Properties

Label 588.3.g.d.295.2
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,2,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.489494783471841.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.2
Root \(1.19375 + 0.758257i\) of defining polynomial
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.d.295.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.83926 + 0.785573i) q^{2} -1.73205i q^{3} +(2.76575 - 2.88975i) q^{4} +8.17539 q^{5} +(1.36065 + 3.18569i) q^{6} +(-2.81683 + 7.48769i) q^{8} -3.00000 q^{9} +(-15.0367 + 6.42236i) q^{10} -15.5659i q^{11} +(-5.00519 - 4.79042i) q^{12} +20.4200 q^{13} -14.1602i q^{15} +(-0.701254 - 15.9846i) q^{16} +5.97018 q^{17} +(5.51778 - 2.35672i) q^{18} -4.19049i q^{19} +(22.6111 - 23.6248i) q^{20} +(12.2282 + 28.6297i) q^{22} +29.3602i q^{23} +(12.9691 + 4.87889i) q^{24} +41.8370 q^{25} +(-37.5577 + 16.0414i) q^{26} +5.19615i q^{27} -7.89812 q^{29} +(11.1239 + 26.0443i) q^{30} -35.3829i q^{31} +(13.8469 + 28.8490i) q^{32} -26.9609 q^{33} +(-10.9807 + 4.69002i) q^{34} +(-8.29725 + 8.66924i) q^{36} -49.2518 q^{37} +(3.29194 + 7.70740i) q^{38} -35.3685i q^{39} +(-23.0286 + 61.2148i) q^{40} +4.11644 q^{41} -19.6131i q^{43} +(-44.9815 - 43.0514i) q^{44} -24.5262 q^{45} +(-23.0646 - 54.0010i) q^{46} +30.5134i q^{47} +(-27.6862 + 1.21461i) q^{48} +(-76.9490 + 32.8660i) q^{50} -10.3407i q^{51} +(56.4767 - 59.0087i) q^{52} +40.4284 q^{53} +(-4.08196 - 9.55707i) q^{54} -127.257i q^{55} -7.25815 q^{57} +(14.5267 - 6.20455i) q^{58} +83.1502i q^{59} +(-40.9193 - 39.1635i) q^{60} +3.43067 q^{61} +(27.7959 + 65.0783i) q^{62} +(-48.1310 - 42.1830i) q^{64} +166.942 q^{65} +(49.5881 - 21.1798i) q^{66} +5.17488i q^{67} +(16.5120 - 17.2523i) q^{68} +50.8534 q^{69} -75.1139i q^{71} +(8.45048 - 22.4631i) q^{72} +21.5545 q^{73} +(90.5868 - 38.6909i) q^{74} -72.4638i q^{75} +(-12.1095 - 11.5899i) q^{76} +(27.7846 + 65.0519i) q^{78} -62.5091i q^{79} +(-5.73302 - 130.681i) q^{80} +9.00000 q^{81} +(-7.57121 + 3.23377i) q^{82} -58.0935i q^{83} +48.8086 q^{85} +(15.4075 + 36.0736i) q^{86} +13.6799i q^{87} +(116.553 + 43.8464i) q^{88} +135.578 q^{89} +(45.1100 - 19.2671i) q^{90} +(84.8435 + 81.2030i) q^{92} -61.2850 q^{93} +(-23.9705 - 56.1221i) q^{94} -34.2589i q^{95} +(49.9679 - 23.9835i) q^{96} -61.8562 q^{97} +46.6977i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{4} - 8 q^{5} + 12 q^{6} - 10 q^{8} - 36 q^{9} - 28 q^{10} - 24 q^{12} + 24 q^{13} - 14 q^{16} + 40 q^{17} - 6 q^{18} + 20 q^{20} - 88 q^{22} + 36 q^{24} + 180 q^{25} - 100 q^{26} + 72 q^{29}+ \cdots + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.83926 + 0.785573i −0.919630 + 0.392787i
\(3\) 1.73205i 0.577350i
\(4\) 2.76575 2.88975i 0.691437 0.722436i
\(5\) 8.17539 1.63508 0.817539 0.575874i \(-0.195338\pi\)
0.817539 + 0.575874i \(0.195338\pi\)
\(6\) 1.36065 + 3.18569i 0.226775 + 0.530948i
\(7\) 0 0
\(8\) −2.81683 + 7.48769i −0.352103 + 0.935961i
\(9\) −3.00000 −0.333333
\(10\) −15.0367 + 6.42236i −1.50367 + 0.642236i
\(11\) 15.5659i 1.41508i −0.706672 0.707541i \(-0.749805\pi\)
0.706672 0.707541i \(-0.250195\pi\)
\(12\) −5.00519 4.79042i −0.417099 0.399202i
\(13\) 20.4200 1.57077 0.785386 0.619006i \(-0.212464\pi\)
0.785386 + 0.619006i \(0.212464\pi\)
\(14\) 0 0
\(15\) 14.1602i 0.944012i
\(16\) −0.701254 15.9846i −0.0438284 0.999039i
\(17\) 5.97018 0.351187 0.175594 0.984463i \(-0.443816\pi\)
0.175594 + 0.984463i \(0.443816\pi\)
\(18\) 5.51778 2.35672i 0.306543 0.130929i
\(19\) 4.19049i 0.220552i −0.993901 0.110276i \(-0.964826\pi\)
0.993901 0.110276i \(-0.0351735\pi\)
\(20\) 22.6111 23.6248i 1.13055 1.18124i
\(21\) 0 0
\(22\) 12.2282 + 28.6297i 0.555825 + 1.30135i
\(23\) 29.3602i 1.27653i 0.769817 + 0.638265i \(0.220348\pi\)
−0.769817 + 0.638265i \(0.779652\pi\)
\(24\) 12.9691 + 4.87889i 0.540377 + 0.203287i
\(25\) 41.8370 1.67348
\(26\) −37.5577 + 16.0414i −1.44453 + 0.616978i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −7.89812 −0.272349 −0.136174 0.990685i \(-0.543481\pi\)
−0.136174 + 0.990685i \(0.543481\pi\)
\(30\) 11.1239 + 26.0443i 0.370795 + 0.868142i
\(31\) 35.3829i 1.14138i −0.821164 0.570692i \(-0.806675\pi\)
0.821164 0.570692i \(-0.193325\pi\)
\(32\) 13.8469 + 28.8490i 0.432715 + 0.901531i
\(33\) −26.9609 −0.816998
\(34\) −10.9807 + 4.69002i −0.322962 + 0.137942i
\(35\) 0 0
\(36\) −8.29725 + 8.66924i −0.230479 + 0.240812i
\(37\) −49.2518 −1.33113 −0.665565 0.746340i \(-0.731809\pi\)
−0.665565 + 0.746340i \(0.731809\pi\)
\(38\) 3.29194 + 7.70740i 0.0866300 + 0.202826i
\(39\) 35.3685i 0.906886i
\(40\) −23.0286 + 61.2148i −0.575716 + 1.53037i
\(41\) 4.11644 0.100401 0.0502005 0.998739i \(-0.484014\pi\)
0.0502005 + 0.998739i \(0.484014\pi\)
\(42\) 0 0
\(43\) 19.6131i 0.456118i −0.973647 0.228059i \(-0.926762\pi\)
0.973647 0.228059i \(-0.0732380\pi\)
\(44\) −44.9815 43.0514i −1.02231 0.978441i
\(45\) −24.5262 −0.545026
\(46\) −23.0646 54.0010i −0.501404 1.17394i
\(47\) 30.5134i 0.649222i 0.945848 + 0.324611i \(0.105233\pi\)
−0.945848 + 0.324611i \(0.894767\pi\)
\(48\) −27.6862 + 1.21461i −0.576795 + 0.0253043i
\(49\) 0 0
\(50\) −76.9490 + 32.8660i −1.53898 + 0.657320i
\(51\) 10.3407i 0.202758i
\(52\) 56.4767 59.0087i 1.08609 1.13478i
\(53\) 40.4284 0.762799 0.381400 0.924410i \(-0.375442\pi\)
0.381400 + 0.924410i \(0.375442\pi\)
\(54\) −4.08196 9.55707i −0.0755918 0.176983i
\(55\) 127.257i 2.31377i
\(56\) 0 0
\(57\) −7.25815 −0.127336
\(58\) 14.5267 6.20455i 0.250460 0.106975i
\(59\) 83.1502i 1.40932i 0.709543 + 0.704662i \(0.248902\pi\)
−0.709543 + 0.704662i \(0.751098\pi\)
\(60\) −40.9193 39.1635i −0.681989 0.652726i
\(61\) 3.43067 0.0562405 0.0281202 0.999605i \(-0.491048\pi\)
0.0281202 + 0.999605i \(0.491048\pi\)
\(62\) 27.7959 + 65.0783i 0.448320 + 1.04965i
\(63\) 0 0
\(64\) −48.1310 42.1830i −0.752047 0.659110i
\(65\) 166.942 2.56833
\(66\) 49.5881 21.1798i 0.751335 0.320906i
\(67\) 5.17488i 0.0772369i 0.999254 + 0.0386185i \(0.0122957\pi\)
−0.999254 + 0.0386185i \(0.987704\pi\)
\(68\) 16.5120 17.2523i 0.242824 0.253710i
\(69\) 50.8534 0.737005
\(70\) 0 0
\(71\) 75.1139i 1.05794i −0.848640 0.528971i \(-0.822578\pi\)
