Properties

Label 588.2.e.d.491.7
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(491,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,2,0,0,0,0,2,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.312013725601644544.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} - 2x^{8} + 8x^{6} - 8x^{4} - 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.7
Root \(0.225298 - 1.39615i\) of defining polynomial
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.d.491.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.225298 - 1.39615i) q^{2} +(-0.687941 - 1.58957i) q^{3} +(-1.89848 - 0.629100i) q^{4} -2.07605i q^{5} +(-2.37428 + 0.602344i) q^{6} +(-1.30604 + 2.50883i) q^{8} +(-2.05347 + 2.18706i) q^{9} +(-2.89848 - 0.467730i) q^{10} -3.98797 q^{11} +(0.306044 + 3.45056i) q^{12} +1.30998 q^{13} +(-3.30003 + 1.42820i) q^{15} +(3.20847 + 2.38867i) q^{16} -2.94162i q^{17} +(2.59083 + 3.35970i) q^{18} +1.09683i q^{19} +(-1.30604 + 3.94134i) q^{20} +(-0.898482 + 5.56781i) q^{22} -7.50125 q^{23} +(4.88645 + 0.350119i) q^{24} +0.690016 q^{25} +(0.295137 - 1.82894i) q^{26} +(4.88916 + 1.75957i) q^{27} +0.865568i q^{29} +(1.25050 + 4.92911i) q^{30} -3.68051i q^{31} +(4.05781 - 3.94134i) q^{32} +(2.74349 + 6.33916i) q^{33} +(-4.10695 - 0.662741i) q^{34} +(5.27436 - 2.86026i) q^{36} +4.17700 q^{37} +(1.53134 + 0.247114i) q^{38} +(-0.901192 - 2.08231i) q^{39} +(5.20847 + 2.71141i) q^{40} -7.01712i q^{41} +4.27597i q^{43} +(7.57109 + 2.50883i) q^{44} +(4.54045 + 4.26311i) q^{45} +(-1.69002 + 10.4729i) q^{46} -7.50125 q^{47} +(1.58973 - 6.74335i) q^{48} +(0.155459 - 0.963368i) q^{50} +(-4.67591 + 2.02366i) q^{51} +(-2.48698 - 0.824111i) q^{52} +4.94107i q^{53} +(3.55815 - 6.42959i) q^{54} +8.27923i q^{55} +(1.74349 - 0.754555i) q^{57} +(1.20847 + 0.195011i) q^{58} -4.88916 q^{59} +(7.16353 - 0.635363i) q^{60} -4.10695 q^{61} +(-5.13856 - 0.829212i) q^{62} +(-4.58850 - 6.55330i) q^{64} -2.71959i q^{65} +(9.46854 - 2.40213i) q^{66} -2.42231i q^{67} +(-1.85057 + 5.58461i) q^{68} +(5.16042 + 11.9238i) q^{69} -0.901192 q^{71} +(-2.80505 - 8.00823i) q^{72} -13.0109 q^{73} +(0.941069 - 5.83172i) q^{74} +(-0.474691 - 1.09683i) q^{75} +(0.690016 - 2.08231i) q^{76} +(-3.11026 + 0.789060i) q^{78} -10.3615i q^{79} +(4.95900 - 6.66093i) q^{80} +(-0.566494 - 8.98215i) q^{81} +(-9.79696 - 1.58094i) q^{82} +12.4386 q^{83} -6.10695 q^{85} +(5.96991 + 0.963368i) q^{86} +(1.37588 - 0.595460i) q^{87} +(5.20847 - 10.0052i) q^{88} -8.52623i q^{89} +(6.97491 - 5.37869i) q^{90} +(14.2410 + 4.71904i) q^{92} +(-5.85044 + 2.53198i) q^{93} +(-1.69002 + 10.4729i) q^{94} +2.27707 q^{95} +(-9.05658 - 3.73876i) q^{96} -15.3909 q^{97} +(8.18919 - 8.72195i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{4} + 2 q^{9} - 10 q^{10} - 12 q^{12} + 12 q^{13} + 10 q^{16} + 10 q^{18} + 14 q^{22} - 14 q^{24} + 12 q^{25} + 14 q^{30} + 10 q^{33} + 4 q^{34} + 22 q^{36} + 8 q^{37} + 34 q^{40} - 18 q^{45}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.225298 1.39615i 0.159310 0.987229i
\(3\) −0.687941 1.58957i −0.397183 0.917739i
\(4\) −1.89848 0.629100i −0.949241 0.314550i
\(5\) 2.07605i 0.928438i −0.885721 0.464219i \(-0.846335\pi\)
0.885721 0.464219i \(-0.153665\pi\)
\(6\) −2.37428 + 0.602344i −0.969294 + 0.245906i
\(7\) 0 0
\(8\) −1.30604 + 2.50883i −0.461756 + 0.887007i
\(9\) −2.05347 + 2.18706i −0.684491 + 0.729021i
\(10\) −2.89848 0.467730i −0.916580 0.147909i
\(11\) −3.98797 −1.20242 −0.601209 0.799092i \(-0.705314\pi\)
−0.601209 + 0.799092i \(0.705314\pi\)
\(12\) 0.306044 + 3.45056i 0.0883473 + 0.996090i
\(13\) 1.30998 0.363324 0.181662 0.983361i \(-0.441852\pi\)
0.181662 + 0.983361i \(0.441852\pi\)
\(14\) 0 0
\(15\) −3.30003 + 1.42820i −0.852064 + 0.368760i
