Properties

Label 588.3.g.d.295.4
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.489494783471841.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.4
Root \(0.0311486 - 1.41387i\) of defining polynomial
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.d.295.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.51951 + 1.30042i) q^{2} -1.73205i q^{3} +(0.617841 - 3.95200i) q^{4} -7.86764 q^{5} +(2.25238 + 2.63187i) q^{6} +(4.20042 + 6.80856i) q^{8} -3.00000 q^{9} +(11.9550 - 10.2312i) q^{10} +11.2993i q^{11} +(-6.84506 - 1.07013i) q^{12} +10.5494 q^{13} +13.6272i q^{15} +(-15.2365 - 4.88341i) q^{16} -25.9378 q^{17} +(4.55854 - 3.90125i) q^{18} -1.33925i q^{19} +(-4.86096 + 31.0929i) q^{20} +(-14.6938 - 17.1694i) q^{22} -11.0460i q^{23} +(11.7928 - 7.27534i) q^{24} +36.8998 q^{25} +(-16.0300 + 13.7186i) q^{26} +5.19615i q^{27} -20.4217 q^{29} +(-17.7210 - 20.7066i) q^{30} +36.9764i q^{31} +(29.5026 - 12.3934i) q^{32} +19.5710 q^{33} +(39.4128 - 33.7299i) q^{34} +(-1.85352 + 11.8560i) q^{36} +24.2482 q^{37} +(1.74158 + 2.03501i) q^{38} -18.2721i q^{39} +(-33.0474 - 53.5673i) q^{40} +77.6185 q^{41} -77.7251i q^{43} +(44.6548 + 6.98118i) q^{44} +23.6029 q^{45} +(14.3644 + 16.7846i) q^{46} +0.795833i q^{47} +(-8.45832 + 26.3905i) q^{48} +(-56.0698 + 47.9851i) q^{50} +44.9255i q^{51} +(6.51787 - 41.6913i) q^{52} +74.4459 q^{53} +(-6.75715 - 7.89562i) q^{54} -88.8989i q^{55} -2.31965 q^{57} +(31.0311 - 26.5567i) q^{58} -64.6353i q^{59} +(53.8545 + 8.41942i) q^{60} +0.601583 q^{61} +(-48.0847 - 56.1861i) q^{62} +(-28.7130 + 57.1976i) q^{64} -82.9991 q^{65} +(-29.7383 + 25.4504i) q^{66} -50.3015i q^{67} +(-16.0254 + 102.506i) q^{68} -19.1323 q^{69} -101.650i q^{71} +(-12.6013 - 20.4257i) q^{72} +100.183 q^{73} +(-36.8455 + 31.5327i) q^{74} -63.9124i q^{75} +(-5.29271 - 0.827444i) q^{76} +(23.7614 + 27.7647i) q^{78} -33.4197i q^{79} +(119.876 + 38.4210i) q^{80} +9.00000 q^{81} +(-117.942 + 100.936i) q^{82} +58.7583i q^{83} +204.069 q^{85} +(101.075 + 118.104i) q^{86} +35.3715i q^{87} +(-76.9320 + 47.4618i) q^{88} +53.9641 q^{89} +(-35.8650 + 30.6936i) q^{90} +(-43.6538 - 6.82468i) q^{92} +64.0450 q^{93} +(-1.03491 - 1.20928i) q^{94} +10.5367i q^{95} +(-21.4660 - 51.1000i) q^{96} +39.9964 q^{97} -33.8979i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{4} - 8 q^{5} + 12 q^{6} - 10 q^{8} - 36 q^{9} - 28 q^{10} - 24 q^{12} + 24 q^{13} - 14 q^{16} + 40 q^{17} - 6 q^{18} + 20 q^{20} - 88 q^{22} + 36 q^{24} + 180 q^{25} - 100 q^{26} + 72 q^{29}+ \cdots + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.51951 + 1.30042i −0.759757 + 0.650208i
\(3\) 1.73205i 0.577350i
\(4\) 0.617841 3.95200i 0.154460 0.987999i
\(5\) −7.86764 −1.57353 −0.786764 0.617253i \(-0.788245\pi\)
−0.786764 + 0.617253i \(0.788245\pi\)
\(6\) 2.25238 + 2.63187i 0.375397 + 0.438646i
\(7\) 0 0
\(8\) 4.20042 + 6.80856i 0.525052 + 0.851070i
\(9\) −3.00000 −0.333333
\(10\) 11.9550 10.2312i 1.19550 1.02312i
\(11\) 11.2993i 1.02721i 0.858027 + 0.513605i \(0.171690\pi\)
−0.858027 + 0.513605i \(0.828310\pi\)
\(12\) −6.84506 1.07013i −0.570421 0.0891777i
\(13\) 10.5494 0.811494 0.405747 0.913985i \(-0.367011\pi\)
0.405747 + 0.913985i \(0.367011\pi\)
\(14\) 0 0
\(15\) 13.6272i 0.908477i
\(16\) −15.2365 4.88341i −0.952284 0.305213i
\(17\) −25.9378 −1.52575 −0.762875 0.646545i \(-0.776213\pi\)
−0.762875 + 0.646545i \(0.776213\pi\)
\(18\) 4.55854 3.90125i 0.253252 0.216736i
\(19\) 1.33925i 0.0704869i −0.999379 0.0352434i \(-0.988779\pi\)
0.999379 0.0352434i \(-0.0112207\pi\)
\(20\) −4.86096 + 31.0929i −0.243048 + 1.55464i
\(21\) 0 0
\(22\) −14.6938 17.1694i −0.667899 0.780429i
\(23\) 11.0460i 0.480261i −0.970741 0.240131i \(-0.922810\pi\)
0.970741 0.240131i \(-0.0771903\pi\)
\(24\) 11.7928 7.27534i 0.491366 0.303139i
\(25\) 36.8998 1.47599
\(26\) −16.0300 + 13.7186i −0.616538 + 0.527639i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −20.4217 −0.704198 −0.352099 0.935963i \(-0.614532\pi\)
−0.352099 + 0.935963i \(0.614532\pi\)
\(30\) −17.7210 20.7066i −0.590699 0.690222i
\(31\) 36.9764i 1.19279i 0.802692 + 0.596394i \(0.203400\pi\)
−0.802692 + 0.596394i \(0.796600\pi\)
\(32\) 29.5026 12.3934i 0.921956 0.387294i
\(33\) 19.5710 0.593060
\(34\) 39.4128 33.7299i 1.15920 0.992055i
\(35\) 0 0
\(36\) −1.85352 + 11.8560i −0.0514868 + 0.329333i
\(37\) 24.2482 0.655357 0.327679 0.944789i \(-0.393734\pi\)
0.327679 + 0.944789i \(0.393734\pi\)
\(38\) 1.74158 + 2.03501i 0.0458311 + 0.0535529i
\(39\) 18.2721i 0.468516i
\(40\) −33.0474 53.5673i −0.826185 1.33918i
\(41\) 77.6185 1.89313 0.946567 0.322508i \(-0.104526\pi\)
0.946567 + 0.322508i \(0.104526\pi\)
\(42\) 0 0
\(43\) 77.7251i 1.80756i −0.427997 0.903780i \(-0.640780\pi\)
0.427997 0.903780i \(-0.359220\pi\)
\(44\) 44.6548 + 6.98118i 1.01488 + 0.158663i
\(45\) 23.6029 0.524510
\(46\) 14.3644 + 16.7846i 0.312270 + 0.364882i
\(47\) 0.795833i 0.0169326i 0.999964 + 0.00846631i \(0.00269494\pi\)
−0.999964 + 0.00846631i \(0.997305\pi\)
\(48\) −8.45832 + 26.3905i −0.176215 + 0.549801i
\(49\) 0 0
\(50\) −56.0698 + 47.9851i −1.12140 + 0.959702i
\(51\) 44.9255i 0.880893i
\(52\) 6.51787 41.6913i 0.125344 0.801755i
\(53\) 74.4459 1.40464 0.702320 0.711862i \(-0.252148\pi\)
0.702320 + 0.711862i \(0.252148\pi\)
\(54\) −6.75715 7.89562i −0.125132 0.146215i
\(55\) 88.8989i 1.61634i
\(56\) 0 0
\(57\) −2.31965 −0.0406956
\(58\) 31.0311 26.5567i 0.535019 0.457875i
\(59\) 64.6353i 1.09551i −0.836637 0.547757i \(-0.815482\pi\)
0.836637 0.547757i \(-0.184518\pi\)
\(60\) 53.8545 + 8.41942i 0.897575 + 0.140324i
\(61\) 0.601583 0.00986201 0.00493101 0.999988i \(-0.498430\pi\)
0.00493101 + 0.999988i \(0.498430\pi\)
\(62\) −48.0847 56.1861i −0.775559 0.906228i
\(63\) 0 0
\(64\) −28.7130 + 57.1976i −0.448641 + 0.893712i
\(65\) −82.9991 −1.27691
\(66\) −29.7383 + 25.4504i −0.450581 + 0.385612i
\(67\) 50.3015i 0.750769i −0.926869 0.375385i \(-0.877511\pi\)
0.926869 0.375385i \(-0.122489\pi\)
\(68\) −16.0254 + 102.506i −0.235668 + 1.50744i
\(69\) −19.1323 −0.277279
\(70\) 0 0
\(71\) 101.650i 1.43168i −0.698262 0.715842i \(-0.746043\pi\)
0.698262 0.715842i \(-0.253957\pi\)
