Properties

Label 588.2.n.e.263.3
Level $588$
Weight $2$
Character 588.263
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(263,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.263"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 263.3
Character \(\chi\) \(=\) 588.263
Dual form 588.2.n.e.275.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09645 + 0.893190i) q^{2} +(-1.72058 - 0.199011i) q^{3} +(0.404424 - 1.95868i) q^{4} +(-1.79791 + 1.03802i) q^{5} +(2.06429 - 1.31860i) q^{6} +(1.30604 + 2.50883i) q^{8} +(2.92079 + 0.684828i) q^{9} +(1.04417 - 2.74402i) q^{10} +(-1.99399 + 3.45368i) q^{11} +(-1.08564 + 3.28959i) q^{12} +1.30998 q^{13} +(3.30003 - 1.42820i) q^{15} +(-3.67288 - 1.58428i) q^{16} +(2.54752 + 1.47081i) q^{17} +(-3.81419 + 1.85794i) q^{18} +(-0.949883 + 0.548415i) q^{19} +(1.30604 + 3.94134i) q^{20} +(-0.898482 - 5.56781i) q^{22} +(-3.75063 - 6.49627i) q^{23} +(-1.74787 - 4.57657i) q^{24} +(-0.345008 + 0.597572i) q^{25} +(-1.43634 + 1.17006i) q^{26} +(-4.88916 - 1.75957i) q^{27} +0.865568i q^{29} +(-2.34268 + 4.51351i) q^{30} +(-3.18742 - 1.84026i) q^{31} +(5.44221 - 1.54349i) q^{32} +(4.11813 - 5.54551i) q^{33} +(-4.10695 + 0.662741i) q^{34} +(2.52260 - 5.44394i) q^{36} +(-2.08850 - 3.61738i) q^{37} +(0.551664 - 1.44974i) q^{38} +(-2.25393 - 0.260701i) q^{39} +(-4.95238 - 3.15496i) q^{40} -7.01712i q^{41} -4.27597i q^{43} +(5.95826 + 5.30234i) q^{44} +(-5.96219 + 1.80059i) q^{45} +(9.91479 + 3.77285i) q^{46} +(-3.75063 - 6.49627i) q^{47} +(6.00420 + 3.45682i) q^{48} +(-0.155459 - 0.963368i) q^{50} +(-4.09050 - 3.03763i) q^{51} +(0.529789 - 2.56584i) q^{52} +(-4.27909 - 2.47053i) q^{53} +(6.93237 - 2.43766i) q^{54} -8.27923i q^{55} +(1.74349 - 0.754555i) q^{57} +(-0.773117 - 0.949056i) q^{58} +(-2.44458 + 4.23414i) q^{59} +(-1.46278 - 7.04131i) q^{60} +(2.05347 + 3.55672i) q^{61} +(5.13856 - 0.829212i) q^{62} +(-4.58850 + 6.55330i) q^{64} +(-2.35524 + 1.35980i) q^{65} +(0.437853 + 9.75868i) q^{66} +(-2.09778 - 1.21116i) q^{67} +(3.91113 - 4.39495i) q^{68} +(5.16042 + 11.9238i) q^{69} +0.901192 q^{71} +(2.09656 + 8.22219i) q^{72} +(6.50543 - 11.2677i) q^{73} +(5.52095 + 2.10087i) q^{74} +(0.712537 - 0.959509i) q^{75} +(0.690016 + 2.08231i) q^{76} +(2.70419 - 1.72734i) q^{78} +(8.97336 - 5.18077i) q^{79} +(8.24804 - 0.964154i) q^{80} +(8.06202 + 4.00048i) q^{81} +(6.26762 + 7.69395i) q^{82} -12.4386 q^{83} -6.10695 q^{85} +(3.81926 + 4.68841i) q^{86} +(0.172258 - 1.48928i) q^{87} +(-11.2690 - 0.491915i) q^{88} +(-7.38393 + 4.26311i) q^{89} +(4.92900 - 7.29963i) q^{90} +(-14.2410 + 4.71904i) q^{92} +(5.11797 + 3.80064i) q^{93} +(9.91479 + 3.77285i) q^{94} +(1.13854 - 1.97200i) q^{95} +(-9.67092 + 1.57265i) q^{96} -15.3909 q^{97} +(-8.18919 + 8.72195i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} - 2 q^{9} + 10 q^{10} + 12 q^{12} + 24 q^{13} - 10 q^{16} - 10 q^{18} + 28 q^{22} + 14 q^{24} - 12 q^{25} - 14 q^{30} - 10 q^{33} + 8 q^{34} + 44 q^{36} - 8 q^{37} - 34 q^{40} + 18 q^{45}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09645 + 0.893190i −0.775310 + 0.631581i
\(3\) −1.72058 0.199011i −0.993377 0.114899i
\(4\) 0.404424 1.95868i 0.202212 0.979342i
\(5\) −1.79791 + 1.03802i −0.804051 + 0.464219i −0.844886 0.534947i \(-0.820332\pi\)
0.0408349 + 0.999166i \(0.486998\pi\)
\(6\) 2.06429 1.31860i 0.842743 0.538315i
\(7\) 0 0
\(8\) 1.30604 + 2.50883i 0.461756 + 0.887007i
\(9\) 2.92079 + 0.684828i 0.973596 + 0.228276i
\(10\) 1.04417 2.74402i 0.330197 0.867736i
\(11\) −1.99399 + 3.45368i −0.601209 + 1.04132i 0.391429 + 0.920208i \(0.371981\pi\)
−0.992638 + 0.121117i \(0.961353\pi\)
\(12\) −1.08564 + 3.28959i −0.313398 + 0.949622i
\(13\) 1.30998 0.363324 0.181662 0.983361i \(-0.441852\pi\)
0.181662 + 0.983361i \(0.441852\pi\)
\(14\) 0 0
\(15\) 3.30003 1.42820i 0.852064 0.368760i
\(16\) −3.67288 1.58428i −0.918221 0.396069i
\(17\) 2.54752 + 1.47081i 0.617863 + 0.356724i 0.776037 0.630688i \(-0.217227\pi\)
−0.158173 + 0.987411i \(0.550560\pi\)
\(18\) −3.81419 + 1.85794i −0.899014 + 0.437920i
\(19\) −0.949883 + 0.548415i −0.217918 + 0.125815i −0.604986 0.796236i \(-0.706821\pi\)
0.387068 + 0.922051i \(0.373488\pi\)
\(20\) 1.30604 + 3.94134i 0.292040 + 0.881311i
\(21\) 0 0
\(22\) −0.898482 5.56781i −0.191557 1.18706i
\(23\) −3.75063 6.49627i −0.782059 1.35457i −0.930740 0.365681i \(-0.880836\pi\)
0.148681 0.988885i \(-0.452497\pi\)
\(24\) −1.74787 4.57657i −0.356782 0.934188i
\(25\) −0.345008 + 0.597572i −0.0690016 + 0.119514i
\(26\) −1.43634 + 1.17006i −0.281689 + 0.229468i
\(27\) −4.88916 1.75957i −0.940920 0.338630i
\(28\) 0 0
\(29\) 0.865568i 0.160732i 0.996765 + 0.0803660i \(0.0256089\pi\)
−0.996765 + 0.0803660i \(0.974391\pi\)
\(30\) −2.34268 + 4.51351i −0.427712 + 0.824050i
\(31\) −3.18742 1.84026i −0.572477 0.330520i 0.185661 0.982614i \(-0.440557\pi\)
−0.758138 + 0.652094i \(0.773891\pi\)
\(32\) 5.44221 1.54349i 0.962055 0.272854i
\(33\) 4.11813 5.54551i 0.716875 0.965350i
\(34\) −4.10695 + 0.662741i −0.704336 + 0.113659i
\(35\) 0 0
\(36\) 2.52260 5.44394i 0.420433 0.907324i
\(37\) −2.08850 3.61738i −0.343347 0.594694i 0.641705 0.766952i \(-0.278227\pi\)
−0.985052 + 0.172257i \(0.944894\pi\)
\(38\) 0.551664 1.44974i 0.0894918 0.235179i
\(39\) −2.25393 0.260701i −0.360918 0.0417456i
\(40\) −4.95238 3.15496i −0.783041 0.498842i
\(41\) 7.01712i 1.09589i −0.836514 0.547945i \(-0.815410\pi\)
0.836514 0.547945i \(-0.184590\pi\)
\(42\) 0 0
\(43\) 4.27597i 0.652080i −0.945356 0.326040i \(-0.894286\pi\)
0.945356 0.326040i \(-0.105714\pi\)
\(44\) 5.95826 + 5.30234i 0.898241 + 0.799358i
\(45\) −5.96219 + 1.80059i −0.888791 + 0.268416i
\(46\) 9.91479 + 3.77285i 1.46186 + 0.556276i
\(47\) −3.75063 6.49627i −0.547085 0.947579i −0.998473 0.0552509i \(-0.982404\pi\)
0.451388 0.892328i \(-0.350929\pi\)
\(48\) 6.00420 + 3.45682i 0.866632 + 0.498949i
\(49\) 0 0
\(50\) −0.155459 0.963368i −0.0219853 0.136241i
\(51\) −4.09050 3.03763i −0.572784 0.425353i
\(52\) 0.529789 2.56584i 0.0734685 0.355818i
\(53\) −4.27909 2.47053i −0.587778 0.339354i 0.176440 0.984311i \(-0.443542\pi\)
−0.764218 + 0.644957i \(0.776875\pi\)
\(54\) 6.93237 2.43766i 0.943377 0.331724i
\(55\) 8.27923i 1.11637i
\(56\) 0 0
\(57\) 1.74349 0.754555i 0.230931 0.0999432i
\(58\) −0.773117 0.949056i −0.101515 0.124617i
\(59\) −2.44458 + 4.23414i −0.318257 + 0.551238i −0.980125 0.198383i \(-0.936431\pi\)
0.661867 + 0.749621i \(0.269764\pi\)
\(60\) −1.46278 7.04131i −0.188844 0.909029i
\(61\) 2.05347 + 3.55672i 0.262920 + 0.455391i 0.967017 0.254713i \(-0.0819810\pi\)
−0.704096 + 0.710104i \(0.748648\pi\)
\(62\) 5.13856 0.829212i 0.652597 0.105310i
\(63\) 0 0
\(64\) −4.58850 + 6.55330i −0.573562 + 0.819162i
\(65\) −2.35524 + 1.35980i −0.292131 + 0.168662i
\(66\) 0.437853 + 9.75868i 0.0538960 + 1.20121i
\(67\) −2.09778 1.21116i −0.256285 0.147966i 0.366354 0.930476i \(-0.380606\pi\)
−0.622639 + 0.782509i \(0.713939\pi\)
\(68\) 3.91113 4.39495i 0.474294 0.532966i
\(69\) 5.16042 + 11.9238i 0.621242 + 1.43545i
\(70\) 0 0
\(71\) 0.901192 0.106952 0.0534759 0.998569i \(-0.482970\pi\)
0.0534759 + 0.998569i \(0.482970\pi\)
\(72\) 2.09656 + 8.22219i 0.247082 + 0.968995i
\(73\) 6.50543 11.2677i 0.761403 1.31879i −0.180725 0.983534i \(-0.557844\pi\)