\(16\) 3.20847 + 2.38867i 0.802116 + 0.597168i
\(17\) 2.94162i 0.713447i −0.934210 0.356724i \(-0.883894\pi\)
0.934210 0.356724i \(-0.116106\pi\)
\(18\) 2.59083 + 3.35970i 0.610665 + 0.791889i
\(19\) 1.09683i 0.251630i 0.992054 + 0.125815i \(0.0401546\pi\)
−0.992054 + 0.125815i \(0.959845\pi\)
\(20\) −1.30604 + 3.94134i −0.292040 + 0.881311i
\(21\) 0 0
\(22\) −0.898482 + 5.56781i −0.191557 + 1.18706i
\(23\) −7.50125 −1.56412 −0.782059 0.623204i \(-0.785831\pi\)
−0.782059 + 0.623204i \(0.785831\pi\)
\(24\) 4.88645 + 0.350119i 0.997443 + 0.0714678i
\(25\) 0.690016 0.138003
\(26\) 0.295137 1.82894i 0.0578811 0.358684i
\(27\) 4.88916 + 1.75957i 0.940920 + 0.338630i
\(28\) 0 0
\(29\) 0.865568i 0.160732i 0.996765 + 0.0803660i \(0.0256089\pi\)
−0.996765 + 0.0803660i \(0.974391\pi\)
\(30\) 1.25050 + 4.92911i 0.228308 + 0.899929i
\(31\) 3.68051i 0.661040i −0.943799 0.330520i \(-0.892776\pi\)
0.943799 0.330520i \(-0.107224\pi\)
\(32\) 4.05781 3.94134i 0.717326 0.696738i
\(33\) 2.74349 + 6.33916i 0.477580 + 1.10351i
\(34\) −4.10695 0.662741i −0.704336 0.113659i
\(35\) 0 0
\(36\) 5.27436 2.86026i 0.879061 0.476710i
\(37\) 4.17700 0.686694 0.343347 0.939209i \(-0.388439\pi\)
0.343347 + 0.939209i \(0.388439\pi\)
\(38\) 1.53134 + 0.247114i 0.248416 + 0.0400871i
\(39\) −0.901192 2.08231i −0.144306 0.333437i
\(40\) 5.20847 + 2.71141i 0.823531 + 0.428712i
\(41\) 7.01712i 1.09589i −0.836514 0.547945i \(-0.815410\pi\)
0.836514 0.547945i \(-0.184590\pi\)
\(42\) 0 0
\(43\) 4.27597i 0.652080i 0.945356 + 0.326040i \(0.105714\pi\)
−0.945356 + 0.326040i \(0.894286\pi\)
\(44\) 7.57109 + 2.50883i 1.14138 + 0.378221i
\(45\) 4.54045 + 4.26311i 0.676851 + 0.635507i
\(46\) −1.69002 + 10.4729i −0.249179 + 1.54414i
\(47\) −7.50125 −1.09417 −0.547085 0.837077i \(-0.684263\pi\)
−0.547085 + 0.837077i \(0.684263\pi\)
\(48\) 1.58973 6.74335i 0.229457 0.973319i
\(49\) 0 0
\(50\) 0.155459 0.963368i 0.0219853 0.136241i
\(51\) −4.67591 + 2.02366i −0.654759 + 0.283369i
\(52\) −2.48698 0.824111i −0.344882 0.114284i
\(53\) 4.94107i 0.678708i 0.940659 + 0.339354i \(0.110208\pi\)
−0.940659 + 0.339354i \(0.889792\pi\)
\(54\) 3.55815 6.42959i 0.484202 0.874956i
\(55\) 8.27923i 1.11637i
\(56\) 0 0
\(57\) 1.74349 0.754555i 0.230931 0.0999432i
\(58\) 1.20847 + 0.195011i 0.158679 + 0.0256062i
\(59\) −4.88916 −0.636515 −0.318257 0.948004i \(-0.603098\pi\)
−0.318257 + 0.948004i \(0.603098\pi\)
\(60\) 7.16353 0.635363i 0.924807 0.0820250i
\(61\) −4.10695 −0.525841 −0.262920 0.964818i \(-0.584686\pi\)
−0.262920 + 0.964818i \(0.584686\pi\)
\(62\) −5.13856 0.829212i −0.652597 0.105310i
\(63\) 0 0
\(64\) −4.58850 6.55330i −0.573562 0.819162i
\(65\) 2.71959i 0.337324i
\(66\) 9.46854 2.40213i 1.16550 0.295682i
\(67\) 2.42231i 0.295932i −0.988992 0.147966i \(-0.952727\pi\)
0.988992 0.147966i \(-0.0472727\pi\)
\(68\) −1.85057 + 5.58461i −0.224415 + 0.677233i
\(69\) 5.16042 + 11.9238i 0.621242 + 1.43545i
\(70\) 0 0
\(71\) −0.901192 −0.106952 −0.0534759 0.998569i \(-0.517030\pi\)
−0.0534759 + 0.998569i \(0.517030\pi\)
\(72\) −2.80505 8.00823i −0.330579 0.943778i
\(73\) −13.0109 −1.52281 −0.761403 0.648279i \(-0.775489\pi\)
−0.761403 + 0.648279i \(0.775489\pi\)
\(74\) 0.941069 5.83172i 0.109397 0.677924i
\(75\) −0.474691 1.09683i −0.0548126 0.126651i
\(76\) 0.690016 2.08231i 0.0791503 0.238858i
\(77\) 0 0
\(78\) −3.11026 + 0.789060i −0.352168 + 0.0893435i
\(79\) 10.3615i 1.16576i −0.812557 0.582882i \(-0.801925\pi\)
0.812557 0.582882i \(-0.198075\pi\)
\(80\) 4.95900 6.66093i 0.554433 0.744715i
\(81\) −0.566494 8.98215i −0.0629437 0.998017i
\(82\) −9.79696 1.58094i −1.08189 0.174586i
\(83\) 12.4386 1.36531 0.682657 0.730739i \(-0.260824\pi\)
0.682657 + 0.730739i \(0.260824\pi\)
\(84\) 0 0