0.848640 0.528971i \(-0.177422\pi\)
\(72\) 8.45048 22.4631i 0.117368 0.311987i
\(73\) 21.5545 0.295267 0.147634 0.989042i \(-0.452834\pi\)
0.147634 + 0.989042i \(0.452834\pi\)
\(74\) 90.5868 38.6909i 1.22415 0.522850i
\(75\) 72.4638i 0.966183i
\(76\) −12.1095 11.5899i −0.159335 0.152498i
\(77\) 0 0
\(78\) 27.7846 + 65.0519i 0.356212 + 0.833999i
\(79\) 62.5091i 0.791254i −0.918411 0.395627i \(-0.870527\pi\)
0.918411 0.395627i \(-0.129473\pi\)
\(80\) −5.73302 130.681i −0.0716628 1.63351i
\(81\) 9.00000 0.111111
\(82\) −7.57121 + 3.23377i −0.0923318 + 0.0394362i
\(83\) 58.0935i 0.699922i −0.936764 0.349961i \(-0.886195\pi\)
0.936764 0.349961i \(-0.113805\pi\)
\(84\) 0 0
\(85\) 48.8086 0.574218
\(86\) 15.4075 + 36.0736i 0.179157 + 0.419460i
\(87\) 13.6799i 0.157241i
\(88\) 116.553 + 43.8464i 1.32446 + 0.498255i
\(89\) 135.578 1.52334 0.761672 0.647963i \(-0.224379\pi\)
0.761672 + 0.647963i \(0.224379\pi\)
\(90\) 45.1100 19.2671i 0.501222 0.214079i
\(91\) 0 0
\(92\) 84.8435 + 81.2030i 0.922212 + 0.882641i
\(93\) −61.2850 −0.658978
\(94\) −23.9705 56.1221i −0.255006 0.597044i
\(95\) 34.2589i 0.360620i
\(96\) 49.9679 23.9835i 0.520499 0.249828i
\(97\) −61.8562 −0.637693 −0.318846 0.947806i \(-0.603295\pi\)
−0.318846 + 0.947806i \(0.603295\pi\)
\(98\) 0 0
\(99\) 46.6977i 0.471694i
\(100\) 115.711 120.898i 1.15711 1.20898i
\(101\) −11.4853 −0.113716 −0.0568580 0.998382i \(-0.518108\pi\)
−0.0568580 + 0.998382i \(0.518108\pi\)
\(102\) 8.12334 + 19.0192i 0.0796406 + 0.186462i
\(103\) 122.726i 1.19151i −0.803164 0.595757i \(-0.796852\pi\)
0.803164 0.595757i \(-0.203148\pi\)
\(104\) −57.5197 + 152.899i −0.553074 + 1.47018i
\(105\) 0 0
\(106\) −74.3582 + 31.7594i −0.701493 + 0.299617i
\(107\) 85.1425i 0.795724i 0.917445 + 0.397862i \(0.130248\pi\)
−0.917445 + 0.397862i \(0.869752\pi\)
\(108\) 15.0156 + 14.3713i 0.139033 + 0.133067i
\(109\) −52.4816 −0.481482 −0.240741 0.970589i \(-0.577390\pi\)
−0.240741 + 0.970589i \(0.577390\pi\)
\(110\) 99.9699 + 234.059i 0.908817 + 2.12781i
\(111\) 85.3066i 0.768528i
\(112\) 0 0
\(113\) 92.5191 0.818753 0.409376 0.912366i \(-0.365746\pi\)
0.409376 + 0.912366i \(0.365746\pi\)
\(114\) 13.3496 5.70180i 0.117102 0.0500158i
\(115\) 240.031i 2.08723i
\(116\) −21.8442 + 22.8235i −0.188312 + 0.196755i
\(117\) −61.2601 −0.523591
\(118\) −65.3205 152.935i −0.553564 1.29606i
\(119\) 0 0
\(120\) 106.027 + 39.8868i 0.883559 + 0.332390i
\(121\) −121.297 −1.00246
\(122\) −6.30989 + 2.69504i −0.0517204 + 0.0220905i
\(123\) 7.12989i 0.0579666i
\(124\) −102.248 97.8603i −0.824577 0.789196i
\(125\) 137.649 1.10119
\(126\) 0 0
\(127\) 215.557i 1.69730i −0.528954 0.848651i \(-0.677415\pi\)
0.528954 0.848651i \(-0.322585\pi\)
\(128\) 121.663 + 39.7751i 0.950494 + 0.310743i
\(129\) −33.9709 −0.263340
\(130\) −307.049 + 131.145i −2.36192 + 1.00881i
\(131\) 1.12631i 0.00859781i 0.999991 + 0.00429891i \(0.00136839\pi\)
−0.999991 + 0.00429891i \(0.998632\pi\)
\(132\) −74.5672 + 77.9102i −0.564903 + 0.590229i
\(133\) 0 0
\(134\) −4.06524 9.51794i −0.0303376 0.0710294i
\(135\) 42.4806i 0.314671i
\(136\) −16.8170 + 44.7029i −0.123654 + 0.328698i
\(137\) −94.6501 −0.690876 −0.345438 0.938441i \(-0.612270\pi\)
−0.345438 + 0.938441i \(0.612270\pi\)
\(138\) −93.5325 + 39.9490i −0.677772 + 0.289486i
\(139\) 57.2889i 0.412150i −0.978536 0.206075i \(-0.933931\pi\)
0.978536 0.206075i \(-0.0660691\pi\)
\(140\) 0 0
\(141\) 52.8508 0.374829
\(142\) 59.0074 + 138.154i 0.415545 + 0.972915i
\(143\) 317.856i 2.22277i
\(144\) 2.10376 + 47.9539i 0.0146095 + 0.333013i
\(145\) −64.5702 −0.445312
\(146\) −39.6444 + 16.9327i −0.271537 + 0.115977i
\(147\) 0 0
\(148\) −136.218 + 142.325i −0.920393 + 0.961656i
\(149\) −142.469 −0.956169 −0.478085 0.878314i \(-0.658669\pi\)
−0.478085 + 0.878314i \(0.658669\pi\)
\(150\) 56.9256 + 133.280i 0.379504 + 0.888531i
\(151\) 105.397i 0.697993i −0.937124 0.348997i \(-0.886522\pi\)
0.937124 0.348997i \(-0.113478\pi\)
\(152\) 31.3771 + 11.8039i 0.206428 + 0.0776572i
\(153\) −17.9106 −0.117062
\(154\) 0 0
\(155\) 289.269i 1.86625i
\(156\) −102.206 97.8205i −0.655167 0.627055i
\(157\) 277.604 1.76818 0.884089 0.467318i \(-0.154780\pi\)
0.884089 + 0.467318i \(0.154780\pi\)
\(158\) 49.1054 + 114.970i 0.310794 + 0.727661i
\(159\) 70.0240i 0.440402i
\(160\) 113.204 + 235.852i 0.707523 + 1.47407i
\(161\) 0 0
\(162\) −16.5533 + 7.07016i −0.102181 + 0.0436429i
\(163\) 0.173725i 0.00106579i −1.00000 0.000532897i \(-0.999830\pi\)
1.00000 0.000532897i \(-0.000169627\pi\)
\(164\) 11.3851 11.8955i 0.0694211 0.0725334i
\(165\) −220.416 −1.33585
\(166\) 45.6367 + 106.849i 0.274920 + 0.643669i
\(167\) 168.587i 1.00950i 0.863265 + 0.504750i \(0.168415\pi\)
−0.863265 + 0.504750i \(0.831585\pi\)
\(168\) 0 0
\(169\) 247.978 1.46733
\(170\) −89.7716 + 38.3427i −0.528068 + 0.225545i
\(171\) 12.5715i 0.0735174i
\(172\) −56.6768 54.2449i −0.329516 0.315377i
\(173\) 8.35807 0.0483125 0.0241563 0.999708i \(-0.492310\pi\)
0.0241563 + 0.999708i \(0.492310\pi\)
\(174\) −10.7466 25.1610i −0.0617620 0.144603i
\(175\) 0 0
\(176\) −248.815 + 10.9156i −1.41372 + 0.0620207i
\(177\) 144.020 0.813674
\(178\) −249.362 + 106.506i −1.40091 + 0.598349i
\(179\) 185.600i 1.03687i 0.855117 + 0.518435i \(0.173485\pi\)
−0.855117 + 0.518435i \(0.826515\pi\)
\(180\) −67.8332 + 70.8744i −0.376851 + 0.393746i
\(181\) −236.102 −1.30443 −0.652216 0.758033i \(-0.726161\pi\)
−0.652216 + 0.758033i \(0.726161\pi\)
\(182\) 0 0
\(183\) 5.94209i 0.0324705i
\(184\) −219.840 82.7026i −1.19478 0.449470i
\(185\) −402.652 −2.17650
\(186\) 112.719 48.1438i 0.606016 0.258838i
\(187\) 92.9313i 0.496959i
\(188\) 88.1761 + 84.3926i 0.469022 + 0.448897i
\(189\) 0 0
\(190\) 26.9129 + 63.0110i 0.141647 + 0.331637i
\(191\) 347.719i 1.82052i 0.414036 + 0.910260i \(0.364119\pi\)
−0.414036 + 0.910260i \(0.635881\pi\)
\(192\) −73.0632 + 83.3653i −0.380537 + 0.434194i
\(193\) 286.487 1.48439 0.742194 0.670185i \(-0.233785\pi\)
0.742194 + 0.670185i \(0.233785\pi\)
\(194\) 113.770 48.5926i 0.586441 0.250477i
\(195\) 289.152i 1.48283i
\(196\) 0 0
\(197\) −325.318 −1.65136 −0.825680 0.564139i \(-0.809208\pi\)
−0.825680 + 0.564139i \(0.809208\pi\)
