Properties

Label 588.2.o.f.19.5
Level $588$
Weight $2$
Character 588.19
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(19,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,12,4,0,-8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.5
Character \(\chi\) \(=\) 588.19
Dual form 588.2.o.f.31.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.914808 - 1.07848i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.326251 + 1.97321i) q^{4} +(-0.441565 - 0.254938i) q^{5} +(0.476589 - 1.33149i) q^{6} +(2.42653 - 1.45325i) q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.129001 + 0.709440i) q^{10} +(-3.57438 + 2.06367i) q^{11} +(-1.87198 + 0.704063i) q^{12} +3.97722i q^{13} -0.509876i q^{15} +(-3.78712 - 1.28752i) q^{16} +(4.27680 - 2.46921i) q^{17} +(1.39140 - 0.253006i) q^{18} +(-2.52617 + 4.37545i) q^{19} +(0.647107 - 0.788127i) q^{20} +(5.49550 + 1.96705i) q^{22} +(-2.52818 - 1.45965i) q^{23} +(2.47182 + 1.37481i) q^{24} +(-2.37001 - 4.10498i) q^{25} +(4.28936 - 3.63839i) q^{26} -1.00000 q^{27} -5.82102 q^{29} +(-0.549892 + 0.466438i) q^{30} +(2.85998 + 4.95364i) q^{31} +(2.07592 + 5.26218i) q^{32} +(-3.57438 - 2.06367i) q^{33} +(-6.57546 - 2.35360i) q^{34} +(-1.54572 - 1.26915i) q^{36} +(-5.00371 + 8.66667i) q^{37} +(7.02981 - 1.27827i) q^{38} +(-3.44437 + 1.98861i) q^{39} +(-1.44196 + 0.0230915i) q^{40} +11.7494i q^{41} +9.84649i q^{43} +(-2.90591 - 7.72628i) q^{44} +(0.441565 - 0.254938i) q^{45} +(0.738599 + 4.06190i) q^{46} +(3.93580 - 6.81701i) q^{47} +(-0.778531 - 3.92350i) q^{48} +(-2.25905 + 6.31129i) q^{50} +(4.27680 + 2.46921i) q^{51} +(-7.84789 - 1.29757i) q^{52} +(-0.619363 - 1.07277i) q^{53} +(0.914808 + 1.07848i) q^{54} +2.10443 q^{55} -5.05234 q^{57} +(5.32512 + 6.27788i) q^{58} +(-2.32689 - 4.03030i) q^{59} +(1.00609 + 0.166348i) q^{60} +(-0.470524 - 0.271657i) q^{61} +(2.72608 - 7.61607i) q^{62} +(3.77611 - 7.05273i) q^{64} +(1.01394 - 1.75620i) q^{65} +(1.04424 + 5.74277i) q^{66} +(6.08041 - 3.51053i) q^{67} +(3.47697 + 9.24462i) q^{68} -2.91930i q^{69} +1.06587i q^{71} +(0.0452885 + 2.82806i) q^{72} +(-0.724896 + 0.418519i) q^{73} +(13.9243 - 2.53193i) q^{74} +(2.37001 - 4.10498i) q^{75} +(-7.80952 - 6.41216i) q^{76} +(5.29562 + 1.89550i) q^{78} +(1.08946 + 0.629001i) q^{79} +(1.34402 + 1.53401i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(12.6715 - 10.7484i) q^{82} +13.7332 q^{83} -2.51798 q^{85} +(10.6193 - 9.00765i) q^{86} +(-2.91051 - 5.04115i) q^{87} +(-5.67431 + 10.2020i) q^{88} +(4.06085 + 2.34453i) q^{89} +(-0.678894 - 0.243001i) q^{90} +(3.70502 - 4.51243i) q^{92} +(-2.85998 + 4.95364i) q^{93} +(-10.9525 + 1.99156i) q^{94} +(2.23094 - 1.28803i) q^{95} +(-3.51923 + 4.42889i) q^{96} -1.80904i q^{97} -4.12734i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} + 12 q^{3} + 4 q^{4} - 8 q^{6} + 8 q^{8} - 12 q^{9} - 4 q^{12} + 4 q^{16} - 4 q^{18} + 48 q^{20} + 4 q^{24} + 12 q^{25} + 24 q^{26} - 24 q^{27} + 64 q^{29} + 16 q^{31} - 4 q^{32} - 64 q^{34}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.914808 1.07848i −0.646867 0.762603i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.326251 + 1.97321i −0.163126 + 0.986605i
\(5\) −0.441565 0.254938i −0.197474 0.114012i 0.398003 0.917384i \(-0.369703\pi\)
−0.595477 + 0.803373i \(0.703037\pi\)
\(6\) 0.476589 1.33149i 0.194567 0.543578i
\(7\) 0 0
\(8\) 2.42653 1.45325i 0.857908 0.513803i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.129001 + 0.709440i 0.0407938 + 0.224345i
\(11\) −3.57438 + 2.06367i −1.07772 + 0.622220i −0.930279 0.366852i \(-0.880436\pi\)
−0.147437 + 0.989071i \(0.547102\pi\)
\(12\) −1.87198 + 0.704063i −0.540393 + 0.203246i
\(13\) 3.97722i 1.10308i 0.834148 + 0.551541i \(0.185960\pi\)
−0.834148 + 0.551541i \(0.814040\pi\)
\(14\) 0 0
\(15\) 0.509876i 0.131649i
\(16\) −3.78712 1.28752i −0.946780 0.321881i
\(17\) 4.27680 2.46921i 1.03728 0.598872i 0.118217 0.992988i \(-0.462282\pi\)
0.919061 + 0.394115i \(0.128949\pi\)
\(18\) 1.39140 0.253006i 0.327956 0.0596340i
\(19\) −2.52617 + 4.37545i −0.579543 + 1.00380i 0.415989 + 0.909370i \(0.363436\pi\)
−0.995532 + 0.0944280i \(0.969898\pi\)
\(20\) 0.647107 0.788127i 0.144698 0.176231i
\(21\) 0 0
\(22\) 5.49550 + 1.96705i 1.17165 + 0.419376i
\(23\) −2.52818 1.45965i −0.527163 0.304358i 0.212697 0.977118i \(-0.431775\pi\)
−0.739860 + 0.672760i \(0.765108\pi\)
\(24\) 2.47182 + 1.37481i 0.504558 + 0.280632i
\(25\) −2.37001 4.10498i −0.474003 0.820997i
\(26\) 4.28936 3.63839i 0.841213 0.713547i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −5.82102 −1.08094 −0.540469 0.841364i \(-0.681753\pi\)
−0.540469 + 0.841364i \(0.681753\pi\)
\(30\) −0.549892 + 0.466438i −0.100396 + 0.0851596i
\(31\) 2.85998 + 4.95364i 0.513668 + 0.889700i 0.999874 + 0.0158555i \(0.00504716\pi\)
−0.486206 + 0.873844i \(0.661620\pi\)
\(32\) 2.07592 + 5.26218i 0.366974 + 0.930231i
\(33\) −3.57438 2.06367i −0.622220 0.359239i
\(34\) −6.57546 2.35360i −1.12768 0.403640i
\(35\) 0 0
\(36\) −1.54572 1.26915i −0.257621 0.211525i
\(37\) −5.00371 + 8.66667i −0.822604 + 1.42479i 0.0811323 + 0.996703i \(0.474146\pi\)
−0.903737 + 0.428089i \(0.859187\pi\)
\(38\) 7.02981 1.27827i 1.14039 0.207363i
\(39\) −3.44437 + 1.98861i −0.551541 + 0.318432i
\(40\) −1.44196 + 0.0230915i −0.227994 + 0.00365109i
\(41\) 11.7494i 1.83495i 0.397797 + 0.917474i \(0.369775\pi\)
−0.397797 + 0.917474i \(0.630225\pi\)
\(42\) 0 0
\(43\) 9.84649i 1.50158i 0.660544 + 0.750788i \(0.270326\pi\)
−0.660544 + 0.750788i \(0.729674\pi\)
\(44\) −2.90591 7.72628i −0.438082 1.16478i
\(45\) 0.441565 0.254938i 0.0658247 0.0380039i
\(46\) 0.738599 + 4.06190i 0.108900 + 0.598895i
\(47\) 3.93580 6.81701i 0.574096 0.994364i −0.422043 0.906576i \(-0.638687\pi\)
0.996139 0.0877879i \(-0.0279798\pi\)
\(48\) −0.778531 3.92350i −0.112371 0.566309i
\(49\) 0 0
\(50\) −2.25905 + 6.31129i −0.319477 + 0.892552i
\(51\) 4.27680 + 2.46921i 0.598872 + 0.345759i
\(52\) −7.84789 1.29757i −1.08831 0.179941i
\(53\) −0.619363 1.07277i −0.0850761 0.147356i 0.820348 0.571865i \(-0.193780\pi\)
−0.905424 + 0.424509i \(0.860447\pi\)
\(54\) 0.914808 + 1.07848i 0.124490 + 0.146763i
\(55\) 2.10443 0.283761
\(56\) 0 0
\(57\) −5.05234 −0.669199
\(58\) 5.32512 + 6.27788i 0.699223 + 0.824325i
\(59\) −2.32689 4.03030i −0.302936 0.524700i 0.673864 0.738856i \(-0.264633\pi\)
−0.976800 + 0.214155i \(0.931300\pi\)
\(60\) 1.00609 + 0.166348i 0.129886 + 0.0214754i
\(61\) −0.470524 0.271657i −0.0602444 0.0347821i 0.469575 0.882892i \(-0.344407\pi\)
−0.529820 + 0.848110i \(0.677740\pi\)
\(62\) 2.72608 7.61607i 0.346212 0.967242i
\(63\) 0 0
\(64\) 3.77611 7.05273i 0.472014 0.881591i
\(65\) 1.01394 1.75620i 0.125764 0.217830i
\(66\) 1.04424 + 5.74277i 0.128537 + 0.706886i
\(67\) 6.08041 3.51053i 0.742841 0.428879i −0.0802606 0.996774i \(-0.525575\pi\)
0.823101 + 0.567895i \(0.192242\pi\)
\(68\) 3.47697 + 9.24462i 0.421644 + 1.12107i
\(69\) 2.91930i 0.351442i
\(70\) 0 0
\(71\) 1.06587i 0.126496i 0.997998 + 0.0632478i \(0.0201458\pi\)
−0.997998 + 0.0632478i \(0.979854\pi\)
