L(s) = 1 | + (−0.914 − 1.07i)2-s + (0.5 + 0.866i)3-s + (−0.326 + 1.97i)4-s + (−0.441 − 0.254i)5-s + (0.476 − 1.33i)6-s + (2.42 − 1.45i)8-s + (−0.499 + 0.866i)9-s + (0.129 + 0.709i)10-s + (−3.57 + 2.06i)11-s + (−1.87 + 0.704i)12-s + 3.97i·13-s − 0.509i·15-s + (−3.78 − 1.28i)16-s + (4.27 − 2.46i)17-s + (1.39 − 0.253i)18-s + (−2.52 + 4.37i)19-s + ⋯ |
L(s) = 1 | + (−0.646 − 0.762i)2-s + (0.288 + 0.499i)3-s + (−0.163 + 0.986i)4-s + (−0.197 − 0.114i)5-s + (0.194 − 0.543i)6-s + (0.857 − 0.513i)8-s + (−0.166 + 0.288i)9-s + (0.0407 + 0.224i)10-s + (−1.07 + 0.622i)11-s + (−0.540 + 0.203i)12-s + 1.10i·13-s − 0.131i·15-s + (−0.946 − 0.321i)16-s + (1.03 − 0.598i)17-s + (0.327 − 0.0596i)18-s + (−0.579 + 1.00i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0257 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0257 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.472369 + 0.484713i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.472369 + 0.484713i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.914 + 1.07i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (0.441 + 0.254i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.57 - 2.06i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 3.97iT - 13T^{2} \) |
| 17 | \( 1 + (-4.27 + 2.46i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.52 - 4.37i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.52 + 1.45i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 5.82T + 29T^{2} \) |
| 31 | \( 1 + (-2.85 - 4.95i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.00 - 8.66i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 11.7iT - 41T^{2} \) |
| 43 | \( 1 - 9.84iT - 43T^{2} \) |
| 47 | \( 1 + (-3.93 + 6.81i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.619 + 1.07i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.32 + 4.03i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.470 + 0.271i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.08 + 3.51i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.06iT - 71T^{2} \) |
| 73 | \( 1 + (0.724 - 0.418i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.08 - 0.629i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 13.7T + 83T^{2} \) |
| 89 | \( 1 + (-4.06 - 2.34i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 1.80iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68533634082991416136929876930, −9.973903327858933973267595219231, −9.472960313415504800468095481202, −8.227860041930563373195754130167, −7.88097937238946742877403686891, −6.61458829014296170949341274375, −5.01399893869557678345825602503, −4.14029923881183196439256126727, −3.01583331368188810385627086504, −1.81690033589766725553930027312,
0.43993697041367942537956637573, 2.22667740668582183777027431400, 3.69159859729129050164752204322, 5.44624073446287576316296206490, 5.83084708262727309732948150438, 7.27257542230376937409077908568, 7.72374667585366835916588648499, 8.503105059798626258983370586429, 9.384710872947019850590286229748, 10.50886130551061200264675915532