0.942128 0.335255i \(-0.108822\pi\)
\(74\) 5.52095 + 2.10087i 0.641798 + 0.244221i
\(75\) 0.712537 0.959509i 0.0822767 0.110795i
\(76\) 0.690016 + 2.08231i 0.0791503 + 0.238858i
\(77\) 0 0
\(78\) 2.70419 1.72734i 0.306189 0.195583i
\(79\) 8.97336 5.18077i 1.00958 0.582882i 0.0985123 0.995136i \(-0.468592\pi\)
0.911069 + 0.412254i \(0.135258\pi\)
\(80\) 8.24804 0.964154i 0.922159 0.107796i
\(81\) 8.06202 + 4.00048i 0.895780 + 0.444498i
\(82\) 6.26762 + 7.69395i 0.692143 + 0.849654i
\(83\) −12.4386 −1.36531 −0.682657 0.730739i \(-0.739176\pi\)
−0.682657 + 0.730739i \(0.739176\pi\)
\(84\) 0 0
\(85\) −6.10695 −0.662391
\(86\) 3.81926 + 4.68841i 0.411841 + 0.505564i
\(87\) 0.172258 1.48928i 0.0184680 0.159668i
\(88\) −11.2690 0.491915i −1.20127 0.0524384i
\(89\) −7.38393 + 4.26311i −0.782695 + 0.451889i −0.837385 0.546614i \(-0.815916\pi\)
0.0546896 + 0.998503i \(0.482583\pi\)
\(90\) 4.92900 7.29963i 0.519562 0.769449i
\(91\) 0 0
\(92\) −14.2410 + 4.71904i −1.48473 + 0.491994i
\(93\) 5.11797 + 3.80064i 0.530709 + 0.394108i
\(94\) 9.91479 + 3.77285i 1.02263 + 0.389139i
\(95\) 1.13854 1.97200i 0.116811 0.202323i
\(96\) −9.67092 + 1.57265i −0.987035 + 0.160508i
\(97\) −15.3909 −1.56271 −0.781354 0.624088i \(-0.785471\pi\)
−0.781354 + 0.624088i \(0.785471\pi\)
\(98\) 0 0
\(99\) −8.18919 + 8.72195i −0.823045 + 0.876588i
\(100\) 1.03092 + 0.917434i 0.103092 + 0.0917434i
\(101\) −5.28731 3.05263i −0.526107 0.303748i 0.213322 0.976982i \(-0.431572\pi\)
−0.739430 + 0.673234i \(0.764905\pi\)
\(102\) 7.19822 0.322971i 0.712730 0.0319789i
\(103\) 6.17682 3.56619i 0.608620 0.351387i −0.163805 0.986493i \(-0.552377\pi\)
0.772425 + 0.635106i \(0.219044\pi\)
\(104\) 1.71090 + 3.28653i 0.167767 + 0.322271i
\(105\) 0 0
\(106\) 6.89848 1.11321i 0.670040 0.108125i
\(107\) −1.20838 2.09297i −0.116818 0.202335i 0.801687 0.597744i \(-0.203936\pi\)
−0.918505 + 0.395409i \(0.870603\pi\)
\(108\) −5.42374 + 8.86471i −0.521899 + 0.853007i
\(109\) 3.39848 5.88634i 0.325516 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611288\pi\)
\(110\) 7.39492 + 9.07779i 0.705078 + 0.865534i
\(111\) 2.87353 + 6.63963i 0.272743 + 0.630206i
\(112\) 0 0
\(113\) 3.16365i 0.297611i −0.988867 0.148805i \(-0.952457\pi\)
0.988867 0.148805i \(-0.0475428\pi\)
\(114\) −1.23770 + 2.38460i −0.115921 + 0.223338i
\(115\) 13.4866 + 7.78649i 1.25763 + 0.726094i
\(116\) 1.69537 + 0.350057i 0.157412 + 0.0325019i
\(117\) 3.82619 + 0.897114i 0.353731 + 0.0829382i
\(118\) −1.10152 6.82601i −0.101403 0.628386i
\(119\) 0 0
\(120\) 7.89310 + 6.41393i 0.720538 + 0.585509i
\(121\) −2.45196 4.24691i −0.222905 0.386083i
\(122\) −5.42837 2.06564i −0.491461 0.187014i
\(123\) −1.39648 + 12.0735i −0.125917 + 1.08863i
\(124\) −4.89355 + 5.49890i −0.439454 + 0.493816i
\(125\) 11.8128i 1.05657i
\(126\) 0 0
\(127\) 15.0889i 1.33892i 0.742848 + 0.669460i \(0.233474\pi\)
−0.742848 + 0.669460i \(0.766526\pi\)
\(128\) −0.822259 11.2838i −0.0726781 0.997355i
\(129\) −0.850965 + 7.35715i −0.0749233 + 0.647761i
\(130\) 1.36785 3.59463i 0.119969 0.315270i
\(131\) 3.70488 + 6.41704i 0.323697 + 0.560660i 0.981248 0.192751i \(-0.0617408\pi\)
−0.657551 + 0.753410i \(0.728407\pi\)
\(132\) −9.19644 10.3089i −0.800447 0.897271i
\(133\) 0 0
\(134\) 3.38192 0.545742i 0.292153 0.0471449i
\(135\) 10.6168 1.91152i 0.913745 0.164517i
\(136\) −0.362848 + 8.31224i −0.0311140 + 0.712768i
\(137\) −13.0764 7.54965i −1.11719 0.645010i −0.176508 0.984299i \(-0.556480\pi\)
−0.940682 + 0.339290i \(0.889813\pi\)
\(138\) −16.3084 8.46464i −1.38826 0.720558i
\(139\) 14.4761i 1.22785i 0.789364 + 0.613925i \(0.210410\pi\)
−0.789364 + 0.613925i \(0.789590\pi\)
\(140\) 0 0
\(141\) 5.16042 + 11.9238i 0.434586 + 1.00416i
\(142\) −0.988116 + 0.804935i −0.0829208 + 0.0675487i
\(143\) −2.61209 + 4.52427i −0.218434 + 0.378338i
\(144\) −9.64276 7.14263i −0.803563 0.595219i
\(145\) −0.898482 1.55622i −0.0746148 0.129237i
\(146\) 2.93132 + 18.1651i 0.242598 + 1.50336i
\(147\) 0 0
\(148\) −7.92995 + 2.62775i −0.651838 + 0.216000i
\(149\) −9.86511 + 5.69562i −0.808181 + 0.466604i −0.846324 0.532669i \(-0.821189\pi\)
0.0381428 + 0.999272i \(0.487856\pi\)
\(150\) 0.0757594 + 1.68849i 0.00618573 + 0.137865i
\(151\) −0.795186 0.459101i −0.0647113 0.0373611i 0.467295 0.884101i \(-0.345229\pi\)
−0.532007 + 0.846740i \(0.678562\pi\)
\(152\) −2.61647 1.66684i −0.212224 0.135199i
\(153\) 6.43351 + 6.04054i 0.520118 + 0.488348i
\(154\) 0 0
\(155\) 7.64093 0.613734
\(156\) −1.42217 + 4.30930i −0.113865 + 0.345020i
\(157\) −4.36346 + 7.55773i −0.348242 + 0.603172i −0.985937 0.167116i \(-0.946555\pi\)
0.637695 + 0.770289i \(0.279888\pi\)
\(158\) −5.21146 + 13.6954i −0.414602 + 1.08955i
\(159\) 6.87085 + 5.10234i 0.544894 + 0.404642i
\(160\) −8.18242 + 8.42422i −0.646877 + 0.665993i
\(161\) 0 0
\(162\) −12.4128 + 2.81457i −0.975244 + 0.221134i
\(163\) −7.78729 + 4.49599i −0.609948 + 0.352153i −0.772945 0.634473i \(-0.781217\pi\)
0.162997 + 0.986627i \(0.447884\pi\)
\(164\) −13.7443 2.83789i −1.07325 0.221602i
\(165\) −1.64766 + 14.2451i −0.128270 + 1.10898i
\(166\) 13.6384 11.1100i 1.05854 0.862306i
\(167\) 16.1830 1.25228 0.626141 0.779710i \(-0.284633\pi\)
0.626141 + 0.779710i \(0.284633\pi\)
\(168\) 0 0
\(169\) −11.2839 −0.867996
\(170\) 6.69599 5.45466i 0.513559 0.418354i
\(171\) −3.14998 + 0.951298i −0.240885 + 0.0727476i
\(172\) −8.37528 1.72931i −0.638609 0.131858i
\(173\) 3.66216 2.11435i 0.278429 0.160751i −0.354283 0.935138i \(-0.615275\pi\)
0.632712 + 0.774387i \(0.281942\pi\)
\(174\) 1.14134 + 1.78679i 0.0865245 + 0.135456i
\(175\) 0 0
\(176\) 12.7953 9.52595i 0.964479 0.718046i
\(177\) 5.04874 6.79868i 0.379486 0.511020i
\(178\) 4.28837 11.2696i 0.321427 0.844689i
\(179\) 3.27593 5.67408i 0.244855 0.424101i −0.717236 0.696830i \(-0.754593\pi\)
0.962091 + 0.272729i \(0.0879264\pi\)
\(180\) 1.11554 + 12.4062i 0.0831471 + 0.924707i
\(181\) 12.2839 0.913058 0.456529 0.889708i \(-0.349092\pi\)
0.456529 + 0.889708i \(0.349092\pi\)
\(182\) 0 0
\(183\) −2.82534 6.52828i −0.208855 0.482585i
\(184\) 11.3996 17.8941i 0.840389 1.31917i
\(185\) 7.50987 + 4.33583i 0.552137 + 0.318776i
\(186\) −9.00632 + 0.404097i −0.660375 + 0.0296298i
\(187\) −10.1594 + 5.86554i −0.742930 + 0.428931i
\(188\) −14.2410 + 4.71904i −1.03863 + 0.344171i
\(189\) 0 0
\(190\) 0.513020 + 3.17914i 0.0372184 + 0.230639i
\(191\) 11.8662 + 20.5529i 0.858611 + 1.48716i 0.873254 + 0.487266i \(0.162006\pi\)
−0.0146426 + 0.999893i \(0.504661\pi\)
\(192\) 9.19905 10.3623i 0.663885 0.747835i
\(193\) 1.98698 3.44155i 0.143026 0.247728i −0.785609 0.618724i \(-0.787650\pi\)
0.928635 + 0.370995i \(0.120983\pi\)
\(194\) 16.8754 13.7470i 1.21158 0.986976i
\(195\) 4.32298 1.87092i 0.309575 0.133979i
\(196\) 0 0
\(197\) 19.7720i 1.40870i −0.709853 0.704350i \(-0.751239\pi\)
0.709853 0.704350i \(-0.248761\pi\)
\(198\) 1.18872 16.8777i 0.0844788 1.19945i
\(199\) −6.63939 3.83325i −0.470654 0.271732i 0.245859 0.969305i \(-0.420930\pi\)
−0.716513 + 0.697573i \(0.754263\pi\)
\(200\) −1.94980 0.0851134i −0.137872 0.00601843i
\(201\) 3.36837 + 2.50137i 0.237587 + 0.176433i
\(202\) 8.52388 1.37550i 0.599738 0.0967801i
\(203\) 0 0