\(72\) 0.0452885 + 2.82806i 0.00533731 + 0.333291i
\(73\) −0.724896 + 0.418519i −0.0848426 + 0.0489839i −0.541821 0.840494i \(-0.682265\pi\)
0.456978 + 0.889478i \(0.348932\pi\)
\(74\) 13.9243 2.53193i 1.61867 0.294331i
\(75\) 2.37001 4.10498i 0.273666 0.474003i
\(76\) −7.80952 6.41216i −0.895814 0.735525i
\(77\) 0 0
\(78\) 5.29562 + 1.89550i 0.599611 + 0.214623i
\(79\) 1.08946 + 0.629001i 0.122574 + 0.0707682i 0.560033 0.828470i \(-0.310788\pi\)
−0.437459 + 0.899238i \(0.644122\pi\)
\(80\) 1.34402 + 1.53401i 0.150266 + 0.171507i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 12.6715 10.7484i 1.39934 1.18697i
\(83\) 13.7332 1.50741 0.753705 0.657213i \(-0.228265\pi\)
0.753705 + 0.657213i \(0.228265\pi\)
\(84\) 0 0
\(85\) −2.51798 −0.273114
\(86\) 10.6193 9.00765i 1.14511 0.971320i
\(87\) −2.91051 5.04115i −0.312040 0.540469i
\(88\) −5.67431 + 10.2020i −0.604884 + 1.08754i
\(89\) 4.06085 + 2.34453i 0.430449 + 0.248520i 0.699538 0.714596i \(-0.253389\pi\)
−0.269089 + 0.963115i \(0.586723\pi\)
\(90\) −0.678894 0.243001i −0.0715617 0.0256146i
\(91\) 0 0
\(92\) 3.70502 4.51243i 0.386275 0.470453i
\(93\) −2.85998 + 4.95364i −0.296567 + 0.513668i
\(94\) −10.9525 + 1.99156i −1.12967 + 0.205414i
\(95\) 2.23094 1.28803i 0.228889 0.132149i
\(96\) −3.51923 + 4.42889i −0.359180 + 0.452021i
\(97\) 1.80904i 0.183680i −0.995774 0.0918402i \(-0.970725\pi\)
0.995774 0.0918402i \(-0.0292749\pi\)
\(98\) 0 0
\(99\) 4.12734i 0.414813i
\(100\) 8.87322 3.33728i 0.887322 0.333728i
\(101\) −5.16423 + 2.98157i −0.513860 + 0.296677i −0.734419 0.678697i \(-0.762545\pi\)
0.220559 + 0.975374i \(0.429212\pi\)
\(102\) −1.24945 6.87132i −0.123714 0.680362i
\(103\) −5.54683 + 9.60738i −0.546545 + 0.946644i 0.451963 + 0.892037i \(0.350724\pi\)
−0.998508 + 0.0546070i \(0.982609\pi\)
\(104\) 5.77990 + 9.65084i 0.566766 + 0.946343i
\(105\) 0 0
\(106\) −0.590364 + 1.64935i −0.0573412 + 0.160199i
\(107\) −0.544929 0.314615i −0.0526802 0.0304150i 0.473429 0.880832i \(-0.343016\pi\)
−0.526109 + 0.850417i \(0.676350\pi\)
\(108\) 0.326251 1.97321i 0.0313935 0.189872i
\(109\) −7.90877 13.6984i −0.757523 1.31207i −0.944110 0.329629i \(-0.893076\pi\)
0.186588 0.982438i \(-0.440257\pi\)
\(110\) −1.92515 2.26959i −0.183556 0.216397i
\(111\) −10.0074 −0.949862
\(112\) 0 0
\(113\) −3.72346 −0.350273 −0.175137 0.984544i \(-0.556037\pi\)
−0.175137 + 0.984544i \(0.556037\pi\)
\(114\) 4.62192 + 5.44886i 0.432883 + 0.510333i
\(115\) 0.744239 + 1.28906i 0.0694006 + 0.120205i
\(116\) 1.89912 11.4861i 0.176328 1.06646i
\(117\) −3.44437 1.98861i −0.318432 0.183847i
\(118\) −2.21795 + 6.19647i −0.204179 + 0.570431i
\(119\) 0 0
\(120\) −0.740978 1.23723i −0.0676418 0.112943i
\(121\) 3.01746 5.22640i 0.274315 0.475127i
\(122\) 0.137462 + 0.755966i 0.0124452 + 0.0684420i
\(123\) −10.1753 + 5.87470i −0.917474 + 0.529704i
\(124\) −10.7076 + 4.02722i −0.961575 + 0.361655i
\(125\) 4.96620i 0.444191i
\(126\) 0 0
\(127\) 14.0834i 1.24970i −0.780746 0.624848i \(-0.785161\pi\)
0.780746 0.624848i \(-0.214839\pi\)
\(128\) −11.0607 + 2.37943i −0.977634 + 0.210314i
\(129\) −8.52731 + 4.92324i −0.750788 + 0.433467i
\(130\) −2.82160 + 0.513067i −0.247470 + 0.0449989i
\(131\) 1.68181 2.91299i 0.146941 0.254509i −0.783155 0.621827i \(-0.786391\pi\)
0.930095 + 0.367318i \(0.119724\pi\)
\(132\) 5.23820 6.37973i 0.455927 0.555284i
\(133\) 0 0
\(134\) −9.34846 3.34616i −0.807584 0.289064i
\(135\) 0.441565 + 0.254938i 0.0380039 + 0.0219416i
\(136\) 6.78941 12.2069i 0.582187 1.04673i
\(137\) 0.243728 + 0.422150i 0.0208231 + 0.0360667i 0.876249 0.481858i \(-0.160038\pi\)
−0.855426 + 0.517925i \(0.826705\pi\)
\(138\) −3.14841 + 2.67060i −0.268011 + 0.227336i
\(139\) 16.2489 1.37821 0.689105 0.724662i \(-0.258004\pi\)
0.689105 + 0.724662i \(0.258004\pi\)
\(140\) 0 0
\(141\) 7.87161 0.662909
\(142\) 1.14952 0.975068i 0.0964659 0.0818259i
\(143\) −8.20766 14.2161i −0.686359 1.18881i
\(144\) 3.00859 2.63598i 0.250716 0.219665i
\(145\) 2.57036 + 1.48400i 0.213457 + 0.123239i
\(146\) 1.11451 + 0.398923i 0.0922372 + 0.0330151i
\(147\) 0 0
\(148\) −15.4687 12.7009i −1.27152 1.04401i
\(149\) 7.87372 13.6377i 0.645040 1.11724i −0.339252 0.940696i \(-0.610174\pi\)
0.984292 0.176547i \(-0.0564928\pi\)
\(150\) −6.59526 + 1.19925i −0.538501 + 0.0979187i
\(151\) 21.0293 12.1413i 1.71134 0.988041i 0.778573 0.627554i \(-0.215944\pi\)
0.932764 0.360487i \(-0.117389\pi\)
\(152\) 0.228813 + 14.2883i 0.0185592 + 1.15894i
\(153\) 4.93843i 0.399248i
\(154\) 0 0
\(155\) 2.91647i 0.234257i
\(156\) −2.80021 7.44525i −0.224196 0.596097i
\(157\) 3.25493 1.87923i 0.259771 0.149979i −0.364459 0.931219i \(-0.618746\pi\)
0.624230 + 0.781240i \(0.285413\pi\)
\(158\) −0.318282 1.75038i −0.0253211 0.139253i
\(159\) 0.619363 1.07277i 0.0491187 0.0850761i
\(160\) 0.424877 2.85283i 0.0335895 0.225536i
\(161\) 0 0
\(162\) −0.476589 + 1.33149i −0.0374444 + 0.104612i
\(163\) 7.00593 + 4.04488i 0.548747 + 0.316819i 0.748616 0.663003i \(-0.230719\pi\)
−0.199870 + 0.979822i \(0.564052\pi\)
\(164\) −23.1840 3.83325i −1.81037 0.299327i
\(165\) 1.05221 + 1.82249i 0.0819148 + 0.141881i
\(166\) −12.5632 14.8110i −0.975094 1.14956i
\(167\) −23.7606 −1.83865 −0.919327 0.393495i \(-0.871266\pi\)
−0.919327 + 0.393495i \(0.871266\pi\)
\(168\) 0 0
\(169\) −2.81825 −0.216789
\(170\) 2.30347 + 2.71560i 0.176668 + 0.208277i
\(171\) −2.52617 4.37545i −0.193181 0.334599i
\(172\) −19.4292 3.21243i −1.48146 0.244945i
\(173\) −7.56294 4.36647i −0.575000 0.331976i 0.184144 0.982899i \(-0.441049\pi\)
−0.759144 + 0.650923i \(0.774382\pi\)
\(174\) −2.77424 + 7.75063i −0.210315 + 0.587574i
\(175\) 0 0
\(176\) 16.1936 3.21326i 1.22064 0.242209i
\(177\) 2.32689 4.03030i 0.174900 0.302936i
\(178\) −1.18636 6.52435i −0.0889214 0.489021i
\(179\) −9.34938 + 5.39787i −0.698806 + 0.403456i −0.806902 0.590685i \(-0.798858\pi\)
0.108097 + 0.994140i \(0.465524\pi\)
\(180\) 0.358985 + 0.954475i 0.0267571 + 0.0711424i
\(181\) 26.0627i 1.93722i −0.248580 0.968611i \(-0.579964\pi\)
0.248580 0.968611i \(-0.420036\pi\)
\(182\) 0 0
\(183\) 0.543314i 0.0401629i
\(184\) −8.25596 + 0.132211i −0.608637 + 0.00974670i
\(185\) 4.41893 2.55127i 0.324886 0.187573i
\(186\) 7.95875 1.44719i 0.583564 0.106113i
\(187\) −10.1913 + 17.6518i −0.745260 + 1.29083i
\(188\) 12.1673 + 9.99023i 0.887395 + 0.728612i
\(189\) 0 0
\(190\) −3.43000 1.22772i −0.248838 0.0890685i
\(191\) −1.51959 0.877337i −0.109954 0.0634819i 0.444015 0.896020i \(-0.353554\pi\)
−0.553968 + 0.832538i \(0.686887\pi\)
\(192\) 7.99590 0.256158i 0.577054 0.0184866i
\(193\) 7.46342 + 12.9270i 0.537229 + 0.930507i 0.999052 + 0.0435354i \(0.0138621\pi\)
−0.461823 + 0.886972i \(0.652805\pi\)
\(194\) −1.95102 + 1.65493i −0.140075 + 0.118817i
\(195\) 2.02789 0.145220
\(196\) 0 0
\(197\) 12.1669 0.866855 0.433428 0.901188i \(-0.357304\pi\)
0.433428 + 0.901188i \(0.357304\pi\)
\(198\) −4.45126 + 3.77572i −0.316338 + 0.268329i
\(199\) 10.7268 + 18.5793i 0.760401 + 1.31705i 0.942644 + 0.333800i \(0.108331\pi\)
−0.182242 + 0.983254i \(0.558336\pi\)
\(200\) −11.7165 6.51664i −0.828481 0.460796i
