537
\(640\) −17.7790 −0.702776
\(641\) −29.3264 −1.15832 −0.579161 0.815213i \(-0.696620\pi\)
−0.579161 + 0.815213i \(0.696620\pi\)
\(642\) 12.0173 0.474285
\(643\) −18.0648 −0.712406 −0.356203 0.934409i \(-0.615929\pi\)
−0.356203 + 0.934409i \(0.615929\pi\)
\(644\) 48.5398 1.91274
\(645\) 37.5330 1.47786
\(646\) −52.3313 −2.05895
\(647\) 12.4954 0.491246 0.245623 0.969365i \(-0.421007\pi\)
0.245623 + 0.969365i \(0.421007\pi\)
\(648\) 7.78000 0.305627
\(649\) −15.5392 −0.609966
\(650\) 11.3405 0.444810
\(651\) −31.8092 −1.24670
\(652\) 70.2706 2.75201
\(653\) −50.4956 −1.97604 −0.988022 0.154313i \(-0.950684\pi\)
−0.988022 + 0.154313i \(0.950684\pi\)
\(654\) −35.7788 −1.39906
\(655\) −1.46207 −0.0571279
\(656\) −69.9339 −2.73046
\(657\) −2.61774 −0.102128
\(658\) −52.7472 −2.05630
\(659\) −36.2681 −1.41281 −0.706403 0.707810i \(-0.749683\pi\)
−0.706403 + 0.707810i \(0.749683\pi\)
\(660\) 30.0226 1.16863
\(661\) 3.20258 0.124566 0.0622830 0.998059i \(-0.480162\pi\)
0.0622830 + 0.998059i \(0.480162\pi\)
\(662\) 7.45164 0.289616
\(663\) −2.14078 −0.0831412
\(664\) −37.2788 −1.44670
\(665\) 98.8741 3.83417
\(666\) −28.9078 −1.12015
\(667\) −11.7937 −0.456654
\(668\) −9.32725 −0.360882
\(669\) 3.67297 0.142005
\(670\) −66.5592 −2.57141
\(671\) −7.11596 −0.274709
\(672\) −51.6644 −1.99300
\(673\) −6.57663 −0.253511 −0.126755 0.991934i \(-0.540456\pi\)
−0.126755 + 0.991934i \(0.540456\pi\)
\(674\) −57.0812 −2.19869
\(675\) −5.41944 −0.208594
\(676\) −61.2432 −2.35551
\(677\) 12.5092 0.480766 0.240383 0.970678i \(-0.422727\pi\)
0.240383 + 0.970678i \(0.422727\pi\)
\(678\) 17.6504 0.677861
\(679\) 39.7124 1.52402
\(680\) −67.7360 −2.59756
\(681\) −15.5218 −0.594797
\(682\) 37.8509 1.44939
\(683\) −26.6539 −1.01988 −0.509942 0.860209i \(-0.670333\pi\)
−0.509942 + 0.860209i \(0.670333\pi\)
\(684\) −36.4342 −1.39310
\(685\) −71.5644 −2.73433
\(686\) 36.4888 1.39315
\(687\) −13.9823 −0.533458
\(688\) 123.367 4.70331
\(689\) −8.82386 −0.336162
\(690\) 20.0455 0.763121
\(691\) 23.3431 0.888012 0.444006 0.896024i \(-0.353557\pi\)
0.444006 + 0.896024i \(0.353557\pi\)
\(692\) −47.6343 −1.81078
\(693\) 7.81947 0.297037
\(694\) 21.4499 0.814226
\(695\) 15.2927 0.580086
\(696\) 38.9543 1.47656
\(697\) −17.7786 −0.673413
\(698\) 48.4369 1.83336
\(699\) −11.9895 −0.453485
\(700\) 111.681 4.22114
\(701\) −27.5754 −1.04151 −0.520755 0.853706i \(-0.674349\pi\)
−0.520755 + 0.853706i \(0.674349\pi\)
\(702\) −2.09255 −0.0789783
\(703\) 80.6893 3.04325
\(704\) 21.6136 0.814595
\(705\) −15.5154 −0.584343
\(706\) 56.3365 2.12025
\(707\) 44.6039 1.67750
\(708\) 40.9519 1.53907
\(709\) −2.39985 −0.0901282 −0.0450641 0.998984i \(-0.514349\pi\)
−0.0450641 + 0.998984i \(0.514349\pi\)