\(85\) −6.10695 −0.662391
\(86\) 5.96991 + 0.963368i 0.643752 + 0.103883i
\(87\) 1.37588 0.595460i 0.147510 0.0638400i
\(88\) 5.20847 10.0052i 0.555224 1.06655i
\(89\) 8.52623i 0.903778i −0.892074 0.451889i \(-0.850750\pi\)
0.892074 0.451889i \(-0.149250\pi\)
\(90\) 6.97491 5.37869i 0.735220 0.566964i
\(91\) 0 0
\(92\) 14.2410 + 4.71904i 1.48473 + 0.491994i
\(93\) −5.85044 + 2.53198i −0.606662 + 0.262554i
\(94\) −1.69002 + 10.4729i −0.174312 + 1.08020i
\(95\) 2.27707 0.233623
\(96\) −9.05658 3.73876i −0.924333 0.381586i
\(97\) −15.3909 −1.56271 −0.781354 0.624088i \(-0.785471\pi\)
−0.781354 + 0.624088i \(0.785471\pi\)
\(98\) 0 0
\(99\) 8.18919 8.72195i 0.823045 0.876588i
\(100\) −1.30998 0.434090i −0.130998 0.0434090i
\(101\) 6.10526i 0.607496i 0.952752 + 0.303748i \(0.0982382\pi\)
−0.952752 + 0.303748i \(0.901762\pi\)
\(102\) 1.77187 + 6.98421i 0.175441 + 0.691540i
\(103\) 7.13237i 0.702774i −0.936230 0.351387i \(-0.885710\pi\)
0.936230 0.351387i \(-0.114290\pi\)
\(104\) −1.71090 + 3.28653i −0.167767 + 0.322271i
\(105\) 0 0
\(106\) 6.89848 + 1.11321i 0.670040 + 0.108125i
\(107\) −2.41675 −0.233636 −0.116818 0.993153i \(-0.537269\pi\)
−0.116818 + 0.993153i \(0.537269\pi\)
\(108\) −8.17504 6.41629i −0.786643 0.617408i
\(109\) −6.79696 −0.651031 −0.325516 0.945537i \(-0.605538\pi\)
−0.325516 + 0.945537i \(0.605538\pi\)
\(110\) 11.5591 + 1.86529i 1.10211 + 0.177849i
\(111\) −2.87353 6.63963i −0.272743 0.630206i
\(112\) 0 0
\(113\) 3.16365i 0.297611i −0.988867 0.148805i \(-0.952457\pi\)
0.988867 0.148805i \(-0.0475428\pi\)
\(114\) −0.660669 2.60418i −0.0618773 0.243904i
\(115\) 15.5730i 1.45219i
\(116\) 0.544529 1.64327i 0.0505583 0.152573i
\(117\) −2.69002 + 2.86502i −0.248692 + 0.264871i
\(118\) −1.10152 + 6.82601i −0.101403 + 0.628386i
\(119\) 0 0
\(120\) 0.726865 10.1445i 0.0663534 0.926064i
\(121\) 4.90391 0.445810
\(122\) −0.925287 + 5.73392i −0.0837715 + 0.519125i
\(123\) −11.1542 + 4.82736i −1.00574 + 0.435269i
\(124\) −2.31541 + 6.98739i −0.207930 + 0.627486i
\(125\) 11.8128i 1.05657i
\(126\) 0 0
\(127\) 15.0889i 1.33892i −0.742848 0.669460i \(-0.766526\pi\)
0.742848 0.669460i \(-0.233474\pi\)
\(128\) −10.1832 + 4.92980i −0.900074 + 0.435737i
\(129\) 6.79696 2.94162i 0.598439 0.258995i
\(130\) −3.79696 0.612718i −0.333016 0.0537390i
\(131\) 7.40976 0.647394 0.323697 0.946161i \(-0.395074\pi\)
0.323697 + 0.946161i \(0.395074\pi\)
\(132\) −1.22049 13.7607i −0.106230 1.19772i
\(133\) 0 0
\(134\) −3.38192 0.545742i −0.292153 0.0471449i
\(135\) 3.65296 10.1501i 0.314396 0.873585i
\(136\) 7.38003 + 3.84188i 0.632833 + 0.329439i
\(137\) 15.0993i 1.29002i 0.764174 + 0.645010i \(0.223147\pi\)
−0.764174 + 0.645010i \(0.776853\pi\)
\(138\) 17.8100 4.51833i 1.51609 0.384626i
\(139\) 14.4761i 1.22785i −0.789364 0.613925i \(-0.789590\pi\)
0.789364 0.613925i \(-0.210410\pi\)
\(140\) 0 0
\(141\) 5.16042 + 11.9238i 0.434586 + 1.00416i
\(142\) −0.203037 + 1.25820i −0.0170385 + 0.105586i
\(143\) −5.22418 −0.436868
\(144\) −11.8127 + 2.11204i −0.984390 + 0.176004i
\(145\) 1.79696 0.149230
\(146\) −2.93132 + 18.1651i −0.242598 + 1.50336i
\(147\) 0 0
\(148\) −7.92995 2.62775i −0.651838 0.216000i
\(149\) 11.3912i 0.933207i −0.884467 0.466604i \(-0.845477\pi\)
0.884467 0.466604i \(-0.154523\pi\)
\(150\) −1.63829 + 0.415627i −0.133766 + 0.0339358i
\(151\) 0.918202i 0.0747222i −0.999302 0.0373611i \(-0.988105\pi\)
0.999302 0.0373611i \(-0.0118952\pi\)
\(152\) −2.75177 1.43251i −0.223198 0.116192i
\(153\) 6.43351 + 6.04054i 0.520118 + 0.488348i
\(154\) 0 0
\(155\) −7.64093 −0.613734
\(156\) 0.400913 + 4.52017i 0.0320987 + 0.361903i
\(157\) 8.72691 0.696484 0.348242 0.937405i \(-0.386779\pi\)
0.348242 + 0.937405i \(0.386779\pi\)