\(198\) −36.6845 85.8892i −0.185275 0.433784i
\(199\) 149.317i 0.750336i 0.926957 + 0.375168i \(0.122415\pi\)
−0.926957 + 0.375168i \(0.877585\pi\)
\(200\) −117.847 + 313.262i −0.589237 + 1.56631i
\(201\) 8.96315 0.0445928
\(202\) 21.1245 9.02256i 0.104577 0.0446661i
\(203\) 0 0
\(204\) −29.8819 28.5997i −0.146480 0.140195i
\(205\) 33.6535 0.164164
\(206\) 96.4103 + 225.725i 0.468011 + 1.09575i
\(207\) 88.0806i 0.425510i
\(208\) −14.3196 326.407i −0.0688444 1.56926i
\(209\) −65.2288 −0.312099
\(210\) 0 0
\(211\) 236.005i 1.11851i 0.828997 + 0.559254i \(0.188912\pi\)
−0.828997 + 0.559254i \(0.811088\pi\)
\(212\) 111.815 116.828i 0.527428 0.551074i
\(213\) −130.101 −0.610803
\(214\) −66.8856 156.599i −0.312550 0.731772i
\(215\) 160.345i 0.745789i
\(216\) −38.9072 14.6367i −0.180126 0.0677623i
\(217\) 0 0
\(218\) 96.5272 41.2281i 0.442785 0.189120i
\(219\) 37.3335i 0.170473i
\(220\) −367.741 351.962i −1.67155 1.59983i
\(221\) 121.911 0.551635
\(222\) −67.0146 156.901i −0.301867 0.706761i
\(223\) 250.848i 1.12488i 0.826838 + 0.562440i \(0.190137\pi\)
−0.826838 + 0.562440i \(0.809863\pi\)
\(224\) 0 0
\(225\) −125.511 −0.557826
\(226\) −170.167 + 72.6805i −0.752949 + 0.321595i
\(227\) 229.377i 1.01047i 0.862981 + 0.505236i \(0.168594\pi\)
−0.862981 + 0.505236i \(0.831406\pi\)
\(228\) −20.0742 + 20.9742i −0.0880448 + 0.0919921i
\(229\) 179.553 0.784073 0.392036 0.919950i \(-0.371771\pi\)
0.392036 + 0.919950i \(0.371771\pi\)
\(230\) −188.562 441.479i −0.819834 1.91948i
\(231\) 0 0
\(232\) 22.2476 59.1386i 0.0958949 0.254908i
\(233\) −217.847 −0.934967 −0.467483 0.884002i \(-0.654839\pi\)
−0.467483 + 0.884002i \(0.654839\pi\)
\(234\) 112.673 48.1243i 0.481510 0.205659i
\(235\) 249.459i 1.06153i
\(236\) 240.283 + 229.973i 1.01815 + 0.974460i
\(237\) −108.269 −0.456831
\(238\) 0 0
\(239\) 149.425i 0.625208i 0.949884 + 0.312604i \(0.101201\pi\)
−0.949884 + 0.312604i \(0.898799\pi\)
\(240\) −226.345 + 9.92989i −0.943105 + 0.0413745i
\(241\) 18.5618 0.0770199 0.0385099 0.999258i \(-0.487739\pi\)
0.0385099 + 0.999258i \(0.487739\pi\)
\(242\) 223.097 95.2878i 0.921889 0.393751i
\(243\) 15.5885i 0.0641500i
\(244\) 9.48837 9.91376i 0.0388868 0.0406302i
\(245\) 0 0
\(246\) 5.60105 + 13.1137i 0.0227685 + 0.0533078i
\(247\) 85.5700i 0.346437i
\(248\) 264.936 + 99.6675i 1.06829 + 0.401885i
\(249\) −100.621 −0.404100
\(250\) −253.172 + 108.133i −1.01269 + 0.432533i
\(251\) 23.6892i 0.0943794i −0.998886 0.0471897i \(-0.984973\pi\)
0.998886 0.0471897i \(-0.0150265\pi\)
\(252\) 0 0
\(253\) 457.018 1.80640
\(254\) 169.336 + 396.466i 0.666677 + 1.56089i
\(255\) 84.5389i 0.331525i
\(256\) −255.016 + 22.4186i −0.996158 + 0.0875725i
\(257\) 81.4025 0.316741 0.158371 0.987380i \(-0.449376\pi\)
0.158371 + 0.987380i \(0.449376\pi\)
\(258\) 62.4812 26.6866i 0.242175 0.103436i
\(259\) 0 0
\(260\) 461.719 482.419i 1.77584 1.85546i
\(261\) 23.6944 0.0907830
\(262\) −0.884801 2.07158i −0.00337710 0.00790680i
\(263\) 205.306i 0.780629i 0.920682 + 0.390315i \(0.127634\pi\)
−0.920682 + 0.390315i \(0.872366\pi\)
\(264\) 75.9442 201.875i 0.287668 0.764678i
\(265\) 330.518 1.24724
\(266\) 0 0
\(267\) 234.827i 0.879503i
\(268\) 14.9541 + 14.3124i 0.0557988 + 0.0534045i
\(269\) −379.751 −1.41171 −0.705856 0.708355i \(-0.749437\pi\)
−0.705856 + 0.708355i \(0.749437\pi\)
\(270\) −33.3716 78.1328i −0.123598 0.289381i
\(271\) 510.275i 1.88293i 0.337105 + 0.941467i \(0.390552\pi\)
−0.337105 + 0.941467i \(0.609448\pi\)
\(272\) −4.18661 95.4311i −0.0153920 0.350850i
\(273\) 0 0
\(274\) 174.086 74.3545i 0.635350 0.271367i
\(275\) 651.230i 2.36811i
\(276\) 140.648 146.953i 0.509593 0.532439i
\(277\) −402.982 −1.45481 −0.727404 0.686210i \(-0.759273\pi\)
−0.727404 + 0.686210i \(0.759273\pi\)
\(278\) 45.0046 + 105.369i 0.161887 + 0.379026i
\(279\) 106.149i 0.380461i
\(280\) 0 0
\(281\) −338.807 −1.20572 −0.602860 0.797847i \(-0.705972\pi\)
−0.602860 + 0.797847i \(0.705972\pi\)
\(282\) −97.2064 + 41.5182i −0.344704 + 0.147228i
\(283\) 124.413i 0.439621i 0.975543 + 0.219811i \(0.0705440\pi\)
−0.975543 + 0.219811i \(0.929456\pi\)
\(284\) −217.060 207.746i −0.764296 0.731501i
\(285\) −59.3382 −0.208204
\(286\) 249.699 + 584.620i 0.873075 + 2.04413i
\(287\) 0 0
\(288\) −41.5406 86.5470i −0.144238 0.300510i
\(289\) −253.357 −0.876668
\(290\) 118.761 50.7246i 0.409522 0.174912i
\(291\) 107.138i 0.368172i
\(292\) 59.6144 62.2871i 0.204159 0.213312i
\(293\) 221.231 0.755054 0.377527 0.925999i \(-0.376775\pi\)
0.377527 + 0.925999i \(0.376775\pi\)
\(294\) 0 0
\(295\) 679.785i 2.30436i
\(296\) 138.734 368.782i 0.468695 1.24589i
\(297\) 80.8828 0.272333
\(298\) 262.038 111.920i 0.879322 0.375570i
\(299\) 599.536i 2.00514i
\(300\) −209.402 200.417i −0.698006 0.668055i
\(301\) 0 0
\(302\) 82.7970 + 193.852i 0.274162 + 0.641895i
\(303\) 19.8932i 0.0656540i
\(304\) −66.9835 + 2.93860i −0.220340 + 0.00966645i
\(305\) 28.0471 0.0919576
\(306\) 32.9421 14.0700i 0.107654 0.0459805i
\(307\) 1.58892i 0.00517563i 0.999997 + 0.00258782i \(0.000823728\pi\)
−0.999997 + 0.00258782i \(0.999176\pi\)
\(308\) 0 0
\(309\) −212.568 −0.687921
\(310\) 227.242 + 532.041i 0.733038 + 1.71626i
\(311\) 125.075i 0.402171i −0.979574 0.201086i \(-0.935553\pi\)
0.979574 0.201086i \(-0.0644469\pi\)
\(312\) 264.829 + 99.6270i 0.848810 + 0.319317i
\(313\) 222.134 0.709694 0.354847 0.934924i \(-0.384533\pi\)
0.354847 + 0.934924i \(0.384533\pi\)
\(314\) −510.586 + 218.078i −1.62607 + 0.694517i
\(315\) 0 0
\(316\) −180.635 172.884i −0.571631 0.547103i
\(317\) 465.905 1.46973 0.734866 0.678212i \(-0.237245\pi\)
0.734866 + 0.678212i \(0.237245\pi\)
\(318\) 55.0089 + 128.792i 0.172984 + 0.405007i
\(319\) 122.941i 0.385396i
\(320\) −393.489 344.863i −1.22965 1.07770i
\(321\) 147.471 0.459412
\(322\) 0 0
\(323\) 25.0180i 0.0774551i
\(324\) 24.8917 26.0077i 0.0768264 0.0802707i
\(325\) 854.312 2.62865
\(326\) 0.136473 + 0.319525i 0.000418630 + 0.000980137i
\(327\) 90.9007i 0.277984i
\(328\) −11.5953 + 30.8227i −0.0353515 + 0.0939715i
\(329\) 0 0
\(330\) 405.402 173.153i 1.22849 0.524706i
\(331\) 344.994i 1.04228i 0.853472 + 0.521139i \(0.174493\pi\)