\(201\) 6.08041 + 3.51053i 0.428879 + 0.247614i
\(202\) 7.93985 + 2.84197i 0.558646 + 0.199960i
\(203\) 0 0
\(204\) −6.26759 + 7.63345i −0.438819 + 0.534449i
\(205\) 2.99536 5.18812i 0.209205 0.362354i
\(206\) 15.4357 2.80676i 1.07546 0.195556i
\(207\) 2.52818 1.45965i 0.175721 0.101453i
\(208\) 5.12076 15.0622i 0.355061 1.04438i
\(209\) 20.8527i 1.44241i
\(210\) 0 0
\(211\) 9.90704i 0.682029i 0.940058 + 0.341014i \(0.110770\pi\)
−0.940058 + 0.341014i \(0.889230\pi\)
\(212\) 2.31887 0.872142i 0.159260 0.0598990i
\(213\) −0.923071 + 0.532935i −0.0632478 + 0.0365161i
\(214\) 0.159199 + 0.875508i 0.0108826 + 0.0598485i
\(215\) 2.51024 4.34787i 0.171197 0.296522i
\(216\) −2.42653 + 1.45325i −0.165105 + 0.0988814i
\(217\) 0 0
\(218\) −7.53847 + 21.0609i −0.510570 + 1.42642i
\(219\) −0.724896 0.418519i −0.0489839 0.0282809i
\(220\) −0.686572 + 4.15248i −0.0462887 + 0.279960i
\(221\) 9.82060 + 17.0098i 0.660605 + 1.14420i
\(222\) 9.15487 + 10.7928i 0.614434 + 0.724367i
\(223\) −5.67517 −0.380037 −0.190019 0.981780i \(-0.560855\pi\)
−0.190019 + 0.981780i \(0.560855\pi\)
\(224\) 0 0
\(225\) 4.74003 0.316002
\(226\) 3.40625 + 4.01569i 0.226580 + 0.267119i
\(227\) 1.02352 + 1.77280i 0.0679337 + 0.117665i 0.897992 0.440013i \(-0.145026\pi\)
−0.830058 + 0.557677i \(0.811693\pi\)
\(228\) 1.64833 9.96933i 0.109163 0.660235i
\(229\) 4.02788 + 2.32550i 0.266170 + 0.153673i 0.627146 0.778902i \(-0.284223\pi\)
−0.360976 + 0.932575i \(0.617556\pi\)
\(230\) 0.709393 1.98189i 0.0467760 0.130682i
\(231\) 0 0
\(232\) −14.1249 + 8.45942i −0.927345 + 0.555388i
\(233\) −2.12177 + 3.67501i −0.139002 + 0.240758i −0.927119 0.374767i \(-0.877723\pi\)
0.788117 + 0.615525i \(0.211056\pi\)
\(234\) 1.00626 + 5.53389i 0.0657812 + 0.361762i
\(235\) −3.47583 + 2.00677i −0.226738 + 0.130907i
\(236\) 8.71178 3.27656i 0.567089 0.213286i
\(237\) 1.25800i 0.0817160i
\(238\) 0 0
\(239\) 11.6610i 0.754289i −0.926154 0.377145i \(-0.876906\pi\)
0.926154 0.377145i \(-0.123094\pi\)
\(240\) −0.656477 + 1.93096i −0.0423754 + 0.124643i
\(241\) 8.63879 4.98761i 0.556474 0.321280i −0.195255 0.980752i \(-0.562554\pi\)
0.751729 + 0.659472i \(0.229220\pi\)
\(242\) −8.39698 + 1.52687i −0.539778 + 0.0981509i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0.689546 0.839814i 0.0441436 0.0537636i
\(245\) 0 0
\(246\) 15.6442 + 5.59964i 0.997437 + 0.357020i
\(247\) −17.4021 10.0471i −1.10727 0.639283i
\(248\) 14.1387 + 7.86388i 0.897810 + 0.499357i
\(249\) 6.86658 + 11.8933i 0.435152 + 0.753705i
\(250\) 5.35596 4.54312i 0.338741 0.287332i
\(251\) −11.8869 −0.750292 −0.375146 0.926966i \(-0.622407\pi\)
−0.375146 + 0.926966i \(0.622407\pi\)
\(252\) 0 0
\(253\) 12.0489 0.757509
\(254\) −15.1887 + 12.8836i −0.953021 + 0.808387i
\(255\) −1.25899 2.18064i −0.0788411 0.136557i
\(256\) 12.6846 + 9.75202i 0.792785 + 0.609501i
\(257\) 17.9758 + 10.3783i 1.12130 + 0.647381i 0.941732 0.336365i \(-0.109198\pi\)
0.179565 + 0.983746i \(0.442531\pi\)
\(258\) 13.1105 + 4.69273i 0.816223 + 0.292157i
\(259\) 0 0
\(260\) 3.13455 + 2.57368i 0.194397 + 0.159613i
\(261\) 2.91051 5.04115i 0.180156 0.312040i
\(262\) −4.68015 + 0.851017i −0.289140 + 0.0525760i
\(263\) −1.18230 + 0.682599i −0.0729035 + 0.0420908i −0.536009 0.844212i \(-0.680069\pi\)
0.463105 + 0.886303i \(0.346735\pi\)
\(264\) −11.6724 + 0.186921i −0.718385 + 0.0115042i
\(265\) 0.631597i 0.0387987i
\(266\) 0 0
\(267\) 4.68906i 0.286966i
\(268\) 4.94327 + 13.1432i 0.301958 + 0.802852i
\(269\) −20.2615 + 11.6980i −1.23536 + 0.713238i −0.968143 0.250397i \(-0.919439\pi\)
−0.267222 + 0.963635i \(0.586106\pi\)
\(270\) −0.129001 0.709440i −0.00785078 0.0431751i
\(271\) 10.4596 18.1165i 0.635373 1.10050i −0.351063 0.936352i \(-0.614180\pi\)
0.986436 0.164147i \(-0.0524871\pi\)
\(272\) −19.3759 + 3.84472i −1.17484 + 0.233120i
\(273\) 0 0
\(274\) 0.232317 0.649043i 0.0140348 0.0392101i
\(275\) 16.9427 + 9.78185i 1.02168 + 0.589868i
\(276\) 5.76039 + 0.952424i 0.346734 + 0.0573292i
\(277\) 9.22359 + 15.9757i 0.554192 + 0.959888i 0.997966 + 0.0637495i \(0.0203059\pi\)
−0.443774 + 0.896139i \(0.646361\pi\)
\(278\) −14.8646 17.5241i −0.891519 1.05103i
\(279\) −5.71997 −0.342446
\(280\) 0 0
\(281\) 19.9336 1.18914 0.594569 0.804044i \(-0.297323\pi\)
0.594569 + 0.804044i \(0.297323\pi\)
\(282\) −7.20101 8.48940i −0.428814 0.505536i
\(283\) 10.1479 + 17.5766i 0.603227 + 1.04482i 0.992329 + 0.123625i \(0.0394521\pi\)
−0.389102 + 0.921195i \(0.627215\pi\)
\(284\) −2.10319 0.347742i −0.124801 0.0206347i
\(285\) 2.23094 + 1.28803i 0.132149 + 0.0762964i
\(286\) −7.82337 + 21.8568i −0.462605 + 1.29242i
\(287\) 0 0
\(288\) −5.59514 0.833296i −0.329697 0.0491024i
\(289\) 3.69404 6.39827i 0.217296 0.376369i
\(290\) −0.750921 4.12967i −0.0440956 0.242502i
\(291\) 1.56668 0.904521i 0.0918402 0.0530240i
\(292\) −0.589327 1.56691i −0.0344878 0.0916967i
\(293\) 2.69416i 0.157394i −0.996899 0.0786972i \(-0.974924\pi\)
0.996899 0.0786972i \(-0.0250760\pi\)
\(294\) 0 0
\(295\) 2.37285i 0.138153i
\(296\) 0.453221 + 28.3016i 0.0263429 + 1.64500i
\(297\) 3.57438 2.06367i 0.207407 0.119746i
\(298\) −21.9110 + 3.98419i −1.26927 + 0.230798i
\(299\) 5.80534 10.0551i 0.335731 0.581504i
\(300\) 7.32678 + 6.01579i 0.423012 + 0.347322i
\(301\) 0 0
\(302\) −32.3319 11.5728i −1.86049 0.665939i
\(303\) −5.16423 2.98157i −0.296677 0.171287i
\(304\) 15.2004 13.3179i 0.871803 0.763832i
\(305\) 0.138511 + 0.239909i 0.00793113 + 0.0137371i
\(306\) 5.32601 4.51772i 0.304468 0.258261i
\(307\) 6.99511 0.399232 0.199616 0.979874i \(-0.436031\pi\)
0.199616 + 0.979874i \(0.436031\pi\)
\(308\) 0 0
\(309\) −11.0937 −0.631096
\(310\) −3.14537 + 2.66801i −0.178645 + 0.151533i
\(311\) 11.0106 + 19.0709i 0.624352 + 1.08141i 0.988666 + 0.150134i \(0.0479704\pi\)
−0.364313 + 0.931276i \(0.618696\pi\)
\(312\) −5.46792 + 9.83096i −0.309560 + 0.556569i
\(313\) 1.50461 + 0.868686i 0.0850455 + 0.0491010i 0.541920 0.840430i \(-0.317698\pi\)
−0.456874 + 0.889531i \(0.651031\pi\)
\(314\) −5.00435 1.79124i −0.282412 0.101086i
\(315\) 0 0
\(316\) −1.59659 + 1.94453i −0.0898152 + 0.109388i
\(317\) −16.0648 + 27.8250i −0.902288 + 1.56281i −0.0777720 + 0.996971i \(0.524781\pi\)
−0.824516 + 0.565838i \(0.808553\pi\)
\(318\) −1.72356 + 0.313405i −0.0966526 + 0.0175749i
\(319\) 20.8066 12.0127i 1.16494 0.672580i
\(320\) −3.46541 + 2.15157i −0.193722 + 0.120276i
\(321\) 0.629229i 0.0351202i
\(322\) 0 0
\(323\) 24.9506i 1.38829i
\(324\) 1.87198 0.704063i 0.103999 0.0391146i
\(325\) 16.3264 9.42606i 0.905626 0.522864i
\(326\) −2.04675 11.2561i −0.113359 0.623416i
\(327\) 7.90877 13.6984i 0.437356 0.757523i
\(328\) 17.0748 + 28.5103i 0.942801 + 1.57422i
\(329\) 0 0
\(330\) 1.00295 2.80202i 0.0552105 0.154246i
\(331\) −9.89288 5.71166i −0.543762 0.313941i 0.202840 0.979212i \(-0.434983\pi\)
−0.746602 + 0.665271i \(0.768316\pi\)
\(332\) −4.48046 + 27.0984i −0.245897 + 1.48722i
\(333\) −5.00371 8.66667i −0.274201 0.474931i
\(334\) 21.7364 + 25.6254i 1.18936 + 1.40216i
\(335\) −3.57986 −0.195589
\(336\) 0 0