\(710\) 67.6652 2.53943
\(711\) −9.87609 −0.370382
\(712\) −14.1122 −0.528875
\(713\) 18.0007 0.674132
\(714\) −29.5990 −1.10771
\(715\) −4.81302 −0.179997
\(716\) −21.0548 −0.786856
\(717\) 9.86897 0.368563
\(718\) 35.0959 1.30977
\(719\) −4.38142 −0.163399 −0.0816996 0.996657i \(-0.526035\pi\)
−0.0816996 + 0.996657i \(0.526035\pi\)
\(720\) −34.2476 −1.27633
\(721\) 27.6553 1.02994
\(722\) 92.6871 3.44946
\(723\) 13.2215 0.491713
\(724\) 79.6642 2.96070
\(725\) −27.1350 −1.00777
\(726\) 19.6964 0.731002
\(727\) −0.252666 −0.00937086 −0.00468543 0.999989i \(-0.501491\pi\)
−0.00468543 + 0.999989i \(0.501491\pi\)
\(728\) 25.7023 0.952591
\(729\) 1.00000 0.0370370
\(730\) 22.2777 0.824533
\(731\) 31.3623 1.15998
\(732\) 18.7534 0.693145
\(733\) −10.8395 −0.400365 −0.200182 0.979759i \(-0.564153\pi\)
−0.200182 + 0.979759i \(0.564153\pi\)
\(734\) −25.9163 −0.956588
\(735\) 33.3285 1.22934
\(736\) 29.2367 1.07768
\(737\) 14.6928 0.541216
\(738\) −17.3781 −0.639696
\(739\) 29.3816 1.08082 0.540409 0.841402i \(-0.318270\pi\)
0.540409 + 0.841402i \(0.318270\pi\)
\(740\) 175.227 6.44148
\(741\) 5.84087 0.214570
\(742\) −122.001 −4.47879
\(743\) −22.3588 −0.820264 −0.410132 0.912026i \(-0.634517\pi\)
−0.410132 + 0.912026i \(0.634517\pi\)
\(744\) −59.4559 −2.17976
\(745\) −27.3952 −1.00368
\(746\) −33.5612 −1.22876
\(747\) −4.79162 −0.175316
\(748\) 25.0867 0.917262
\(749\) −18.9724 −0.693238
\(750\) 3.56957 0.130342
\(751\) 42.7935 1.56156 0.780779 0.624808i \(-0.214823\pi\)
0.780779 + 0.624808i \(0.214823\pi\)
\(752\) −50.9974 −1.85968
\(753\) −28.1423 −1.02556
\(754\) −10.4774 −0.381563
\(755\) −39.5691 −1.44007
\(756\) −20.6074 −0.749485
\(757\) 5.86374 0.213121 0.106561 0.994306i \(-0.466016\pi\)
0.106561 + 0.994306i \(0.466016\pi\)
\(758\) −25.8775 −0.939914
\(759\) −4.42501 −0.160618
\(760\) 184.810 6.70375
\(761\) 40.4083 1.46480 0.732400 0.680875i \(-0.238400\pi\)
0.732400 + 0.680875i \(0.238400\pi\)
\(762\) −42.0120 −1.52194
\(763\) 56.4861 2.04493
\(764\) 17.4263 0.630461
\(765\) −8.70643 −0.314782
\(766\) −6.64059 −0.239934
\(767\) −6.56513 −0.237053
\(768\) 8.48874 0.306311
\(769\) 9.80157 0.353454 0.176727 0.984260i \(-0.443449\pi\)
0.176727 + 0.984260i \(0.443449\pi\)
\(770\) −66.5459 −2.39815
\(771\) 0.787993 0.0283789
\(772\) −128.316 −4.61818
\(773\) −24.2122 −0.870854 −0.435427 0.900224i \(-0.643403\pi\)
−0.435427 + 0.900224i \(0.643403\pi\)
\(774\) 30.6558 1.10190
\(775\) 41.4162 1.48771
\(776\) 74.2280 2.66463
\(777\) 45.6384 1.63727
\(778\) −42.4345 −1.52135
\(779\) 48.5069 1.73794
\(780\) 12.6842 0.454168
\(781\) −14.9369 −0.534486
\(782\) 16.7499 0.598977
\(783\) 5.00698 0.178935
\(784\) 109.547 3.91239