\(158\) −14.4663 2.33443i −1.15088 0.185718i
\(159\) 7.85418 3.39916i 0.622877 0.269571i
\(160\) −8.18242 8.42422i −0.646877 0.665993i
\(161\) 0 0
\(162\) −12.6681 1.23275i −0.995299 0.0968540i
\(163\) 8.99199i 0.704307i 0.935942 + 0.352153i \(0.114550\pi\)
−0.935942 + 0.352153i \(0.885450\pi\)
\(164\) −4.41447 + 13.3219i −0.344712 + 1.04026i
\(165\) 13.1604 5.69562i 1.02454 0.443404i
\(166\) 2.80239 17.3662i 0.217508 1.34788i
\(167\) −16.1830 −1.25228 −0.626141 0.779710i \(-0.715367\pi\)
−0.626141 + 0.779710i \(0.715367\pi\)
\(168\) 0 0
\(169\) −11.2839 −0.867996
\(170\) −1.37588 + 8.52623i −0.105525 + 0.653932i
\(171\) −2.39884 2.25231i −0.183444 0.172239i
\(172\) 2.69002 8.11786i 0.205112 0.618981i
\(173\) 4.22870i 0.321502i 0.986995 + 0.160751i \(0.0513916\pi\)
−0.986995 + 0.160751i \(0.948608\pi\)
\(174\) −0.521370 2.05510i −0.0395249 0.155797i
\(175\) 0 0
\(176\) −12.7953 9.52595i −0.964479 0.718046i
\(177\) 3.36346 + 7.77167i 0.252813 + 0.584155i
\(178\) −11.9039 1.92094i −0.892236 0.143981i
\(179\) 6.55187 0.489710 0.244855 0.969560i \(-0.421260\pi\)
0.244855 + 0.969560i \(0.421260\pi\)
\(180\) −5.93804 10.9498i −0.442595 0.816153i
\(181\) 12.2839 0.913058 0.456529 0.889708i \(-0.349092\pi\)
0.456529 + 0.889708i \(0.349092\pi\)
\(182\) 0 0
\(183\) 2.82534 + 6.52828i 0.208855 + 0.482585i
\(184\) 9.79696 18.8194i 0.722242 1.38738i
\(185\) 8.67165i 0.637553i
\(186\) 2.21693 + 8.73855i 0.162553 + 0.640742i
\(187\) 11.7311i 0.857862i
\(188\) 14.2410 + 4.71904i 1.03863 + 0.344171i
\(189\) 0 0
\(190\) 0.513020 3.17914i 0.0372184 0.230639i
\(191\) 23.7325 1.71722 0.858611 0.512627i \(-0.171328\pi\)
0.858611 + 0.512627i \(0.171328\pi\)
\(192\) −7.26031 + 11.8020i −0.523968 + 0.851738i
\(193\) −3.97396 −0.286052 −0.143026 0.989719i \(-0.545683\pi\)
−0.143026 + 0.989719i \(0.545683\pi\)
\(194\) −3.46754 + 21.4880i −0.248955 + 1.54275i
\(195\) −4.32298 + 1.87092i −0.309575 + 0.133979i
\(196\) 0 0
\(197\) 19.7720i 1.40870i −0.709853 0.704350i \(-0.751239\pi\)
0.709853 0.704350i \(-0.248761\pi\)
\(198\) −10.3322 13.3984i −0.734274 0.952182i
\(199\) 7.66651i 0.543464i −0.962373 0.271732i \(-0.912404\pi\)
0.962373 0.271732i \(-0.0875965\pi\)
\(200\) −0.901192 + 1.73114i −0.0637239 + 0.122410i
\(201\) −3.85044 + 1.66641i −0.271589 + 0.117539i
\(202\) 8.52388 + 1.37550i 0.599738 + 0.0967801i
\(203\) 0 0
\(204\) 10.1502 0.900265i 0.710657 0.0630311i
\(205\) −14.5679 −1.01747
\(206\) −9.95788 1.60691i −0.693798 0.111959i
\(207\) 15.4036 16.4057i 1.07063 1.14028i
\(208\) 4.20304 + 3.12912i 0.291428 + 0.216965i
\(209\) 4.37413i 0.302565i
\(210\) 0 0
\(211\) 11.7483i 0.808789i 0.914585 + 0.404395i \(0.132518\pi\)
−0.914585 + 0.404395i \(0.867482\pi\)
\(212\) 3.10843 9.38053i 0.213488 0.644257i
\(213\) 0.619967 + 1.43251i 0.0424794 + 0.0981539i
\(214\) −0.544489 + 3.37415i −0.0372205 + 0.230652i
\(215\) 8.87713 0.605415
\(216\) −10.7999 + 9.96802i −0.734842 + 0.678238i
\(217\) 0 0
\(218\) −1.53134 + 9.48959i −0.103716 + 0.642716i
\(219\) 8.95071 + 20.6817i 0.604833 + 1.39754i
\(220\) 5.20847 15.7180i 0.351155 1.05970i
\(221\) 3.85347i 0.259213i
\(222\) −9.91734 + 2.51599i −0.665608 + 0.168862i
\(223\) 14.5202i 0.972345i 0.873863 + 0.486173i \(0.161607\pi\)
−0.873863 + 0.486173i \(0.838393\pi\)
\(224\) 0 0
\(225\) −1.41693 + 1.50911i −0.0944620 + 0.100607i
\(226\) −4.41693 0.712763i −0.293810 0.0474123i
\(227\) 21.4629 1.42454 0.712271 0.701905i \(-0.247667\pi\)
0.712271 + 0.701905i \(0.247667\pi\)
\(228\) −3.78467 + 0.335678i −0.250646 + 0.0222308i
\(229\) 19.6308 1.29724 0.648621 0.761112i \(-0.275346\pi\)
0.648621 + 0.761112i \(0.275346\pi\)
\(230\) 21.7422 + 3.50856i 1.43364 + 0.231348i
\(231\) 0 0
\(232\) −2.17157 1.13047i −0.142570 0.0742190i