\(337\) 7.08667 0.386036 0.193018 0.981195i \(-0.438172\pi\)
0.193018 + 0.981195i \(0.438172\pi\)
\(338\) 2.57816 + 3.03944i 0.140233 + 0.165323i
\(339\) −1.86173 3.22461i −0.101115 0.175137i
\(340\) 0.821495 4.96851i 0.0445518 0.269455i
\(341\) −20.4453 11.8041i −1.10718 0.639229i
\(342\) −2.40789 + 6.72713i −0.130204 + 0.363762i
\(343\) 0 0
\(344\) 14.3094 + 23.8928i 0.771513 + 1.28821i
\(345\) −0.744239 + 1.28906i −0.0400685 + 0.0694006i
\(346\) 2.20948 + 12.1510i 0.118783 + 0.653241i
\(347\) −18.1053 + 10.4531i −0.971942 + 0.561151i −0.899828 0.436245i \(-0.856308\pi\)
−0.0721145 + 0.997396i \(0.522975\pi\)
\(348\) 10.8968 4.09837i 0.584131 0.219696i
\(349\) 1.67904i 0.0898768i −0.998990 0.0449384i \(-0.985691\pi\)
0.998990 0.0449384i \(-0.0143092\pi\)
\(350\) 0 0
\(351\) 3.97722i 0.212288i
\(352\) −18.2795 14.5250i −0.974302 0.774187i
\(353\) 5.38099 3.10672i 0.286401 0.165354i −0.349916 0.936781i \(-0.613790\pi\)
0.636318 + 0.771427i \(0.280457\pi\)
\(354\) −6.47527 + 1.17744i −0.344157 + 0.0625800i
\(355\) 0.271731 0.470651i 0.0144220 0.0249796i
\(356\) −5.95111 + 7.24800i −0.315408 + 0.384143i
\(357\) 0 0
\(358\) 14.3744 + 5.14513i 0.759711 + 0.271929i
\(359\) −19.5276 11.2743i −1.03063 0.595033i −0.113463 0.993542i \(-0.536194\pi\)
−0.917164 + 0.398510i \(0.869528\pi\)
\(360\) 0.700983 1.26032i 0.0369450 0.0664247i
\(361\) −3.26306 5.65178i −0.171740 0.297462i
\(362\) −28.1081 + 23.8423i −1.47733 + 1.25313i
\(363\) 6.03492 0.316751
\(364\) 0 0
\(365\) 0.426785 0.0223389
\(366\) −0.585955 + 0.497028i −0.0306284 + 0.0259801i
\(367\) −11.1449 19.3036i −0.581760 1.00764i −0.995271 0.0971382i \(-0.969031\pi\)
0.413511 0.910499i \(-0.364302\pi\)
\(368\) 7.69521 + 8.78296i 0.401140 + 0.457844i
\(369\) −10.1753 5.87470i −0.529704 0.305825i
\(370\) −6.79397 2.43181i −0.353202 0.126424i
\(371\) 0 0
\(372\) −8.84150 7.25948i −0.458410 0.376387i
\(373\) 1.58233 2.74068i 0.0819300 0.141907i −0.822149 0.569272i \(-0.807225\pi\)
0.904079 + 0.427366i \(0.140558\pi\)
\(374\) 28.3603 5.15691i 1.46647 0.266657i
\(375\) −4.30086 + 2.48310i −0.222095 + 0.128227i
\(376\) −0.356494 22.2614i −0.0183848 1.14805i
\(377\) 23.1515i 1.19236i
\(378\) 0 0
\(379\) 7.23505i 0.371640i 0.982584 + 0.185820i \(0.0594941\pi\)
−0.982584 + 0.185820i \(0.940506\pi\)
\(380\) 1.81371 + 4.82233i 0.0930415 + 0.247380i
\(381\) 12.1965 7.04168i 0.624848 0.360756i
\(382\) 0.443943 + 2.44145i 0.0227141 + 0.124915i
\(383\) −12.5932 + 21.8121i −0.643482 + 1.11454i 0.341167 + 0.940003i \(0.389178\pi\)
−0.984650 + 0.174542i \(0.944156\pi\)
\(384\) −7.59098 8.38910i −0.387375 0.428105i
\(385\) 0 0
\(386\) 7.11398 19.8749i 0.362092 1.01161i
\(387\) −8.52731 4.92324i −0.433467 0.250263i
\(388\) 3.56962 + 0.590202i 0.181220 + 0.0299630i
\(389\) 4.09251 + 7.08843i 0.207498 + 0.359398i 0.950926 0.309419i \(-0.100135\pi\)
−0.743428 + 0.668817i \(0.766801\pi\)
\(390\) −1.85513 2.18704i −0.0939380 0.110745i
\(391\) −14.4167 −0.729086
\(392\) 0 0
\(393\) 3.36363 0.169673
\(394\) −11.1304 13.1218i −0.560740 0.661066i
\(395\) −0.320712 0.555490i −0.0161368 0.0279497i
\(396\) 8.14411 + 1.34655i 0.409257 + 0.0676666i
\(397\) 29.0305 + 16.7608i 1.45700 + 0.841200i 0.998863 0.0476807i \(-0.0151830\pi\)
0.458139 + 0.888881i \(0.348516\pi\)
\(398\) 10.2245 28.5652i 0.512510 1.43184i
\(399\) 0 0
\(400\) 3.69026 + 18.5975i 0.184513 + 0.929876i
\(401\) 3.52777 6.11027i 0.176168 0.305132i −0.764397 0.644746i \(-0.776963\pi\)
0.940565 + 0.339614i \(0.110296\pi\)
\(402\) −1.77637 9.76908i −0.0885972 0.487238i
\(403\) −19.7017 + 11.3748i −0.981411 + 0.566618i
\(404\) −4.19843 11.1628i −0.208879 0.555372i
\(405\) 0.509876i 0.0253359i
\(406\) 0 0
\(407\) 41.3040i 2.04736i
\(408\) 13.9662 0.223654i 0.691430 0.0110725i
\(409\) −22.2668 + 12.8558i −1.10102 + 0.635677i −0.936490 0.350694i \(-0.885946\pi\)
−0.164535 + 0.986371i \(0.552612\pi\)
\(410\) −8.33549 + 1.51569i −0.411660 + 0.0748546i
\(411\) −0.243728 + 0.422150i −0.0120222 + 0.0208231i
\(412\) −17.1477 14.0795i −0.844808 0.693646i
\(413\) 0 0
\(414\) −3.88701 1.39131i −0.191036 0.0683789i
\(415\) −6.06409 3.50110i −0.297674 0.171862i
\(416\) −20.9288 + 8.25637i −1.02612 + 0.404802i
\(417\) 8.12443 + 14.0719i 0.397855 + 0.689105i
\(418\) −22.4893 + 19.0762i −1.09999 + 0.933049i
\(419\) 16.0117 0.782223 0.391111 0.920343i \(-0.372091\pi\)
0.391111 + 0.920343i \(0.372091\pi\)
\(420\) 0 0
\(421\) 6.19958 0.302149 0.151075 0.988522i \(-0.451727\pi\)
0.151075 + 0.988522i \(0.451727\pi\)
\(422\) 10.6846 9.06304i 0.520117 0.441182i
\(423\) 3.93580 + 6.81701i 0.191365 + 0.331455i
\(424\) −3.06191 1.70302i −0.148699 0.0827058i
\(425\) −20.2722 11.7041i −0.983345 0.567734i
\(426\) 1.41920 + 0.507983i 0.0687602 + 0.0246118i
\(427\) 0 0
\(428\) 0.798585 0.972616i 0.0386010 0.0470131i
\(429\) 8.20766 14.2161i 0.396270 0.686359i
\(430\) −6.98549 + 1.27021i −0.336870 + 0.0612550i
\(431\) 26.4566 15.2747i 1.27437 0.735758i 0.298562 0.954390i \(-0.403493\pi\)
0.975807 + 0.218632i \(0.0701596\pi\)
\(432\) 3.78712 + 1.28752i 0.182208 + 0.0619461i
\(433\) 23.2309i 1.11641i 0.829704 + 0.558204i \(0.188509\pi\)
−0.829704 + 0.558204i \(0.811491\pi\)
\(434\) 0 0
\(435\) 2.96800i 0.142305i
\(436\) 29.6100 11.1365i 1.41806 0.533344i
\(437\) 12.7732 7.37463i 0.611027 0.352777i
\(438\) 0.211775 + 1.16465i 0.0101190 + 0.0556492i
\(439\) −1.20325 + 2.08410i −0.0574282 + 0.0994685i −0.893310 0.449441i \(-0.851623\pi\)
0.835882 + 0.548909i \(0.184957\pi\)
\(440\) 5.10646 3.05827i 0.243441 0.145797i
\(441\) 0 0
\(442\) 9.36079 26.1520i 0.445247 1.24393i
\(443\) 6.59229 + 3.80606i 0.313209 + 0.180831i 0.648362 0.761333i \(-0.275455\pi\)
−0.335153 + 0.942164i \(0.608788\pi\)
\(444\) 3.26493 19.7467i 0.154947 0.937139i
\(445\) −1.19542 2.07053i −0.0566683 0.0981524i
\(446\) 5.19169 + 6.12057i 0.245834 + 0.289817i
\(447\) 15.7474 0.744828
\(448\) 0 0
\(449\) −16.8969 −0.797414 −0.398707 0.917078i \(-0.630541\pi\)
−0.398707 + 0.917078i \(0.630541\pi\)
\(450\) −4.33622 5.11204i −0.204411 0.240984i
\(451\) −24.2469 41.9968i −1.14174 1.97755i
\(452\) 1.21478 7.34717i 0.0571386 0.345582i
\(453\) 21.0293 + 12.1413i 0.988041 + 0.570446i
\(454\) 0.975602 2.72562i 0.0457873 0.127920i
\(455\) 0 0
\(456\) −12.2597 + 7.34233i −0.574111 + 0.343836i
\(457\) −3.83930 + 6.64986i −0.179595 + 0.311067i −0.941742 0.336337i \(-0.890812\pi\)
0.762147 + 0.647404i \(0.224145\pi\)
\(458\) −1.17673 6.47139i −0.0549850 0.302388i
\(459\) −4.27680 + 2.46921i −0.199624 + 0.115253i
\(460\) −2.78639 + 1.04798i −0.129916 + 0.0488624i
\(461\) 4.29773i 0.200165i −0.994979 0.100083i \(-0.968089\pi\)
0.994979 0.100083i \(-0.0319107\pi\)
\(462\) 0 0
\(463\) 2.92047i 0.135726i −0.997695 0.0678628i \(-0.978382\pi\)
0.997695 0.0678628i \(-0.0216180\pi\)
\(464\) 22.0449 + 7.49471i 1.02341 + 0.347933i
\(465\) 2.52574 1.45824i 0.117128 0.0676241i
\(466\) 5.90445 1.07364i 0.273518 0.0497354i
\(467\) −20.0755 + 34.7718i −0.928985 + 1.60905i −0.143961 + 0.989583i \(0.545984\pi\)
−0.785024 + 0.619466i \(0.787349\pi\)
\(468\) 5.04767 6.14768i 0.233329 0.284177i