\(785\) −64.4451 −2.30015
\(786\) −1.19417 −0.0425948
\(787\) −29.1938 −1.04065 −0.520323 0.853970i \(-0.674188\pi\)
−0.520323 + 0.853970i \(0.674188\pi\)
\(788\) 4.95092 0.176369
\(789\) 22.2559 0.792329
\(790\) 84.0482 2.99030
\(791\) −27.8658 −0.990795
\(792\) 14.6157 0.519346
\(793\) −3.00641 −0.106761
\(794\) 28.6187 1.01564
\(795\) −35.8861 −1.27275
\(796\) −125.740 −4.45675
\(797\) −11.4790 −0.406608 −0.203304 0.979116i \(-0.565168\pi\)
−0.203304 + 0.979116i \(0.565168\pi\)
\(798\) 80.7573 2.85878
\(799\) −12.9646 −0.458654
\(800\) 67.2679 2.37828
\(801\) −1.81390 −0.0640911
\(802\) 99.9478 3.52928
\(803\) −4.91775 −0.173543
\(804\) −38.7214 −1.36560
\(805\) −31.6471 −1.11541
\(806\) 15.9916 0.563280
\(807\) −12.3562 −0.434959
\(808\) 83.3709 2.93298
\(809\) 36.5915 1.28649 0.643244 0.765661i \(-0.277588\pi\)
0.643244 + 0.765661i \(0.277588\pi\)
\(810\) −8.51027 −0.299021
\(811\) 11.8250 0.415231 0.207615 0.978211i \(-0.433430\pi\)
0.207615 + 0.978211i \(0.433430\pi\)
\(812\) −103.181 −3.62094
\(813\) 30.4307 1.06725
\(814\) −54.3068 −1.90345
\(815\) −45.8152 −1.60484
\(816\) −28.6171 −1.00180
\(817\) −85.5684 −2.99366
\(818\) 9.88445 0.345602
\(819\) 3.30364 0.115438
\(820\) 105.339 3.67860
\(821\) 8.91513 0.311140 0.155570 0.987825i \(-0.450279\pi\)
0.155570 + 0.987825i \(0.450279\pi\)
\(822\) −58.4515 −2.03873
\(823\) 23.4592 0.817736 0.408868 0.912594i \(-0.365924\pi\)
0.408868 + 0.912594i \(0.365924\pi\)
\(824\) 51.6916 1.80076
\(825\) −10.1811 −0.354460
\(826\) −90.7710 −3.15833
\(827\) 29.0911 1.01160 0.505799 0.862651i \(-0.331198\pi\)
0.505799 + 0.862651i \(0.331198\pi\)
\(828\) 11.6617 0.405271
\(829\) −32.9347 −1.14387 −0.571934 0.820300i \(-0.693807\pi\)
−0.571934 + 0.820300i \(0.693807\pi\)
\(830\) 40.7780 1.41543
\(831\) 5.42218 0.188093
\(832\) 9.13152 0.316578
\(833\) 27.8491 0.964913
\(834\) 12.4906 0.432515
\(835\) 6.08121 0.210449
\(836\) −68.4462 −2.36726
\(837\) −7.64215 −0.264151
\(838\) 96.5174 3.33414
\(839\) −45.6777 −1.57697 −0.788485 0.615054i \(-0.789134\pi\)
−0.788485 + 0.615054i \(0.789134\pi\)
\(840\) 104.530 3.60661
\(841\) −3.93018 −0.135524
\(842\) −32.8908 −1.13349
\(843\) −19.7236 −0.679317
\(844\) −76.9356 −2.64823
\(845\) 39.9295 1.37362
\(846\) −12.6725 −0.435689
\(847\) −31.0959 −1.06847
\(848\) −117.954 −4.05054
\(849\) 5.20677 0.178696
\(850\) 38.5384 1.32186
\(851\) −25.8266 −0.885325
\(852\) 39.3648 1.34862
\(853\) 12.2106 0.418084 0.209042 0.977907i \(-0.432965\pi\)
0.209042 + 0.977907i \(0.432965\pi\)
\(854\) −41.5674 −1.42241
\(855\) 23.7545 0.812385
\(856\) −35.4621 −1.21207
\(857\) −27.7512 −0.947963 −0.473981 0.880535i \(-0.657184\pi\)
−0.473981 + 0.880535i \(0.657184\pi\)
\(858\) −3.93112 −0.134206