−0.853472 + 0.521139i \(0.825507\pi\)
\(332\) −167.876 160.672i −0.505649 0.483952i
\(333\) 147.755 0.443710
\(334\) −132.437 310.074i −0.396518 0.928367i
\(335\) 42.3066i 0.126288i
\(336\) 0 0
\(337\) −518.977 −1.53999 −0.769996 0.638049i \(-0.779742\pi\)
−0.769996 + 0.638049i \(0.779742\pi\)
\(338\) −456.096 + 194.805i −1.34940 + 0.576345i
\(339\) 160.248i 0.472707i
\(340\) 134.992 141.044i 0.397036 0.414836i
\(341\) −550.767 −1.61515
\(342\) −9.87581 23.1222i −0.0288767 0.0676088i
\(343\) 0 0
\(344\) 146.857 + 55.2467i 0.426909 + 0.160601i
\(345\) 415.746 1.20506
\(346\) −15.3727 + 6.56587i −0.0444296 + 0.0189765i
\(347\) 355.873i 1.02557i −0.858517 0.512785i \(-0.828614\pi\)
0.858517 0.512785i \(-0.171386\pi\)
\(348\) 39.5315 + 37.8353i 0.113596 + 0.108722i
\(349\) −677.606 −1.94156 −0.970782 0.239961i \(-0.922865\pi\)
−0.970782 + 0.239961i \(0.922865\pi\)
\(350\) 0 0
\(351\) 106.106i 0.302295i
\(352\) 449.060 215.539i 1.27574 0.612327i
\(353\) 430.655 1.21999 0.609993 0.792407i \(-0.291172\pi\)
0.609993 + 0.792407i \(0.291172\pi\)
\(354\) −264.891 + 113.138i −0.748279 + 0.319600i
\(355\) 614.085i 1.72982i
\(356\) 374.974 391.785i 1.05330 1.10052i
\(357\) 0 0
\(358\) −145.802 341.366i −0.407269 0.953536i
\(359\) 284.240i 0.791756i −0.918303 0.395878i \(-0.870440\pi\)
0.918303 0.395878i \(-0.129560\pi\)
\(360\) 69.0859 183.644i 0.191905 0.510123i
\(361\) 343.440 0.951357
\(362\) 434.253 185.476i 1.19959 0.512363i
\(363\) 210.093i 0.578769i
\(364\) 0 0
\(365\) 176.217 0.482785
\(366\) 4.66795 + 10.9291i 0.0127540 + 0.0298608i
\(367\) 518.559i 1.41297i −0.707730 0.706484i \(-0.750280\pi\)
0.707730 0.706484i \(-0.249720\pi\)
\(368\) 469.312 20.5890i 1.27530 0.0559482i
\(369\) −12.3493 −0.0334670
\(370\) 740.582 316.313i 2.00157 0.854900i
\(371\) 0 0
\(372\) −169.499 + 177.098i −0.455642 + 0.476070i
\(373\) 491.802 1.31850 0.659252 0.751922i \(-0.270873\pi\)
0.659252 + 0.751922i \(0.270873\pi\)
\(374\) 73.0043 + 170.925i 0.195199 + 0.457018i
\(375\) 238.415i 0.635772i
\(376\) −228.475 85.9511i −0.607647 0.228593i
\(377\) −161.280 −0.427798
\(378\) 0 0
\(379\) 289.092i 0.762776i 0.924415 + 0.381388i \(0.124554\pi\)
−0.924415 + 0.381388i \(0.875446\pi\)
\(380\) −98.9995 94.7516i −0.260525 0.249346i
\(381\) −373.356 −0.979937
\(382\) −273.159 639.546i −0.715076 1.67420i
\(383\) 155.917i 0.407095i 0.979065 + 0.203548i \(0.0652472\pi\)
−0.979065 + 0.203548i \(0.934753\pi\)
\(384\) 68.8925 210.727i 0.179408 0.548768i
\(385\) 0 0
\(386\) −526.923 + 225.056i −1.36509 + 0.583047i
\(387\) 58.8393i 0.152039i
\(388\) −171.079 + 178.749i −0.440925 + 0.460692i
\(389\) −212.764 −0.546951 −0.273475 0.961879i \(-0.588173\pi\)
−0.273475 + 0.961879i \(0.588173\pi\)
\(390\) 227.150 + 531.825i 0.582435 + 1.36365i
\(391\) 175.286i 0.448301i
\(392\) 0 0
\(393\) 1.95083 0.00496395
\(394\) 598.344 255.561i 1.51864 0.648632i
\(395\) 511.036i 1.29376i
\(396\) 134.944 + 129.154i 0.340769 + 0.326147i
\(397\) −101.368 −0.255335 −0.127667 0.991817i \(-0.540749\pi\)
−0.127667 + 0.991817i \(0.540749\pi\)
\(398\) −117.299 274.633i −0.294722 0.690031i
\(399\) 0 0
\(400\) −29.3383 668.748i −0.0733458 1.67187i
\(401\) 488.472 1.21814 0.609068 0.793118i \(-0.291544\pi\)
0.609068 + 0.793118i \(0.291544\pi\)
\(402\) −16.4856 + 7.04121i −0.0410088 + 0.0175154i
\(403\) 722.520i 1.79285i
\(404\) −31.7655 + 33.1897i −0.0786276 + 0.0821526i
\(405\) 73.5785 0.181675
\(406\) 0 0
\(407\) 766.648i 1.88366i
\(408\) 77.4277 + 29.1278i 0.189774 + 0.0713918i
\(409\) 390.757 0.955397 0.477698 0.878524i \(-0.341471\pi\)
0.477698 + 0.878524i \(0.341471\pi\)
\(410\) −61.8976 + 26.4373i −0.150970 + 0.0644812i
\(411\) 163.939i 0.398878i
\(412\) −354.647 339.430i −0.860794 0.823858i
\(413\) 0 0
\(414\) 69.1937 + 162.003i 0.167135 + 0.391312i
\(415\) 474.937i 1.14443i
\(416\) 282.754 + 589.097i 0.679697 + 1.41610i
\(417\) −99.2273 −0.237955
\(418\) 119.973 51.2420i 0.287016 0.122588i
\(419\) 23.8867i 0.0570089i −0.999594 0.0285044i \(-0.990926\pi\)
0.999594 0.0285044i \(-0.00907447\pi\)
\(420\) 0 0
\(421\) 157.877 0.375004 0.187502 0.982264i \(-0.439961\pi\)
0.187502 + 0.982264i \(0.439961\pi\)
\(422\) −185.399 434.074i −0.439335 1.02861i
\(423\) 91.5403i 0.216407i
\(424\) −113.880 + 302.715i −0.268584 + 0.713951i
\(425\) 249.774 0.587704
\(426\) 239.290 102.204i 0.561713 0.239915i
\(427\) 0 0
\(428\) 246.040 + 235.483i 0.574860 + 0.550193i
\(429\) −550.543 −1.28332
\(430\) 125.962 + 294.915i 0.292936 + 0.685850i
\(431\) 164.911i 0.382624i 0.981529 + 0.191312i \(0.0612742\pi\)
−0.981529 + 0.191312i \(0.938726\pi\)
\(432\) 83.0585 3.64382i 0.192265 0.00843477i
\(433\) 149.686 0.345696 0.172848 0.984949i \(-0.444703\pi\)
0.172848 + 0.984949i \(0.444703\pi\)
\(434\) 0 0
\(435\) 111.839i 0.257101i
\(436\) −145.151 + 151.658i −0.332915 + 0.347840i
\(437\) 123.034 0.281542
\(438\) 29.3282 + 68.6660i 0.0669594 + 0.156772i
\(439\) 430.660i 0.981002i 0.871441 + 0.490501i \(0.163186\pi\)
−0.871441 + 0.490501i \(0.836814\pi\)
\(440\) 952.863 + 358.462i 2.16560 + 0.814685i
\(441\) 0 0
\(442\) −224.227 + 95.7703i −0.507300 + 0.216675i
\(443\) 611.766i 1.38096i 0.723350 + 0.690481i \(0.242601\pi\)
−0.723350 + 0.690481i \(0.757399\pi\)
\(444\) 246.514 + 235.937i 0.555212 + 0.531389i
\(445\) 1108.40 2.49079
\(446\) −197.060 461.375i −0.441838 1.03447i
\(447\) 246.764i 0.552045i
\(448\) 0 0
\(449\) 14.7665 0.0328876 0.0164438 0.999865i \(-0.494766\pi\)
0.0164438 + 0.999865i \(0.494766\pi\)
\(450\) 230.847 98.5980i 0.512994 0.219107i
\(451\) 64.0762i 0.142076i
\(452\) 255.885 267.356i 0.566116 0.591497i
\(453\) −182.553 −0.402987
\(454\) −180.192 421.884i −0.396900 0.929259i
\(455\) 0 0
\(456\) 20.4449 54.3467i 0.0448354 0.119181i
\(457\) −873.183 −1.91069 −0.955343 0.295501i \(-0.904514\pi\)
−0.955343 + 0.295501i \(0.904514\pi\)
\(458\) −330.244 + 141.052i −0.721057 + 0.307973i
\(459\) 31.0220i 0.0675860i
\(460\) 693.629 + 663.866i 1.50789 + 1.44319i
\(461\) 12.2874 0.0266538 0.0133269 0.999911i \(-0.495758\pi\)
0.0133269 + 0.999911i \(0.495758\pi\)
\(462\) 0 0
\(463\) 126.041i 0.272228i −0.990693 0.136114i \(-0.956539\pi\)