\(469\) 0 0
\(470\) 5.34399 + 1.91281i 0.246500 + 0.0882314i
\(471\) 3.25493 + 1.87923i 0.149979 + 0.0865905i
\(472\) −11.5033 6.39808i −0.529483 0.294495i
\(473\) −20.3199 35.1951i −0.934310 1.61827i
\(474\) 1.35673 1.15083i 0.0623169 0.0528594i
\(475\) 23.9482 1.09882
\(476\) 0 0
\(477\) 1.23873 0.0567174
\(478\) −12.5762 + 10.6676i −0.575223 + 0.487925i
\(479\) 11.0116 + 19.0726i 0.503132 + 0.871450i 0.999993 + 0.00361993i \(0.00115226\pi\)
−0.496862 + 0.867830i \(0.665514\pi\)
\(480\) 2.68306 1.05846i 0.122464 0.0483118i
\(481\) −34.4692 19.9008i −1.57166 0.907399i
\(482\) −13.2819 4.75408i −0.604974 0.216543i
\(483\) 0 0
\(484\) 9.32833 + 7.65920i 0.424015 + 0.348146i
\(485\) −0.461193 + 0.798810i −0.0209417 + 0.0362721i
\(486\) −1.39140 + 0.253006i −0.0631151 + 0.0114766i
\(487\) −17.2504 + 9.95955i −0.781692 + 0.451310i −0.837030 0.547157i \(-0.815710\pi\)
0.0553374 + 0.998468i \(0.482377\pi\)
\(488\) −1.53653 + 0.0246059i −0.0695553 + 0.00111386i
\(489\) 8.08975i 0.365831i
\(490\) 0 0
\(491\) 22.4901i 1.01496i 0.861662 + 0.507482i \(0.169424\pi\)
−0.861662 + 0.507482i \(0.830576\pi\)
\(492\) −8.27232 21.9946i −0.372945 0.991592i
\(493\) −24.8954 + 14.3734i −1.12123 + 0.647343i
\(494\) 5.08396 + 27.9591i 0.228738 + 1.25794i
\(495\) −1.05221 + 1.82249i −0.0472935 + 0.0819148i
\(496\) −4.45317 22.4423i −0.199953 1.00769i
\(497\) 0 0
\(498\) 6.54508 18.2856i 0.293292 0.819395i
\(499\) 22.5407 + 13.0139i 1.00906 + 0.582581i 0.910916 0.412591i \(-0.135376\pi\)
0.0981437 + 0.995172i \(0.468710\pi\)
\(500\) −9.79936 1.62023i −0.438241 0.0724589i
\(501\) −11.8803 20.5773i −0.530773 0.919327i
\(502\) 10.8742 + 12.8198i 0.485339 + 0.572175i
\(503\) −21.9468 −0.978561 −0.489281 0.872126i \(-0.662741\pi\)
−0.489281 + 0.872126i \(0.662741\pi\)
\(504\) 0 0
\(505\) 3.04046 0.135299
\(506\) −11.0225 12.9946i −0.490008 0.577679i
\(507\) −1.40913 2.44068i −0.0625815 0.108394i
\(508\) 27.7894 + 4.59471i 1.23296 + 0.203857i
\(509\) −5.34021 3.08317i −0.236701 0.136659i 0.376959 0.926230i \(-0.376970\pi\)
−0.613659 + 0.789571i \(0.710303\pi\)
\(510\) −1.20004 + 3.35267i −0.0531389 + 0.148459i
\(511\) 0 0
\(512\) −1.08655 22.6013i −0.0480193 0.998846i
\(513\) 2.52617 4.37545i 0.111533 0.193181i
\(514\) −5.25155 28.8807i −0.231636 1.27387i
\(515\) 4.89857 2.82819i 0.215857 0.124625i
\(516\) −6.93255 18.4324i −0.305189 0.811441i
\(517\) 32.4888i 1.42886i
\(518\) 0 0
\(519\) 8.73293i 0.383333i
\(520\) −0.0918400 5.73499i −0.00402745 0.251496i
\(521\) −11.2114 + 6.47291i −0.491181 + 0.283583i −0.725064 0.688681i \(-0.758190\pi\)
0.233883 + 0.972265i \(0.424857\pi\)
\(522\) −8.09936 + 1.47275i −0.354499 + 0.0644606i
\(523\) 11.6523 20.1824i 0.509521 0.882517i −0.490418 0.871487i \(-0.663156\pi\)
0.999939 0.0110294i \(-0.00351083\pi\)
\(524\) 5.19924 + 4.26894i 0.227130 + 0.186489i
\(525\) 0 0
\(526\) 1.81775 + 0.650639i 0.0792575 + 0.0283692i
\(527\) 24.4632 + 14.1238i 1.06563 + 0.615244i
\(528\) 10.8796 + 12.4175i 0.473473 + 0.540401i
\(529\) −7.23886 12.5381i −0.314733 0.545133i
\(530\) 0.681166 0.577790i 0.0295880 0.0250976i
\(531\) 4.65379 0.201957
\(532\) 0 0
\(533\) −46.7299 −2.02410
\(534\) 5.05707 4.28959i 0.218841 0.185629i
\(535\) 0.160414 + 0.277846i 0.00693532 + 0.0120123i
\(536\) 9.65263 17.3548i 0.416930 0.749613i
\(537\) −9.34938 5.39787i −0.403456 0.232935i
\(538\) 31.1515 + 11.1503i 1.34303 + 0.480722i
\(539\) 0 0
\(540\) −0.647107 + 0.788127i −0.0278471 + 0.0339156i
\(541\) 4.70699 8.15275i 0.202369 0.350514i −0.746922 0.664912i \(-0.768469\pi\)
0.949291 + 0.314398i \(0.101803\pi\)
\(542\) −29.1068 + 5.29266i −1.25025 + 0.227339i
\(543\) 22.5709 13.0313i 0.968611 0.559228i
\(544\) 21.8717 + 17.3794i 0.937743 + 0.745138i
\(545\) 8.06497i 0.345466i
\(546\) 0 0
\(547\) 15.9880i 0.683598i −0.939773 0.341799i \(-0.888964\pi\)
0.939773 0.341799i \(-0.111036\pi\)
\(548\) −0.912508 + 0.343201i −0.0389804 + 0.0146608i
\(549\) 0.470524 0.271657i 0.0200815 0.0115940i
\(550\) −4.94973 27.2209i −0.211057 1.16070i
\(551\) 14.7049 25.4696i 0.626449 1.08504i
\(552\) −4.24248 7.08376i −0.180572 0.301505i
\(553\) 0 0
\(554\) 8.79173 24.5622i 0.373525 1.04355i
\(555\) 4.41893 + 2.55127i 0.187573 + 0.108295i
\(556\) −5.30121 + 32.0624i −0.224821 + 1.35975i
\(557\) 2.53827 + 4.39642i 0.107550 + 0.186282i 0.914777 0.403959i \(-0.132366\pi\)
−0.807227 + 0.590241i \(0.799033\pi\)
\(558\) 5.23268 + 6.16889i 0.221517 + 0.261150i
\(559\) −39.1616 −1.65636
\(560\) 0 0
\(561\) −20.3826 −0.860553
\(562\) −18.2354 21.4980i −0.769215 0.906840i
\(563\) −12.5196 21.6846i −0.527637 0.913895i −0.999481 0.0322126i \(-0.989745\pi\)
0.471844 0.881682i \(-0.343589\pi\)
\(564\) −2.56812 + 15.5323i −0.108137 + 0.654030i
\(565\) 1.64415 + 0.949250i 0.0691699 + 0.0399353i
\(566\) 9.67272 27.0235i 0.406575 1.13588i
\(567\) 0 0
\(568\) 1.54898 + 2.58637i 0.0649938 + 0.108522i
\(569\) −6.85736 + 11.8773i −0.287476 + 0.497922i −0.973206 0.229933i \(-0.926149\pi\)
0.685731 + 0.727855i \(0.259483\pi\)
\(570\) −0.651759 3.58433i −0.0272992 0.150131i
\(571\) −11.0415 + 6.37481i −0.462072 + 0.266778i −0.712915 0.701250i \(-0.752626\pi\)
0.250843 + 0.968028i \(0.419292\pi\)
\(572\) 30.7291 11.5574i 1.28485 0.483240i
\(573\) 1.75467i 0.0733026i
\(574\) 0 0
\(575\) 13.8375i 0.577065i
\(576\) 4.21979 + 6.79657i 0.175825 + 0.283190i
\(577\) 15.3862 8.88324i 0.640537 0.369814i −0.144284 0.989536i \(-0.546088\pi\)
0.784821 + 0.619722i \(0.212755\pi\)
\(578\) −10.2798 + 1.86923i −0.427582 + 0.0777496i
\(579\) −7.46342 + 12.9270i −0.310169 + 0.537229i
\(580\) −3.76683 + 4.58771i −0.156409 + 0.190494i
\(581\) 0 0
\(582\) −2.40872 0.862171i −0.0998447 0.0357381i
\(583\) 4.42768 + 2.55632i 0.183376 + 0.105872i
\(584\) −1.15077 + 2.06901i −0.0476191 + 0.0856161i
\(585\) 1.01394 + 1.75620i 0.0419214 + 0.0726099i
\(586\) −2.90561 + 2.46464i −0.120029 + 0.101813i
\(587\) 43.2377 1.78461 0.892306 0.451431i \(-0.149086\pi\)
0.892306 + 0.451431i \(0.149086\pi\)
\(588\) 0 0
\(589\) −28.8992 −1.19077
\(590\) 2.55908 2.17071i 0.105356 0.0893665i
\(591\) 6.08345 + 10.5368i 0.250240 + 0.433428i
\(592\) 30.1082 26.3793i 1.23744 1.08418i
\(593\) 26.7328 + 15.4342i 1.09779 + 0.633807i 0.935639 0.352960i \(-0.114825\pi\)
0.162147 + 0.986767i \(0.448158\pi\)
\(594\) −5.49550 1.96705i −0.225483 0.0807089i
\(595\) 0 0
\(596\) 24.3412 + 19.9858i 0.997055 + 0.818651i
\(597\) −10.7268 + 18.5793i −0.439018 + 0.760401i
\(598\) −16.1551 + 2.93757i −0.660630 + 0.120126i
\(599\) −0.134668 + 0.0777506i −0.00550238 + 0.00317680i −0.502749 0.864433i \(-0.667678\pi\)
0.497246 + 0.867609i \(0.334345\pi\)
\(600\) −0.214669 13.4051i −0.00876382 0.547261i
\(601\) 22.4797i 0.916967i 0.888703 + 0.458484i \(0.151607\pi\)
−0.888703 + 0.458484i \(0.848393\pi\)
\(602\) 0 0
\(603\) 7.02106i 0.285919i
\(604\) 17.0964 + 45.4563i 0.695644 + 1.84959i
\(605\) −2.66481 + 1.53853i −0.108340 + 0.0625501i
\(606\) 1.50871 + 8.29709i 0.0612871 + 0.337046i
\(607\) −7.45143 + 12.9063i −0.302444 + 0.523849i −0.976689 0.214659i \(-0.931136\pi\)