\(233\) 14.2640i 0.934468i 0.884134 + 0.467234i \(0.154749\pi\)
−0.884134 + 0.467234i \(0.845251\pi\)
\(234\) 3.39394 + 4.40115i 0.221869 + 0.287712i
\(235\) 15.5730i 1.01587i
\(236\) 9.28199 + 3.07577i 0.604206 + 0.200216i
\(237\) −16.4704 + 7.12813i −1.06987 + 0.463022i
\(238\) 0 0
\(239\) 15.2819 0.988501 0.494251 0.869320i \(-0.335443\pi\)
0.494251 + 0.869320i \(0.335443\pi\)
\(240\) −13.9995 3.30035i −0.903666 0.213037i
\(241\) 5.90391 0.380304 0.190152 0.981755i \(-0.439102\pi\)
0.190152 + 0.981755i \(0.439102\pi\)
\(242\) 1.10484 6.84660i 0.0710219 0.440116i
\(243\) −13.8881 + 7.07968i −0.890919 + 0.454161i
\(244\) 7.79696 + 2.58368i 0.499149 + 0.165403i
\(245\) 0 0
\(246\) 4.22672 + 16.6606i 0.269486 + 1.06224i
\(247\) 1.43683i 0.0914233i
\(248\) 9.23380 + 4.80691i 0.586347 + 0.305239i
\(249\) −8.55703 19.7720i −0.542280 1.25300i
\(250\) −16.4924 2.66139i −1.04307 0.168321i
\(251\) −23.7400 −1.49845 −0.749226 0.662314i \(-0.769575\pi\)
−0.749226 + 0.662314i \(0.769575\pi\)
\(252\) 0 0
\(253\) 29.9148 1.88073
\(254\) −21.0663 3.39949i −1.32182 0.213303i
\(255\) 4.20122 + 9.70743i 0.263091 + 0.607903i
\(256\) 4.58850 + 15.3279i 0.286781 + 0.957996i
\(257\) 14.8007i 0.923240i −0.887078 0.461620i \(-0.847268\pi\)
0.887078 0.461620i \(-0.152732\pi\)
\(258\) −2.57560 10.1523i −0.160350 0.632057i
\(259\) 0 0
\(260\) −1.71090 + 5.16309i −0.106105 + 0.320202i
\(261\) −1.89305 1.77742i −0.117177 0.110020i
\(262\) 1.66940 10.3452i 0.103136 0.639126i
\(263\) 13.9060 0.857479 0.428740 0.903428i \(-0.358958\pi\)
0.428740 + 0.903428i \(0.358958\pi\)
\(264\) −19.4870 1.39627i −1.19934 0.0859342i
\(265\) 10.2579 0.630138
\(266\) 0 0
\(267\) −13.5530 + 5.86554i −0.829433 + 0.358965i
\(268\) −1.52388 + 4.59871i −0.0930856 + 0.280911i
\(269\) 8.25792i 0.503494i −0.967793 0.251747i \(-0.918995\pi\)
0.967793 0.251747i \(-0.0810051\pi\)
\(270\) −13.3481 7.38689i −0.812342 0.449552i
\(271\) 5.30552i 0.322288i −0.986931 0.161144i \(-0.948482\pi\)
0.986931 0.161144i \(-0.0515183\pi\)
\(272\) 7.02656 9.43808i 0.426048 0.572268i
\(273\) 0 0
\(274\) 21.0809 + 3.40184i 1.27354 + 0.205513i
\(275\) −2.75177 −0.165938
\(276\) −2.29571 25.8835i −0.138186 1.55800i
\(277\) 12.6048 0.757348 0.378674 0.925530i \(-0.376380\pi\)
0.378674 + 0.925530i \(0.376380\pi\)
\(278\) −20.2109 3.26144i −1.21217 0.195608i
\(279\) 8.04951 + 7.55783i 0.481912 + 0.452476i
\(280\) 0 0
\(281\) 2.02977i 0.121086i 0.998166 + 0.0605428i \(0.0192832\pi\)
−0.998166 + 0.0605428i \(0.980717\pi\)
\(282\) 17.8100 4.51833i 1.06057 0.269063i
\(283\) 7.67781i 0.456399i −0.973614 0.228199i \(-0.926716\pi\)
0.973614 0.228199i \(-0.0732838\pi\)
\(284\) 1.71090 + 0.566940i 0.101523 + 0.0336417i
\(285\) −1.56649 3.61957i −0.0927911 0.214405i
\(286\) −1.17700 + 7.29374i −0.0695972 + 0.431288i
\(287\) 0 0
\(288\) 0.287363 + 16.9681i 0.0169331 + 0.999857i
\(289\) 8.34688 0.490993
\(290\) 0.404852 2.50883i 0.0237737 0.147324i
\(291\) 10.5880 + 24.4649i 0.620681 + 1.43416i
\(292\) 24.7009 + 8.18514i 1.44551 + 0.478999i
\(293\) 1.55539i 0.0908671i −0.998967 0.0454336i \(-0.985533\pi\)
0.998967 0.0454336i \(-0.0144669\pi\)
\(294\) 0 0
\(295\) 10.1501i 0.590964i
\(296\) −5.45534 + 10.4794i −0.317085 + 0.609102i
\(297\) −19.4978 7.01712i −1.13138 0.407174i
\(298\) −15.9039 2.56642i −0.921289 0.148669i
\(299\) −9.82651 −0.568282
\(300\) 0.211175 + 2.38094i 0.0121922 + 0.137464i
\(301\) 0 0
\(302\) −1.28195 0.206869i −0.0737679 0.0119040i
\(303\) 9.70475 4.20006i 0.557523 0.241287i
\(304\) −2.61997 + 3.51914i −0.150265 + 0.201837i
\(305\) 8.52623i 0.488210i
\(306\) 9.88296 7.62123i 0.564971 0.435677i
\(307\) 31.5800i 1.80237i −0.433437 0.901184i \(-0.642699\pi\)
0.433437 0.901184i \(-0.357301\pi\)
\(308\) 0 0