0.990693 0.136114i \(-0.0434613\pi\)
\(464\) 5.53859 + 126.248i 0.0119366 + 0.272087i
\(465\) −501.029 −1.07748
\(466\) 400.678 171.135i 0.859823 0.367242i
\(467\) 532.644i 1.14056i −0.821449 0.570282i \(-0.806834\pi\)
0.821449 0.570282i \(-0.193166\pi\)
\(468\) −169.430 + 177.026i −0.362030 + 0.378261i
\(469\) 0 0
\(470\) −195.968 458.820i −0.416954 0.976213i
\(471\) 480.824i 1.02086i
\(472\) −622.603 234.220i −1.31907 0.496228i
\(473\) −305.295 −0.645445
\(474\) 199.135 85.0531i 0.420115 0.179437i
\(475\) 175.318i 0.369090i
\(476\) 0 0
\(477\) −121.285 −0.254266
\(478\) −117.384 274.831i −0.245573 0.574959i
\(479\) 363.063i 0.757961i −0.925405 0.378980i \(-0.876275\pi\)
0.925405 0.378980i \(-0.123725\pi\)
\(480\) 408.507 196.074i 0.851056 0.408488i
\(481\) −1005.72 −2.09090
\(482\) −34.1399 + 14.5816i −0.0708298 + 0.0302524i
\(483\) 0 0
\(484\) −335.478 + 350.518i −0.693136 + 0.724211i
\(485\) −505.698 −1.04268
\(486\) 12.2459 + 28.6712i 0.0251973 + 0.0589943i
\(487\) 871.471i 1.78947i 0.446600 + 0.894734i \(0.352635\pi\)
−0.446600 + 0.894734i \(0.647365\pi\)
\(488\) −9.66360 + 25.6878i −0.0198025 + 0.0526389i
\(489\) −0.300900 −0.000615337
\(490\) 0 0
\(491\) 296.111i 0.603077i −0.953454 0.301539i \(-0.902500\pi\)
0.953454 0.301539i \(-0.0975002\pi\)
\(492\) −20.6036 19.7195i −0.0418772 0.0400803i
\(493\) −47.1532 −0.0956455
\(494\) 67.2215 + 157.385i 0.136076 + 0.318594i
\(495\) 381.772i 0.771256i
\(496\) −565.583 + 24.8124i −1.14029 + 0.0500250i
\(497\) 0 0
\(498\) 185.068 79.0451i 0.371623 0.158725i
\(499\) 102.398i 0.205206i −0.994722 0.102603i \(-0.967283\pi\)
0.994722 0.102603i \(-0.0327171\pi\)
\(500\) 380.702 397.770i 0.761404 0.795540i
\(501\) 292.001 0.582835
\(502\) 18.6096 + 43.5706i 0.0370709 + 0.0867941i
\(503\) 218.310i 0.434016i −0.976170 0.217008i \(-0.930370\pi\)
0.976170 0.217008i \(-0.0696297\pi\)
\(504\) 0 0
\(505\) −93.8970 −0.185935
\(506\) −840.575 + 359.021i −1.66121 + 0.709528i
\(507\) 429.510i 0.847160i
\(508\) −622.906 596.178i −1.22619 1.17358i
\(509\) −663.088 −1.30273 −0.651363 0.758766i \(-0.725803\pi\)
−0.651363 + 0.758766i \(0.725803\pi\)
\(510\) 66.4115 + 155.489i 0.130219 + 0.304880i
\(511\) 0 0
\(512\) 451.430 241.568i 0.881699 0.471812i
\(513\) 21.7744 0.0424453
\(514\) −149.720 + 63.9476i −0.291285 + 0.124412i
\(515\) 1003.33i 1.94822i
\(516\) −93.9549 + 98.1672i −0.182083 + 0.190246i
\(517\) 474.969 0.918703
\(518\) 0 0
\(519\) 14.4766i 0.0278933i
\(520\) −470.246 + 1250.01i −0.904319 + 2.40386i
\(521\) 573.342 1.10046 0.550232 0.835012i \(-0.314539\pi\)
0.550232 + 0.835012i \(0.314539\pi\)
\(522\) −43.5801 + 18.6136i −0.0834867 + 0.0356583i
\(523\) 737.920i 1.41094i 0.708742 + 0.705468i \(0.249263\pi\)
−0.708742 + 0.705468i \(0.750737\pi\)
\(524\) 3.25476 + 3.11510i 0.00621137 + 0.00594485i
\(525\) 0 0
\(526\) −161.282 377.610i −0.306621 0.717890i
\(527\) 211.242i 0.400840i
\(528\) 18.9065 + 430.960i 0.0358077 + 0.816213i
\(529\) −333.021 −0.629530
\(530\) −607.907 + 259.646i −1.14700 + 0.489897i
\(531\) 249.450i 0.469775i
\(532\) 0 0
\(533\) 84.0579 0.157707
\(534\) 184.474 + 431.908i 0.345457 + 0.808817i
\(535\) 696.073i 1.30107i
\(536\) −38.7479 14.5767i −0.0722908 0.0271954i
\(537\) 321.468 0.598637
\(538\) 698.460 298.322i 1.29825 0.554501i
\(539\) 0 0
\(540\) 122.758 + 117.491i 0.227330 + 0.217575i
\(541\) −204.530 −0.378060 −0.189030 0.981971i \(-0.560534\pi\)
−0.189030 + 0.981971i \(0.560534\pi\)
\(542\) −400.858 938.528i −0.739591 1.73160i
\(543\) 408.941i 0.753114i
\(544\) 82.6684 + 172.234i 0.151964 + 0.316606i
\(545\) −429.057 −0.787261
\(546\) 0 0
\(547\) 706.043i 1.29076i −0.763864 0.645378i \(-0.776700\pi\)
0.763864 0.645378i \(-0.223300\pi\)
\(548\) −261.778 + 273.515i −0.477698 + 0.499114i
\(549\) −10.2920 −0.0187468
\(550\) 511.589 + 1197.78i 0.930161 + 2.17778i
\(551\) 33.0970i 0.0600672i
\(552\) −143.245 + 380.774i −0.259502 + 0.689808i
\(553\) 0 0
\(554\) 741.188 316.572i 1.33788 0.571429i
\(555\) 697.415i 1.25660i
\(556\) −165.550 158.447i −0.297752 0.284976i
\(557\) −701.852 −1.26006 −0.630029 0.776572i \(-0.716957\pi\)
−0.630029 + 0.776572i \(0.716957\pi\)
\(558\) −83.3876 195.235i −0.149440 0.349884i
\(559\) 400.500i 0.716458i
\(560\) 0 0
\(561\) −160.962 −0.286919
\(562\) 623.154 266.158i 1.10882 0.473590i
\(563\) 817.730i 1.45245i 0.687456 + 0.726226i \(0.258727\pi\)
−0.687456 + 0.726226i \(0.741273\pi\)
\(564\) 146.172 152.725i 0.259171 0.270790i
\(565\) 756.379 1.33872
\(566\) −97.7354 228.828i −0.172677 0.404289i
\(567\) 0 0
\(568\) 562.429 + 211.583i 0.990193 + 0.372505i
\(569\) 368.297 0.647271 0.323635 0.946182i \(-0.395095\pi\)
0.323635 + 0.946182i \(0.395095\pi\)
\(570\) 109.138 46.6145i 0.191471 0.0817798i
\(571\) 737.145i 1.29097i 0.763772 + 0.645486i \(0.223345\pi\)
−0.763772 + 0.645486i \(0.776655\pi\)
\(572\) −918.524 879.111i −1.60581 1.53691i
\(573\) 602.268 1.05108
\(574\) 0 0
\(575\) 1228.34i 2.13625i
\(576\) 144.393 + 126.549i 0.250682 + 0.219703i
\(577\) −660.019 −1.14388 −0.571940 0.820295i \(-0.693809\pi\)
−0.571940 + 0.820295i \(0.693809\pi\)
\(578\) 465.989 199.030i 0.806209 0.344343i
\(579\) 496.210i 0.857011i
\(580\) −178.585 + 186.591i −0.307905 + 0.321709i
\(581\) 0 0
\(582\) −84.1648 197.055i −0.144613 0.338582i
\(583\) 629.304i 1.07942i
\(584\) −60.7153 + 161.394i −0.103965 + 0.276359i
\(585\) −500.825 −0.856111
\(586\) −406.901 + 173.793i −0.694370 + 0.296575i
\(587\) 704.445i 1.20008i 0.799971 + 0.600038i \(0.204848\pi\)
−0.799971 + 0.600038i \(0.795152\pi\)
\(588\) 0 0
\(589\) −148.272 −0.251735
\(590\) −534.021 1250.30i −0.905120 2.11915i
\(591\) 563.467i 0.953413i
\(592\) 34.5380 + 787.271i 0.0583412 + 1.32985i
\(593\) 273.204 0.460716 0.230358 0.973106i \(-0.426010\pi\)
0.230358 + 0.973106i \(0.426010\pi\)
\(594\) −148.764 + 63.5393i −0.250445 + 0.106969i
\(595\) 0 0
\(596\) −394.034 + 411.700i −0.661131 + 0.690771i
\(597\) 258.624 0.433207
\(598\) −470.980 1102.70i −0.787591 1.84398i
\(599\) 499.570i 0.834007i −0.908905 0.417004i \(-0.863080\pi\)
0.908905 0.417004i \(-0.136920\pi\)
\(600\) 542.586 + 204.118i 0.904310 + 0.340196i
\(601\) −193.513 −0.321984 −0.160992 0.986956i \(-0.551469\pi\)