\(72\) −12.6013 20.4257i −0.175017 0.283690i
\(73\) 100.183 1.37237 0.686185 0.727427i \(-0.259284\pi\)
0.686185 + 0.727427i \(0.259284\pi\)
\(74\) −36.8455 + 31.5327i −0.497912 + 0.426118i
\(75\) 63.9124i 0.852165i
\(76\) −5.29271 0.827444i −0.0696410 0.0108874i
\(77\) 0 0
\(78\) 23.7614 + 27.7647i 0.304633 + 0.355958i
\(79\) 33.4197i 0.423034i −0.977374 0.211517i \(-0.932160\pi\)
0.977374 0.211517i \(-0.0678404\pi\)
\(80\) 119.876 + 38.4210i 1.49845 + 0.480262i
\(81\) 9.00000 0.111111
\(82\) −117.942 + 100.936i −1.43832 + 1.23093i
\(83\) 58.7583i 0.707932i 0.935258 + 0.353966i \(0.115167\pi\)
−0.935258 + 0.353966i \(0.884833\pi\)
\(84\) 0 0
\(85\) 204.069 2.40081
\(86\) 101.075 + 118.104i 1.17529 + 1.37331i
\(87\) 35.3715i 0.406569i
\(88\) −76.9320 + 47.4618i −0.874227 + 0.539339i
\(89\) 53.9641 0.606338 0.303169 0.952937i \(-0.401955\pi\)
0.303169 + 0.952937i \(0.401955\pi\)
\(90\) −35.8650 + 30.6936i −0.398500 + 0.341040i
\(91\) 0 0
\(92\) −43.6538 6.82468i −0.474498 0.0741813i
\(93\) 64.0450 0.688656
\(94\) −1.03491 1.20928i −0.0110097 0.0128647i
\(95\) 10.5367i 0.110913i
\(96\) −21.4660 51.1000i −0.223605 0.532292i
\(97\) 39.9964 0.412334 0.206167 0.978517i \(-0.433901\pi\)
0.206167 + 0.978517i \(0.433901\pi\)
\(98\) 0 0
\(99\) 33.8979i 0.342403i
\(100\) 22.7982 145.828i 0.227982 1.45828i
\(101\) −45.8279 −0.453741 −0.226871 0.973925i \(-0.572849\pi\)
−0.226871 + 0.973925i \(0.572849\pi\)
\(102\) −58.4218 68.2649i −0.572763 0.669264i
\(103\) 29.5754i 0.287140i −0.989640 0.143570i \(-0.954142\pi\)
0.989640 0.143570i \(-0.0458582\pi\)
\(104\) 44.3120 + 71.8264i 0.426077 + 0.690638i
\(105\) 0 0
\(106\) −113.122 + 96.8106i −1.06718 + 0.913307i
\(107\) 200.948i 1.87802i 0.343886 + 0.939012i \(0.388257\pi\)
−0.343886 + 0.939012i \(0.611743\pi\)
\(108\) 20.5352 + 3.21040i 0.190140 + 0.0297259i
\(109\) −3.84730 −0.0352963 −0.0176482 0.999844i \(-0.505618\pi\)
−0.0176482 + 0.999844i \(0.505618\pi\)
\(110\) 115.605 + 135.083i 1.05096 + 1.22803i
\(111\) 41.9991i 0.378371i
\(112\) 0 0
\(113\) 67.4772 0.597144 0.298572 0.954387i \(-0.403490\pi\)
0.298572 + 0.954387i \(0.403490\pi\)
\(114\) 3.52474 3.01651i 0.0309188 0.0264606i
\(115\) 86.9061i 0.755705i
\(116\) −12.6174 + 80.7066i −0.108771 + 0.695747i
\(117\) −31.6483 −0.270498
\(118\) 84.0528 + 98.2143i 0.712312 + 0.832324i
\(119\) 0 0
\(120\) −92.7813 + 57.2398i −0.773178 + 0.476998i
\(121\) −6.67429 −0.0551594
\(122\) −0.914113 + 0.782307i −0.00749273 + 0.00641235i
\(123\) 134.439i 1.09300i
\(124\) 146.131 + 22.8455i 1.17847 + 0.184238i
\(125\) −93.6236 −0.748988
\(126\) 0 0
\(127\) 194.583i 1.53215i 0.642751 + 0.766075i \(0.277793\pi\)
−0.642751 + 0.766075i \(0.722207\pi\)
\(128\) −30.7508 124.251i −0.240241 0.970713i
\(129\) −134.624 −1.04360
\(130\) 126.118 107.933i 0.970140 0.830256i
\(131\) 43.2285i 0.329989i −0.986294 0.164994i \(-0.947239\pi\)
0.986294 0.164994i \(-0.0527606\pi\)
\(132\) 12.0918 77.3444i 0.0916042 0.585942i
\(133\) 0 0
\(134\) 65.4129 + 76.4339i 0.488156 + 0.570402i
\(135\) 40.8815i 0.302826i
\(136\) −108.949 176.599i −0.801099 1.29852i
\(137\) −64.3080 −0.469401 −0.234701 0.972068i \(-0.575411\pi\)
−0.234701 + 0.972068i \(0.575411\pi\)
\(138\) 29.0717 24.8799i 0.210665 0.180289i
\(139\) 192.002i 1.38131i −0.723185 0.690654i \(-0.757323\pi\)
0.723185 0.690654i \(-0.242677\pi\)
\(140\) 0 0
\(141\) 1.37842 0.00977605
\(142\) 132.187 + 154.458i 0.930892 + 1.08773i
\(143\) 119.201i 0.833574i
\(144\) 45.7096 + 14.6502i 0.317428 + 0.101738i
\(145\) 160.671 1.10808
\(146\) −152.230 + 130.280i −1.04267 + 0.892326i
\(147\) 0 0
\(148\) 14.9815 95.8288i 0.101227 0.647492i
\(149\) 83.3468 0.559375 0.279687 0.960091i \(-0.409769\pi\)
0.279687 + 0.960091i \(0.409769\pi\)
\(150\) 83.1126 + 97.1157i 0.554084 + 0.647438i
\(151\) 167.386i 1.10852i 0.832344 + 0.554259i \(0.186998\pi\)
−0.832344 + 0.554259i \(0.813002\pi\)
\(152\) 9.11837 5.62541i 0.0599893 0.0370093i
\(153\) 77.8133 0.508584
\(154\) 0 0
\(155\) 290.917i 1.87688i
\(156\) −72.2114 11.2893i −0.462893 0.0723672i
\(157\) −84.8631 −0.540529 −0.270265 0.962786i \(-0.587111\pi\)
−0.270265 + 0.962786i \(0.587111\pi\)
\(158\) 43.4595 + 50.7817i 0.275060 + 0.321403i
\(159\) 128.944i 0.810969i
\(160\) −232.116 + 97.5070i −1.45072 + 0.609419i
\(161\) 0 0
\(162\) −13.6756 + 11.7037i −0.0844174 + 0.0722453i
\(163\) 126.615i 0.776780i −0.921495 0.388390i \(-0.873031\pi\)
0.921495 0.388390i \(-0.126969\pi\)
\(164\) 47.9559 306.748i 0.292414 1.87041i
\(165\) −153.977 −0.933197
\(166\) −76.4102 89.2841i −0.460303 0.537856i
\(167\) 17.8740i 0.107030i −0.998567 0.0535149i \(-0.982958\pi\)
0.998567 0.0535149i \(-0.0170425\pi\)
\(168\) 0 0
\(169\) −57.7098 −0.341478
\(170\) −310.086 + 265.375i −1.82403 + 1.56103i
\(171\) 4.01775i 0.0234956i
\(172\) −307.169 48.0218i −1.78587 0.279196i
\(173\) −21.3963 −0.123678 −0.0618392 0.998086i \(-0.519697\pi\)
−0.0618392 + 0.998086i \(0.519697\pi\)
\(174\) −45.9976 53.7474i −0.264354 0.308893i
\(175\) 0 0
\(176\) 55.1792 172.162i 0.313518 0.978195i
\(177\) −111.952 −0.632495
\(178\) −81.9991 + 70.1757i −0.460669 + 0.394245i
\(179\) 34.8434i 0.194656i −0.995252 0.0973280i \(-0.968970\pi\)
0.995252 0.0973280i \(-0.0310296\pi\)
\(180\) 14.5829 93.2787i 0.0810159 0.518215i
\(181\) 45.6228 0.252059 0.126030 0.992026i \(-0.459777\pi\)
0.126030 + 0.992026i \(0.459777\pi\)
\(182\) 0 0
\(183\) 1.04197i 0.00569384i
\(184\) 75.2074 46.3978i 0.408736 0.252162i
\(185\) −190.776 −1.03122
\(186\) −97.3172 + 83.2851i −0.523211 + 0.447769i
\(187\) 293.079i 1.56727i
\(188\) 3.14513 + 0.491698i 0.0167294 + 0.00261542i
\(189\) 0 0
\(190\) −13.7021 16.0107i −0.0721165 0.0842670i
\(191\) 28.3252i 0.148300i −0.997247 0.0741498i \(-0.976376\pi\)
0.997247 0.0741498i \(-0.0236243\pi\)
\(192\) 99.0691 + 49.7324i 0.515985 + 0.259023i
\(193\) −122.494 −0.634683 −0.317341 0.948311i \(-0.602790\pi\)
−0.317341 + 0.948311i \(0.602790\pi\)
\(194\) −60.7751 + 52.0119i −0.313274 + 0.268103i
\(195\) 143.759i 0.737224i
\(196\) 0 0
\(197\) 131.382 0.666912 0.333456 0.942766i \(-0.391785\pi\)
0.333456 + 0.942766i \(0.391785\pi\)