0.674245 + 0.738508i \(0.264469\pi\)
\(608\) −28.2686 4.21009i −1.14644 0.170742i
\(609\) 0 0
\(610\) 0.132026 0.368853i 0.00534558 0.0149344i
\(611\) 27.1127 + 15.6535i 1.09686 + 0.633275i
\(612\) −9.74456 1.61117i −0.393901 0.0651276i
\(613\) −18.7577 32.4893i −0.757617 1.31223i −0.944063 0.329766i \(-0.893030\pi\)
0.186446 0.982465i \(-0.440303\pi\)
\(614\) −6.39918 7.54411i −0.258250 0.304455i
\(615\) 5.99073 0.241570
\(616\) 0 0
\(617\) 10.8459 0.436641 0.218321 0.975877i \(-0.429942\pi\)
0.218321 + 0.975877i \(0.429942\pi\)
\(618\) 10.1486 + 11.9643i 0.408235 + 0.481275i
\(619\) 11.5599 + 20.0223i 0.464632 + 0.804765i 0.999185 0.0403694i \(-0.0128535\pi\)
−0.534553 + 0.845135i \(0.679520\pi\)
\(620\) 5.75481 + 0.951503i 0.231119 + 0.0382133i
\(621\) 2.52818 + 1.45965i 0.101453 + 0.0585737i
\(622\) 10.4950 29.3209i 0.420813 1.17566i
\(623\) 0 0
\(624\) 15.6046 3.09639i 0.624685 0.123955i
\(625\) −10.5840 + 18.3320i −0.423360 + 0.733281i
\(626\) −0.439565 2.41738i −0.0175686 0.0966178i
\(627\) 18.0590 10.4264i 0.721206 0.416388i
\(628\) 2.64620 + 7.03576i 0.105595 + 0.280757i
\(629\) 49.4209i 1.97054i
\(630\) 0 0
\(631\) 12.0123i 0.478200i 0.970995 + 0.239100i \(0.0768524\pi\)
−0.970995 + 0.239100i \(0.923148\pi\)
\(632\) 3.55771 0.0569731i 0.141518 0.00226627i
\(633\) −8.57975 + 4.95352i −0.341014 + 0.196885i
\(634\) 44.7050 8.12897i 1.77546 0.322843i
\(635\) −3.59038 + 6.21872i −0.142480 + 0.246782i
\(636\) 1.91473 + 1.57213i 0.0759240 + 0.0623389i
\(637\) 0 0
\(638\) −31.9895 11.4502i −1.26648 0.453319i
\(639\) −0.923071 0.532935i −0.0365161 0.0210826i
\(640\) 5.49061 + 1.76911i 0.217035 + 0.0699302i
\(641\) −24.4903 42.4184i −0.967308 1.67543i −0.703281 0.710912i \(-0.748282\pi\)
−0.264028 0.964515i \(-0.585051\pi\)
\(642\) −0.678613 + 0.575624i −0.0267827 + 0.0227181i
\(643\) 16.4052 0.646958 0.323479 0.946235i \(-0.395147\pi\)
0.323479 + 0.946235i \(0.395147\pi\)
\(644\) 0 0
\(645\) 5.02048 0.197681
\(646\) 26.9088 22.8250i 1.05871 0.898039i
\(647\) −9.25506 16.0302i −0.363854 0.630214i 0.624738 0.780835i \(-0.285206\pi\)
−0.988592 + 0.150621i \(0.951873\pi\)
\(648\) −2.47182 1.37481i −0.0971023 0.0540077i
\(649\) 16.6344 + 9.60388i 0.652958 + 0.376985i
\(650\) −25.1014 8.98472i −0.984557 0.352410i
\(651\) 0 0
\(652\) −10.2671 + 12.5045i −0.402090 + 0.489715i
\(653\) 6.23930 10.8068i 0.244163 0.422902i −0.717733 0.696318i \(-0.754820\pi\)
0.961896 + 0.273416i \(0.0881536\pi\)
\(654\) −22.0085 + 4.00193i −0.860600 + 0.156488i
\(655\) −1.48526 + 0.857516i −0.0580340 + 0.0335059i
\(656\) 15.1276 44.4964i 0.590635 1.73729i
\(657\) 0.837037i 0.0326559i
\(658\) 0 0
\(659\) 28.5032i 1.11033i −0.831741 0.555163i \(-0.812656\pi\)
0.831741 0.555163i \(-0.187344\pi\)
\(660\) −3.93944 + 1.48165i −0.153343 + 0.0576732i
\(661\) −3.97020 + 2.29220i −0.154423 + 0.0891561i −0.575220 0.817999i \(-0.695084\pi\)
0.420797 + 0.907155i \(0.361750\pi\)
\(662\) 2.89016 + 15.8944i 0.112329 + 0.617752i
\(663\) −9.82060 + 17.0098i −0.381401 + 0.660605i
\(664\) 33.3240 19.9578i 1.29322 0.774512i
\(665\) 0 0
\(666\) −4.76943 + 13.3248i −0.184812 + 0.516324i
\(667\) 14.7166 + 8.49665i 0.569830 + 0.328991i
\(668\) 7.75194 46.8847i 0.299931 1.81402i
\(669\) −2.83758 4.91484i −0.109707 0.190019i
\(670\) 3.27489 + 3.86082i 0.126520 + 0.149157i
\(671\) 2.24244 0.0865685
\(672\) 0 0
\(673\) −35.9408 −1.38542 −0.692708 0.721219i \(-0.743582\pi\)
−0.692708 + 0.721219i \(0.743582\pi\)
\(674\) −6.48295 7.64286i −0.249714 0.294392i
\(675\) 2.37001 + 4.10498i 0.0912219 + 0.158001i
\(676\) 0.919458 5.56100i 0.0353638 0.213885i
\(677\) −8.81217 5.08771i −0.338679 0.195537i 0.321009 0.947076i \(-0.395978\pi\)
−0.659688 + 0.751540i \(0.729312\pi\)
\(678\) −1.77456 + 4.95774i −0.0681516 + 0.190401i
\(679\) 0 0
\(680\) −6.10997 + 3.65927i −0.234307 + 0.140327i
\(681\) −1.02352 + 1.77280i −0.0392215 + 0.0679337i
\(682\) 5.97302 + 32.8485i 0.228719 + 1.25783i
\(683\) −8.41759 + 4.85990i −0.322090 + 0.185959i −0.652324 0.757940i \(-0.726206\pi\)
0.330234 + 0.943899i \(0.392872\pi\)
\(684\) 9.45786 3.55717i 0.361630 0.136012i
\(685\) 0.248542i 0.00949631i
\(686\) 0 0
\(687\) 4.65100i 0.177447i
\(688\) 12.6776 37.2898i 0.483329 1.42166i
\(689\) 4.26663 2.46334i 0.162546 0.0938459i
\(690\) 2.07106 0.376593i 0.0788441 0.0143367i
\(691\) 18.0956 31.3425i 0.688389 1.19233i −0.283970 0.958833i \(-0.591651\pi\)
0.972359 0.233492i \(-0.0750152\pi\)
\(692\) 11.0834 13.4987i 0.421327 0.513144i
\(693\) 0 0
\(694\) 27.8363 + 9.96366i 1.05665 + 0.378216i
\(695\) −7.17493 4.14245i −0.272161 0.157132i
\(696\) −14.3885 8.00281i −0.545396 0.303346i
\(697\) 29.0118 + 50.2499i 1.09890 + 1.90335i
\(698\) −1.81081 + 1.53600i −0.0685403 + 0.0581384i
\(699\) −4.24354 −0.160505
\(700\) 0 0
\(701\) 28.4159 1.07325 0.536626 0.843820i \(-0.319699\pi\)
0.536626 + 0.843820i \(0.319699\pi\)
\(702\) −4.28936 + 3.63839i −0.161891 + 0.137322i
\(703\) −25.2804 43.7870i −0.953469 1.65146i
\(704\) 1.05725 + 33.0018i 0.0398466 + 1.24380i
\(705\) −3.47583 2.00677i −0.130907 0.0755794i
\(706\) −8.27312 2.96126i −0.311363 0.111448i
\(707\) 0 0
\(708\) 7.19348 + 5.90634i 0.270347 + 0.221974i
\(709\) 0.249479 0.432110i 0.00936937 0.0162282i −0.861303 0.508092i \(-0.830351\pi\)
0.870672 + 0.491864i \(0.163684\pi\)
\(710\) −0.756171 + 0.137499i −0.0283786 + 0.00516024i
\(711\) −1.08946 + 0.629001i −0.0408580 + 0.0235894i
\(712\) 13.2610 0.212361i 0.496976 0.00795856i
\(713\) 16.6983i 0.625356i
\(714\) 0 0
\(715\) 8.36977i 0.313012i
\(716\) −7.60088 20.2094i −0.284058 0.755259i
\(717\) 10.0987 5.83052i 0.377145 0.217745i
\(718\) 5.70491 + 31.3740i 0.212905 + 1.17087i
\(719\) 3.18344 5.51388i 0.118722 0.205633i −0.800539 0.599280i \(-0.795454\pi\)
0.919262 + 0.393647i \(0.128787\pi\)
\(720\) −2.00050 + 0.396954i −0.0745542 + 0.0147936i
\(721\) 0 0
\(722\) −3.11028 + 8.68945i −0.115753 + 0.323388i
\(723\) 8.63879 + 4.98761i 0.321280 + 0.185491i
\(724\) 51.4271 + 8.50298i 1.91127 + 0.316011i
\(725\) 13.7959 + 23.8952i 0.512367 + 0.887446i
\(726\) −5.52080 6.50856i −0.204896 0.241555i
\(727\) −18.5763 −0.688958 −0.344479 0.938794i \(-0.611944\pi\)
−0.344479 + 0.938794i \(0.611944\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −0.390426 0.460280i −0.0144503 0.0170357i
\(731\) 24.3131 + 42.1115i 0.899252 + 1.55755i
\(732\) 1.07207 + 0.177257i 0.0396250 + 0.00655160i
\(733\) −31.3892 18.1226i −1.15939 0.669372i −0.208230 0.978080i \(-0.566770\pi\)
−0.951157 + 0.308708i \(0.900103\pi\)
\(734\) −10.6231 + 29.6786i −0.392106 + 1.09546i
\(735\) 0 0
\(736\) 2.43264 16.3339i 0.0896682 0.602075i
\(737\) −14.4891 + 25.0959i −0.533714 + 0.924420i
\(738\) 2.97266 + 16.3481i 0.109425 + 0.601781i
\(739\) −40.5899 + 23.4346i −1.49312 + 0.862056i −0.999969 0.00788486i \(-0.997490\pi\)
−0.493156 + 0.869941i \(0.664157\pi\)
\(740\) 3.59251 + 9.55182i 0.132063 + 0.351132i
\(741\) 20.0942i 0.738180i
\(742\) 0 0
\(743\) 38.5048i 1.41260i 0.707911 + 0.706302i \(0.249638\pi\)
−0.707911 + 0.706302i \(0.750362\pi\)
\(744\) 0.259049 + 16.1764i 0.00949720 + 0.593057i