\(204\) −7.60405 + 6.78350i −0.532390 + 0.474940i
\(205\) 7.28394 + 12.6162i 0.508733 + 0.881151i
\(206\) −3.58732 + 9.42723i −0.249940 + 0.656826i
\(207\) −6.50595 21.5428i −0.452195 1.49733i
\(208\) −4.81142 2.07538i −0.333612 0.143901i
\(209\) 4.37413i 0.302565i
\(210\) 0 0
\(211\) 11.7483i 0.808789i −0.914585 0.404395i \(-0.867482\pi\)
0.914585 0.404395i \(-0.132518\pi\)
\(212\) −6.56956 + 7.38224i −0.451199 + 0.507014i
\(213\) −1.55057 0.179347i −0.106243 0.0122887i
\(214\) 3.19435 + 1.21554i 0.218361 + 0.0830923i
\(215\) 4.43857 + 7.68782i 0.302708 + 0.524305i
\(216\) −1.97099 14.5642i −0.134109 0.990967i
\(217\) 0 0
\(218\) 1.53134 + 9.48959i 0.103716 + 0.642716i
\(219\) −13.4355 + 18.0924i −0.907888 + 1.22257i
\(220\) −16.2164 3.34832i −1.09331 0.225743i
\(221\) 3.33720 + 1.92674i 0.224485 + 0.129606i
\(222\) −9.08115 4.71345i −0.609487 0.316346i
\(223\) 14.5202i 0.972345i −0.873863 0.486173i \(-0.838393\pi\)
0.873863 0.486173i \(-0.161607\pi\)
\(224\) 0 0
\(225\) −1.41693 + 1.50911i −0.0944620 + 0.100607i
\(226\) 2.82574 + 3.46879i 0.187965 + 0.230741i
\(227\) 10.7314 18.5874i 0.712271 1.23369i −0.251732 0.967797i \(-0.581000\pi\)
0.964003 0.265892i \(-0.0856665\pi\)
\(228\) −0.772825 3.72010i −0.0511816 0.246370i
\(229\) −9.81541 17.0008i −0.648621 1.12344i −0.983453 0.181166i \(-0.942013\pi\)
0.334832 0.942278i \(-0.391320\pi\)
\(230\) −21.7422 + 3.50856i −1.43364 + 0.231348i
\(231\) 0 0
\(232\) −2.17157 + 1.13047i −0.142570 + 0.0742190i
\(233\) 12.3530 7.13202i 0.809273 0.467234i −0.0374302 0.999299i \(-0.511917\pi\)
0.846703 + 0.532065i \(0.178584\pi\)
\(234\) −4.99653 + 2.43387i −0.326633 + 0.159107i
\(235\) 13.4866 + 7.78649i 0.879768 + 0.507934i
\(236\) 7.30469 + 6.50055i 0.475495 + 0.423150i
\(237\) −16.4704 + 7.12813i −1.06987 + 0.463022i
\(238\) 0 0
\(239\) −15.2819 −0.988501 −0.494251 0.869320i \(-0.664557\pi\)
−0.494251 + 0.869320i \(0.664557\pi\)
\(240\) −14.3833 + 0.0174537i −0.928437 + 0.00112663i
\(241\) −2.95196 + 5.11294i −0.190152 + 0.329353i −0.945301 0.326201i \(-0.894231\pi\)
0.755148 + 0.655554i \(0.227565\pi\)
\(242\) 6.48175 + 2.46648i 0.416663 + 0.158551i
\(243\) −13.0752 8.48757i −0.838775 0.544478i
\(244\) 7.79696 2.58368i 0.499149 0.165403i
\(245\) 0 0
\(246\) −9.25276 14.4854i −0.589934 0.923554i
\(247\) −1.24433 + 0.718415i −0.0791749 + 0.0457116i
\(248\) 0.453991 10.4002i 0.0288284 0.660411i
\(249\) 21.4016 + 2.47542i 1.35627 + 0.156873i
\(250\) 10.5510 + 12.9521i 0.667306 + 0.819166i
\(251\) 23.7400 1.49845 0.749226 0.662314i \(-0.230425\pi\)
0.749226 + 0.662314i \(0.230425\pi\)
\(252\) 0 0
\(253\) 29.9148 1.88073
\(254\) −13.4772 16.5442i −0.845636 1.03808i
\(255\) 10.5075 + 1.21535i 0.658004 + 0.0761081i
\(256\) 10.9801 + 11.6377i 0.686258 + 0.727358i
\(257\) −12.8177 + 7.40033i −0.799549 + 0.461620i −0.843314 0.537422i \(-0.819398\pi\)
0.0437643 + 0.999042i \(0.486065\pi\)
\(258\) −5.63829 8.82685i −0.351025 0.549536i
\(259\) 0 0
\(260\) 1.71090 + 5.16309i 0.106105 + 0.320202i
\(261\) −0.592766 + 2.52814i −0.0366913 + 0.156488i
\(262\) −9.79387 3.72683i −0.605067 0.230244i
\(263\) 6.95299 12.0429i 0.428740 0.742599i −0.568022 0.823013i \(-0.692291\pi\)
0.996761 + 0.0804148i \(0.0256245\pi\)
\(264\) 19.2912 + 3.08902i 1.18729 + 0.190116i
\(265\) 10.2579 0.630138
\(266\) 0 0
\(267\) 13.5530 5.86554i 0.829433 0.358965i
\(268\) −3.22066 + 3.61907i −0.196733 + 0.221070i
\(269\) 7.15156 + 4.12896i 0.436039 + 0.251747i 0.701916 0.712260i \(-0.252328\pi\)
−0.265877 + 0.964007i \(0.585662\pi\)
\(270\) −9.93345 + 11.5787i −0.604530 + 0.704656i
\(271\) 4.59472 2.65276i 0.279109 0.161144i −0.353911 0.935279i \(-0.615148\pi\)
0.633020 + 0.774135i \(0.281815\pi\)
\(272\) −7.02656 9.43808i −0.426048 0.572268i
\(273\) 0 0
\(274\) 21.0809 3.40184i 1.27354 0.205513i
\(275\) −1.37588 2.38310i −0.0829688 0.143706i
\(276\) 25.4419 5.28537i 1.53142 0.318142i
\(277\) −6.30239 + 10.9161i −0.378674 + 0.655883i −0.990870 0.134824i \(-0.956953\pi\)
0.612196 + 0.790706i \(0.290287\pi\)
\(278\) −12.9299 15.8724i −0.775486 0.951965i
\(279\) −8.04951 7.55783i −0.481912 0.452476i
\(280\) 0 0
\(281\) 2.02977i 0.121086i 0.998166 + 0.0605428i \(0.0192832\pi\)
−0.998166 + 0.0605428i \(0.980717\pi\)
\(282\) −16.3084 8.46464i −0.971149 0.504062i
\(283\) −6.64918 3.83891i −0.395253 0.228199i 0.289181 0.957274i \(-0.406617\pi\)
−0.684434 + 0.729075i \(0.739950\pi\)
\(284\) 0.364463 1.76515i 0.0216269 0.104742i
\(285\) −2.35139 + 3.16641i −0.139285 + 0.187562i
\(286\) −1.17700 7.29374i −0.0695972 0.431288i
\(287\) 0 0
\(288\) 16.9526 0.781244i 0.998940 0.0460352i
\(289\) −4.17344 7.22861i −0.245497 0.425212i
\(290\) 2.37514 + 0.903805i 0.139473 + 0.0530732i
\(291\) 26.4813 + 3.06296i 1.55236 + 0.179554i
\(292\) −19.4390 17.2990i −1.13758 1.01235i
\(293\) 1.55539i 0.0908671i −0.998967 0.0454336i \(-0.985533\pi\)
0.998967 0.0454336i \(-0.0144669\pi\)
\(294\) 0 0
\(295\) 10.1501i 0.590964i
\(296\) 6.34775 9.96416i 0.368955 0.579155i
\(297\) 15.8259 13.3771i 0.918313 0.776216i
\(298\) 5.72937 15.0564i 0.331893 0.872194i
\(299\) −4.91326 8.51001i −0.284141 0.492147i
\(300\) −1.59121 1.78368i −0.0918685 0.102981i
\(301\) 0 0
\(302\) 1.28195 0.206869i 0.0737679 0.0119040i
\(303\) 8.48974 + 6.30453i 0.487723 + 0.362186i
\(304\) 4.35765 0.509387i 0.249928 0.0292154i
\(305\) −7.38393 4.26311i −0.422803 0.244105i
\(306\) −12.4494 0.876828i −0.711684 0.0501249i
\(307\) 31.5800i 1.80237i 0.433437 + 0.901184i \(0.357301\pi\)
−0.433437 + 0.901184i \(0.642699\pi\)
\(308\) 0 0
\(309\) −11.3374 + 4.90665i −0.644963 + 0.279130i
\(310\) −8.37793 + 6.82480i −0.475834 + 0.387623i
\(311\) 9.13857 15.8285i 0.518201 0.897550i −0.481575 0.876405i \(-0.659935\pi\)
0.999776 0.0211458i \(-0.00673141\pi\)
\(312\) −2.28968 5.99523i −0.129627 0.339413i
\(313\) 14.8909 + 25.7918i 0.841683 + 1.45784i 0.888471 + 0.458933i \(0.151768\pi\)
−0.0467882 + 0.998905i \(0.514899\pi\)
\(314\) −1.96616 12.1841i −0.110957 0.687589i
\(315\) 0 0
\(316\) −6.51845 19.6712i −0.366691 1.10659i
\(317\) −15.3252 + 8.84800i −0.860748 + 0.496953i −0.864263 0.503041i \(-0.832215\pi\)
0.00351474 + 0.999994i \(0.498881\pi\)
\(318\) −12.0909 + 0.542497i −0.678026 + 0.0304217i
\(319\) −2.98940 1.72593i −0.167374 0.0966336i
\(320\) 1.44723 16.5452i 0.0809027 0.924906i
\(321\) 1.66258 + 3.84160i 0.0927964 + 0.214417i
\(322\) 0 0
\(323\) −3.22646 −0.179525
\(324\) 11.0961 14.1731i 0.616453 0.787392i
\(325\) −0.451955 + 0.782809i −0.0250700 + 0.0434224i
\(326\) 4.52263 11.8852i 0.250485 0.658259i
\(327\) −7.01881 + 9.45159i −0.388141 + 0.522674i
\(328\) 17.6048 9.16466i 0.972062 0.506034i
\(329\) 0 0
\(330\) −10.9170 17.0907i −0.600959 0.940814i
\(331\) −30.3818 + 17.5410i −1.66994 + 0.964138i −0.702268 + 0.711913i \(0.747829\pi\)
−0.967668 + 0.252225i \(0.918838\pi\)
\(332\) −5.03047 + 24.3633i −0.276083 + 1.33711i
\(333\) −3.62278 11.9959i −0.198527 0.657370i
\(334\) −17.7440 + 14.4545i −0.970907 + 0.790917i
\(335\) 5.02884 0.274755
\(336\) 0 0
\(337\) −0.132987 −0.00724428 −0.00362214 0.999993i \(-0.501153\pi\)
−0.00362214 + 0.999993i \(0.501153\pi\)
\(338\) 12.3723 10.0787i 0.672966 0.548209i
\(339\) −0.629600 + 5.44330i −0.0341952 + 0.295640i
\(340\) −2.46979 + 11.9616i −0.133943 + 0.648708i