\(198\) 44.0814 + 51.5083i 0.222633 + 0.260143i
\(199\) 321.715i 1.61666i 0.588732 + 0.808328i \(0.299627\pi\)
−0.588732 + 0.808328i \(0.700373\pi\)
\(200\) 154.995 + 251.235i 0.774973 + 1.25617i
\(201\) −87.1248 −0.433457
\(202\) 69.6361 59.5953i 0.344733 0.295026i
\(203\) 0 0
\(204\) 177.546 + 27.7568i 0.870321 + 0.136063i
\(205\) −610.674 −2.97890
\(206\) 38.4603 + 44.9402i 0.186700 + 0.218156i
\(207\) 33.1380i 0.160087i
\(208\) −160.737 51.5172i −0.772773 0.247679i
\(209\) 15.1326 0.0724048
\(210\) 0 0
\(211\) 149.843i 0.710158i −0.934836 0.355079i \(-0.884454\pi\)
0.934836 0.355079i \(-0.115546\pi\)
\(212\) 45.9957 294.210i 0.216961 1.38778i
\(213\) −176.062 −0.826583
\(214\) −261.316 305.344i −1.22110 1.42684i
\(215\) 611.513i 2.84425i
\(216\) −35.3783 + 21.8260i −0.163789 + 0.101046i
\(217\) 0 0
\(218\) 5.84603 5.00309i 0.0268166 0.0229499i
\(219\) 173.522i 0.792339i
\(220\) −351.328 54.9254i −1.59695 0.249661i
\(221\) −273.628 −1.23814
\(222\) 54.6163 + 63.8182i 0.246019 + 0.287470i
\(223\) 241.710i 1.08390i 0.840410 + 0.541952i \(0.182314\pi\)
−0.840410 + 0.541952i \(0.817686\pi\)
\(224\) 0 0
\(225\) −110.699 −0.491998
\(226\) −102.533 + 87.7484i −0.453684 + 0.388267i
\(227\) 388.566i 1.71174i −0.517189 0.855871i \(-0.673021\pi\)
0.517189 0.855871i \(-0.326979\pi\)
\(228\) −1.43318 + 9.16725i −0.00628586 + 0.0402072i
\(229\) −82.0654 −0.358364 −0.179182 0.983816i \(-0.557345\pi\)
−0.179182 + 0.983816i \(0.557345\pi\)
\(230\) −113.014 132.055i −0.491365 0.574152i
\(231\) 0 0
\(232\) −85.7798 139.043i −0.369740 0.599322i
\(233\) 226.287 0.971191 0.485595 0.874184i \(-0.338603\pi\)
0.485595 + 0.874184i \(0.338603\pi\)
\(234\) 48.0899 41.1559i 0.205513 0.175880i
\(235\) 6.26133i 0.0266440i
\(236\) −255.439 39.9344i −1.08237 0.169213i
\(237\) −57.8847 −0.244239
\(238\) 0 0
\(239\) 174.441i 0.729878i 0.931031 + 0.364939i \(0.118910\pi\)
−0.931031 + 0.364939i \(0.881090\pi\)
\(240\) 66.5470 207.631i 0.277279 0.865128i
\(241\) 346.058 1.43592 0.717962 0.696082i \(-0.245075\pi\)
0.717962 + 0.696082i \(0.245075\pi\)
\(242\) 10.1417 8.67934i 0.0419077 0.0358651i
\(243\) 15.5885i 0.0641500i
\(244\) 0.371683 2.37745i 0.00152329 0.00974366i
\(245\) 0 0
\(246\) 174.827 + 204.282i 0.710678 + 0.830415i
\(247\) 14.1283i 0.0571996i
\(248\) −251.756 + 155.316i −1.01515 + 0.626275i
\(249\) 101.772 0.408725
\(250\) 142.262 121.749i 0.569049 0.486998i
\(251\) 108.787i 0.433414i −0.976237 0.216707i \(-0.930468\pi\)
0.976237 0.216707i \(-0.0695316\pi\)
\(252\) 0 0
\(253\) 124.812 0.493329
\(254\) −253.039 295.671i −0.996215 1.16406i
\(255\) 353.458i 1.38611i
\(256\) 208.305 + 148.813i 0.813690 + 0.581299i
\(257\) 362.184 1.40928 0.704639 0.709566i \(-0.251109\pi\)
0.704639 + 0.709566i \(0.251109\pi\)
\(258\) 204.563 175.067i 0.792879 0.678554i
\(259\) 0 0
\(260\) −51.2803 + 328.012i −0.197232 + 1.26158i
\(261\) 61.2652 0.234733
\(262\) 56.2151 + 65.6864i 0.214561 + 0.250711i
\(263\) 262.474i 0.997999i 0.866602 + 0.499000i \(0.166299\pi\)
−0.866602 + 0.499000i \(0.833701\pi\)
\(264\) 82.2062 + 133.250i 0.311387 + 0.504735i
\(265\) −585.714 −2.21024
\(266\) 0 0
\(267\) 93.4685i 0.350069i
\(268\) −198.791 31.0784i −0.741759 0.115964i
\(269\) 45.9518 0.170824 0.0854122 0.996346i \(-0.472779\pi\)
0.0854122 + 0.996346i \(0.472779\pi\)
\(270\) 53.1629 + 62.1199i 0.196900 + 0.230074i
\(271\) 26.2165i 0.0967400i −0.998829 0.0483700i \(-0.984597\pi\)
0.998829 0.0483700i \(-0.0154027\pi\)
\(272\) 395.202 + 126.665i 1.45295 + 0.465679i
\(273\) 0 0
\(274\) 97.7168 83.6271i 0.356631 0.305208i
\(275\) 416.942i 1.51615i
\(276\) −11.8207 + 75.6106i −0.0428286 + 0.273951i
\(277\) 530.046 1.91352 0.956761 0.290874i \(-0.0939462\pi\)
0.956761 + 0.290874i \(0.0939462\pi\)
\(278\) 249.682 + 291.749i 0.898137 + 1.04946i
\(279\) 110.929i 0.397596i
\(280\) 0 0
\(281\) −268.974 −0.957201 −0.478601 0.878033i \(-0.658856\pi\)
−0.478601 + 0.878033i \(0.658856\pi\)
\(282\) −2.09453 + 1.79252i −0.00742742 + 0.00635646i
\(283\) 58.6271i 0.207163i −0.994621 0.103581i \(-0.966970\pi\)
0.994621 0.103581i \(-0.0330302\pi\)
\(284\) −401.719 62.8033i −1.41450 0.221138i
\(285\) 18.2502 0.0640357
\(286\) −155.011 181.128i −0.541996 0.633313i
\(287\) 0 0
\(288\) −88.5078 + 37.1803i −0.307319 + 0.129098i
\(289\) 383.768 1.32792
\(290\) −244.142 + 208.939i −0.841868 + 0.720479i
\(291\) 69.2758i 0.238061i
\(292\) 61.8972 395.923i 0.211977 1.35590i
\(293\) 202.002 0.689426 0.344713 0.938708i \(-0.387976\pi\)
0.344713 + 0.938708i \(0.387976\pi\)
\(294\) 0 0
\(295\) 508.528i 1.72382i
\(296\) 101.853 + 165.095i 0.344097 + 0.557755i
\(297\) −58.7129 −0.197687
\(298\) −126.647 + 108.385i −0.424989 + 0.363710i
\(299\) 116.529i 0.389729i
\(300\) −252.581 39.4877i −0.841938 0.131626i
\(301\) 0 0
\(302\) −217.671 254.345i −0.720766 0.842204i
\(303\) 79.3762i 0.261968i
\(304\) −6.54011 + 20.4055i −0.0215135 + 0.0671235i
\(305\) −4.73304 −0.0155182
\(306\) −118.238 + 101.190i −0.386400 + 0.330685i
\(307\) 57.8430i 0.188414i 0.995553 + 0.0942068i \(0.0300315\pi\)
−0.995553 + 0.0942068i \(0.969969\pi\)
\(308\) 0 0
\(309\) −51.2261 −0.165780
\(310\) 378.313 + 442.053i 1.22036 + 1.42598i
\(311\) 134.835i 0.433554i −0.976221 0.216777i \(-0.930446\pi\)
0.976221 0.216777i \(-0.0695544\pi\)
\(312\) 124.407 76.7506i 0.398740 0.245995i
\(313\) 122.113 0.390139 0.195069 0.980789i \(-0.437507\pi\)
0.195069 + 0.980789i \(0.437507\pi\)
\(314\) 128.951 110.357i 0.410671 0.351456i
\(315\) 0 0
\(316\) −132.075 20.6481i −0.417958 0.0653420i
\(317\) 453.125 1.42942 0.714708 0.699423i \(-0.246559\pi\)
0.714708 + 0.699423i \(0.246559\pi\)
\(318\) 167.681 + 195.932i 0.527298 + 0.616139i
\(319\) 230.751i 0.723359i
\(320\) 225.904 450.010i 0.705949 1.40628i
\(321\) 348.053 1.08428
\(322\) 0 0
\(323\) 34.7372i 0.107545i
\(324\) 5.56057 35.5680i 0.0171623 0.109778i
\(325\) 389.272 1.19776
\(326\) 164.652 + 192.394i 0.505069 + 0.590164i
\(327\) 6.66372i 0.0203784i
\(328\) 326.030 + 528.470i 0.993994 + 1.61119i
\(329\) 0 0
\(330\) 233.971 200.235i 0.709002 0.606771i
\(331\) 55.4245i 0.167446i −0.996489 0.0837228i \(-0.973319\pi\)
0.996489 0.0837228i \(-0.0266810\pi\)