\(309\) −11.3374 + 4.90665i −0.644963 + 0.279130i
\(310\) −1.72149 + 10.6679i −0.0977738 + 0.605896i
\(311\) 18.2771 1.03640 0.518201 0.855259i \(-0.326602\pi\)
0.518201 + 0.855259i \(0.326602\pi\)
\(312\) 6.40117 + 0.458650i 0.362395 + 0.0259660i
\(313\) −29.7818 −1.68337 −0.841683 0.539972i \(-0.818435\pi\)
−0.841683 + 0.539972i \(0.818435\pi\)
\(314\) 1.96616 12.1841i 0.110957 0.687589i
\(315\) 0 0
\(316\) −6.51845 + 19.6712i −0.366691 + 1.10659i
\(317\) 17.6960i 0.993906i −0.867777 0.496953i \(-0.834452\pi\)
0.867777 0.496953i \(-0.165548\pi\)
\(318\) −2.97622 11.7315i −0.166898 0.657867i
\(319\) 3.45186i 0.193267i
\(320\) −13.6050 + 9.52595i −0.760541 + 0.532517i
\(321\) 1.66258 + 3.84160i 0.0927964 + 0.214417i
\(322\) 0 0
\(323\) 3.22646 0.179525
\(324\) −4.57520 + 17.4088i −0.254178 + 0.967158i
\(325\) 0.903910 0.0501399
\(326\) 12.5542 + 2.02588i 0.695312 + 0.112203i
\(327\) 4.67591 + 10.8043i 0.258579 + 0.597477i
\(328\) 17.6048 + 9.16466i 0.972062 + 0.506034i
\(329\) 0 0
\(330\) −4.98694 19.6572i −0.274522 1.08209i
\(331\) 35.0819i 1.92828i 0.265401 + 0.964138i \(0.414496\pi\)
−0.265401 + 0.964138i \(0.585504\pi\)
\(332\) −23.6145 7.82513i −1.29601 0.429460i
\(333\) −8.57735 + 9.13536i −0.470036 + 0.500614i
\(334\) −3.64601 + 22.5940i −0.199501 + 1.23629i
\(335\) −5.02884 −0.274755
\(336\) 0 0
\(337\) −0.132987 −0.00724428 −0.00362214 0.999993i \(-0.501153\pi\)
−0.00362214 + 0.999993i \(0.501153\pi\)
\(338\) −2.54225 + 15.7541i −0.138280 + 0.856910i
\(339\) −5.02884 + 2.17640i −0.273129 + 0.118206i
\(340\) 11.5939 + 3.84188i 0.628769 + 0.208355i
\(341\) 14.6778i 0.794846i
\(342\) −3.68502 + 2.84170i −0.199263 + 0.153662i
\(343\) 0 0
\(344\) −10.7277 5.58461i −0.578399 0.301102i
\(345\) 24.7543 10.7133i 1.33273 0.576784i
\(346\) 5.90391 + 0.952718i 0.317396 + 0.0512184i
\(347\) 0.195336 0.0104862 0.00524310 0.999986i \(-0.498331\pi\)
0.00524310 + 0.999986i \(0.498331\pi\)
\(348\) −2.98669 + 0.264902i −0.160104 + 0.0142002i
\(349\) −5.80782 −0.310885 −0.155443 0.987845i \(-0.549680\pi\)
−0.155443 + 0.987845i \(0.549680\pi\)
\(350\) 0 0
\(351\) 6.40472 + 2.30501i 0.341859 + 0.123032i
\(352\) −16.1824 + 15.7180i −0.862526 + 0.837770i
\(353\) 19.9941i 1.06418i 0.846689 + 0.532089i \(0.178593\pi\)
−0.846689 + 0.532089i \(0.821407\pi\)
\(354\) 11.6082 2.94496i 0.616970 0.156523i
\(355\) 1.87092i 0.0992981i
\(356\) −5.36385 + 16.1869i −0.284284 + 0.857903i
\(357\) 0 0
\(358\) 1.47612 9.14741i 0.0780155 0.483455i
\(359\) 13.9060 0.733929 0.366965 0.930235i \(-0.380397\pi\)
0.366965 + 0.930235i \(0.380397\pi\)
\(360\) −16.6255 + 5.82343i −0.876240 + 0.306922i
\(361\) 17.7970 0.936682
\(362\) 2.76755 17.1503i 0.145459 0.901397i
\(363\) −3.37360 7.79511i −0.177068 0.409137i
\(364\) 0 0
\(365\) 27.0112i 1.41383i
\(366\) 9.75102 2.47379i 0.509694 0.129307i
\(367\) 18.8134i 0.982054i −0.871144 0.491027i \(-0.836622\pi\)
0.871144 0.491027i \(-0.163378\pi\)
\(368\) −24.0675 17.9180i −1.25461 0.934041i
\(369\) 15.3469 + 14.4095i 0.798927 + 0.750127i
\(370\) −12.1069 1.95371i −0.629410 0.101568i
\(371\) 0 0
\(372\) 12.6998 1.12640i 0.658455 0.0584011i
\(373\) 5.82300 0.301504 0.150752 0.988572i \(-0.451831\pi\)
0.150752 + 0.988572i \(0.451831\pi\)
\(374\) 16.3784 + 2.64299i 0.846906 + 0.136666i
\(375\) −18.7772 + 8.12648i −0.969652 + 0.419650i
\(376\) 9.79696 18.8194i 0.505240 0.970536i
\(377\) 1.13388i 0.0583978i
\(378\) 0 0
\(379\) 12.0598i 0.619469i 0.950823 + 0.309735i \(0.100240\pi\)
−0.950823 + 0.309735i \(0.899760\pi\)
\(380\) −4.32298 1.43251i −0.221764 0.0734861i
\(381\) −23.9848 + 10.3802i −1.22878 + 0.531796i
\(382\) 5.34688 33.1342i 0.273570 1.69529i
\(383\) 12.1518 0.620927 0.310463 0.950585i \(-0.399516\pi\)