−0.160992 + 0.986956i \(0.551469\pi\)
\(602\) 0 0
\(603\) 15.5246i 0.0257456i
\(604\) −304.570 291.502i −0.504256 0.482619i
\(605\) −991.652 −1.63909
\(606\) −15.6275 36.5887i −0.0257880 0.0603774i
\(607\) 860.598i 1.41779i 0.705315 + 0.708894i \(0.250806\pi\)
−0.705315 + 0.708894i \(0.749194\pi\)
\(608\) 120.891 58.0252i 0.198835 0.0954363i
\(609\) 0 0
\(610\) −51.5858 + 22.0330i −0.0845669 + 0.0361197i
\(611\) 623.086i 1.01978i
\(612\) −49.5361 + 51.7569i −0.0809413 + 0.0845701i
\(613\) −87.4688 −0.142690 −0.0713448 0.997452i \(-0.522729\pi\)
−0.0713448 + 0.997452i \(0.522729\pi\)
\(614\) −1.24821 2.92243i −0.00203292 0.00475966i
\(615\) 58.2896i 0.0947799i
\(616\) 0 0
\(617\) 20.7265 0.0335923 0.0167962 0.999859i \(-0.494653\pi\)
0.0167962 + 0.999859i \(0.494653\pi\)
\(618\) 390.967 166.987i 0.632633 0.270206i
\(619\) 16.2753i 0.0262930i 0.999914 + 0.0131465i \(0.00418477\pi\)
−0.999914 + 0.0131465i \(0.995815\pi\)
\(620\) −835.914 800.046i −1.34825 1.29040i
\(621\) −152.560 −0.245668
\(622\) 98.2558 + 230.046i 0.157967 + 0.369849i
\(623\) 0 0
\(624\) −565.353 + 24.8023i −0.906014 + 0.0397473i
\(625\) 79.4077 0.127052
\(626\) −408.562 + 174.503i −0.652656 + 0.278758i
\(627\) 112.980i 0.180191i
\(628\) 767.783 802.205i 1.22258 1.27740i
\(629\) −294.042 −0.467476
\(630\) 0 0
\(631\) 1050.90i 1.66546i 0.553681 + 0.832729i \(0.313223\pi\)
−0.553681 + 0.832729i \(0.686777\pi\)
\(632\) 468.048 + 176.077i 0.740583 + 0.278603i
\(633\) 408.773 0.645770
\(634\) −856.920 + 366.002i −1.35161 + 0.577291i
\(635\) 1762.26i 2.77522i
\(636\) −202.351 193.669i −0.318163 0.304511i
\(637\) 0 0
\(638\) −96.5794 226.121i −0.151378 0.354422i
\(639\) 225.342i 0.352647i
\(640\) 994.644 + 325.177i 1.55413 + 0.508089i
\(641\) 113.722 0.177413 0.0887063 0.996058i \(-0.471727\pi\)
0.0887063 + 0.996058i \(0.471727\pi\)
\(642\) −271.238 + 115.849i −0.422488 + 0.180451i
\(643\) 51.0660i 0.0794184i −0.999211 0.0397092i \(-0.987357\pi\)
0.999211 0.0397092i \(-0.0126431\pi\)
\(644\) 0 0
\(645\) −277.725 −0.430581
\(646\) 19.6535 + 46.0146i 0.0304233 + 0.0712300i
\(647\) 854.686i 1.32100i 0.750827 + 0.660499i \(0.229655\pi\)
−0.750827 + 0.660499i \(0.770345\pi\)
\(648\) −25.3514 + 67.3892i −0.0391226 + 0.103996i
\(649\) 1294.31 1.99431
\(650\) −1571.30 + 671.125i −2.41739 + 1.03250i
\(651\) 0 0
\(652\) −0.502020 0.480479i −0.000769969 0.000736931i
\(653\) −341.101 −0.522361 −0.261180 0.965290i \(-0.584112\pi\)
−0.261180 + 0.965290i \(0.584112\pi\)
\(654\) −71.4092 167.190i −0.109188 0.255642i
\(655\) 9.20805i 0.0140581i
\(656\) −2.88667 65.7998i −0.00440042 0.100305i
\(657\) −64.6636 −0.0984225
\(658\) 0 0
\(659\) 1282.35i 1.94590i −0.231009 0.972952i \(-0.574203\pi\)
0.231009 0.972952i \(-0.425797\pi\)
\(660\) −609.616 + 636.946i −0.923660 + 0.965070i
\(661\) −292.351 −0.442286 −0.221143 0.975241i \(-0.570979\pi\)
−0.221143 + 0.975241i \(0.570979\pi\)
\(662\) −271.018 634.534i −0.409393 0.958510i
\(663\) 211.157i 0.318487i
\(664\) 434.986 + 163.639i 0.655100 + 0.246445i
\(665\) 0 0
\(666\) −271.760 + 116.073i −0.408049 + 0.174283i
\(667\) 231.890i 0.347662i
\(668\) 487.172 + 466.268i 0.729300 + 0.698006i
\(669\) 434.482 0.649450
\(670\) −33.2349 77.8128i −0.0496044 0.116139i
\(671\) 53.4015i 0.0795849i
\(672\) 0 0
\(673\) 493.361 0.733077 0.366538 0.930403i \(-0.380543\pi\)
0.366538 + 0.930403i \(0.380543\pi\)
\(674\) 954.533 407.694i 1.41622 0.604888i
\(675\) 217.391i 0.322061i
\(676\) 685.845 716.593i 1.01456 1.06005i
\(677\) −118.821 −0.175511 −0.0877553 0.996142i \(-0.527969\pi\)
−0.0877553 + 0.996142i \(0.527969\pi\)
\(678\) 125.886 + 294.737i 0.185673 + 0.434715i
\(679\) 0 0
\(680\) −137.485 + 365.463i −0.202184 + 0.537446i
\(681\) 397.293 0.583396
\(682\) 1013.00 432.668i 1.48534 0.634410i
\(683\) 807.926i 1.18291i 0.806339 + 0.591454i \(0.201446\pi\)
−0.806339 + 0.591454i \(0.798554\pi\)
\(684\) 36.3284 + 34.7696i 0.0531117 + 0.0508327i
\(685\) −773.801 −1.12964
\(686\) 0 0
\(687\) 310.994i 0.452685i
\(688\) −313.508 + 13.7538i −0.455680 + 0.0199909i
\(689\) 825.549 1.19818
\(690\) −764.665 + 326.599i −1.10821 + 0.473332i
\(691\) 668.758i 0.967812i −0.875120 0.483906i \(-0.839218\pi\)
0.875120 0.483906i \(-0.160782\pi\)
\(692\) 23.1163 24.1527i 0.0334051 0.0349027i
\(693\) 0 0
\(694\) 279.564 + 654.543i 0.402830 + 0.943145i
\(695\) 468.359i 0.673898i
\(696\) −102.431 38.5340i −0.147171 0.0553650i
\(697\) 24.5759 0.0352596
\(698\) 1246.29 532.309i 1.78552 0.762620i
\(699\) 377.323i 0.539803i
\(700\) 0 0
\(701\) −208.430 −0.297333 −0.148666 0.988887i \(-0.547498\pi\)
−0.148666 + 0.988887i \(0.547498\pi\)
\(702\) −83.3537 195.156i −0.118737 0.278000i
\(703\) 206.389i 0.293584i
\(704\) −656.617 + 749.202i −0.932694 + 1.06421i
\(705\) 432.076 0.612874
\(706\) −792.087 + 338.311i −1.12194 + 0.479194i
\(707\) 0 0
\(708\) 398.324 416.182i 0.562605 0.587828i
\(709\) 775.472 1.09375 0.546877 0.837213i \(-0.315816\pi\)
0.546877 + 0.837213i \(0.315816\pi\)
\(710\) 482.409 + 1129.46i 0.679449 + 1.59079i
\(711\) 187.527i 0.263751i
\(712\) −381.899 + 1015.16i −0.536374 + 1.42579i
\(713\) 1038.85 1.45701
\(714\) 0 0
\(715\) 2598.60i 3.63440i
\(716\) 536.336 + 513.322i 0.749072 + 0.716931i
\(717\) 258.811 0.360964
\(718\) 223.292 + 522.792i 0.310991 + 0.728122i
\(719\) 512.869i 0.713309i 0.934236 + 0.356654i \(0.116083\pi\)
−0.934236 + 0.356654i \(0.883917\pi\)
\(720\) 17.1991 + 392.042i 0.0238876 + 0.544502i
\(721\) 0 0
\(722\) −631.675 + 269.797i −0.874896 + 0.373680i
\(723\) 32.1500i 0.0444674i
\(724\) −653.000 + 682.275i −0.901933 + 0.942369i
\(725\) −330.433 −0.455770
\(726\) −165.043 386.415i −0.227332 0.532253i
\(727\) 491.795i 0.676472i 0.941061 + 0.338236i \(0.109830\pi\)
−0.941061 + 0.338236i \(0.890170\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) −324.108 + 138.431i −0.443984 + 0.189632i
\(731\) 117.094i 0.160183i
\(732\) −17.1711 16.4343i −0.0234578 0.0224513i
\(733\) 235.137 0.320787 0.160393 0.987053i \(-0.448724\pi\)
0.160393 + 0.987053i \(0.448724\pi\)
\(734\) 407.366 + 953.764i 0.554994 + 1.29941i
\(735\) 0 0
\(736\) −847.012 + 406.547i −1.15083 + 0.552374i