\(341\) 12.7113 7.33889i 0.688357 0.397423i
\(342\) 2.60412 3.85658i 0.140815 0.208540i
\(343\) 0 0
\(344\) 10.7277 5.58461i 0.578399 0.301102i
\(345\) −21.6552 16.0812i −1.16587 0.865785i
\(346\) −2.12688 + 5.58930i −0.114342 + 0.300482i
\(347\) 0.0976681 0.169166i 0.00524310 0.00908131i −0.863392 0.504534i \(-0.831664\pi\)
0.868635 + 0.495452i \(0.164998\pi\)
\(348\) −2.84736 0.939698i −0.152635 0.0503731i
\(349\) −5.80782 −0.310885 −0.155443 0.987845i \(-0.549680\pi\)
−0.155443 + 0.987845i \(0.549680\pi\)
\(350\) 0 0
\(351\) −6.40472 2.30501i −0.341859 0.123032i
\(352\) −5.52094 + 21.8734i −0.294267 + 1.16585i
\(353\) −17.3154 9.99704i −0.921604 0.532089i −0.0374578 0.999298i \(-0.511926\pi\)
−0.884147 + 0.467210i \(0.845259\pi\)
\(354\) 0.536798 + 11.9639i 0.0285305 + 0.635875i
\(355\) −1.62026 + 0.935460i −0.0859947 + 0.0496490i
\(356\) 5.36385 + 16.1869i 0.284284 + 0.857903i
\(357\) 0 0
\(358\) 1.47612 + 9.14741i 0.0780155 + 0.483455i
\(359\) 6.95299 + 12.0429i 0.366965 + 0.635601i 0.989089 0.147317i \(-0.0470637\pi\)
−0.622125 + 0.782918i \(0.713730\pi\)
\(360\) −12.3043 12.6065i −0.648492 0.664421i
\(361\) −8.89848 + 15.4126i −0.468341 + 0.811191i
\(362\) −13.4688 + 10.9719i −0.707903 + 0.576670i
\(363\) 3.37360 + 7.79511i 0.177068 + 0.409137i
\(364\) 0 0
\(365\) 27.0112i 1.41383i
\(366\) 8.92885 + 4.63440i 0.466719 + 0.242244i
\(367\) −16.2929 9.40672i −0.850483 0.491027i 0.0103306 0.999947i \(-0.496712\pi\)
−0.860814 + 0.508920i \(0.830045\pi\)
\(368\) 3.48371 + 29.8021i 0.181601 + 1.55354i
\(369\) 4.80552 20.4955i 0.250165 1.06695i
\(370\) −12.1069 + 1.95371i −0.629410 + 0.101568i
\(371\) 0 0
\(372\) 9.51408 8.48742i 0.493282 0.440052i
\(373\) −2.91150 5.04287i −0.150752 0.261110i 0.780752 0.624841i \(-0.214836\pi\)
−0.931504 + 0.363731i \(0.881503\pi\)
\(374\) 5.90030 15.5056i 0.305097 0.801775i
\(375\) −2.35087 + 20.3248i −0.121398 + 1.04957i
\(376\) 11.3996 17.8941i 0.587889 0.922819i
\(377\) 1.13388i 0.0583978i
\(378\) 0 0
\(379\) 12.0598i 0.619469i −0.950823 0.309735i \(-0.899760\pi\)
0.950823 0.309735i \(-0.100240\pi\)
\(380\) −3.40208 3.02756i −0.174523 0.155311i
\(381\) 3.00285 25.9616i 0.153841 1.33005i
\(382\) −31.3685 11.9365i −1.60495 0.610727i
\(383\) 6.07589 + 10.5237i 0.310463 + 0.537738i 0.978463 0.206423i \(-0.0661824\pi\)
−0.667999 + 0.744162i \(0.732849\pi\)
\(384\) −0.830836 + 19.5783i −0.0423984 + 0.999101i
\(385\) 0 0
\(386\) 0.895325 + 5.54825i 0.0455708 + 0.282399i
\(387\) 2.92831 12.4892i 0.148854 0.634862i
\(388\) −6.22444 + 30.1459i −0.315998 + 1.53043i
\(389\) −1.04831 0.605241i −0.0531513 0.0306869i 0.473189 0.880961i \(-0.343103\pi\)
−0.526340 + 0.850274i \(0.676436\pi\)
\(390\) −3.06887 + 5.91262i −0.155398 + 0.299397i
\(391\) 22.0658i 1.11592i
\(392\) 0 0
\(393\) −5.09748 11.7783i −0.257134 0.594139i
\(394\) 17.6602 + 21.6791i 0.889708 + 1.09218i
\(395\) −10.7555 + 18.6291i −0.541170 + 0.937334i
\(396\) 13.7716 + 19.5674i 0.692050 + 0.983299i
\(397\) −4.77851 8.27663i −0.239827 0.415392i 0.720838 0.693104i \(-0.243757\pi\)
−0.960664 + 0.277712i \(0.910424\pi\)
\(398\) 10.7036 1.72725i 0.536524 0.0865792i
\(399\) 0 0
\(400\) 2.21389 1.64822i 0.110695 0.0824111i
\(401\) −9.73916 + 5.62291i −0.486351 + 0.280795i −0.723059 0.690786i \(-0.757265\pi\)
0.236709 + 0.971581i \(0.423931\pi\)
\(402\) −5.92746 + 0.265954i −0.295635 + 0.0132646i
\(403\) −4.17546 2.41071i −0.207995 0.120086i
\(404\) −8.11746 + 9.12162i −0.403859 + 0.453817i
\(405\) −18.6474 + 1.17607i −0.926597 + 0.0584393i
\(406\) 0 0
\(407\) 16.6577 0.825693
\(408\) 2.27854 14.2297i 0.112804 0.704473i
\(409\) −7.78394 + 13.4822i −0.384891 + 0.666651i −0.991754 0.128155i \(-0.959094\pi\)
0.606863 + 0.794807i \(0.292428\pi\)
\(410\) −19.2551 7.32710i −0.950943 0.361860i
\(411\) 20.9965 + 15.5921i 1.03568 + 0.769102i
\(412\) −4.48698 13.5407i −0.221058 0.667101i
\(413\) 0 0
\(414\) 26.3753 + 17.8096i 1.29627 + 0.875295i
\(415\) 22.3635 12.9116i 1.09778 0.633805i
\(416\) 7.12920 2.02195i 0.349538 0.0991344i
\(417\) 2.88091 24.9074i 0.141079 1.21972i
\(418\) 3.90693 + 4.79603i 0.191094 + 0.234582i
\(419\) −18.0336 −0.881000 −0.440500 0.897753i \(-0.645199\pi\)
−0.440500 + 0.897753i \(0.645199\pi\)
\(420\) 0 0
\(421\) −12.4978 −0.609107 −0.304554 0.952495i \(-0.598507\pi\)
−0.304554 + 0.952495i \(0.598507\pi\)
\(422\) 10.4935 + 12.8815i 0.510816 + 0.627063i
\(423\) −6.50595 21.5428i −0.316330 1.04745i
\(424\) 0.609480 13.9622i 0.0295990 0.678062i
\(425\) −1.75783 + 1.01488i −0.0852672 + 0.0492290i
\(426\) 1.86032 1.18831i 0.0901329 0.0575738i
\(427\) 0 0
\(428\) −4.58816 + 1.52038i −0.221777 + 0.0734903i
\(429\) 5.39468 7.26453i 0.260458 0.350735i
\(430\) −11.7334 4.46486i −0.565833 0.215315i
\(431\) −6.22304 + 10.7786i −0.299753 + 0.519188i −0.976079 0.217415i \(-0.930238\pi\)
0.676326 + 0.736602i \(0.263571\pi\)
\(432\) 15.1697 + 14.2085i 0.729851 + 0.683606i
\(433\) 0.497837 0.0239245 0.0119623 0.999928i \(-0.496192\pi\)
0.0119623 + 0.999928i \(0.496192\pi\)
\(434\) 0 0
\(435\) 1.23621 + 2.85640i 0.0592715 + 0.136954i
\(436\) −10.1551 9.03713i −0.486339 0.432800i
\(437\) 7.12531 + 4.11380i 0.340850 + 0.196790i
\(438\) −1.42851 31.8379i −0.0682568 1.52128i
\(439\) −4.03571 + 2.33002i −0.192614 + 0.111206i −0.593206 0.805051i \(-0.702138\pi\)
0.400592 + 0.916257i \(0.368805\pi\)
\(440\) 20.7712 10.8130i 0.990228 0.515491i
\(441\) 0 0
\(442\) −5.38003 + 0.868179i −0.255902 + 0.0412951i
\(443\) −11.0349 19.1130i −0.524283 0.908086i −0.999600 0.0282709i \(-0.991000\pi\)
0.475317 0.879815i \(-0.342333\pi\)
\(444\) 14.1671 2.94311i 0.672339 0.139674i
\(445\) 8.85044 15.3294i 0.419551 0.726684i
\(446\) 12.9693 + 15.9207i 0.614114 + 0.753869i
\(447\) 18.1072 7.83651i 0.856441 0.370654i
\(448\) 0 0
\(449\) 6.02866i 0.284510i −0.989830 0.142255i \(-0.954565\pi\)
0.989830 0.142255i \(-0.0454353\pi\)
\(450\) 0.205678 2.92026i 0.00969575 0.137662i
\(451\) 24.2349 + 13.9920i 1.14118 + 0.658859i
\(452\) −6.19658 1.27945i −0.291463 0.0601804i
\(453\) 1.27681 + 0.948170i 0.0599900 + 0.0445489i
\(454\) 4.83554 + 29.9654i 0.226943 + 1.40635i
\(455\) 0 0
\(456\) 4.17013 + 3.38865i 0.195284 + 0.158688i
\(457\) 19.1308 + 33.1356i 0.894902 + 1.55002i 0.833926 + 0.551877i \(0.186088\pi\)
0.0609766 + 0.998139i \(0.480578\pi\)
\(458\) 25.9471 + 9.87356i 1.21243 + 0.461361i
\(459\) −9.86723 11.6736i −0.460563 0.544875i
\(460\) 20.7056 23.2669i 0.965402 1.08483i
\(461\) 12.4563i 0.580148i 0.957004 + 0.290074i \(0.0936799\pi\)
−0.957004 + 0.290074i \(0.906320\pi\)
\(462\) 0 0
\(463\) 28.0609i 1.30410i 0.758176 + 0.652050i \(0.226091\pi\)
−0.758176 + 0.652050i \(0.773909\pi\)
\(464\) 1.37130 3.17913i 0.0636610 0.147587i
\(465\) −13.1468 1.52063i −0.609669 0.0705174i
\(466\) −7.17427 + 18.8535i −0.332342 + 0.873373i
\(467\) −8.54830 14.8061i −0.395568 0.685144i 0.597605 0.801790i \(-0.296119\pi\)
−0.993174 + 0.116646i \(0.962786\pi\)
\(468\) 3.30456 7.13147i 0.152753 0.329652i
\(469\) 0 0
\(470\) −21.7422 + 3.50856i −1.00289 + 0.161838i
\(471\) 9.01175 12.1353i 0.415239 0.559165i
\(472\) −13.8155 0.603077i −0.635909 0.0277589i
\(473\) 14.7679 + 8.52623i 0.679027 + 0.392036i
\(474\) 11.6923 22.5269i 0.537044 1.03469i