0.310463 + 0.950585i \(0.399516\pi\)
\(384\) 14.8417 + 12.7955i 0.757387 + 0.652966i
\(385\) 0 0
\(386\) −0.895325 + 5.54825i −0.0455708 + 0.282399i
\(387\) −9.35182 8.78060i −0.475380 0.446343i
\(388\) 29.2193 + 9.68242i 1.48339 + 0.491550i
\(389\) 1.21048i 0.0613739i 0.999529 + 0.0306869i \(0.00976949\pi\)
−0.999529 + 0.0306869i \(0.990231\pi\)
\(390\) 1.63813 + 6.45706i 0.0829499 + 0.326966i
\(391\) 22.0658i 1.11592i
\(392\) 0 0
\(393\) −5.09748 11.7783i −0.257134 0.594139i
\(394\) −27.6048 4.45460i −1.39071 0.224420i
\(395\) −21.5111 −1.08234
\(396\) −21.0340 + 11.4066i −1.05700 + 0.573205i
\(397\) 9.55703 0.479654 0.239827 0.970816i \(-0.422909\pi\)
0.239827 + 0.970816i \(0.422909\pi\)
\(398\) −10.7036 1.72725i −0.536524 0.0865792i
\(399\) 0 0
\(400\) 2.21389 + 1.64822i 0.110695 + 0.0824111i
\(401\) 11.2458i 0.561589i −0.959768 0.280795i \(-0.909402\pi\)
0.959768 0.280795i \(-0.0905980\pi\)
\(402\) 1.45906 + 5.75123i 0.0727715 + 0.286845i
\(403\) 4.82141i 0.240172i
\(404\) 3.84082 11.5907i 0.191088 0.576660i
\(405\) −18.6474 + 1.17607i −0.926597 + 0.0584393i
\(406\) 0 0
\(407\) −16.6577 −0.825693
\(408\) 1.02992 14.3741i 0.0509885 0.711623i
\(409\) 15.5679 0.769782 0.384891 0.922962i \(-0.374239\pi\)
0.384891 + 0.922962i \(0.374239\pi\)
\(410\) −3.28212 + 20.3390i −0.162092 + 1.00447i
\(411\) 24.0014 10.3874i 1.18390 0.512374i
\(412\) −4.48698 + 13.5407i −0.221058 + 0.667101i
\(413\) 0 0
\(414\) −19.4345 25.2020i −0.955152 1.23861i
\(415\) 25.8232i 1.26761i
\(416\) 5.31566 5.16309i 0.260622 0.253142i
\(417\) −23.0109 + 9.95874i −1.12685 + 0.487681i
\(418\) −6.10695 0.985482i −0.298701 0.0482015i
\(419\) 18.0336 0.881000 0.440500 0.897753i \(-0.354801\pi\)
0.440500 + 0.897753i \(0.354801\pi\)
\(420\) 0 0
\(421\) −12.4978 −0.609107 −0.304554 0.952495i \(-0.598507\pi\)
−0.304554 + 0.952495i \(0.598507\pi\)
\(422\) 16.4025 + 2.64688i 0.798460 + 0.128848i
\(423\) 15.4036 16.4057i 0.748950 0.797673i
\(424\) −12.3963 6.45325i −0.602018 0.313398i
\(425\) 2.02977i 0.0984581i
\(426\) 2.13968 0.542827i 0.103668 0.0263001i
\(427\) 0 0
\(428\) 4.58816 + 1.52038i 0.221777 + 0.0734903i
\(429\) 3.59393 + 8.30420i 0.173516 + 0.400931i
\(430\) 2.00000 12.3938i 0.0964486 0.597683i
\(431\) −12.4461 −0.599506 −0.299753 0.954017i \(-0.596904\pi\)
−0.299753 + 0.954017i \(0.596904\pi\)
\(432\) 11.4837 + 17.3241i 0.552508 + 0.833507i
\(433\) 0.497837 0.0239245 0.0119623 0.999928i \(-0.496192\pi\)
0.0119623 + 0.999928i \(0.496192\pi\)
\(434\) 0 0
\(435\) −1.23621 2.85640i −0.0592715 0.136954i
\(436\) 12.9039 + 4.27597i 0.617985 + 0.204782i
\(437\) 8.22760i 0.393579i
\(438\) 30.8914 7.83701i 1.47605 0.374467i
\(439\) 4.66004i 0.222412i 0.993797 + 0.111206i \(0.0354713\pi\)
−0.993797 + 0.111206i \(0.964529\pi\)
\(440\) −20.7712 10.8130i −0.990228 0.515491i
\(441\) 0 0
\(442\) −5.38003 0.868179i −0.255902 0.0412951i
\(443\) −22.0698 −1.04857 −0.524283 0.851544i \(-0.675667\pi\)
−0.524283 + 0.851544i \(0.675667\pi\)
\(444\) 1.27834 + 14.4130i 0.0606676 + 0.684009i
\(445\) −17.7009 −0.839102
\(446\) 20.2724 + 3.27137i 0.959927 + 0.154904i
\(447\) −18.1072 + 7.83651i −0.856441 + 0.370654i
\(448\) 0 0
\(449\) 6.02866i 0.284510i −0.989830 0.142255i \(-0.954565\pi\)
0.989830 0.142255i \(-0.0454353\pi\)
\(450\) 1.78772 + 2.31825i 0.0842737 + 0.109283i
\(451\) 27.9841i 1.31772i
\(452\) −1.99025 + 6.00612i −0.0936135 + 0.282504i
\(453\) −1.45955 + 0.631669i −0.0685755 + 0.0296784i
\(454\) 4.83554 29.9654i 0.226943 1.40635i
\(455\) 0 0
\(456\) −0.384021 + 5.35961i −0.0179834 + 0.250987i
\(457\) −38.2616 −1.78980 −0.894902 0.446262i \(-0.852755\pi\)
−0.894902 + 0.446262i \(0.852755\pi\)
\(458\) 4.42278 27.4076i 0.206663 1.28067i
\(459\) 5.17599 14.3821i 0.241594 0.671297i