\(745\) −6.95352 + 4.01462i −0.254757 + 0.147084i
\(746\) −4.40330 + 0.800678i −0.161216 + 0.0293149i
\(747\) −6.86658 + 11.8933i −0.251235 + 0.435152i
\(748\) −31.5058 25.8685i −1.15197 0.945845i
\(749\) 0 0
\(750\) 6.61244 + 2.36684i 0.241452 + 0.0864248i
\(751\) 0.866354 + 0.500190i 0.0316137 + 0.0182522i 0.515724 0.856755i \(-0.327523\pi\)
−0.484110 + 0.875007i \(0.660856\pi\)
\(752\) −23.6824 + 20.7494i −0.863610 + 0.756653i
\(753\) −5.94343 10.2943i −0.216591 0.375146i
\(754\) −24.9685 + 21.1792i −0.909298 + 0.771300i
\(755\) −12.3811 −0.450593
\(756\) 0 0
\(757\) −13.8254 −0.502491 −0.251246 0.967923i \(-0.580840\pi\)
−0.251246 + 0.967923i \(0.580840\pi\)
\(758\) 7.80288 6.61869i 0.283413 0.240401i
\(759\) 6.02446 + 10.4347i 0.218674 + 0.378755i
\(760\) 3.54160 6.36757i 0.128467 0.230976i
\(761\) 25.5450 + 14.7484i 0.926005 + 0.534629i 0.885546 0.464552i \(-0.153785\pi\)
0.0404588 + 0.999181i \(0.487118\pi\)
\(762\) −18.7518 6.71198i −0.679307 0.243149i
\(763\) 0 0
\(764\) 2.22694 2.71224i 0.0805679 0.0981256i
\(765\) 1.25899 2.18064i 0.0455190 0.0788411i
\(766\) 35.0443 6.37231i 1.26620 0.230241i
\(767\) 16.0294 9.25456i 0.578787 0.334163i
\(768\) −2.10322 + 15.8612i −0.0758933 + 0.572340i
\(769\) 33.1479i 1.19534i −0.801741 0.597672i \(-0.796093\pi\)
0.801741 0.597672i \(-0.203907\pi\)
\(770\) 0 0
\(771\) 20.7566i 0.747531i
\(772\) −27.9427 + 10.5094i −1.00568 + 0.378243i
\(773\) 7.16192 4.13494i 0.257596 0.148723i −0.365641 0.930756i \(-0.619150\pi\)
0.623238 + 0.782033i \(0.285817\pi\)
\(774\) 2.49122 + 13.7004i 0.0895450 + 0.492450i
\(775\) 13.5564 23.4804i 0.486960 0.843440i
\(776\) −2.62900 4.38970i −0.0943755 0.157581i
\(777\) 0 0
\(778\) 3.90089 10.8983i 0.139854 0.390721i
\(779\) −51.4089 29.6810i −1.84192 1.06343i
\(780\) −0.661600 + 4.00145i −0.0236891 + 0.143275i
\(781\) −2.19960 3.80983i −0.0787081 0.136326i
\(782\) 13.1886 + 15.5482i 0.471622 + 0.556003i
\(783\) 5.82102 0.208026
\(784\) 0 0
\(785\) −1.91635 −0.0683974
\(786\) −3.07708 3.62762i −0.109756 0.129393i
\(787\) −3.77375 6.53633i −0.134520 0.232995i 0.790894 0.611953i \(-0.209616\pi\)
−0.925414 + 0.378958i \(0.876283\pi\)
\(788\) −3.96946 + 24.0078i −0.141406 + 0.855244i
\(789\) −1.18230 0.682599i −0.0420908 0.0243012i
\(790\) −0.305696 + 0.854050i −0.0108762 + 0.0303857i
\(791\) 0 0
\(792\) −5.99807 10.0151i −0.213132 0.355872i
\(793\) 1.08044 1.87138i 0.0383675 0.0664545i
\(794\) −8.48116 46.6419i −0.300985 1.65526i
\(795\) −0.546979 + 0.315798i −0.0193993 + 0.0112002i
\(796\) −40.1606 + 15.1047i −1.42345 + 0.535371i
\(797\) 36.4436i 1.29090i 0.763803 + 0.645450i \(0.223330\pi\)
−0.763803 + 0.645450i \(0.776670\pi\)
\(798\) 0 0
\(799\) 38.8734i 1.37524i
\(800\) 16.6812 20.9930i 0.589770 0.742216i
\(801\) −4.06085 + 2.34453i −0.143483 + 0.0828399i
\(802\) −9.81705 + 1.78509i −0.346652 + 0.0630337i
\(803\) 1.72737 2.99189i 0.0609575 0.105581i
\(804\) −8.91075 + 10.8526i −0.314258 + 0.382742i
\(805\) 0 0
\(806\) 30.2908 + 10.8422i 1.06695 + 0.381900i
\(807\) −20.2615 11.6980i −0.713238 0.411788i
\(808\) −8.19819 + 14.7398i −0.288411 + 0.518544i
\(809\) −12.6239 21.8652i −0.443832 0.768740i 0.554138 0.832425i \(-0.313048\pi\)
−0.997970 + 0.0636848i \(0.979715\pi\)
\(810\) 0.549892 0.466438i 0.0193212 0.0163890i
\(811\) −15.1794 −0.533021 −0.266510 0.963832i \(-0.585871\pi\)
−0.266510 + 0.963832i \(0.585871\pi\)
\(812\) 0 0
\(813\) 20.9191 0.733666
\(814\) −44.5456 + 37.7852i −1.56132 + 1.32437i
\(815\) −2.06238 3.57215i −0.0722421 0.125127i
\(816\) −13.0176 14.8577i −0.455707 0.520124i
\(817\) −43.0828 24.8739i −1.50728 0.870227i
\(818\) 34.2346 + 12.2539i 1.19699 + 0.428446i
\(819\) 0 0
\(820\) 9.26002 + 7.60312i 0.323374 + 0.265512i
\(821\) 23.3325 40.4131i 0.814311 1.41043i −0.0955108 0.995428i \(-0.530448\pi\)
0.909822 0.414999i \(-0.136218\pi\)
\(822\) 0.678246 0.123329i 0.0236566 0.00430161i
\(823\) −21.1099 + 12.1878i −0.735846 + 0.424841i −0.820557 0.571565i \(-0.806337\pi\)
0.0847109 + 0.996406i \(0.473003\pi\)
\(824\) 0.502415 + 31.3736i 0.0175025 + 1.09295i
\(825\) 19.5637i 0.681120i
\(826\) 0 0
\(827\) 42.9409i 1.49320i 0.665273 + 0.746600i \(0.268315\pi\)
−0.665273 + 0.746600i \(0.731685\pi\)
\(828\) 2.05537 + 5.46485i 0.0714290 + 0.189917i
\(829\) 42.2789 24.4097i 1.46841 0.847784i 0.469032 0.883181i \(-0.344603\pi\)
0.999373 + 0.0353964i \(0.0112694\pi\)
\(830\) 1.77160 + 9.74285i 0.0614931 + 0.338179i
\(831\) −9.22359 + 15.9757i −0.319963 + 0.554192i
\(832\) 28.0502 + 15.0184i 0.972467 + 0.520670i
\(833\) 0 0
\(834\) 7.74403 21.6352i 0.268154 0.749165i
\(835\) 10.4919 + 6.05748i 0.363086 + 0.209628i
\(836\) 41.1468 + 6.80322i 1.42309 + 0.235294i
\(837\) −2.85998 4.95364i −0.0988555 0.171223i
\(838\) −14.6476 17.2684i −0.505994 0.596525i
\(839\) 42.1517 1.45524 0.727620 0.685981i \(-0.240626\pi\)
0.727620 + 0.685981i \(0.240626\pi\)
\(840\) 0 0
\(841\) 4.88432 0.168425
\(842\) −5.67143 6.68615i −0.195450 0.230420i
\(843\) 9.96680 + 17.2630i 0.343275 + 0.594569i
\(844\) −19.5487 3.23218i −0.672893 0.111256i
\(845\) 1.24444 + 0.718479i 0.0428101 + 0.0247164i
\(846\) 3.75153 10.4810i 0.128980 0.360343i
\(847\) 0 0
\(848\) 0.964387 + 4.86015i 0.0331172 + 0.166898i
\(849\) −10.1479 + 17.5766i −0.348273 + 0.603227i
\(850\) 5.92243 + 32.5702i 0.203138 + 1.11715i
\(851\) 25.3006 14.6073i 0.867293 0.500732i
\(852\) −0.750441 1.99528i −0.0257097 0.0683573i
\(853\) 13.5733i 0.464741i −0.972627 0.232370i \(-0.925352\pi\)
0.972627 0.232370i \(-0.0746481\pi\)
\(854\) 0 0
\(855\) 2.57606i 0.0880995i
\(856\) −1.77950 + 0.0284969i −0.0608221 + 0.000974003i
\(857\) 44.0869 25.4536i 1.50598 0.869477i 0.506003 0.862532i \(-0.331122\pi\)
0.999976 0.00694549i \(-0.00221084\pi\)
\(858\) −22.8402 + 4.15317i −0.779753 + 0.141787i
\(859\) −6.40910 + 11.1009i −0.218676 + 0.378757i −0.954403 0.298520i \(-0.903507\pi\)
0.735728 + 0.677277i \(0.236840\pi\)
\(860\) 7.76028 + 6.37173i 0.264624 + 0.217274i
\(861\) 0 0
\(862\) −40.6763 14.5595i −1.38544 0.495900i
\(863\) −44.9680 25.9623i −1.53073 0.883767i −0.999328 0.0366476i \(-0.988332\pi\)
−0.531402 0.847120i \(-0.678335\pi\)
\(864\) −2.07592 5.26218i −0.0706241 0.179023i
\(865\) 2.22635 + 3.85616i 0.0756983 + 0.131113i
\(866\) 25.0542 21.2519i 0.851376 0.722168i
\(867\) 7.38808 0.250912
\(868\) 0 0
\(869\) −5.19220 −0.176133
\(870\) 3.20094 2.71515i 0.108522 0.0920522i
\(871\) 13.9621 + 24.1831i 0.473089 + 0.819414i
\(872\) −39.0981 21.7461i −1.32403 0.736417i
\(873\) 1.56668 + 0.904521i 0.0530240 + 0.0306134i
\(874\) −19.6385 7.02935i −0.664282 0.237771i
\(875\) 0 0
\(876\) 1.06232 1.29383i 0.0358926 0.0437145i
\(877\) −9.09971 + 15.7612i −0.307275 + 0.532216i −0.977765 0.209702i \(-0.932751\pi\)
0.670490 + 0.741919i \(0.266084\pi\)
\(878\) 3.34841 0.608860i 0.113003 0.0205480i
\(879\) 2.33321 1.34708i 0.0786972 0.0454359i
\(880\) −7.96973 2.70950i −0.268659 0.0913374i
\(881\) 12.1271i 0.408571i 0.978911 + 0.204286i \(0.0654872\pi\)
−0.978911 + 0.204286i \(0.934513\pi\)
\(882\) 0 0