\(475\) 0.756831i 0.0347258i
\(476\) 0 0
\(477\) −10.8064 10.1464i −0.494792 0.464569i
\(478\) 16.7559 13.6496i 0.766395 0.624318i
\(479\) −8.21329 + 14.2258i −0.375275 + 0.649995i −0.990368 0.138459i \(-0.955785\pi\)
0.615093 + 0.788454i \(0.289118\pi\)
\(480\) 15.7550 12.8661i 0.719115 0.587256i
\(481\) −2.73590 4.73871i −0.124746 0.216067i
\(482\) −1.33014 8.24276i −0.0605862 0.375447i
\(483\) 0 0
\(484\) −9.30998 + 3.08505i −0.423181 + 0.140230i
\(485\) 27.6715 15.9761i 1.25650 0.725439i
\(486\) 21.9174 2.37241i 0.994193 0.107615i
\(487\) −27.7018 15.9937i −1.25529 0.724742i −0.283134 0.959080i \(-0.591374\pi\)
−0.972155 + 0.234339i \(0.924708\pi\)
\(488\) −6.24129 + 9.79706i −0.282530 + 0.443492i
\(489\) 14.2934 6.18596i 0.646370 0.279739i
\(490\) 0 0
\(491\) 2.03844 0.0919935 0.0459968 0.998942i \(-0.485354\pi\)
0.0459968 + 0.998942i \(0.485354\pi\)
\(492\) 23.0834 + 7.61808i 1.04068 + 0.343450i
\(493\) −1.27309 + 2.20505i −0.0573369 + 0.0993104i
\(494\) 0.722671 1.89913i 0.0325145 0.0854460i
\(495\) 5.66985 24.1819i 0.254841 1.08689i
\(496\) 8.79153 + 11.8088i 0.394752 + 0.530231i
\(497\) 0 0
\(498\) −25.6769 + 16.4015i −1.15061 + 0.734970i
\(499\) 3.71805 2.14662i 0.166443 0.0960957i −0.414465 0.910065i \(-0.636031\pi\)
0.580907 + 0.813970i \(0.302698\pi\)
\(500\) −23.1375 4.77736i −1.03474 0.213650i
\(501\) −27.8442 3.22060i −1.24399 0.143886i
\(502\) −26.0298 + 21.2043i −1.16177 + 0.946394i
\(503\) −26.3039 −1.17283 −0.586415 0.810010i \(-0.699461\pi\)
−0.586415 + 0.810010i \(0.699461\pi\)
\(504\) 0 0
\(505\) 12.6748 0.564023
\(506\) −32.8002 + 26.7196i −1.45815 + 1.18783i
\(507\) 19.4149 + 2.24563i 0.862247 + 0.0997318i
\(508\) 29.5543 + 6.10229i 1.31126 + 0.270746i
\(509\) −35.3140 + 20.3886i −1.56527 + 0.903707i −0.568557 + 0.822644i \(0.692498\pi\)
−0.996709 + 0.0810631i \(0.974168\pi\)
\(510\) −12.6065 + 8.05261i −0.558226 + 0.356575i
\(511\) 0 0
\(512\) −22.4339 2.95289i −0.991448 0.130500i
\(513\) 5.60911 1.00990i 0.247648 0.0445884i
\(514\) 7.44418 19.5628i 0.328348 0.862878i
\(515\) −7.40358 + 12.8234i −0.326241 + 0.565066i
\(516\) 14.0662 + 4.64218i 0.619229 + 0.204361i
\(517\) 29.9148 1.31565
\(518\) 0 0
\(519\) −6.72182 + 2.90910i −0.295055 + 0.127695i
\(520\) −6.48754 4.13294i −0.284498 0.181241i
\(521\) 6.01740 + 3.47415i 0.263627 + 0.152205i 0.625988 0.779833i \(-0.284696\pi\)
−0.362361 + 0.932038i \(0.618029\pi\)
\(522\) −1.60817 3.30145i −0.0703877 0.144500i
\(523\) −6.54296 + 3.77758i −0.286104 + 0.165182i −0.636183 0.771538i \(-0.719488\pi\)
0.350080 + 0.936720i \(0.386154\pi\)
\(524\) 14.0673 4.66149i 0.614533 0.203638i
\(525\) 0 0
\(526\) 3.13299 + 19.4149i 0.136605 + 0.846528i
\(527\) −5.41333 9.37617i −0.235808 0.408432i
\(528\) −23.9110 + 13.8438i −1.04059 + 0.602472i
\(529\) −16.6344 + 28.8116i −0.723234 + 1.25268i
\(530\) −11.2473 + 9.16225i −0.488552 + 0.397983i
\(531\) −10.0398 + 10.6929i −0.435689 + 0.464033i
\(532\) 0 0
\(533\) 9.19231i 0.398163i
\(534\) −9.62125 + 18.5367i −0.416352 + 0.802163i
\(535\) 4.34511 + 2.50865i 0.187855 + 0.108458i
\(536\) 0.298792 6.84481i 0.0129058 0.295651i
\(537\) −6.76571 + 9.11077i −0.291962 + 0.393159i
\(538\) −11.5293 + 1.86049i −0.497064 + 0.0802115i
\(539\) 0 0
\(540\) 0.549611 21.5679i 0.0236515 0.928136i
\(541\) −5.57548 9.65701i −0.239709 0.415187i 0.720922 0.693016i \(-0.243719\pi\)
−0.960631 + 0.277829i \(0.910385\pi\)
\(542\) −2.66848 + 7.01259i −0.114621 + 0.301216i
\(543\) −21.1355 2.44464i −0.907011 0.104910i
\(544\) 16.1343 + 4.07237i 0.691752 + 0.174601i
\(545\) 14.1108i 0.604442i
\(546\) 0 0
\(547\) 39.2870i 1.67979i 0.542748 + 0.839896i \(0.317384\pi\)
−0.542748 + 0.839896i \(0.682616\pi\)
\(548\) −20.0758 + 22.5592i −0.857594 + 0.963682i
\(549\) 3.56202 + 11.7947i 0.152023 + 0.503386i
\(550\) 3.63715 + 1.38403i 0.155089 + 0.0590154i
\(551\) −0.474691 0.822189i −0.0202225 0.0350264i
\(552\) −23.1750 + 28.5196i −0.986395 + 1.21388i
\(553\) 0 0
\(554\) −2.83983 17.5982i −0.120653 0.747676i
\(555\) −12.0585 8.95468i −0.511853 0.380105i
\(556\) 28.3542 + 5.85450i 1.20249 + 0.248286i
\(557\) 25.5152 + 14.7312i 1.08112 + 0.624182i 0.931197 0.364516i \(-0.118766\pi\)
0.149919 + 0.988698i \(0.452099\pi\)
\(558\) 15.5765 + 1.09708i 0.659406 + 0.0464429i
\(559\) 5.60145i 0.236916i
\(560\) 0 0
\(561\) 18.6474 8.07030i 0.787294 0.340728i
\(562\) −1.81297 2.22554i −0.0764753 0.0938789i
\(563\) −20.3385 + 35.2274i −0.857167 + 1.48466i 0.0174537 + 0.999848i \(0.494444\pi\)
−0.874620 + 0.484808i \(0.838889\pi\)
\(564\) 25.4419 5.28537i 1.07130 0.222554i
\(565\) 3.28394 + 5.68796i 0.138157 + 0.239294i
\(566\) 10.7194 1.72980i 0.450570 0.0727087i
\(567\) 0 0
\(568\) 1.17700 + 2.26094i 0.0493857 + 0.0948670i
\(569\) −4.30534 + 2.48569i −0.180489 + 0.104206i −0.587523 0.809208i \(-0.699897\pi\)
0.407033 + 0.913413i \(0.366563\pi\)
\(570\) −0.250008 5.57206i −0.0104717 0.233388i
\(571\) 30.2952 + 17.4909i 1.26781 + 0.731973i 0.974574 0.224066i \(-0.0719331\pi\)
0.293240 + 0.956039i \(0.405266\pi\)
\(572\) 7.80522 + 6.94598i 0.326353 + 0.290426i
\(573\) −16.3266 37.7245i −0.682052 1.57596i
\(574\) 0 0
\(575\) 5.17599 0.215854
\(576\) −17.8899 + 15.9985i −0.745413 + 0.666603i
\(577\) −7.33386 + 12.7026i −0.305313 + 0.528817i −0.977331 0.211718i \(-0.932094\pi\)
0.672018 + 0.740535i \(0.265428\pi\)
\(578\) 11.0325 + 4.19817i 0.458892 + 0.174621i
\(579\) −4.10366 + 5.52603i −0.170542 + 0.229654i
\(580\) −3.41150 + 1.13047i −0.141655 + 0.0469402i
\(581\) 0 0
\(582\) −31.7713 + 20.2944i −1.31696 + 0.841230i
\(583\) 17.0649 9.85242i 0.706755 0.408045i
\(584\) 36.7652 + 1.60489i 1.52136 + 0.0664107i
\(585\) −7.81037 + 2.35874i −0.322919 + 0.0975221i
\(586\) 1.38926 + 1.70542i 0.0573899 + 0.0704502i
\(587\) −18.7469 −0.773769 −0.386885 0.922128i \(-0.626449\pi\)
−0.386885 + 0.922128i \(0.626449\pi\)
\(588\) 0 0
\(589\) 4.03690 0.166337
\(590\) 9.06601 + 11.1292i 0.373242 + 0.458181i
\(591\) −3.93485 + 34.0194i −0.161858 + 1.39937i
\(592\) 1.93987 + 16.5950i 0.0797282 + 0.682050i
\(593\) 38.8836 22.4494i 1.59676 0.921888i 0.604651 0.796491i \(-0.293313\pi\)
0.992107 0.125398i \(-0.0400207\pi\)
\(594\) −5.40414 + 28.8029i −0.221735 + 1.18180i
\(595\) 0 0
\(596\) 7.16624 + 21.6261i 0.293541 + 0.885838i
\(597\) 10.6607 + 7.91673i 0.436315 + 0.324010i
\(598\) 12.9882 + 4.94237i 0.531128 + 0.202108i
\(599\) 0.596454 1.03309i 0.0243704 0.0422108i −0.853583 0.520957i \(-0.825575\pi\)
0.877953 + 0.478746i \(0.158909\pi\)
\(600\) 3.33786 + 0.534477i 0.136267 + 0.0218199i
\(601\) −37.4089 −1.52594 −0.762970 0.646434i \(-0.776259\pi\)
−0.762970 + 0.646434i \(0.776259\pi\)
\(602\) 0 0
\(603\) −5.29775 4.97415i −0.215741 0.202563i
\(604\) −1.22083 + 1.37185i −0.0496747 + 0.0558196i
\(605\) 8.81680 + 5.09038i 0.358454 + 0.206953i
\(606\) −14.9398 + 0.670319i −0.606886 + 0.0272298i
\(607\) 18.5588 10.7149i 0.753279 0.434906i −0.0735982 0.997288i \(-0.523448\pi\)
0.826878 + 0.562382i \(0.190115\pi\)
\(608\) −4.32298 + 4.45073i −0.175320 + 0.180501i
\(609\) 0 0
\(610\) 11.9039 1.92094i 0.481975 0.0777766i
\(611\) −4.91326 8.51001i −0.198769 0.344278i
\(612\) 14.4334 10.1583i 0.583434 0.410624i
\(613\) 20.2674 35.1041i 0.818591 1.41784i −0.0881290 0.996109i \(-0.528089\pi\)