\(332\) 232.213 + 36.3033i 0.699436 + 0.109347i
\(333\) −72.7446 −0.218452
\(334\) 23.2436 + 27.1597i 0.0695916 + 0.0813166i
\(335\) 395.755i 1.18136i
\(336\) 0 0
\(337\) 230.227 0.683167 0.341584 0.939851i \(-0.389037\pi\)
0.341584 + 0.939851i \(0.389037\pi\)
\(338\) 87.6908 75.0467i 0.259440 0.222032i
\(339\) 116.874i 0.344761i
\(340\) 126.082 806.480i 0.370830 2.37200i
\(341\) −417.808 −1.22524
\(342\) −5.22474 6.10503i −0.0152770 0.0178510i
\(343\) 0 0
\(344\) 529.196 326.478i 1.53836 0.949064i
\(345\) 150.526 0.436306
\(346\) 32.5120 27.8241i 0.0939654 0.0804166i
\(347\) 82.1713i 0.236805i −0.992966 0.118402i \(-0.962223\pi\)
0.992966 0.118402i \(-0.0377773\pi\)
\(348\) 139.788 + 21.8540i 0.401689 + 0.0627987i
\(349\) −211.150 −0.605015 −0.302508 0.953147i \(-0.597824\pi\)
−0.302508 + 0.953147i \(0.597824\pi\)
\(350\) 0 0
\(351\) 54.8164i 0.156172i
\(352\) 140.037 + 333.359i 0.397833 + 0.947042i
\(353\) 72.9554 0.206673 0.103336 0.994646i \(-0.467048\pi\)
0.103336 + 0.994646i \(0.467048\pi\)
\(354\) 170.112 145.584i 0.480543 0.411253i
\(355\) 799.743i 2.25280i
\(356\) 33.3412 213.266i 0.0936551 0.599061i
\(357\) 0 0
\(358\) 45.3109 + 52.9451i 0.126567 + 0.147891i
\(359\) 273.505i 0.761852i −0.924605 0.380926i \(-0.875605\pi\)
0.924605 0.380926i \(-0.124395\pi\)
\(360\) 99.1422 + 160.702i 0.275395 + 0.446394i
\(361\) 359.206 0.995032
\(362\) −69.3244 + 59.3285i −0.191504 + 0.163891i
\(363\) 11.5602i 0.0318463i
\(364\) 0 0
\(365\) −788.205 −2.15947
\(366\) 1.35500 + 1.58329i 0.00370217 + 0.00432593i
\(367\) 182.607i 0.497568i 0.968559 + 0.248784i \(0.0800308\pi\)
−0.968559 + 0.248784i \(0.919969\pi\)
\(368\) −53.9422 + 168.303i −0.146582 + 0.457345i
\(369\) −232.855 −0.631044
\(370\) 289.887 248.088i 0.783479 0.670509i
\(371\) 0 0
\(372\) 39.5697 253.106i 0.106370 0.680391i
\(373\) −237.665 −0.637172 −0.318586 0.947894i \(-0.603208\pi\)
−0.318586 + 0.947894i \(0.603208\pi\)
\(374\) 381.124 + 445.337i 1.01905 + 1.19074i
\(375\) 162.161i 0.432429i
\(376\) −5.41848 + 3.34283i −0.0144108 + 0.00889051i
\(377\) −215.437 −0.571452
\(378\) 0 0
\(379\) 360.021i 0.949923i 0.880006 + 0.474962i \(0.157538\pi\)
−0.880006 + 0.474962i \(0.842462\pi\)
\(380\) 41.6412 + 6.51004i 0.109582 + 0.0171317i
\(381\) 337.028 0.884587
\(382\) 36.8345 + 43.0405i 0.0964255 + 0.112672i
\(383\) 317.683i 0.829460i −0.909945 0.414730i \(-0.863876\pi\)
0.909945 0.414730i \(-0.136124\pi\)
\(384\) −215.210 + 53.2620i −0.560442 + 0.138703i
\(385\) 0 0
\(386\) 186.131 159.293i 0.482204 0.412676i
\(387\) 233.175i 0.602520i
\(388\) 24.7114 158.066i 0.0636893 0.407386i
\(389\) −248.549 −0.638945 −0.319472 0.947596i \(-0.603506\pi\)
−0.319472 + 0.947596i \(0.603506\pi\)
\(390\) −186.946 218.443i −0.479348 0.560111i
\(391\) 286.509i 0.732759i
\(392\) 0 0
\(393\) −74.8740 −0.190519
\(394\) −199.636 + 170.851i −0.506691 + 0.433631i
\(395\) 262.934i 0.665657i
\(396\) −133.964 20.9435i −0.338294 0.0528877i
\(397\) −356.666 −0.898402 −0.449201 0.893431i \(-0.648291\pi\)
−0.449201 + 0.893431i \(0.648291\pi\)
\(398\) −418.363 488.850i −1.05116 1.22827i
\(399\) 0 0
\(400\) −562.226 180.197i −1.40556 0.450493i
\(401\) −306.242 −0.763695 −0.381848 0.924225i \(-0.624712\pi\)
−0.381848 + 0.924225i \(0.624712\pi\)
\(402\) 132.387 113.298i 0.329322 0.281837i
\(403\) 390.080i 0.967939i
\(404\) −28.3144 + 181.112i −0.0700850 + 0.448296i
\(405\) −70.8088 −0.174837
\(406\) 0 0
\(407\) 273.988i 0.673189i
\(408\) −305.878 + 188.706i −0.749701 + 0.462515i
\(409\) 273.347 0.668331 0.334166 0.942514i \(-0.391546\pi\)
0.334166 + 0.942514i \(0.391546\pi\)
\(410\) 927.928 794.130i 2.26324 1.93690i
\(411\) 111.385i 0.271009i
\(412\) −116.882 18.2729i −0.283694 0.0443517i
\(413\) 0 0
\(414\) −43.0932 50.3537i −0.104090 0.121627i
\(415\) 462.290i 1.11395i
\(416\) 311.235 130.743i 0.748162 0.314287i
\(417\) −332.557 −0.797498
\(418\) −22.9942 + 19.6787i −0.0550100 + 0.0470781i
\(419\) 444.010i 1.05969i −0.848094 0.529845i \(-0.822250\pi\)
0.848094 0.529845i \(-0.177750\pi\)
\(420\) 0 0
\(421\) −650.471 −1.54506 −0.772530 0.634978i \(-0.781009\pi\)
−0.772530 + 0.634978i \(0.781009\pi\)
\(422\) 194.859 + 227.689i 0.461750 + 0.539547i
\(423\) 2.38750i 0.00564421i
\(424\) 312.704 + 506.869i 0.737509 + 1.19545i
\(425\) −957.099 −2.25200
\(426\) 267.529 228.954i 0.628002 0.537451i
\(427\) 0 0
\(428\) 794.148 + 124.154i 1.85548 + 0.290080i
\(429\) 206.462 0.481264
\(430\) −795.221 929.203i −1.84935 2.16094i
\(431\) 624.972i 1.45005i −0.688721 0.725026i \(-0.741828\pi\)
0.688721 0.725026i \(-0.258172\pi\)
\(432\) 25.3750 79.1714i 0.0587383 0.183267i
\(433\) 440.222 1.01668 0.508339 0.861157i \(-0.330260\pi\)
0.508339 + 0.861157i \(0.330260\pi\)
\(434\) 0 0
\(435\) 278.290i 0.639748i
\(436\) −2.37702 + 15.2045i −0.00545188 + 0.0348728i
\(437\) −14.7934 −0.0338521
\(438\) 225.651 + 263.669i 0.515185 + 0.601985i
\(439\) 514.977i 1.17307i 0.809925 + 0.586534i \(0.199508\pi\)
−0.809925 + 0.586534i \(0.800492\pi\)
\(440\) 605.274 373.412i 1.37562 0.848665i
\(441\) 0 0
\(442\) 415.782 355.830i 0.940683 0.805046i
\(443\) 457.342i 1.03237i −0.856476 0.516187i \(-0.827351\pi\)
0.856476 0.516187i \(-0.172649\pi\)
\(444\) −165.980 25.9488i −0.373830 0.0584432i
\(445\) −424.570 −0.954090
\(446\) −314.324 367.282i −0.704762 0.823503i
\(447\) 144.361i 0.322955i
\(448\) 0 0
\(449\) −188.955 −0.420835 −0.210417 0.977612i \(-0.567482\pi\)
−0.210417 + 0.977612i \(0.567482\pi\)
\(450\) 168.209 143.955i 0.373798 0.319901i
\(451\) 877.035i 1.94464i
\(452\) 41.6902 266.670i 0.0922350 0.589977i
\(453\) 289.921 0.640003
\(454\) 505.297 + 590.431i 1.11299 + 1.30051i
\(455\) 0 0
\(456\) −9.74350 15.7935i −0.0213673 0.0346348i
\(457\) 789.509 1.72759 0.863796 0.503842i \(-0.168081\pi\)
0.863796 + 0.503842i \(0.168081\pi\)
\(458\) 124.699 106.719i 0.272269 0.233011i
\(459\) 134.777i 0.293631i
\(460\) 343.452 + 53.6942i 0.746636 + 0.116726i
\(461\) 359.278 0.779344 0.389672 0.920954i \(-0.372588\pi\)
0.389672 + 0.920954i \(0.372588\pi\)
\(462\) 0 0
\(463\) 865.525i 1.86939i 0.355457 + 0.934693i \(0.384325\pi\)
−0.355457 + 0.934693i \(0.615675\pi\)