\(883\) 28.6986i 0.965786i −0.875679 0.482893i \(-0.839586\pi\)
0.875679 0.482893i \(-0.160414\pi\)
\(884\) −36.7679 + 13.8287i −1.23664 + 0.465108i
\(885\) −2.05495 + 1.18643i −0.0690764 + 0.0398813i
\(886\) −1.92591 10.5915i −0.0647022 0.355828i
\(887\) −6.53190 + 11.3136i −0.219320 + 0.379873i −0.954600 0.297890i \(-0.903717\pi\)
0.735281 + 0.677763i \(0.237050\pi\)
\(888\) −24.2833 + 14.5433i −0.814894 + 0.488041i
\(889\) 0 0
\(890\) −1.13945 + 3.18337i −0.0381944 + 0.106707i
\(891\) 3.57438 + 2.06367i 0.119746 + 0.0691355i
\(892\) 1.85153 11.1983i 0.0619938 0.374947i
\(893\) 19.8850 + 34.4419i 0.665427 + 1.15255i
\(894\) −14.4059 16.9833i −0.481805 0.568008i
\(895\) 5.50448 0.183995
\(896\) 0 0
\(897\) 11.6107 0.387669
\(898\) 15.4574 + 18.2230i 0.515821 + 0.608110i
\(899\) −16.6480 28.8352i −0.555243 0.961709i
\(900\) −1.54644 + 9.35307i −0.0515480 + 0.311769i
\(901\) −5.29779 3.05868i −0.176495 0.101899i
\(902\) −23.1116 + 64.5689i −0.769532 + 2.14991i
\(903\) 0 0
\(904\) −9.03509 + 5.41113i −0.300503 + 0.179971i
\(905\) −6.64436 + 11.5084i −0.220866 + 0.382551i
\(906\) −6.14361 33.7866i −0.204108 1.12249i
\(907\) −23.6320 + 13.6440i −0.784688 + 0.453040i −0.838089 0.545533i \(-0.816327\pi\)
0.0534010 + 0.998573i \(0.482994\pi\)
\(908\) −3.83203 + 1.44125i −0.127170 + 0.0478296i
\(909\) 5.96314i 0.197785i
\(910\) 0 0
\(911\) 39.9753i 1.32444i −0.749309 0.662221i \(-0.769614\pi\)
0.749309 0.662221i \(-0.230386\pi\)
\(912\) 19.1338 + 6.50501i 0.633584 + 0.215402i
\(913\) −49.0875 + 28.3407i −1.62456 + 0.937941i
\(914\) 10.6840 1.94273i 0.353395 0.0642597i
\(915\) −0.138511 + 0.239909i −0.00457904 + 0.00793113i
\(916\) −5.90280 + 7.18917i −0.195034 + 0.237537i
\(917\) 0 0
\(918\) 6.57546 + 2.35360i 0.217023 + 0.0776805i
\(919\) −27.0928 15.6420i −0.893709 0.515983i −0.0185550 0.999828i \(-0.505907\pi\)
−0.875154 + 0.483845i \(0.839240\pi\)
\(920\) 3.67925 + 2.04638i 0.121301 + 0.0674670i
\(921\) 3.49755 + 6.05794i 0.115248 + 0.199616i
\(922\) −4.63503 + 3.93160i −0.152647 + 0.129480i
\(923\) −4.23920 −0.139535
\(924\) 0 0
\(925\) 47.4354 1.55967
\(926\) −3.14967 + 2.67167i −0.103505 + 0.0877964i
\(927\) −5.54683 9.60738i −0.182182 0.315548i
\(928\) −12.0840 30.6313i −0.396675 1.00552i
\(929\) 13.8363 + 7.98838i 0.453954 + 0.262090i 0.709499 0.704707i \(-0.248921\pi\)
−0.255545 + 0.966797i \(0.582255\pi\)
\(930\) −3.88325 1.38996i −0.127337 0.0455786i
\(931\) 0 0
\(932\) −6.55934 5.38567i −0.214858 0.176414i
\(933\) −11.0106 + 19.0709i −0.360470 + 0.624352i
\(934\) 55.8661 10.1585i 1.82799 0.332395i
\(935\) 9.00023 5.19629i 0.294339 0.169937i
\(936\) −11.2478 + 0.180122i −0.367647 + 0.00588748i
\(937\) 18.3690i 0.600089i −0.953925 0.300045i \(-0.902998\pi\)
0.953925 0.300045i \(-0.0970016\pi\)
\(938\) 0 0
\(939\) 1.73737i 0.0566970i
\(940\) −2.82579 7.51325i −0.0921670 0.245055i
\(941\) −30.9773 + 17.8847i −1.00983 + 0.583026i −0.911142 0.412093i \(-0.864798\pi\)
−0.0986881 + 0.995118i \(0.531465\pi\)
\(942\) −0.950913 5.22952i −0.0309824 0.170387i
\(943\) 17.1500 29.7046i 0.558480 0.967316i
\(944\) 3.62312 + 18.2592i 0.117922 + 0.594285i
\(945\) 0 0
\(946\) −19.3685 + 54.1114i −0.629724 + 1.75931i
\(947\) −11.0740 6.39358i −0.359857 0.207763i 0.309161 0.951010i \(-0.399952\pi\)
−0.669018 + 0.743246i \(0.733285\pi\)
\(948\) −2.48230 0.410425i −0.0806215 0.0133300i
\(949\) −1.66454 2.88307i −0.0540332 0.0935883i
\(950\) −21.9080 25.8277i −0.710790 0.837963i
\(951\) −32.1296 −1.04187
\(952\) 0 0
\(953\) 23.6660 0.766616 0.383308 0.923621i \(-0.374785\pi\)
0.383308 + 0.923621i \(0.374785\pi\)
\(954\) −1.13320 1.33595i −0.0366886 0.0432528i
\(955\) 0.447333 + 0.774803i 0.0144754 + 0.0250720i
\(956\) 23.0097 + 3.80443i 0.744186 + 0.123044i
\(957\) 20.8066 + 12.0127i 0.672580 + 0.388314i
\(958\) 10.4960 29.3236i 0.339110 0.947402i
\(959\) 0 0
\(960\) −3.59601 1.92535i −0.116061 0.0621403i
\(961\) −0.859022 + 1.48787i −0.0277104 + 0.0479958i
\(962\) 10.0700 + 55.3799i 0.324671 + 1.78552i
\(963\) 0.544929 0.314615i 0.0175601 0.0101383i
\(964\) 7.02319 + 18.6734i 0.226202 + 0.601429i
\(965\) 7.61083i 0.245001i
\(966\) 0 0
\(967\) 9.30274i 0.299156i −0.988750 0.149578i \(-0.952208\pi\)
0.988750 0.149578i \(-0.0477915\pi\)
\(968\) −0.273313 17.0671i −0.00878461 0.548559i
\(969\) −21.6079 + 12.4753i −0.694145 + 0.400765i
\(970\) 1.28341 0.233369i 0.0412077 0.00749303i
\(971\) −12.4374 + 21.5423i −0.399136 + 0.691325i −0.993620 0.112783i \(-0.964023\pi\)
0.594483 + 0.804108i \(0.297357\pi\)
\(972\) 1.54572 + 1.26915i 0.0495792 + 0.0407079i
\(973\) 0 0
\(974\) 26.5221 + 9.49323i 0.849822 + 0.304183i
\(975\) 16.3264 + 9.42606i 0.522864 + 0.301875i
\(976\) 1.43217 + 1.63461i 0.0458425 + 0.0523226i
\(977\) 17.5448 + 30.3885i 0.561308 + 0.972214i 0.997383 + 0.0723036i \(0.0230350\pi\)
−0.436075 + 0.899911i \(0.643632\pi\)
\(978\) 8.72466 7.40057i 0.278984 0.236644i
\(979\) −19.3533 −0.618536
\(980\) 0 0
\(981\) 15.8175 0.505015
\(982\) 24.2552 20.5741i 0.774015 0.656547i
\(983\) 25.1609 + 43.5799i 0.802508 + 1.38998i 0.917961 + 0.396671i \(0.129835\pi\)
−0.115453 + 0.993313i \(0.536832\pi\)
\(984\) −16.1532 + 29.0424i −0.514945 + 0.925837i
\(985\) −5.37248 3.10180i −0.171181 0.0988316i
\(986\) 38.2759 + 13.7004i 1.21895 + 0.436309i
\(987\) 0 0
\(988\) 25.5025 31.0602i 0.811344 0.988156i
\(989\) 14.3724 24.8937i 0.457016 0.791575i
\(990\) 2.92810 0.532433i 0.0930611 0.0169218i
\(991\) −26.9804 + 15.5771i −0.857060 + 0.494824i −0.863027 0.505158i \(-0.831434\pi\)
0.00596663 + 0.999982i \(0.498101\pi\)
\(992\) −20.1299 + 25.3331i −0.639124 + 0.804327i
\(993\) 11.4233i 0.362508i
\(994\) 0 0
\(995\) 10.9386i 0.346778i
\(996\) −25.7082 + 9.66902i −0.814594 + 0.306375i
\(997\) 27.1914 15.6989i 0.861159 0.497191i −0.00324095 0.999995i \(-0.501032\pi\)
0.864400 + 0.502804i \(0.167698\pi\)
\(998\) −6.58517 36.2150i −0.208450 1.14636i
\(999\) 5.00371 8.66667i 0.158310 0.274201i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.o.f.19.5 24
4.3 odd 2 588.2.o.e.19.12 24
7.2 even 3 588.2.b.c.391.4 yes 12
7.3 odd 6 588.2.o.e.31.12 24
7.4 even 3 inner 588.2.o.f.31.12 24
7.5 odd 6 588.2.b.d.391.4 yes 12
7.6 odd 2 588.2.o.e.19.5 24
21.2 odd 6 1764.2.b.l.1567.9 12
21.5 even 6 1764.2.b.m.1567.9 12
28.3 even 6 inner 588.2.o.f.31.5 24
28.11 odd 6 588.2.o.e.31.5 24
28.19 even 6 588.2.b.c.391.3 12
28.23 odd 6 588.2.b.d.391.3 yes 12
28.27 even 2 inner 588.2.o.f.19.12 24
84.23 even 6 1764.2.b.m.1567.10 12
84.47 odd 6 1764.2.b.l.1567.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.3 12 28.19 even 6
588.2.b.c.391.4 yes 12 7.2 even 3
588.2.b.d.391.3 yes 12 28.23 odd 6
588.2.b.d.391.4 yes 12 7.5 odd 6
588.2.o.e.19.5 24 7.6 odd 2
588.2.o.e.19.12 24 4.3 odd 2
588.2.o.e.31.5 24 28.11 odd 6
588.2.o.e.31.12 24 7.3 odd 6
588.2.o.f.19.5 24 1.1 even 1 trivial
588.2.o.f.19.12 24 28.27 even 2 inner
588.2.o.f.31.5 24 28.3 even 6 inner
588.2.o.f.31.12 24 7.4 even 3 inner
1764.2.b.l.1567.9 12 21.2 odd 6
1764.2.b.l.1567.10 12 84.47 odd 6
1764.2.b.m.1567.9 12 21.5 even 6
1764.2.b.m.1567.10 12 84.23 even 6