0.906720 0.421733i \(-0.138578\pi\)
\(614\) −28.2070 34.6261i −1.13834 1.39739i
\(615\) −10.0219 23.1567i −0.404120 0.933768i
\(616\) 0 0
\(617\) 46.2548i 1.86215i 0.364830 + 0.931074i \(0.381127\pi\)
−0.364830 + 0.931074i \(0.618873\pi\)
\(618\) 8.04838 15.5064i 0.323753 0.623758i
\(619\) −22.3403 12.8982i −0.897932 0.518421i −0.0214035 0.999771i \(-0.506813\pi\)
−0.876529 + 0.481349i \(0.840147\pi\)
\(620\) 3.09017 14.9662i 0.124104 0.601055i
\(621\) 6.90676 + 38.3608i 0.277159 + 1.53937i
\(622\) 4.11780 + 25.5177i 0.165109 + 1.02317i
\(623\) 0 0
\(624\) 7.86540 + 4.52838i 0.314868 + 0.181280i
\(625\) 10.5369 + 18.2504i 0.421476 + 0.730018i
\(626\) −39.3641 14.9791i −1.57331 0.598686i
\(627\) −0.870499 + 7.52603i −0.0347644 + 0.300561i
\(628\) 13.0385 + 11.6032i 0.520293 + 0.463016i
\(629\) 12.2871i 0.489920i
\(630\) 0 0
\(631\) 26.5913i 1.05858i −0.848440 0.529291i \(-0.822458\pi\)
0.848440 0.529291i \(-0.177542\pi\)
\(632\) 24.7173 + 15.7463i 0.983201 + 0.626356i
\(633\) −2.33805 + 20.2140i −0.0929291 + 0.803433i
\(634\) 8.90042 23.3897i 0.353481 0.928924i
\(635\) −15.6626 27.1284i −0.621552 1.07656i
\(636\) 12.7726 11.3943i 0.506466 0.451814i
\(637\) 0 0
\(638\) 4.81932 0.777697i 0.190799 0.0307893i
\(639\) 2.63219 + 0.617162i 0.104128 + 0.0244145i
\(640\) 13.1912 + 19.4337i 0.521428 + 0.768186i
\(641\) 5.24154 + 3.02620i 0.207028 + 0.119528i 0.599930 0.800053i \(-0.295195\pi\)
−0.392901 + 0.919581i \(0.628529\pi\)
\(642\) −5.25422 2.72714i −0.207368 0.107631i
\(643\) 9.95426i 0.392558i 0.980548 + 0.196279i \(0.0628858\pi\)
−0.980548 + 0.196279i \(0.937114\pi\)
\(644\) 0 0
\(645\) −6.10695 14.1108i −0.240461 0.555614i
\(646\) 3.53766 2.88184i 0.139187 0.113384i
\(647\) 15.4951 26.8383i 0.609175 1.05512i −0.382201 0.924079i \(-0.624834\pi\)
0.991377 0.131044i \(-0.0418328\pi\)
\(648\) 0.492815 + 25.4511i 0.0193596 + 0.999813i
\(649\) −9.74892 16.8856i −0.382679 0.662819i
\(650\) −0.203649 1.26200i −0.00798778 0.0494996i
\(651\) 0 0
\(652\) 5.65686 + 17.0711i 0.221540 + 0.668557i
\(653\) 7.01889 4.05236i 0.274670 0.158581i −0.356338 0.934357i \(-0.615975\pi\)
0.631008 + 0.775776i \(0.282641\pi\)
\(654\) −0.746263 16.6324i −0.0291812 0.650377i
\(655\) −13.3221 7.69152i −0.520538 0.300533i
\(656\) −11.1171 + 25.7730i −0.434048 + 1.00627i
\(657\) 26.7174 28.4556i 1.04235 1.11016i
\(658\) 0 0
\(659\) −38.3085 −1.49229 −0.746143 0.665785i \(-0.768097\pi\)
−0.746143 + 0.665785i \(0.768097\pi\)
\(660\) 27.2352 + 8.98828i 1.06013 + 0.349868i
\(661\) 3.32843 5.76501i 0.129461 0.224233i −0.794007 0.607909i \(-0.792009\pi\)
0.923468 + 0.383676i \(0.125342\pi\)
\(662\) 17.6449 46.3696i 0.685788 1.80221i
\(663\) −5.35848 3.97924i −0.208106 0.154541i
\(664\) −16.2454 31.2064i −0.630442 1.21104i
\(665\) 0 0
\(666\) 14.6868 + 9.91711i 0.569102 + 0.384280i
\(667\) 5.62297 3.24642i 0.217722 0.125702i
\(668\) 6.54481 31.6975i 0.253226 1.22641i
\(669\) −2.88968 + 24.9832i −0.111722 + 0.965905i
\(670\) −5.51389 + 4.49171i −0.213020 + 0.173530i
\(671\) −16.3784 −0.632280
\(672\) 0 0
\(673\) −22.0809 −0.851156 −0.425578 0.904922i \(-0.639929\pi\)
−0.425578 + 0.904922i \(0.639929\pi\)
\(674\) 0.145815 0.118783i 0.00561657 0.00457535i
\(675\) 2.73827 2.31456i 0.105396 0.0890874i
\(676\) −4.56350 + 22.1017i −0.175519 + 0.850064i
\(677\) 39.0358 22.5373i 1.50027 0.866180i 0.500267 0.865871i \(-0.333235\pi\)
1.00000 0.000308342i \(-9.81484e-5\pi\)
\(678\) −4.17158 6.53069i −0.160208 0.250810i
\(679\) 0 0
\(680\) −7.97594 15.3213i −0.305863 0.587546i
\(681\) −22.1634 + 29.8454i −0.849303 + 1.14368i
\(682\) −7.38237 + 19.4004i −0.282685 + 0.742879i
\(683\) −7.80843 + 13.5246i −0.298781 + 0.517505i −0.975857 0.218408i \(-0.929913\pi\)
0.677076 + 0.735913i \(0.263247\pi\)
\(684\) 0.589366 + 6.55454i 0.0225350 + 0.250619i
\(685\) 31.3469 1.19770
\(686\) 0 0
\(687\) 13.5049 + 31.2046i 0.515242 + 1.19053i
\(688\) −6.77432 + 15.7051i −0.258269 + 0.598753i
\(689\) −5.60554 3.23636i −0.213554 0.123295i
\(690\) 38.1075 1.70981i 1.45073 0.0650914i
\(691\) 33.1799 19.1564i 1.26222 0.728744i 0.288718 0.957414i \(-0.406771\pi\)
0.973504 + 0.228670i \(0.0734376\pi\)
\(692\) −2.66028 8.02811i −0.101129 0.305183i
\(693\) 0 0
\(694\) 0.0440088 + 0.272719i 0.00167055 + 0.0103523i
\(695\) −15.0266 26.0268i −0.569991 0.987254i
\(696\) 3.96133 1.51290i 0.150154 0.0573463i
\(697\) 10.3208 17.8762i 0.390930 0.677110i
\(698\) 6.36801 5.18749i 0.241033 0.196349i
\(699\) −22.6737 + 9.81282i −0.857598 + 0.371155i
\(700\) 0 0
\(701\) 36.6488i 1.38420i −0.721799 0.692102i \(-0.756685\pi\)
0.721799 0.692102i \(-0.243315\pi\)
\(702\) 9.08130 3.19330i 0.342751 0.120523i
\(703\) 3.96766 + 2.29073i 0.149643 + 0.0863964i
\(704\) −13.4836 28.9144i −0.508183 1.08975i
\(705\) −21.6552 16.0812i −0.815580 0.605655i
\(706\) 27.9148 4.50462i 1.05059 0.169534i
\(707\) 0 0
\(708\) −11.2746 12.6384i −0.423726 0.474981i
\(709\) −18.2674 31.6400i −0.686045 1.18827i −0.973107 0.230353i \(-0.926012\pi\)
0.287062 0.957912i \(-0.407322\pi\)
\(710\) 0.941002 2.47289i 0.0353152 0.0928060i
\(711\) 29.7572 8.98673i 1.11598 0.337029i
\(712\) −20.3392 12.9572i −0.762243 0.485593i
\(713\) 27.6084i 1.03394i
\(714\) 0 0
\(715\) 10.8457i 0.405604i
\(716\) −9.78887 8.71125i −0.365827 0.325555i
\(717\) 26.2937 + 3.04126i 0.981954 + 0.113578i
\(718\) −18.3803 6.99418i −0.685945 0.261020i
\(719\) 12.2687 + 21.2499i 0.457543 + 0.792488i 0.998830 0.0483494i \(-0.0153961\pi\)
−0.541287 + 0.840838i \(0.682063\pi\)
\(720\) 24.7511 + 2.83240i 0.922418 + 0.105557i
\(721\) 0 0
\(722\) −4.00962 24.8473i −0.149223 0.924720i
\(723\) 6.09660 8.20974i 0.226735 0.305324i
\(724\) 4.96792 24.0604i 0.184631 0.894196i
\(725\) −0.517239 0.298628i −0.0192098 0.0110908i
\(726\) −10.6615 5.53372i −0.395686 0.205376i
\(727\) 7.89691i 0.292880i 0.989220 + 0.146440i \(0.0467816\pi\)
−0.989220 + 0.146440i \(0.953218\pi\)
\(728\) 0 0
\(729\) 20.8078 + 17.2057i 0.770660 + 0.637247i
\(730\) −24.1261 29.6165i −0.892948 1.09616i
\(731\) 6.28914 10.8931i 0.232612 0.402896i
\(732\) −13.9295 + 2.89375i −0.514848 + 0.106956i
\(733\) 2.92236 + 5.06167i 0.107940 + 0.186957i 0.914935 0.403600i \(-0.132241\pi\)
−0.806996 + 0.590557i \(0.798908\pi\)
\(734\) 26.2664 4.23863i 0.969511 0.156451i
\(735\) 0 0
\(736\) −30.4386 29.5650i −1.12198 1.08978i
\(737\) 8.36590 4.83005i 0.308162 0.177917i
\(738\) 13.0374 + 26.7646i 0.479912 + 0.985220i
\(739\) 1.22939 + 0.709786i 0.0452237 + 0.0261099i 0.522441 0.852675i \(-0.325021\pi\)
−0.477218 + 0.878785i \(0.658355\pi\)
\(740\) 11.5297 12.9560i 0.423840 0.476270i
\(741\) 2.28394 0.988455i 0.0839027 0.0363118i
\(742\) 0 0
\(743\) −1.70600 −0.0625872 −0.0312936 0.999510i \(-0.509963\pi\)
−0.0312936 + 0.999510i \(0.509963\pi\)
\(744\) −2.85087 + 17.8040i −0.104518 + 0.652724i
\(745\) 11.8244 20.4805i 0.433212 0.750346i
\(746\) 7.69657 + 2.92875i 0.281791 + 0.107229i
\(747\) −36.3305 8.51831i −1.32926 0.311669i
\(748\) 7.38003 + 22.2713i 0.269841 + 0.814318i
\(749\) 0 0
\(750\) −15.5763 24.3850i −0.568765 0.890413i
\(751\) 23.1969 13.3927i 0.846466 0.488707i −0.0129912 0.999916i \(-0.504135\pi\)
0.859457 + 0.511208i \(0.170802\pi\)
\(752\) 3.48371 + 29.8021i 0.127038 + 1.08677i