\(737\) 80.5516 0.109297
\(738\) 22.7136 9.70130i 0.0307773 0.0131454i
\(739\) 604.116i 0.817477i −0.912651 0.408739i \(-0.865969\pi\)
0.912651 0.408739i \(-0.134031\pi\)
\(740\) −1113.64 + 1163.56i −1.50491 + 1.57238i
\(741\) −148.212 −0.200016
\(742\) 0 0
\(743\) 310.216i 0.417519i −0.977967 0.208759i \(-0.933057\pi\)
0.977967 0.208759i \(-0.0669425\pi\)
\(744\) 172.629 458.883i 0.232028 0.616778i
\(745\) −1164.74 −1.56341
\(746\) −904.552 + 386.347i −1.21254 + 0.517891i
\(747\) 174.281i 0.233307i
\(748\) −268.548 257.025i −0.359021 0.343616i
\(749\) 0 0
\(750\) 187.292 + 438.506i 0.249723 + 0.584675i
\(751\) 1276.52i 1.69976i 0.526978 + 0.849879i \(0.323325\pi\)
−0.526978 + 0.849879i \(0.676675\pi\)
\(752\) 487.746 21.3977i 0.648598 0.0284544i
\(753\) −41.0309 −0.0544899
\(754\) 296.635 126.697i 0.393416 0.168033i
\(755\) 861.661i 1.14127i
\(756\) 0 0
\(757\) 971.918 1.28391 0.641954 0.766743i \(-0.278124\pi\)
0.641954 + 0.766743i \(0.278124\pi\)
\(758\) −227.103 531.715i −0.299608 0.701471i
\(759\) 791.578i 1.04292i
\(760\) 256.520 + 96.5014i 0.337526 + 0.126975i
\(761\) −1004.09 −1.31944 −0.659719 0.751512i \(-0.729325\pi\)
−0.659719 + 0.751512i \(0.729325\pi\)
\(762\) 686.699 293.299i 0.901180 0.384906i
\(763\) 0 0
\(764\) 1004.82 + 961.705i 1.31521 + 1.25878i
\(765\) −146.426 −0.191406
\(766\) −122.485 286.773i −0.159902 0.374377i
\(767\) 1697.93i 2.21373i
\(768\) 38.8301 + 441.702i 0.0505600 + 0.575132i
\(769\) 23.8844 0.0310590 0.0155295 0.999879i \(-0.495057\pi\)
0.0155295 + 0.999879i \(0.495057\pi\)
\(770\) 0 0
\(771\) 140.993i 0.182871i
\(772\) 792.351 827.874i 1.02636 1.07238i
\(773\) −822.514 −1.06405 −0.532027 0.846727i \(-0.678569\pi\)
−0.532027 + 0.846727i \(0.678569\pi\)
\(774\) −46.2225 108.221i −0.0597190 0.139820i
\(775\) 1480.31i 1.91008i
\(776\) 174.238 463.160i 0.224534 0.596856i
\(777\) 0 0
\(778\) 391.328 167.142i 0.502992 0.214835i
\(779\) 17.2499i 0.0221437i
\(780\) −835.574 799.721i −1.07125 1.02528i
\(781\) −1169.22 −1.49707
\(782\) −137.700 322.396i −0.176087 0.412271i
\(783\) 41.0398i 0.0524136i
\(784\) 0 0
\(785\) 2269.52 2.89111
\(786\) −3.58809 + 1.53252i −0.00456500 + 0.00194977i
\(787\) 1555.47i 1.97646i −0.152980 0.988229i \(-0.548887\pi\)
0.152980 0.988229i \(-0.451113\pi\)
\(788\) −899.748 + 940.086i −1.14181 + 1.19300i
\(789\) 355.600 0.450697
\(790\) 401.456 + 939.928i 0.508172 + 1.18978i
\(791\) 0 0
\(792\) −349.658 131.539i −0.441487 0.166085i
\(793\) 70.0544 0.0883410
\(794\) 186.442 79.6319i 0.234814 0.100292i
\(795\) 572.473i 0.720092i
\(796\) 431.488 + 412.973i 0.542070 + 0.518811i
\(797\) −594.191 −0.745535 −0.372767 0.927925i \(-0.621591\pi\)
−0.372767 + 0.927925i \(0.621591\pi\)
\(798\) 0 0
\(799\) 182.171i 0.227999i
\(800\) 579.311 + 1206.95i 0.724139 + 1.50869i
\(801\) −406.733 −0.507781
\(802\) −898.427 + 383.731i −1.12023 + 0.478467i
\(803\) 335.516i 0.417828i
\(804\) 24.7898 25.9012i 0.0308331 0.0322154i
\(805\) 0 0
\(806\) 567.592 + 1328.90i 0.704209 + 1.64876i
\(807\) 657.747i 0.815052i
\(808\) 32.3522 85.9986i 0.0400398 0.106434i
\(809\) 1147.79 1.41878 0.709389 0.704817i \(-0.248971\pi\)
0.709389 + 0.704817i \(0.248971\pi\)
\(810\) −135.330 + 57.8013i −0.167074 + 0.0713596i
\(811\) 1214.93i 1.49806i −0.662536 0.749030i \(-0.730520\pi\)
0.662536 0.749030i \(-0.269480\pi\)
\(812\) 0 0
\(813\) 883.822 1.08711
\(814\) −602.258 1410.07i −0.739875 1.73227i
\(815\) 1.42027i 0.00174266i
\(816\) −165.292 + 7.25143i −0.202563 + 0.00888656i
\(817\) −82.1885 −0.100598
\(818\) −718.704 + 306.968i −0.878611 + 0.375267i
\(819\) 0 0
\(820\) 93.0772 97.2501i 0.113509 0.118598i
\(821\) −1195.33 −1.45594 −0.727971 0.685608i \(-0.759536\pi\)
−0.727971 + 0.685608i \(0.759536\pi\)
\(822\) −128.786 301.526i −0.156674 0.366820i
\(823\) 810.829i 0.985212i −0.870253 0.492606i \(-0.836044\pi\)
0.870253 0.492606i \(-0.163956\pi\)
\(824\) 918.934 + 345.698i 1.11521 + 0.419536i
\(825\) −1127.96 −1.36723
\(826\) 0 0
\(827\) 1268.19i 1.53349i −0.641955 0.766743i \(-0.721876\pi\)
0.641955 0.766743i \(-0.278124\pi\)
\(828\) −254.530 243.609i −0.307404 0.294214i
\(829\) 1499.96 1.80936 0.904681 0.426089i \(-0.140109\pi\)
0.904681 + 0.426089i \(0.140109\pi\)
\(830\) 373.098 + 873.533i 0.449515 + 1.05245i
\(831\) 697.985i 0.839934i
\(832\) −982.837 861.379i −1.18129 1.03531i
\(833\) 0 0
\(834\) 182.505 77.9503i 0.218831 0.0934655i
\(835\) 1378.26i 1.65061i
\(836\) −180.407 + 188.495i −0.215797 + 0.225472i
\(837\) 183.855 0.219659
\(838\) 18.7648 + 43.9339i 0.0223923 + 0.0524270i
\(839\) 436.317i 0.520044i 0.965603 + 0.260022i \(0.0837298\pi\)
−0.965603 + 0.260022i \(0.916270\pi\)
\(840\) 0 0
\(841\) −778.620 −0.925826
\(842\) −290.376 + 124.024i −0.344865 + 0.147296i
\(843\) 586.831i 0.696122i
\(844\) 681.994 + 652.731i 0.808050 + 0.773378i
\(845\) 2027.32 2.39919
\(846\) 71.9116 + 168.366i 0.0850019 + 0.199015i
\(847\) 0 0
\(848\) −28.3505 646.232i −0.0334322 0.762066i
\(849\) 215.489 0.253816
\(850\) −459.400 + 196.216i −0.540470 + 0.230842i
\(851\) 1446.04i 1.69923i
\(852\) −359.827 + 375.959i −0.422332 + 0.441266i
\(853\) 729.996 0.855798 0.427899 0.903827i \(-0.359254\pi\)
0.427899 + 0.903827i \(0.359254\pi\)
\(854\) 0 0
\(855\) 102.777i 0.120207i
\(856\) −637.520 239.832i −0.744767 0.280177i
\(857\) 284.649 0.332146 0.166073 0.986113i \(-0.446891\pi\)
0.166073 + 0.986113i \(0.446891\pi\)
\(858\) 1012.59 432.492i 1.18018 0.504070i
\(859\) 251.786i 0.293116i −0.989202 0.146558i \(-0.953181\pi\)
0.989202 0.146558i \(-0.0468195\pi\)
\(860\) −463.355 443.473i −0.538785 0.515666i
\(861\) 0 0
\(862\) −129.550 303.314i −0.150289 0.351872i
\(863\) 695.096i 0.805441i −0.915323 0.402721i \(-0.868065\pi\)
0.915323 0.402721i \(-0.131935\pi\)
\(864\) −149.904 + 71.9505i −0.173500 + 0.0832760i
\(865\) 68.3305 0.0789947
\(866\) −275.312 + 117.589i −0.317912 + 0.135785i
\(867\) 438.827i 0.506144i
\(868\) 0 0
\(869\) −973.010 −1.11969
\(870\) −87.8576 205.701i −0.100986 0.236437i
\(871\) 105.671i 0.121322i
\(872\) 147.831 392.966i 0.169531 0.450649i
\(873\) 185.569 0.212564
\(874\) −226.291 + 96.6520i −0.258914 + 0.110586i