\(464\) 311.157 + 99.7278i 0.670596 + 0.214930i
\(465\) −503.883 −1.08362
\(466\) −343.847 + 294.268i −0.737869 + 0.631476i
\(467\) 516.607i 1.10622i −0.833107 0.553112i \(-0.813440\pi\)
0.833107 0.553112i \(-0.186560\pi\)
\(468\) −19.5536 + 125.074i −0.0417812 + 0.267252i
\(469\) 0 0
\(470\) 8.14233 + 9.51417i 0.0173241 + 0.0202429i
\(471\) 146.987i 0.312075i
\(472\) 440.074 271.495i 0.932359 0.575202i
\(473\) 878.240 1.85674
\(474\) 87.9565 75.2741i 0.185562 0.158806i
\(475\) 49.4181i 0.104038i
\(476\) 0 0
\(477\) −223.338 −0.468213
\(478\) −226.846 265.065i −0.474572 0.554530i
\(479\) 717.541i 1.49800i −0.662572 0.748999i \(-0.730535\pi\)
0.662572 0.748999i \(-0.269465\pi\)
\(480\) 168.887 + 402.037i 0.351848 + 0.837576i
\(481\) 255.805 0.531818
\(482\) −525.839 + 450.019i −1.09095 + 0.933649i
\(483\) 0 0
\(484\) −4.12365 + 26.3768i −0.00851994 + 0.0544974i
\(485\) −314.678 −0.648820
\(486\) 20.2715 + 23.6869i 0.0417108 + 0.0487384i
\(487\) 901.181i 1.85047i 0.379389 + 0.925237i \(0.376134\pi\)
−0.379389 + 0.925237i \(0.623866\pi\)
\(488\) 2.52690 + 4.09591i 0.00517807 + 0.00839326i
\(489\) −219.304 −0.448474
\(490\) 0 0
\(491\) 475.042i 0.967499i 0.875206 + 0.483750i \(0.160725\pi\)
−0.875206 + 0.483750i \(0.839275\pi\)
\(492\) −531.303 83.0621i −1.07988 0.168825i
\(493\) 529.694 1.07443
\(494\) 18.3727 + 21.4682i 0.0371916 + 0.0434578i
\(495\) 266.697i 0.538781i
\(496\) 180.571 563.393i 0.364055 1.13587i
\(497\) 0 0
\(498\) −154.645 + 132.346i −0.310531 + 0.265756i
\(499\) 45.6443i 0.0914715i −0.998954 0.0457358i \(-0.985437\pi\)
0.998954 0.0457358i \(-0.0145632\pi\)
\(500\) −57.8445 + 370.000i −0.115689 + 0.740000i
\(501\) −30.9586 −0.0617937
\(502\) 141.468 + 165.303i 0.281809 + 0.329289i
\(503\) 621.019i 1.23463i 0.786716 + 0.617316i \(0.211780\pi\)
−0.786716 + 0.617316i \(0.788220\pi\)
\(504\) 0 0
\(505\) 360.557 0.713975
\(506\) −189.654 + 162.308i −0.374810 + 0.320766i
\(507\) 99.9563i 0.197152i
\(508\) 768.991 + 120.221i 1.51376 + 0.236656i
\(509\) 298.051 0.585561 0.292781 0.956180i \(-0.405419\pi\)
0.292781 + 0.956180i \(0.405419\pi\)
\(510\) 459.642 + 537.084i 0.901259 + 1.05311i
\(511\) 0 0
\(512\) −510.040 + 44.7596i −0.996171 + 0.0874210i
\(513\) 6.95895 0.0135652
\(514\) −550.344 + 470.990i −1.07071 + 0.916323i
\(515\) 232.689i 0.451823i
\(516\) −83.1762 + 532.033i −0.161194 + 1.03107i
\(517\) −8.99236 −0.0173933
\(518\) 0 0
\(519\) 37.0596i 0.0714057i
\(520\) −348.631 565.104i −0.670444 1.08674i
\(521\) −527.391 −1.01227 −0.506134 0.862455i \(-0.668926\pi\)
−0.506134 + 0.862455i \(0.668926\pi\)
\(522\) −93.0933 + 79.6702i −0.178340 + 0.152625i
\(523\) 320.159i 0.612160i −0.952006 0.306080i \(-0.900983\pi\)
0.952006 0.306080i \(-0.0990174\pi\)
\(524\) −170.839 26.7084i −0.326029 0.0509702i
\(525\) 0 0
\(526\) −341.325 398.832i −0.648907 0.758236i
\(527\) 959.085i 1.81990i
\(528\) −298.194 95.5731i −0.564761 0.181010i
\(529\) 406.986 0.769349
\(530\) 890.000 761.671i 1.67924 1.43712i
\(531\) 193.906i 0.365171i
\(532\) 0 0
\(533\) 818.830 1.53627
\(534\) 121.548 + 142.027i 0.227618 + 0.265967i
\(535\) 1580.99i 2.95512i
\(536\) 342.481 211.287i 0.638957 0.394193i
\(537\) −60.3506 −0.112385
\(538\) −69.8243 + 59.7564i −0.129785 + 0.111071i
\(539\) 0 0
\(540\) −161.563 25.2583i −0.299192 0.0467746i
\(541\) −788.644 −1.45775 −0.728876 0.684646i \(-0.759957\pi\)
−0.728876 + 0.684646i \(0.759957\pi\)
\(542\) 34.0924 + 39.8364i 0.0629011 + 0.0734989i
\(543\) 79.0209i 0.145527i
\(544\) −765.231 + 321.458i −1.40668 + 0.590915i
\(545\) 30.2692 0.0555398
\(546\) 0 0
\(547\) 920.537i 1.68288i −0.540348 0.841441i \(-0.681708\pi\)
0.540348 0.841441i \(-0.318292\pi\)
\(548\) −39.7321 + 254.145i −0.0725039 + 0.463768i
\(549\) −1.80475 −0.00328734
\(550\) −542.198 633.549i −0.985815 1.15191i
\(551\) 27.3498i 0.0496367i
\(552\) −80.3634 130.263i −0.145586 0.235984i
\(553\) 0 0
\(554\) −805.412 + 689.279i −1.45381 + 1.24419i
\(555\) 330.434i 0.595377i
\(556\) −758.790 118.627i −1.36473 0.213357i
\(557\) −119.959 −0.215367 −0.107683 0.994185i \(-0.534343\pi\)
−0.107683 + 0.994185i \(0.534343\pi\)
\(558\) 144.254 + 168.558i 0.258520 + 0.302076i
\(559\) 819.955i 1.46682i
\(560\) 0 0
\(561\) −507.627 −0.904861
\(562\) 408.709 349.777i 0.727240 0.622379i
\(563\) 40.0022i 0.0710518i 0.999369 + 0.0355259i \(0.0113106\pi\)
−0.999369 + 0.0355259i \(0.988689\pi\)
\(564\) 0.851647 5.44752i 0.00151001 0.00965873i
\(565\) −530.887 −0.939623
\(566\) 76.2396 + 89.0847i 0.134699 + 0.157393i
\(567\) 0 0
\(568\) 692.087 426.971i 1.21846 0.751709i
\(569\) −916.184 −1.61016 −0.805082 0.593163i \(-0.797879\pi\)
−0.805082 + 0.593163i \(0.797879\pi\)
\(570\) −27.7314 + 23.7328i −0.0486516 + 0.0416365i
\(571\) 673.478i 1.17947i −0.807596 0.589736i \(-0.799232\pi\)
0.807596 0.589736i \(-0.200768\pi\)
\(572\) 471.082 + 73.6474i 0.823570 + 0.128754i
\(573\) −49.0607 −0.0856208
\(574\) 0 0
\(575\) 407.596i 0.708862i
\(576\) 86.1390 171.593i 0.149547 0.297904i
\(577\) 143.186 0.248157 0.124078 0.992272i \(-0.460403\pi\)
0.124078 + 0.992272i \(0.460403\pi\)
\(578\) −583.140 + 499.057i −1.00889 + 0.863421i
\(579\) 212.165i 0.366434i
\(580\) 99.2691 634.971i 0.171154 1.09478i
\(581\) 0 0
\(582\) 90.0873 + 105.266i 0.154789 + 0.180869i
\(583\) 841.187i 1.44286i
\(584\) 420.811 + 682.103i 0.720566 + 1.16798i
\(585\) 248.997 0.425636
\(586\) −306.944 + 262.686i −0.523796 + 0.448270i
\(587\) 221.611i 0.377532i 0.982022 + 0.188766i \(0.0604487\pi\)
−0.982022 + 0.188766i \(0.939551\pi\)
\(588\) 0 0
\(589\) 49.5207 0.0840758
\(590\) −661.297 772.715i −1.12084 1.30969i
\(591\) 227.560i 0.385042i
\(592\) −369.459 118.414i −0.624086 0.200024i
\(593\) −207.246 −0.349488 −0.174744 0.984614i \(-0.555910\pi\)
−0.174744 + 0.984614i \(0.555910\pi\)
\(594\) 89.2150 76.3512i 0.150194 0.128537i
\(595\) 0 0
\(596\) 51.4951 329.386i 0.0864012 0.552662i
\(597\) 557.226 0.933377
\(598\) 151.536 + 177.067i 0.253405 + 0.296099i
\(599\) 417.051i 0.696246i −0.937449 0.348123i \(-0.886819\pi\)
0.937449 0.348123i \(-0.113181\pi\)
\(600\) 435.151 268.459i 0.725252 0.447431i
\(601\) −421.432 −0.701218 −0.350609 0.936522i \(-0.614025\pi\)