\(753\) −40.8465 4.72451i −1.48853 0.172171i
\(754\) −1.01277 1.24325i −0.0368829 0.0452764i
\(755\) 1.90623 0.0693749
\(756\) 0 0
\(757\) −23.8816 −0.867992 −0.433996 0.900915i \(-0.642897\pi\)
−0.433996 + 0.900915i \(0.642897\pi\)
\(758\) 10.7717 + 13.2230i 0.391245 + 0.480281i
\(759\) −51.4707 5.95337i −1.86827 0.216094i
\(760\) 6.43441 + 0.280877i 0.233401 + 0.0101885i
\(761\) −13.0696 + 7.54576i −0.473774 + 0.273533i −0.717818 0.696231i \(-0.754859\pi\)
0.244044 + 0.969764i \(0.421526\pi\)
\(762\) 19.8961 + 31.1478i 0.720761 + 1.12837i
\(763\) 0 0
\(764\) 45.0557 14.9301i 1.63006 0.540153i
\(765\) −17.8371 4.18221i −0.644902 0.151208i
\(766\) −16.0616 6.11189i −0.580331 0.220831i
\(767\) −3.20236 + 5.54665i −0.115631 + 0.200278i
\(768\) −16.5762 22.2088i −0.598141 0.801391i
\(769\) −12.6792 −0.457222 −0.228611 0.973518i \(-0.573418\pi\)
−0.228611 + 0.973518i \(0.573418\pi\)
\(770\) 0 0
\(771\) 23.5267 10.1820i 0.847294 0.366695i
\(772\) −5.93733 5.28371i −0.213689 0.190165i
\(773\) −33.5367 19.3624i −1.20623 0.696417i −0.244296 0.969701i \(-0.578557\pi\)
−0.961934 + 0.273283i \(0.911890\pi\)
\(774\) 7.94448 + 16.3094i 0.285559 + 0.586229i
\(775\) 2.19937 1.26981i 0.0790037 0.0456128i
\(776\) −20.1012 38.6132i −0.721590 1.38613i
\(777\) 0 0
\(778\) 1.69002 0.272719i 0.0605900 0.00977745i
\(779\) 3.84829 + 6.66544i 0.137879 + 0.238814i
\(780\) −1.91622 9.22400i −0.0686117 0.330272i
\(781\) −1.79696 + 3.11243i −0.0643004 + 0.111372i
\(782\) 19.7090 + 24.1942i 0.704791 + 0.865181i
\(783\) 1.52303 4.23190i 0.0544286 0.151236i
\(784\) 0 0
\(785\) 18.1175i 0.646642i
\(786\) 16.1095 + 8.36140i 0.574605 + 0.298241i
\(787\) 17.6523 + 10.1915i 0.629235 + 0.363289i 0.780456 0.625211i \(-0.214987\pi\)
−0.151221 + 0.988500i \(0.548320\pi\)
\(788\) −38.7272 7.99629i −1.37960 0.284856i
\(789\) −14.3598 + 19.3371i −0.511224 + 0.688419i
\(790\) −4.84640 30.0327i −0.172427 1.06852i
\(791\) 0 0
\(792\) −32.5774 9.15408i −1.15759 0.325276i
\(793\) 2.69002 + 4.65925i 0.0955253 + 0.165455i
\(794\) 12.6320 + 4.80683i 0.448294 + 0.170588i
\(795\) −17.6495 2.04143i −0.625965 0.0724022i
\(796\) −10.1933 + 11.4542i −0.361291 + 0.405984i
\(797\) 27.9005i 0.988287i 0.869380 + 0.494143i \(0.164518\pi\)
−0.869380 + 0.494143i \(0.835482\pi\)
\(798\) 0 0
\(799\) 22.0658i 0.780632i
\(800\) −0.955258 + 3.78463i −0.0337735 + 0.133807i
\(801\) −24.4864 + 7.39493i −0.865184 + 0.261287i
\(802\) 5.65622 14.8642i 0.199728 0.524873i
\(803\) 25.9435 + 44.9354i 0.915525 + 1.58574i
\(804\) 6.26165 5.58596i 0.220831 0.197002i
\(805\) 0 0
\(806\) 6.73142 1.08625i 0.237104 0.0382617i
\(807\) −11.4831 8.52744i −0.404225 0.300180i
\(808\) 0.753083 17.2519i 0.0264934 0.606918i
\(809\) −12.3530 7.13202i −0.434309 0.250748i 0.266872 0.963732i \(-0.414010\pi\)
−0.701181 + 0.712984i \(0.747343\pi\)
\(810\) 19.3956 17.9452i 0.681491 0.630529i
\(811\) 38.4069i 1.34865i −0.738435 0.674325i \(-0.764435\pi\)
0.738435 0.674325i \(-0.235565\pi\)
\(812\) 0 0
\(813\) −8.43351 + 3.64989i −0.295776 + 0.128007i
\(814\) −18.2644 + 14.8785i −0.640169 + 0.521492i
\(815\) 9.33391 16.1668i 0.326953 0.566299i
\(816\) 10.2115 + 17.6373i 0.357473 + 0.617430i
\(817\) 2.34501 + 4.06167i 0.0820415 + 0.142100i
\(818\) −3.50741 21.7351i −0.122634 0.759951i
\(819\) 0 0
\(820\) 27.6569 9.16466i 0.965820 0.320044i
\(821\) 45.7169 26.3947i 1.59553 0.921181i 0.603198 0.797591i \(-0.293893\pi\)
0.992333 0.123589i \(-0.0394406\pi\)
\(822\) −36.9484 + 1.65780i −1.28872 + 0.0578226i
\(823\) −4.96238 2.86503i −0.172978 0.0998687i 0.411012 0.911630i \(-0.365176\pi\)
−0.583989 + 0.811761i \(0.698509\pi\)
\(824\) 17.0142 + 10.8390i 0.592717 + 0.377595i
\(825\) 1.89305 + 4.37413i 0.0659077 + 0.152288i
\(826\) 0 0
\(827\) 44.5253 1.54830 0.774149 0.633003i \(-0.218178\pi\)
0.774149 + 0.633003i \(0.218178\pi\)
\(828\) −44.8267 + 4.03069i −1.55783 + 0.140076i
\(829\) 13.0293 22.5674i 0.452526 0.783799i −0.546016 0.837775i \(-0.683856\pi\)
0.998542 + 0.0539760i \(0.0171895\pi\)
\(830\) −12.9881 + 34.1318i −0.450823 + 1.18473i
\(831\) 13.0162 17.5277i 0.451526 0.608030i
\(832\) −6.01086 + 8.58471i −0.208389 + 0.297621i
\(833\) 0 0
\(834\) 19.0882 + 29.8830i 0.660971 + 1.03476i
\(835\) −29.0957 + 16.7984i −1.00690 + 0.581333i
\(836\) −8.56753 1.76900i −0.296314 0.0611822i
\(837\) 12.3457 + 14.6058i 0.426731 + 0.504850i
\(838\) 19.7730 16.1074i 0.683048 0.556423i
\(839\) 46.0533 1.58994 0.794968 0.606652i \(-0.207488\pi\)
0.794968 + 0.606652i \(0.207488\pi\)
\(840\) 0 0
\(841\) 28.2508 0.974165
\(842\) 13.7033 11.1629i 0.472247 0.384700i
\(843\) 0.403945 3.49237i 0.0139126 0.120284i
\(844\) −23.0113 4.75131i −0.792081 0.163547i
\(845\) 20.2875 11.7130i 0.697912 0.402940i
\(846\) 26.3753 + 17.8096i 0.906801 + 0.612307i
\(847\) 0 0
\(848\) 11.8026 + 15.8532i 0.405302 + 0.544403i
\(849\) 10.6765 + 7.92840i 0.366415 + 0.272102i
\(850\) 1.02090 2.68285i 0.0350164 0.0920209i
\(851\) −15.6663 + 27.1349i −0.537035 + 0.930173i
\(852\) −0.978373 + 2.96455i −0.0335185 + 0.101564i
\(853\) −46.3274 −1.58622 −0.793109 0.609079i \(-0.791539\pi\)
−0.793109 + 0.609079i \(0.791539\pi\)
\(854\) 0 0
\(855\) 4.67591 4.98011i 0.159913 0.170316i
\(856\) 3.67272 5.76512i 0.125531 0.197048i
\(857\) −35.6333 20.5729i −1.21721 0.702756i −0.252890 0.967495i \(-0.581381\pi\)
−0.964320 + 0.264739i \(0.914714\pi\)
\(858\) 0.573581 + 12.7837i 0.0195817 + 0.436428i
\(859\) −49.7193 + 28.7054i −1.69640 + 0.979417i −0.747277 + 0.664512i \(0.768639\pi\)
−0.949123 + 0.314905i \(0.898027\pi\)
\(860\) 16.8531 5.58461i 0.574685 0.190434i
\(861\) 0 0
\(862\) −2.80407 17.3766i −0.0955072 0.591850i
\(863\) 12.7433 + 22.0721i 0.433788 + 0.751343i 0.997196 0.0748356i \(-0.0238432\pi\)
−0.563408 + 0.826179i \(0.690510\pi\)
\(864\) −29.3237 2.02955i −0.997613 0.0690468i
\(865\) −4.38950 + 7.60283i −0.149247 + 0.258504i
\(866\) −0.545855 + 0.444663i −0.0185489 + 0.0151103i
\(867\) 5.74216 + 13.2680i 0.195014 + 0.450604i
\(868\) 0 0
\(869\) 41.3215i 1.40174i
\(870\) −3.90675 2.02775i −0.132451 0.0687471i
\(871\) −2.74806 1.58659i −0.0931145 0.0537597i
\(872\) 19.2064 + 0.838404i 0.650412 + 0.0283919i
\(873\) −44.9535 10.5401i −1.52145 0.356729i
\(874\) −11.4870 + 1.85366i −0.388553 + 0.0627010i
\(875\) 0 0
\(876\) 30.0036 + 33.6329i 1.01373 + 1.13635i
\(877\) −20.9313 36.2541i −0.706801 1.22422i −0.966038 0.258402i \(-0.916804\pi\)
0.259236 0.965814i \(-0.416529\pi\)
\(878\) 2.34382 6.15942i 0.0791002 0.207870i
\(879\) −0.309541 + 2.67618i −0.0104405 + 0.0902653i
\(880\) −13.1166 + 30.4086i −0.442160 + 1.02507i
\(881\) 38.5556i 1.29897i 0.760373 + 0.649486i \(0.225016\pi\)
−0.760373 + 0.649486i \(0.774984\pi\)
\(882\) 0 0
\(883\) 4.56420i 0.153597i 0.997047 + 0.0767987i \(0.0244699\pi\)
−0.997047 + 0.0767987i \(0.975530\pi\)
\(884\) 5.12351 5.75731i 0.172322 0.193639i
\(885\) −2.01999 + 17.4641i −0.0679012 + 0.587050i
\(886\) 29.1708 + 11.1003i 0.980012 + 0.372921i
\(887\) −20.2446 35.0647i −0.679747 1.17736i −0.975057 0.221955i \(-0.928756\pi\)
0.295310 0.955401i \(-0.404577\pi\)
\(888\) −12.9048 + 15.8809i −0.433056 + 0.532927i
\(889\) 0 0
\(890\) 3.98797 + 24.7131i 0.133677 + 0.828385i
\(891\) −29.8919 + 19.8668i −1.00142 + 0.665562i