\(875\) 0 0
\(876\) −107.884 103.255i −0.123156 0.117871i
\(877\) 1094.32 1.24780 0.623901 0.781503i \(-0.285547\pi\)
0.623901 + 0.781503i \(0.285547\pi\)
\(878\) −338.315 792.095i −0.385324 0.902159i
\(879\) 383.183i 0.435931i
\(880\) −2034.16 + 89.2397i −2.31155 + 0.101409i
\(881\) 26.3107 0.0298646 0.0149323 0.999889i \(-0.495247\pi\)
0.0149323 + 0.999889i \(0.495247\pi\)
\(882\) 0 0
\(883\) 855.744i 0.969132i −0.874755 0.484566i \(-0.838978\pi\)
0.874755 0.484566i \(-0.161022\pi\)
\(884\) 337.176 352.293i 0.381421 0.398521i
\(885\) 1177.42 1.33042
\(886\) −480.587 1125.20i −0.542424 1.26997i
\(887\) 641.756i 0.723512i −0.932273 0.361756i \(-0.882177\pi\)
0.932273 0.361756i \(-0.117823\pi\)
\(888\) −638.749 240.294i −0.719312 0.270601i
\(889\) 0 0
\(890\) −2038.63 + 870.729i −2.29060 + 0.978347i
\(891\) 140.093i 0.157231i
\(892\) 724.888 + 693.784i 0.812655 + 0.777785i
\(893\) 127.866 0.143187
\(894\) −193.851 453.863i −0.216836 0.507677i
\(895\) 1517.35i 1.69536i
\(896\) 0 0
\(897\) 1038.43 1.15767
\(898\) −27.1595 + 11.6002i −0.0302444 + 0.0129178i
\(899\) 279.458i 0.310855i
\(900\) −347.132 + 362.695i −0.385702 + 0.402994i
\(901\) 241.365 0.267885
\(902\) 50.3365 + 117.853i 0.0558054 + 0.130657i
\(903\) 0 0
\(904\) −260.610 + 692.754i −0.288285 + 0.766321i
\(905\) −1930.23 −2.13285
\(906\) 335.762 143.409i 0.370599 0.158288i
\(907\) 823.477i 0.907913i 0.891024 + 0.453957i \(0.149988\pi\)
−0.891024 + 0.453957i \(0.850012\pi\)
\(908\) 662.841 + 634.399i 0.730001 + 0.698678i
\(909\) 34.4560 0.0379054
\(910\) 0 0
\(911\) 188.691i 0.207125i 0.994623 + 0.103563i \(0.0330242\pi\)
−0.994623 + 0.103563i \(0.966976\pi\)
\(912\) 5.08980 + 116.019i 0.00558093 + 0.127214i
\(913\) −904.278 −0.990447
\(914\) 1606.01 685.949i 1.75712 0.750491i
\(915\) 48.5789i 0.0530917i
\(916\) 496.598 518.862i 0.542137 0.566443i
\(917\) 0 0
\(918\) −24.3700 57.0575i −0.0265469 0.0621541i
\(919\) 32.5760i 0.0354472i 0.999843 + 0.0177236i \(0.00564189\pi\)
−0.999843 + 0.0177236i \(0.994358\pi\)
\(920\) −1797.28 676.126i −1.95356 0.734919i
\(921\) 2.75209 0.00298815
\(922\) −22.5997 + 9.65265i −0.0245116 + 0.0104693i
\(923\) 1533.83i 1.66179i
\(924\) 0 0
\(925\) −2060.55 −2.22762
\(926\) 99.0147 + 231.823i 0.106927 + 0.250349i
\(927\) 368.178i 0.397172i
\(928\) −109.364 227.853i −0.117849 0.245531i
\(929\) −877.630 −0.944704 −0.472352 0.881410i \(-0.656595\pi\)
−0.472352 + 0.881410i \(0.656595\pi\)
\(930\) 921.522 393.595i 0.990883 0.423220i
\(931\) 0 0
\(932\) −602.511 + 629.523i −0.646471 + 0.675454i
\(933\) −216.637 −0.232194
\(934\) 418.431 + 979.670i 0.447999 + 1.04890i
\(935\) 759.749i 0.812566i
\(936\) 172.559 458.697i 0.184358 0.490061i
\(937\) 233.999 0.249732 0.124866 0.992174i \(-0.460150\pi\)
0.124866 + 0.992174i \(0.460150\pi\)
\(938\) 0 0
\(939\) 384.748i 0.409742i
\(940\) 720.874 + 689.942i 0.766887 + 0.733981i
\(941\) −260.532 −0.276867 −0.138434 0.990372i \(-0.544207\pi\)
−0.138434 + 0.990372i \(0.544207\pi\)
\(942\) 377.723 + 884.360i 0.400979 + 0.938812i
\(943\) 120.860i 0.128165i
\(944\) 1329.12 58.3094i 1.40797 0.0617684i
\(945\) 0 0
\(946\) 561.517 239.832i 0.593570 0.253522i
\(947\) 882.223i 0.931598i −0.884891 0.465799i \(-0.845767\pi\)
0.884891 0.465799i \(-0.154233\pi\)
\(948\) −299.445 + 312.869i −0.315870 + 0.330031i
\(949\) 440.144 0.463798
\(950\) 137.725 + 322.454i 0.144973 + 0.339426i
\(951\) 806.971i 0.848550i
\(952\) 0 0
\(953\) −442.079 −0.463882 −0.231941 0.972730i \(-0.574508\pi\)
−0.231941 + 0.972730i \(0.574508\pi\)
\(954\) 223.075 95.2783i 0.233831 0.0998724i
\(955\) 2842.74i 2.97669i
\(956\) 431.799 + 413.271i 0.451673 + 0.432292i
\(957\) 212.941 0.222508
\(958\) 285.213 + 667.768i 0.297717 + 0.697043i
\(959\) 0 0
\(960\) −597.320 + 681.544i −0.622208 + 0.709941i
\(961\) −290.950 −0.302758
\(962\) 1849.79 790.069i 1.92285 0.821278i
\(963\) 255.427i 0.265241i
\(964\) 51.3373 53.6388i 0.0532544 0.0556420i
\(965\) 2342.14 2.42709
\(966\) 0 0
\(967\) 578.469i 0.598210i 0.954220 + 0.299105i \(0.0966880\pi\)
−0.954220 + 0.299105i \(0.903312\pi\)
\(968\) 341.673 908.236i 0.352968 0.938260i
\(969\) −43.3325 −0.0447187
\(970\) 930.110 397.263i 0.958877 0.409549i
\(971\) 1010.58i 1.04076i 0.853935 + 0.520379i \(0.174209\pi\)
−0.853935 + 0.520379i \(0.825791\pi\)
\(972\) −45.0467 43.1138i −0.0463443 0.0443557i
\(973\) 0 0
\(974\) −684.604 1602.86i −0.702879 1.64565i
\(975\) 1479.71i 1.51765i
\(976\) −2.40577 54.8380i −0.00246493 0.0561864i
\(977\) 210.284 0.215235 0.107617 0.994192i \(-0.465678\pi\)
0.107617 + 0.994192i \(0.465678\pi\)
\(978\) 0.553433 0.236379i 0.000565882 0.000241696i
\(979\) 2110.39i 2.15566i
\(980\) 0 0
\(981\) 157.445 0.160494
\(982\) 232.617 + 544.625i 0.236881 + 0.554608i
\(983\) 593.862i 0.604132i −0.953287 0.302066i \(-0.902324\pi\)
0.953287 0.302066i \(-0.0976764\pi\)
\(984\) 53.3864 + 20.0837i 0.0542545 + 0.0204102i
\(985\) −2659.60 −2.70010
\(986\) 86.7270 37.0423i 0.0879584 0.0375682i
\(987\) 0 0
\(988\) −247.276 236.665i −0.250279 0.239540i
\(989\) 575.844 0.582249
\(990\) −299.910 702.177i −0.302939 0.709270i
\(991\) 1183.14i 1.19389i −0.802284 0.596943i \(-0.796382\pi\)
0.802284 0.596943i \(-0.203618\pi\)
\(992\) 1020.76 489.943i 1.02899 0.493894i
\(993\) 597.547 0.601760
\(994\) 0 0
\(995\) 1220.72i 1.22686i
\(996\) −278.292 + 290.769i −0.279410 + 0.291937i
\(997\) −420.534 −0.421799 −0.210900 0.977508i \(-0.567639\pi\)
−0.210900 + 0.977508i \(0.567639\pi\)
\(998\) 80.4409 + 188.336i 0.0806021 + 0.188713i
\(999\) 255.920i 0.256176i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.d.295.2 12
4.3 odd 2 inner 588.3.g.d.295.1 12
7.6 odd 2 84.3.g.a.43.2 yes 12
21.20 even 2 252.3.g.b.127.11 12
28.27 even 2 84.3.g.a.43.1 12
56.13 odd 2 1344.3.m.e.127.6 12
56.27 even 2 1344.3.m.e.127.12 12
84.83 odd 2 252.3.g.b.127.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.g.a.43.1 12 28.27 even 2
84.3.g.a.43.2 yes 12 7.6 odd 2
252.3.g.b.127.11 12 21.20 even 2
252.3.g.b.127.12 12 84.83 odd 2
588.3.g.d.295.1 12 4.3 odd 2 inner
588.3.g.d.295.2 12 1.1 even 1 trivial
1344.3.m.e.127.6 12 56.13 odd 2
1344.3.m.e.127.12 12 56.27 even 2