−0.350609 + 0.936522i \(0.614025\pi\)
\(602\) 0 0
\(603\) 150.905i 0.250256i
\(604\) 661.509 + 103.418i 1.09521 + 0.171222i
\(605\) 52.5109 0.0867949
\(606\) −103.222 120.613i −0.170333 0.199032i
\(607\) 73.9674i 0.121857i −0.998142 0.0609287i \(-0.980594\pi\)
0.998142 0.0609287i \(-0.0194062\pi\)
\(608\) −16.5979 39.5114i −0.0272992 0.0649858i
\(609\) 0 0
\(610\) 7.19192 6.15492i 0.0117900 0.0100900i
\(611\) 8.39557i 0.0137407i
\(612\) 48.0763 307.518i 0.0785560 0.502480i
\(613\) −43.3126 −0.0706568 −0.0353284 0.999376i \(-0.511248\pi\)
−0.0353284 + 0.999376i \(0.511248\pi\)
\(614\) −75.2199 87.8932i −0.122508 0.143149i
\(615\) 1057.72i 1.71987i
\(616\) 0 0
\(617\) 97.1444 0.157446 0.0787231 0.996897i \(-0.474916\pi\)
0.0787231 + 0.996897i \(0.474916\pi\)
\(618\) 77.8387 66.6152i 0.125953 0.107792i
\(619\) 802.809i 1.29695i 0.761238 + 0.648473i \(0.224592\pi\)
−0.761238 + 0.648473i \(0.775408\pi\)
\(620\) −1149.70 179.741i −1.85436 0.289904i
\(621\) 57.3968 0.0924263
\(622\) 175.342 + 204.884i 0.281900 + 0.329395i
\(623\) 0 0
\(624\) −89.2303 + 278.404i −0.142997 + 0.446160i
\(625\) −185.899 −0.297438
\(626\) −185.553 + 158.798i −0.296411 + 0.253671i
\(627\) 26.2104i 0.0418029i
\(628\) −52.4319 + 335.379i −0.0834903 + 0.534042i
\(629\) −628.944 −0.999912
\(630\) 0 0
\(631\) 810.549i 1.28455i −0.766475 0.642274i \(-0.777991\pi\)
0.766475 0.642274i \(-0.222009\pi\)
\(632\) 227.540 140.377i 0.360032 0.222115i
\(633\) −259.536 −0.410010
\(634\) −688.530 + 589.251i −1.08601 + 0.929417i
\(635\) 1530.91i 2.41088i
\(636\) −509.586 79.6670i −0.801236 0.125263i
\(637\) 0 0
\(638\) 300.073 + 350.630i 0.470333 + 0.549576i
\(639\) 304.949i 0.477228i
\(640\) 241.937 + 977.565i 0.378026 + 1.52745i
\(641\) −622.415 −0.971006 −0.485503 0.874235i \(-0.661364\pi\)
−0.485503 + 0.874235i \(0.661364\pi\)
\(642\) −528.871 + 452.613i −0.823787 + 0.705005i
\(643\) 867.679i 1.34942i −0.738081 0.674712i \(-0.764268\pi\)
0.738081 0.674712i \(-0.235732\pi\)
\(644\) 0 0
\(645\) 1059.17 1.64213
\(646\) −45.1727 52.7836i −0.0699268 0.0817083i
\(647\) 58.1580i 0.0898887i −0.998989 0.0449443i \(-0.985689\pi\)
0.998989 0.0449443i \(-0.0143110\pi\)
\(648\) 37.8038 + 61.2770i 0.0583391 + 0.0945633i
\(649\) 730.334 1.12532
\(650\) −591.503 + 506.215i −0.910005 + 0.778792i
\(651\) 0 0
\(652\) −500.383 78.2281i −0.767458 0.119982i
\(653\) 513.368 0.786169 0.393085 0.919502i \(-0.371408\pi\)
0.393085 + 0.919502i \(0.371408\pi\)
\(654\) −8.66560 10.1256i −0.0132502 0.0154826i
\(655\) 340.107i 0.519247i
\(656\) −1182.64 379.043i −1.80280 0.577809i
\(657\) −300.549 −0.457457
\(658\) 0 0
\(659\) 283.158i 0.429679i −0.976649 0.214839i \(-0.931077\pi\)
0.976649 0.214839i \(-0.0689228\pi\)
\(660\) −95.1336 + 608.518i −0.144142 + 0.921997i
\(661\) −726.368 −1.09889 −0.549446 0.835529i \(-0.685161\pi\)
−0.549446 + 0.835529i \(0.685161\pi\)
\(662\) 72.0748 + 84.2182i 0.108874 + 0.127218i
\(663\) 473.938i 0.714839i
\(664\) −400.060 + 246.810i −0.602500 + 0.371701i
\(665\) 0 0
\(666\) 110.536 94.5982i 0.165971 0.142039i
\(667\) 225.579i 0.338199i
\(668\) −70.6379 11.0433i −0.105745 0.0165319i
\(669\) 418.655 0.625792
\(670\) −514.645 601.354i −0.768127 0.897544i
\(671\) 6.79747i 0.0101304i
\(672\) 0 0
\(673\) 628.881 0.934444 0.467222 0.884140i \(-0.345255\pi\)
0.467222 + 0.884140i \(0.345255\pi\)
\(674\) −349.833 + 299.391i −0.519041 + 0.444200i
\(675\) 191.737i 0.284055i
\(676\) −35.6555 + 228.069i −0.0527448 + 0.337380i
\(677\) 883.675 1.30528 0.652640 0.757668i \(-0.273661\pi\)
0.652640 + 0.757668i \(0.273661\pi\)
\(678\) 151.985 + 177.592i 0.224166 + 0.261934i
\(679\) 0 0
\(680\) 857.175 + 1389.42i 1.26055 + 2.04326i
\(681\) −673.015 −0.988275
\(682\) 634.864 543.323i 0.930886 0.796662i
\(683\) 115.751i 0.169474i −0.996403 0.0847369i \(-0.972995\pi\)
0.996403 0.0847369i \(-0.0270050\pi\)
\(684\) 15.8781 + 2.48233i 0.0232137 + 0.00362914i
\(685\) 505.952 0.738616
\(686\) 0 0
\(687\) 142.141i 0.206902i
\(688\) −379.564 + 1184.26i −0.551692 + 1.72131i
\(689\) 785.361 1.13986
\(690\) −228.726 + 195.746i −0.331487 + 0.283690i
\(691\) 301.211i 0.435906i −0.975959 0.217953i \(-0.930062\pi\)
0.975959 0.217953i \(-0.0699380\pi\)
\(692\) −13.2195 + 84.5583i −0.0191034 + 0.122194i
\(693\) 0 0
\(694\) 106.857 + 124.860i 0.153972 + 0.179914i
\(695\) 1510.60i 2.17353i
\(696\) −240.829 + 148.575i −0.346018 + 0.213470i
\(697\) −2013.25 −2.88845
\(698\) 320.846 274.583i 0.459665 0.393386i
\(699\) 391.941i 0.560717i
\(700\) 0 0
\(701\) −241.158 −0.344020 −0.172010 0.985095i \(-0.555026\pi\)
−0.172010 + 0.985095i \(0.555026\pi\)
\(702\) −71.2841 83.2942i −0.101544 0.118653i
\(703\) 32.4744i 0.0461941i
\(704\) −646.293 324.437i −0.918030 0.460848i
\(705\) −10.8449 −0.0153829
\(706\) −110.857 + 94.8723i −0.157021 + 0.134380i
\(707\) 0 0
\(708\) −69.1684 + 442.433i −0.0976955 + 0.624905i
\(709\) 720.401 1.01608 0.508040 0.861333i \(-0.330370\pi\)
0.508040 + 0.861333i \(0.330370\pi\)
\(710\) −1040.00 1215.22i −1.46479 1.71158i
\(711\) 100.259i 0.141011i
\(712\) 226.672 + 367.418i 0.318359 + 0.516036i
\(713\) 408.442 0.572850
\(714\) 0 0
\(715\) 937.832i 1.31165i
\(716\) −137.701 21.5277i −0.192320 0.0300666i
\(717\) 302.140 0.421395
\(718\) 355.670 + 415.594i 0.495362 + 0.578822i
\(719\) 392.544i 0.545958i 0.962020 + 0.272979i \(0.0880089\pi\)
−0.962020 + 0.272979i \(0.911991\pi\)
\(720\) −359.627 115.263i −0.499482 0.160087i
\(721\) 0 0
\(722\) −545.819 + 467.117i −0.755982 + 0.646977i
\(723\) 599.390i 0.829031i
\(724\) 28.1876 180.301i 0.0389332 0.249034i
\(725\) −753.558 −1.03939
\(726\) −15.0331 17.5659i −0.0207067 0.0241954i
\(727\) 795.097i 1.09367i 0.837241 + 0.546835i \(0.184167\pi\)
−0.837241 + 0.546835i \(0.815833\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 1197.69 1024.99i 1.64067 1.40410i
\(731\) 2016.02i 2.75789i
\(732\) −4.11787 0.643773i −0.00562550 0.000879472i
\(733\) 1376.26 1.87757 0.938787 0.344499i \(-0.111951\pi\)
0.938787 + 0.344499i \(0.111951\pi\)
\(734\) −237.465 277.474i −0.323522 0.378030i
\(735\) 0 0
\(736\) −136.898 325.886i −0.186003 0.442780i