\(892\) −28.4405 5.87232i −0.952258 0.196620i
\(893\) 7.12531 + 4.11380i 0.238439 + 0.137663i
\(894\) −12.8542 + 24.7655i −0.429909 + 0.828283i
\(895\) 13.6020i 0.454665i
\(896\) 0 0
\(897\) 6.76007 + 15.6199i 0.225712 + 0.521535i
\(898\) 5.38474 + 6.61015i 0.179691 + 0.220584i
\(899\) 1.59287 2.75893i 0.0531251 0.0920154i
\(900\) 2.38283 + 3.38564i 0.0794276 + 0.112855i
\(901\) −7.26737 12.5874i −0.242111 0.419349i
\(902\) −39.0700 + 6.30475i −1.30089 + 0.209925i
\(903\) 0 0
\(904\) 7.93706 4.13186i 0.263983 0.137424i
\(905\) −22.0854 + 12.7510i −0.734145 + 0.423859i
\(906\) −2.24686 + 0.100813i −0.0746471 + 0.00334927i
\(907\) −2.36697 1.36657i −0.0785940 0.0453763i 0.460188 0.887822i \(-0.347782\pi\)
−0.538782 + 0.842445i \(0.681115\pi\)
\(908\) −32.0668 28.5367i −1.06417 0.947023i
\(909\) −13.3526 12.5370i −0.442878 0.415826i
\(910\) 0 0
\(911\) −5.16105 −0.170993 −0.0854966 0.996338i \(-0.527248\pi\)
−0.0854966 + 0.996338i \(0.527248\pi\)
\(912\) −7.59906 + 0.00922123i −0.251630 + 0.000305345i
\(913\) 24.8024 42.9590i 0.820839 1.42174i
\(914\) −50.5724 19.2442i −1.67279 0.636540i
\(915\) 11.8562 + 8.80451i 0.391955 + 0.291068i
\(916\) −37.2688 + 12.3498i −1.23139 + 0.408048i
\(917\) 0 0
\(918\) 21.2457 + 3.98622i 0.701212 + 0.131565i
\(919\) −34.5011 + 19.9192i −1.13809 + 0.657074i −0.945956 0.324296i \(-0.894873\pi\)
−0.192130 + 0.981370i \(0.561539\pi\)
\(920\) −1.92092 + 44.0051i −0.0633310 + 1.45081i
\(921\) 6.28477 54.3360i 0.207090 1.79043i
\(922\) −11.1258 13.6578i −0.366410 0.449794i
\(923\) 1.18055 0.0388582
\(924\) 0 0
\(925\) 2.88220 0.0947660
\(926\) −25.0637 30.7675i −0.823644 1.01108i
\(927\) 20.4834 6.18602i 0.672763 0.203176i
\(928\) 1.33600 + 4.71060i 0.0438564 + 0.154633i
\(929\) 22.2777 12.8621i 0.730909 0.421990i −0.0878459 0.996134i \(-0.527998\pi\)
0.818754 + 0.574144i \(0.194665\pi\)
\(930\) 15.7731 10.0753i 0.517220 0.330382i
\(931\) 0 0
\(932\) −8.97351 27.0800i −0.293937 0.887035i
\(933\) −18.8737 + 25.4155i −0.617897 + 0.832065i
\(934\) 22.5975 + 8.59895i 0.739412 + 0.281366i
\(935\) 12.1772 21.0915i 0.398236 0.689765i
\(936\) 2.74646 + 10.7709i 0.0897708 + 0.352059i
\(937\) −20.2068 −0.660127 −0.330063 0.943959i \(-0.607070\pi\)
−0.330063 + 0.943959i \(0.607070\pi\)
\(938\) 0 0
\(939\) −20.4881 47.3403i −0.668604 1.54489i
\(940\) 20.7056 23.2669i 0.675341 0.758883i
\(941\) 41.4712 + 23.9434i 1.35192 + 0.780533i 0.988519 0.151099i \(-0.0482813\pi\)
0.363403 + 0.931632i \(0.381615\pi\)
\(942\) 0.958159 + 21.3550i 0.0312185 + 0.695784i
\(943\) −45.5851 + 26.3186i −1.48446 + 0.857051i
\(944\) 15.6867 11.6786i 0.510559 0.380106i
\(945\) 0 0
\(946\) −23.8078 + 3.84188i −0.774059 + 0.124910i
\(947\) −3.16035 5.47389i −0.102698 0.177878i 0.810098 0.586295i \(-0.199414\pi\)
−0.912795 + 0.408418i \(0.866081\pi\)
\(948\) 7.30073 + 35.1431i 0.237117 + 1.14139i
\(949\) 8.52200 14.7605i 0.276636 0.479148i
\(950\) 0.675994 + 0.829830i 0.0219321 + 0.0269233i
\(951\) 28.1290 12.1738i 0.912147 0.394763i
\(952\) 0 0
\(953\) 3.70027i 0.119863i −0.998202 0.0599317i \(-0.980912\pi\)
0.998202 0.0599317i \(-0.0190883\pi\)
\(954\) 20.9114 + 1.47282i 0.677031 + 0.0476842i
\(955\) −42.6689 24.6349i −1.38073 0.797167i
\(956\) −6.18035 + 29.9323i −0.199887 + 0.968080i
\(957\) 4.80002 + 3.56452i 0.155163 + 0.115225i
\(958\) −3.70087 22.9340i −0.119570 0.740964i
\(959\) 0 0
\(960\) −5.78276 + 28.1794i −0.186638 + 0.909485i
\(961\) −8.72691 15.1155i −0.281513 0.487595i
\(962\) 7.23236 + 2.75211i 0.233181 + 0.0887315i
\(963\) −2.09609 6.94065i −0.0675455 0.223659i
\(964\) 8.82078 + 7.84974i 0.284098 + 0.252823i
\(965\) 8.25014i 0.265581i
\(966\) 0 0
\(967\) 14.5970i 0.469409i −0.972067 0.234705i \(-0.924588\pi\)
0.972067 0.234705i \(-0.0754123\pi\)
\(968\) 7.45243 11.6982i 0.239530 0.375994i
\(969\) 5.55138 + 0.642100i 0.178336 + 0.0206272i
\(970\) −16.0708 + 42.2330i −0.516002 + 1.35602i
\(971\) 4.10729 + 7.11403i 0.131809 + 0.228300i 0.924374 0.381488i \(-0.124588\pi\)
−0.792565 + 0.609788i \(0.791255\pi\)
\(972\) −21.9124 + 22.1776i −0.702840 + 0.711348i
\(973\) 0 0
\(974\) 44.6592 7.20668i 1.43097 0.230917i
\(975\) 0.933412 1.25694i 0.0298931 0.0402543i
\(976\) −1.90734 16.3167i −0.0610524 0.522284i
\(977\) 30.8426 + 17.8070i 0.986744 + 0.569697i 0.904299 0.426899i \(-0.140394\pi\)
0.0824443 + 0.996596i \(0.473727\pi\)
\(978\) −10.1468 + 19.5493i −0.324460 + 0.625119i
\(979\) 34.0023i 1.08672i
\(980\) 0 0
\(981\) 13.9574 14.8654i 0.445625 0.474615i
\(982\) −2.23506 + 1.82071i −0.0713235 + 0.0581013i
\(983\) −15.5749 + 26.9764i −0.496761 + 0.860415i −0.999993 0.00373618i \(-0.998811\pi\)
0.503232 + 0.864151i \(0.332144\pi\)
\(984\) −32.1143 + 12.2650i −1.02377 + 0.390994i
\(985\) 20.5239 + 35.5484i 0.653945 + 1.13267i
\(986\) −0.573647 3.55484i −0.0182687 0.113209i
\(987\) 0 0
\(988\) 0.903910 + 2.72779i 0.0287572 + 0.0867827i
\(989\) −27.7779 + 16.0376i −0.883285 + 0.509965i
\(990\) 15.3823 + 31.5786i 0.488881 + 1.00363i
\(991\) 30.1606 + 17.4132i 0.958083 + 0.553149i 0.895582 0.444896i \(-0.146759\pi\)
0.0625004 + 0.998045i \(0.480093\pi\)
\(992\) −20.1870 5.09530i −0.640938 0.161776i
\(993\) 55.7652 24.1343i 1.76966 0.765879i
\(994\) 0 0
\(995\) 15.9161 0.504573
\(996\) 13.5039 40.9179i 0.427887 1.29653i
\(997\) 4.22860 7.32414i 0.133921 0.231958i −0.791264 0.611475i \(-0.790576\pi\)
0.925185 + 0.379517i \(0.123910\pi\)
\(998\) −2.15933 + 5.67459i −0.0683525 + 0.179626i
\(999\) 3.84596 + 21.3608i 0.121681 + 0.675827i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.e.263.3 24
3.2 odd 2 inner 588.2.n.e.263.10 24
4.3 odd 2 inner 588.2.n.e.263.1 24
7.2 even 3 inner 588.2.n.e.275.12 24
7.3 odd 6 588.2.e.e.491.5 12
7.4 even 3 588.2.e.d.491.5 12
7.5 odd 6 84.2.n.a.23.12 yes 24
7.6 odd 2 84.2.n.a.11.3 yes 24
12.11 even 2 inner 588.2.n.e.263.12 24
21.2 odd 6 inner 588.2.n.e.275.1 24
21.5 even 6 84.2.n.a.23.1 yes 24
21.11 odd 6 588.2.e.d.491.8 12
21.17 even 6 588.2.e.e.491.8 12
21.20 even 2 84.2.n.a.11.10 yes 24
28.3 even 6 588.2.e.e.491.7 12
28.11 odd 6 588.2.e.d.491.7 12
28.19 even 6 84.2.n.a.23.10 yes 24
28.23 odd 6 inner 588.2.n.e.275.10 24
28.27 even 2 84.2.n.a.11.1 24
84.11 even 6 588.2.e.d.491.6 12
84.23 even 6 inner 588.2.n.e.275.3 24
84.47 odd 6 84.2.n.a.23.3 yes 24
84.59 odd 6 588.2.e.e.491.6 12
84.83 odd 2 84.2.n.a.11.12 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.n.a.11.1 24 28.27 even 2
84.2.n.a.11.3 yes 24 7.6 odd 2
84.2.n.a.11.10 yes 24 21.20 even 2
84.2.n.a.11.12 yes 24 84.83 odd 2
84.2.n.a.23.1 yes 24 21.5 even 6
84.2.n.a.23.3 yes 24 84.47 odd 6
84.2.n.a.23.10 yes 24 28.19 even 6
84.2.n.a.23.12 yes 24 7.5 odd 6
588.2.e.d.491.5 12 7.4 even 3
588.2.e.d.491.6 12 84.11 even 6
588.2.e.d.491.7 12 28.11 odd 6
588.2.e.d.491.8 12 21.11 odd 6
588.2.e.e.491.5 12 7.3 odd 6
588.2.e.e.491.6 12 84.59 odd 6
588.2.e.e.491.7 12 28.3 even 6
588.2.e.e.491.8 12 21.17 even 6
588.2.n.e.263.1 24 4.3 odd 2 inner
588.2.n.e.263.3 24 1.1 even 1 trivial
588.2.n.e.263.10 24 3.2 odd 2 inner
588.2.n.e.263.12 24 12.11 even 2 inner
588.2.n.e.275.1 24 21.2 odd 6 inner
588.2.n.e.275.3 24 84.23 even 6 inner
588.2.n.e.275.10 24 28.23 odd 6 inner
588.2.n.e.275.12 24 7.2 even 3 inner