\(859\) −26.1954 −0.893777 −0.446888 0.894590i \(-0.647468\pi\)
−0.446888 + 0.894590i \(0.647468\pi\)
\(860\) −185.823 −6.33651
\(861\) 27.4358 0.935010
\(862\) 4.99981 0.170294
\(863\) −26.1861 −0.891387 −0.445693 0.895186i \(-0.647043\pi\)
−0.445693 + 0.895186i \(0.647043\pi\)
\(864\) −12.4123 −0.422276
\(865\) 31.0567 1.05596
\(866\) 56.1099 1.90669
\(867\) 9.72496 0.330277
\(868\) 157.485 5.34539
\(869\) −18.5535 −0.629383
\(870\) −42.6107 −1.44464
\(871\) 6.20754 0.210335
\(872\) 105.580 3.57541
\(873\) 9.54088 0.322910
\(874\) −45.7002 −1.54583
\(875\) −5.63549 −0.190514
\(876\) 12.9602 0.437885
\(877\) −42.3728 −1.43083 −0.715413 0.698701i \(-0.753762\pi\)
−0.715413 + 0.698701i \(0.753762\pi\)
\(878\) −23.9348 −0.807761
\(879\) −6.91198 −0.233135
\(880\) −64.3383 −2.16884
\(881\) −6.20575 −0.209077 −0.104538 0.994521i \(-0.533337\pi\)
−0.104538 + 0.994521i \(0.533337\pi\)
\(882\) 27.2216 0.916600
\(883\) 20.6647 0.695423 0.347712 0.937602i \(-0.386959\pi\)
0.347712 + 0.937602i \(0.386959\pi\)
\(884\) 10.5989 0.356478
\(885\) −26.7000 −0.897509
\(886\) 11.0838 0.372368
\(887\) 11.7044 0.392994 0.196497 0.980504i \(-0.437043\pi\)
0.196497 + 0.980504i \(0.437043\pi\)
\(888\) 85.3046 2.86264
\(889\) 66.3269 2.22453
\(890\) 15.4368 0.517443
\(891\) 1.87862 0.0629363
\(892\) −18.1846 −0.608865
\(893\) 35.3723 1.18369
\(894\) −22.3756 −0.748351
\(895\) 13.7274 0.458856
\(896\) 22.9257 0.765893
\(897\) −1.86952 −0.0624213
\(898\) 94.9720 3.16926
\(899\) −38.2641 −1.27618
\(900\) 26.8312 0.894375
\(901\) −29.9862 −0.998985
\(902\) −32.6469 −1.08702
\(903\) −48.3981 −1.61059
\(904\) −52.0851 −1.73233
\(905\) −51.9396 −1.72653
\(906\) −32.3188 −1.07372
\(907\) 34.3743 1.14138 0.570691 0.821165i \(-0.306676\pi\)
0.570691 + 0.821165i \(0.306676\pi\)
\(908\) 76.8473 2.55027
\(909\) 10.7161 0.355429
\(910\) −28.1149 −0.931999
\(911\) −5.05022 −0.167321 −0.0836607 0.996494i \(-0.526661\pi\)
−0.0836607 + 0.996494i \(0.526661\pi\)
\(912\) 78.0783 2.58543
\(913\) −9.00166 −0.297911
\(914\) 21.1651 0.700078
\(915\) −12.2269 −0.404208
\(916\) 69.2253 2.28727
\(917\) 1.88532 0.0622586
\(918\) −7.11114 −0.234702
\(919\) −25.3499 −0.836215 −0.418108 0.908397i \(-0.637307\pi\)
−0.418108 + 0.908397i \(0.637307\pi\)
\(920\) −59.1529 −1.95021
\(921\) 4.23368 0.139504
\(922\) 67.8830 2.23561
\(923\) −6.31069 −0.207719
\(924\) −38.7136 −1.27358
\(925\) −59.4221 −1.95379
\(926\) 61.7994 2.03085
\(927\) 6.64416 0.218223
\(928\) −62.1483 −2.04012
\(929\) 24.4656 0.802692 0.401346 0.915927i \(-0.368543\pi\)
0.401346 + 0.915927i \(0.368543\pi\)
\(930\) 65.0368 2.13264
\(931\) −75.9829 −2.49024
\(932\) 59.3592 1.94438
\(933\) 5.82561 0.190722
\(934\) −43.8676 −1.43539