\(737\) 568.372 0.771197
\(738\) 353.827 302.809i 0.479440 0.410310i
\(739\) 723.760i 0.979378i 0.871897 + 0.489689i \(0.162890\pi\)
−0.871897 + 0.489689i \(0.837110\pi\)
\(740\) −117.869 + 753.947i −0.159283 + 1.01885i
\(741\) −24.4710 −0.0330242
\(742\) 0 0
\(743\) 863.433i 1.16209i 0.813871 + 0.581045i \(0.197356\pi\)
−0.813871 + 0.581045i \(0.802644\pi\)
\(744\) 269.016 + 436.054i 0.361580 + 0.586095i
\(745\) −655.743 −0.880192
\(746\) 361.136 309.064i 0.484096 0.414294i
\(747\) 176.275i 0.235977i
\(748\) −1158.25 181.076i −1.54846 0.242080i
\(749\) 0 0
\(750\) −210.876 246.405i −0.281168 0.328541i
\(751\) 316.065i 0.420859i −0.977609 0.210429i \(-0.932514\pi\)
0.977609 0.210429i \(-0.0674862\pi\)
\(752\) 3.88638 12.1257i 0.00516806 0.0161247i
\(753\) −188.424 −0.250232
\(754\) 327.360 280.158i 0.434164 0.371562i
\(755\) 1316.93i 1.74428i
\(756\) 0 0
\(757\) 157.303 0.207798 0.103899 0.994588i \(-0.466868\pi\)
0.103899 + 0.994588i \(0.466868\pi\)
\(758\) −468.177 547.057i −0.617647 0.721711i
\(759\) 216.181i 0.284824i
\(760\) −71.7401 + 44.2587i −0.0943948 + 0.0582352i
\(761\) 771.962 1.01440 0.507202 0.861827i \(-0.330680\pi\)
0.507202 + 0.861827i \(0.330680\pi\)
\(762\) −512.118 + 438.276i −0.672071 + 0.575165i
\(763\) 0 0
\(764\) −111.941 17.5005i −0.146520 0.0229064i
\(765\) −612.207 −0.800271
\(766\) 413.120 + 482.724i 0.539321 + 0.630188i
\(767\) 681.865i 0.889003i
\(768\) 257.751 360.794i 0.335613 0.469784i
\(769\) 351.638 0.457267 0.228634 0.973513i \(-0.426574\pi\)
0.228634 + 0.973513i \(0.426574\pi\)
\(770\) 0 0
\(771\) 627.322i 0.813647i
\(772\) −75.6817 + 484.095i −0.0980333 + 0.627066i
\(773\) −1463.97 −1.89389 −0.946943 0.321402i \(-0.895846\pi\)
−0.946943 + 0.321402i \(0.895846\pi\)
\(774\) −303.225 354.313i −0.391763 0.457769i
\(775\) 1364.42i 1.76055i
\(776\) 168.002 + 272.318i 0.216497 + 0.350925i
\(777\) 0 0
\(778\) 377.674 323.217i 0.485442 0.415447i
\(779\) 103.951i 0.133441i
\(780\) 568.133 + 88.8200i 0.728376 + 0.113872i
\(781\) 1148.57 1.47064
\(782\) −372.580 435.354i −0.476445 0.556719i
\(783\) 106.114i 0.135523i
\(784\) 0 0
\(785\) 667.673 0.850538
\(786\) 113.772 97.3673i 0.144748 0.123877i
\(787\) 244.329i 0.310457i −0.987879 0.155228i \(-0.950389\pi\)
0.987879 0.155228i \(-0.0496113\pi\)
\(788\) 81.1730 519.220i 0.103011 0.658908i
\(789\) 454.618 0.576195
\(790\) −341.924 399.532i −0.432815 0.505737i
\(791\) 0 0
\(792\) 230.796 142.385i 0.291409 0.179780i
\(793\) 6.34635 0.00800296
\(794\) 541.958 463.814i 0.682567 0.584148i
\(795\) 1014.49i 1.27608i
\(796\) 1271.41 + 198.769i 1.59725 + 0.249709i
\(797\) −899.678 −1.12883 −0.564415 0.825491i \(-0.690898\pi\)
−0.564415 + 0.825491i \(0.690898\pi\)
\(798\) 0 0
\(799\) 20.6421i 0.0258350i
\(800\) 1088.64 457.315i 1.36080 0.571644i
\(801\) −161.892 −0.202113
\(802\) 465.338 398.241i 0.580222 0.496560i
\(803\) 1132.00i 1.40971i
\(804\) −53.8293 + 344.317i −0.0669519 + 0.428255i
\(805\) 0 0
\(806\) −507.265 592.731i −0.629361 0.735398i
\(807\) 79.5908i 0.0986255i
\(808\) −192.496 312.022i −0.238238 0.386166i
\(809\) 495.399 0.612359 0.306180 0.951974i \(-0.400949\pi\)
0.306180 + 0.951974i \(0.400949\pi\)
\(810\) 107.595 92.0808i 0.132833 0.113680i
\(811\) 85.3185i 0.105202i 0.998616 + 0.0526008i \(0.0167511\pi\)
−0.998616 + 0.0526008i \(0.983249\pi\)
\(812\) 0 0
\(813\) −45.4084 −0.0558529
\(814\) −356.298 416.328i −0.437713 0.511460i
\(815\) 996.163i 1.22229i
\(816\) 219.390 684.510i 0.268860 0.838860i
\(817\) −104.093 −0.127409
\(818\) −415.355 + 355.465i −0.507769 + 0.434554i
\(819\) 0 0
\(820\) −377.300 + 2413.38i −0.460122 + 2.94315i
\(821\) 784.090 0.955043 0.477521 0.878620i \(-0.341535\pi\)
0.477521 + 0.878620i \(0.341535\pi\)
\(822\) −144.846 169.251i −0.176212 0.205901i
\(823\) 1126.19i 1.36840i −0.729295 0.684199i \(-0.760152\pi\)
0.729295 0.684199i \(-0.239848\pi\)
\(824\) 201.366 124.229i 0.244376 0.150763i
\(825\) 722.165 0.875352
\(826\) 0 0
\(827\) 1145.25i 1.38482i −0.721502 0.692412i \(-0.756548\pi\)
0.721502 0.692412i \(-0.243452\pi\)
\(828\) 130.961 + 20.4740i 0.158166 + 0.0247271i
\(829\) −984.596 −1.18769 −0.593846 0.804579i \(-0.702391\pi\)
−0.593846 + 0.804579i \(0.702391\pi\)
\(830\) 601.168 + 702.455i 0.724299 + 0.846332i
\(831\) 918.066i 1.10477i
\(832\) −302.905 + 603.401i −0.364069 + 0.725242i
\(833\) 0 0
\(834\) 505.325 432.462i 0.605905 0.518539i
\(835\) 140.626i 0.168415i
\(836\) 9.34954 59.8040i 0.0111837 0.0715358i
\(837\) −192.135 −0.229552
\(838\) 577.398 + 674.680i 0.689019 + 0.805107i
\(839\) 10.8022i 0.0128751i 0.999979 + 0.00643757i \(0.00204916\pi\)
−0.999979 + 0.00643757i \(0.997951\pi\)
\(840\) 0 0
\(841\) −423.953 −0.504106
\(842\) 988.399 845.882i 1.17387 1.00461i
\(843\) 465.876i 0.552640i
\(844\) −592.180 92.5794i −0.701635 0.109691i
\(845\) 454.040 0.537325
\(846\) 3.10474 + 3.62784i 0.00366990 + 0.00428822i
\(847\) 0 0
\(848\) −1134.30 363.550i −1.33762 0.428715i
\(849\) −101.545 −0.119606
\(850\) 1454.32 1244.63i 1.71097 1.46427i
\(851\) 267.846i 0.314743i
\(852\) −108.779 + 695.797i −0.127674 + 0.816663i
\(853\) 1051.79 1.23305 0.616523 0.787337i \(-0.288541\pi\)
0.616523 + 0.787337i \(0.288541\pi\)
\(854\) 0 0
\(855\) 31.6102i 0.0369710i
\(856\) −1368.17 + 844.067i −1.59833 + 0.986060i
\(857\) 636.379 0.742566 0.371283 0.928520i \(-0.378918\pi\)
0.371283 + 0.928520i \(0.378918\pi\)
\(858\) −313.722 + 268.487i −0.365644 + 0.312922i
\(859\) 1488.92i 1.73332i −0.498896 0.866662i \(-0.666261\pi\)
0.498896 0.866662i \(-0.333739\pi\)
\(860\) 2416.70 + 377.818i 2.81011 + 0.439324i
\(861\) 0 0
\(862\) 812.724 + 949.654i 0.942835 + 1.10169i
\(863\) 567.795i 0.657932i −0.944342 0.328966i \(-0.893300\pi\)
0.944342 0.328966i \(-0.106700\pi\)
\(864\) 64.3981 + 153.300i 0.0745348 + 0.177431i
\(865\) 168.339 0.194611
\(866\) −668.923 + 572.471i −0.772428 + 0.661052i
\(867\) 664.705i 0.766673i
\(868\) 0 0
\(869\) 377.620 0.434545
\(870\) 361.893 + 422.866i 0.415969 + 0.486052i
\(871\) 530.652i 0.609245i
\(872\) −16.1603 26.1946i −0.0185324 0.0300397i
\(873\) −119.989 −0.137445
\(874\) 22.4787 19.2375i 0.0257194 0.0220109i
\(875\) 0 0
\(876\) −685.759 107.209i −0.782830 0.122385i
\(877\) −582.167 −0.663816 −0.331908 0.943312i \(-0.607692\pi\)
−0.331908 + 0.943312i \(0.607692\pi\)
\(878\) −669.683 782.514i −0.762737 0.891246i
\(879\) 349.877i 0.398040i
\(880\) −434.130 + 1354.51i −0.493330 + 1.53922i
\(881\) 124.121 0.140886 0.0704431 0.997516i \(-0.477559\pi\)
0.0704431 + 0.997516i \(0.477559\pi\)
\(882\) 0 0
\(883\) 486.901i 0.551417i 0.961241 + 0.275708i \(0.0889124\pi\)
−0.961241 + 0.275708i \(0.911088\pi\)
\(884\) −169.059 + 1081.38i −0.191243 + 1.22328i
\(885\) 880.796 0.995250
\(886\) 594.734 + 694.937i 0.671258 + 0.784354i
\(887\) 1079.54i 1.21707i −0.793525 0.608537i \(-0.791757\pi\)
0.793525 0.608537i \(-0.208243\pi\)
\(888\) 285.954 176.414i 0.322020 0.198664i
\(889\) 0 0
\(890\) 645.140 552.117i 0.724876 0.620356i
\(891\) 101.694i 0.114134i
\(892\) 955.238 + 149.339i 1.07090 + 0.167420i
\(893\) 1.06582 0.00119353
\(894\) 187.729 + 219.358i 0.209988 + 0.245367i
\(895\) 274.136i 0.306297i
\(896\) 0 0
\(897\) −201.834 −0.225010
\(898\) 287.119 245.720i 0.319732 0.273630i
\(899\) 755.122i 0.839958i
\(900\) −68.3947 + 437.484i −0.0759941 + 0.486093i
\(901\) −1930.96 −2.14313
\(902\) −1140.51 1332.67i −1.26442 1.47746i
\(903\) 0 0
\(904\) 283.432 + 459.423i 0.313531 + 0.508211i
\(905\) −358.944 −0.396623
\(906\) −440.539 + 377.018i −0.486246 + 0.416135i
\(907\) 106.065i 0.116941i −0.998289 0.0584704i \(-0.981378\pi\)
0.998289 0.0584704i \(-0.0186223\pi\)
\(908\) −1535.61 240.072i −1.69120 0.264396i
\(909\) 137.484 0.151247
\(910\) 0 0
\(911\) 1291.42i 1.41758i 0.705419 + 0.708791i \(0.250759\pi\)
−0.705419 + 0.708791i \(0.749241\pi\)
\(912\) 35.3434 + 11.3278i 0.0387538 + 0.0124208i
\(913\) −663.928 −0.727194
\(914\) −1199.67 + 1026.69i −1.31255 + 1.12329i
\(915\) 8.19786i 0.00895941i
\(916\) −50.7034 + 324.322i −0.0553530 + 0.354063i
\(917\) 0 0
\(918\) 175.265 + 204.795i 0.190921 + 0.223088i
\(919\) 1116.74i 1.21516i −0.794257 0.607582i \(-0.792139\pi\)
0.794257 0.607582i \(-0.207861\pi\)
\(920\) −591.705 + 365.042i −0.643158 + 0.396785i
\(921\) 100.187 0.108781
\(922\) −545.927 + 467.210i −0.592112 + 0.506736i
\(923\) 1072.34i 1.16180i
\(924\) 0 0
\(925\) 894.755 0.967302
\(926\) −1125.54 1315.18i −1.21549 1.42028i
\(927\) 88.7262i 0.0957132i
\(928\) −602.494 + 253.095i −0.649239 + 0.272732i
\(929\) −545.423 −0.587108 −0.293554 0.955942i \(-0.594838\pi\)
−0.293554 + 0.955942i \(0.594838\pi\)
\(930\) 765.657 655.257i 0.823288 0.704578i
\(931\) 0 0
\(932\) 139.810 894.287i 0.150010 0.959535i
\(933\) −233.542 −0.250312
\(934\) 671.803 + 784.990i 0.719275 + 0.840461i
\(935\) 2305.84i 2.46614i
\(936\) −132.936 215.479i −0.142026 0.230213i
\(937\) −1292.02 −1.37889 −0.689443 0.724340i \(-0.742145\pi\)
−0.689443 + 0.724340i \(0.742145\pi\)
\(938\) 0 0
\(939\) 211.507i 0.225247i
\(940\) −24.7448 3.86851i −0.0263242 0.00411543i
\(941\) −483.449 −0.513761 −0.256880 0.966443i \(-0.582695\pi\)
−0.256880 + 0.966443i \(0.582695\pi\)
\(942\) −191.144 223.349i −0.202913 0.237101i
\(943\) 857.374i 0.909199i
\(944\) −315.641 + 984.819i −0.334366 + 1.04324i
\(945\) 0 0
\(946\) −1334.50 + 1142.08i −1.41067 + 1.20727i
\(947\) 1852.46i 1.95613i 0.208297 + 0.978066i \(0.433208\pi\)
−0.208297 + 0.978066i \(0.566792\pi\)
\(948\) −35.7635 + 228.760i −0.0377252 + 0.241308i
\(949\) 1056.87 1.11367
\(950\) 64.2640 + 75.0915i 0.0676464 + 0.0790436i
\(951\) 784.836i 0.825274i
\(952\) 0 0
\(953\) 1129.36 1.18506 0.592530 0.805549i \(-0.298129\pi\)
0.592530 + 0.805549i \(0.298129\pi\)
\(954\) 339.365 290.432i 0.355728 0.304436i
\(955\) 222.853i 0.233354i
\(956\) 689.390 + 107.777i 0.721119 + 0.112737i
\(957\) −399.673 −0.417631
\(958\) 933.101 + 1090.31i 0.974009 + 1.13811i
\(959\) 0 0
\(960\) −779.441 391.277i −0.811917 0.407580i
\(961\) −406.254 −0.422741
\(962\) −388.698 + 332.652i −0.404052 + 0.345792i
\(963\) 602.845i 0.626008i
\(964\) 213.809 1367.62i 0.221793 1.41869i
\(965\) 963.737 0.998692
\(966\) 0 0
\(967\) 1112.25i 1.15021i −0.818080 0.575104i \(-0.804961\pi\)
0.818080 0.575104i \(-0.195039\pi\)
\(968\) −28.0348 45.4423i −0.0289616 0.0469445i
\(969\) 60.1665 0.0620914
\(970\) 478.157 409.211i 0.492945 0.421867i
\(971\) 181.497i 0.186917i −0.995623 0.0934587i \(-0.970208\pi\)
0.995623 0.0934587i \(-0.0297923\pi\)
\(972\) −61.6055 9.63119i −0.0633802 0.00990863i
\(973\) 0 0
\(974\) −1171.91 1369.36i −1.20319 1.40591i
\(975\) 674.238i 0.691526i
\(976\) −9.16604 2.93778i −0.00939144 0.00301002i
\(977\) 464.768 0.475710 0.237855 0.971301i \(-0.423556\pi\)
0.237855 + 0.971301i \(0.423556\pi\)
\(978\) 333.235 285.186i 0.340731 0.291601i
\(979\) 609.756i 0.622836i
\(980\) 0 0
\(981\) 11.5419 0.0117654
\(982\) −617.752 721.833i −0.629075 0.735064i
\(983\) 638.900i 0.649950i −0.945723 0.324975i \(-0.894644\pi\)
0.945723 0.324975i \(-0.105356\pi\)
\(984\) 915.337 564.700i 0.930221 0.573883i
\(985\) −1033.66 −1.04941
\(986\) −804.877 + 688.822i −0.816306 + 0.698603i
\(987\) 0 0
\(988\) −55.8350 8.72906i −0.0565132 0.00883508i
\(989\) −858.552 −0.868101
\(990\) −346.816 405.249i −0.350320 0.409343i
\(991\) 562.410i 0.567518i −0.958896 0.283759i \(-0.908418\pi\)
0.958896 0.283759i \(-0.0915816\pi\)
\(992\) 458.264 + 1090.90i 0.461960 + 1.09970i
\(993\) −95.9980 −0.0966748
\(994\) 0 0
\(995\) 2531.14i 2.54386i
\(996\) 62.8792 402.204i 0.0631317 0.403820i
\(997\) 116.774 0.117125 0.0585625 0.998284i \(-0.481348\pi\)
0.0585625 + 0.998284i \(0.481348\pi\)
\(998\) 59.3565 + 69.3571i 0.0594755 + 0.0694961i
\(999\) 125.997i 0.126124i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.d.295.4 12
4.3 odd 2 inner 588.3.g.d.295.3 12
7.6 odd 2 84.3.g.a.43.4 yes 12
21.20 even 2 252.3.g.b.127.9 12
28.27 even 2 84.3.g.a.43.3 12
56.13 odd 2 1344.3.m.e.127.2 12
56.27 even 2 1344.3.m.e.127.8 12
84.83 odd 2 252.3.g.b.127.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.g.a.43.3 12 28.27 even 2
84.3.g.a.43.4 yes 12 7.6 odd 2
252.3.g.b.127.9 12 21.20 even 2
252.3.g.b.127.10 12 84.83 odd 2
588.3.g.d.295.3 12 4.3 odd 2 inner
588.3.g.d.295.4 12 1.1 even 1 trivial
1344.3.m.e.127.2 12 56.13 odd 2
1344.3.m.e.127.8 12 56.27 even 2