\(935\) −16.3561 −0.534902
\(936\) 6.17496 0.201835
\(937\) −12.9777 −0.423963 −0.211982 0.977274i \(-0.567992\pi\)
−0.211982 + 0.977274i \(0.567992\pi\)
\(938\) 85.8269 2.80235
\(939\) 2.43633 0.0795068
\(940\) 76.8155 2.50545
\(941\) 1.79814 0.0586178 0.0293089 0.999570i \(-0.490669\pi\)
0.0293089 + 0.999570i \(0.490669\pi\)
\(942\) −52.6368 −1.71500
\(943\) −15.5258 −0.505590
\(944\) −87.7598 −2.85634
\(945\) 13.4357 0.437063
\(946\) 57.5907 1.87243
\(947\) 15.5133 0.504114 0.252057 0.967712i \(-0.418893\pi\)
0.252057 + 0.967712i \(0.418893\pi\)
\(948\) 48.8958 1.58806
\(949\) −2.07769 −0.0674447
\(950\) −105.147 −3.41143
\(951\) 14.9599 0.485108
\(952\) 87.3443 2.83085
\(953\) 14.8353 0.480561 0.240281 0.970703i \(-0.422761\pi\)
0.240281 + 0.970703i \(0.422761\pi\)
\(954\) −29.3106 −0.948966
\(955\) −11.3616 −0.367654
\(956\) −48.8605 −1.58026
\(957\) 9.40623 0.304060
\(958\) −38.7237 −1.25110
\(959\) 92.2810 2.97991
\(960\) 37.1373 1.19860
\(961\) 27.4024 0.883949
\(962\) −22.9440 −0.739745
\(963\) −4.55812 −0.146883
\(964\) −65.4586 −2.10828
\(965\) 83.6596 2.69310
\(966\) −25.8484 −0.831657
\(967\) −17.1631 −0.551927 −0.275963 0.961168i \(-0.588997\pi\)
−0.275963 + 0.961168i \(0.588997\pi\)
\(968\) −58.1226 −1.86813
\(969\) 19.8491 0.637645
\(970\) −81.1955 −2.60703
\(971\) 33.9424 1.08926 0.544631 0.838676i \(-0.316670\pi\)
0.544631 + 0.838676i \(0.316670\pi\)
\(972\) −4.95092 −0.158801
\(973\) −19.7197 −0.632184
\(974\) −62.8490 −2.01381
\(975\) −4.30140 −0.137755
\(976\) −40.1884 −1.28640
\(977\) 45.6380 1.46009 0.730044 0.683400i \(-0.239499\pi\)
0.730044 + 0.683400i \(0.239499\pi\)
\(978\) −37.4204 −1.19657
\(979\) −3.40764 −0.108909
\(980\) −165.007 −5.27095
\(981\) 13.5708 0.433281
\(982\) 52.6867 1.68130
\(983\) 4.47090 0.142600 0.0712998 0.997455i \(-0.477285\pi\)
0.0712998 + 0.997455i \(0.477285\pi\)
\(984\) 51.2814 1.63479
\(985\) −3.22792 −0.102850
\(986\) −35.6053 −1.13390
\(987\) 20.0068 0.636824
\(988\) −28.9177 −0.919995
\(989\) 27.3883 0.870897
\(990\) −15.9876 −0.508120
\(991\) 22.8240 0.725027 0.362514 0.931978i \(-0.381919\pi\)
0.362514 + 0.931978i \(0.381919\pi\)
\(992\) 94.8569 3.01171
\(993\) −2.82638 −0.0896925
\(994\) −87.2530 −2.76750
\(995\) 81.9805 2.59896
\(996\) 23.7230 0.751691
\(997\) −26.3149 −0.833401 −0.416701 0.909044i \(-0.636814\pi\)
−0.416701 + 0.909044i \(0.636814\pi\)
\(998\) 93.0088 2.94414
\(999\) 10.9646 0.346905
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 591.2.a.e.1.14 14
3.2 odd 2 1773.2.a.h.1.1 14
4.3 odd 2 9456.2.a.bd.1.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
591.2.a.e.1.14 14 1.1 even 1 trivial
1773.2.a.h.1.1 14 3.2 odd 2
9456.2.a.bd.1.3 14 4.3 odd 2