\(460\) 9.79696 29.5650i 0.456786 1.37848i
\(461\) 12.4563i 0.580148i 0.957004 + 0.290074i \(0.0936799\pi\)
−0.957004 + 0.290074i \(0.906320\pi\)
\(462\) 0 0
\(463\) 28.0609i 1.30410i −0.758176 0.652050i \(-0.773909\pi\)
0.758176 0.652050i \(-0.226091\pi\)
\(464\) −2.06756 + 2.77715i −0.0959840 + 0.128926i
\(465\) 5.25651 + 12.1458i 0.243765 + 0.563248i
\(466\) 19.9148 + 3.21366i 0.922534 + 0.148870i
\(467\) −17.0966 −0.791136 −0.395568 0.918437i \(-0.629452\pi\)
−0.395568 + 0.918437i \(0.629452\pi\)
\(468\) 6.90933 3.74689i 0.319384 0.173200i
\(469\) 0 0
\(470\) 21.7422 + 3.50856i 1.00289 + 0.161838i
\(471\) −6.00360 13.8721i −0.276632 0.639190i
\(472\) 6.38546 12.2661i 0.293915 0.564593i
\(473\) 17.0525i 0.784073i
\(474\) 6.24121 + 24.6011i 0.286668 + 1.12997i
\(475\) 0.756831i 0.0347258i
\(476\) 0 0
\(477\) −10.8064 10.1464i −0.494792 0.464569i
\(478\) 3.44297 21.3358i 0.157478 0.975877i
\(479\) −16.4266 −0.750549 −0.375275 0.926914i \(-0.622452\pi\)
−0.375275 + 0.926914i \(0.622452\pi\)
\(480\) −7.76186 + 18.8019i −0.354279 + 0.858186i
\(481\) 5.47180 0.249492
\(482\) 1.33014 8.24276i 0.0605862 0.375447i
\(483\) 0 0
\(484\) −9.30998 3.08505i −0.423181 0.140230i
\(485\) 31.9523i 1.45088i
\(486\) 6.75535 + 20.9849i 0.306429 + 0.951893i
\(487\) 31.9873i 1.44948i −0.689021 0.724742i \(-0.741959\pi\)
0.689021 0.724742i \(-0.258041\pi\)
\(488\) 5.36385 10.3036i 0.242810 0.466424i
\(489\) 14.2934 6.18596i 0.646370 0.279739i
\(490\) 0 0
\(491\) −2.03844 −0.0919935 −0.0459968 0.998942i \(-0.514646\pi\)
−0.0459968 + 0.998942i \(0.514646\pi\)
\(492\) 24.2130 2.14755i 1.09160 0.0968189i
\(493\) 2.54617 0.114674
\(494\) 2.00603 + 0.323715i 0.0902557 + 0.0145646i
\(495\) −18.1072 17.0012i −0.813858 0.764146i
\(496\) 8.79153 11.8088i 0.394752 0.530231i
\(497\) 0 0
\(498\) −29.5327 + 7.49231i −1.32339 + 0.335739i
\(499\) 4.29323i 0.192191i −0.995372 0.0960957i \(-0.969365\pi\)
0.995372 0.0960957i \(-0.0306355\pi\)
\(500\) −7.43141 + 22.4263i −0.332343 + 1.00293i
\(501\) 11.1330 + 25.7241i 0.497385 + 1.14927i
\(502\) −5.34856 + 33.1446i −0.238718 + 1.47932i
\(503\) 26.3039 1.17283 0.586415 0.810010i \(-0.300539\pi\)
0.586415 + 0.810010i \(0.300539\pi\)
\(504\) 0 0
\(505\) 12.6748 0.564023
\(506\) 6.73974 41.7656i 0.299618 1.85671i
\(507\) 7.76269 + 17.9366i 0.344753 + 0.796594i
\(508\) −9.49241 + 28.6459i −0.421158 + 1.27096i
\(509\) 40.7771i 1.80741i −0.428152 0.903707i \(-0.640835\pi\)
0.428152 0.903707i \(-0.359165\pi\)
\(510\) 14.4996 3.67848i 0.642052 0.162886i
\(511\) 0 0
\(512\) 22.4339 2.95289i 0.991448 0.130500i
\(513\) −1.92995 + 5.36258i −0.0852094 + 0.236764i
\(514\) −20.6640 3.33456i −0.911449 0.147081i
\(515\) −14.8072 −0.652482
\(516\) −14.7545 + 1.30864i −0.649530 + 0.0576095i
\(517\) 29.9148 1.31565
\(518\) 0 0
\(519\) 6.72182 2.90910i 0.295055 0.127695i
\(520\) 6.82300 + 3.55191i 0.299209 + 0.155761i
\(521\) 6.94829i 0.304410i −0.988349 0.152205i \(-0.951363\pi\)
0.988349 0.152205i \(-0.0486374\pi\)
\(522\) −2.90805 + 2.24254i −0.127282 + 0.0981533i
\(523\) 7.55516i 0.330364i 0.986263 + 0.165182i \(0.0528212\pi\)
−0.986263 + 0.165182i \(0.947179\pi\)
\(524\) −14.0673 4.66149i −0.614533 0.203638i
\(525\) 0 0
\(526\) 3.13299 19.4149i 0.136605 0.846528i
\(527\) −10.8267 −0.471617
\(528\) −6.33979 + 26.8923i −0.275904 + 1.17034i
\(529\) 33.2688 1.44647
\(530\) 2.31108 14.3216i 0.100387 0.622090i
\(531\) 10.0398 10.6929i 0.435689 0.464033i
\(532\) 0 0
\(533\) 9.19231i 0.398163i
\(534\) 5.13572 + 20.2436i 0.222244 + 0.876027i
\(535\) 5.01730i 0.216917i
\(536\) 6.07718 + 3.16365i 0.262494 + 0.136649i
\(537\) −4.50730 10.4147i −0.194504 0.449426i
\(538\) −11.5293 1.86049i −0.497064 0.0802115i
\(539\) 0 0
\(540\) −13.3205 + 16.9718i −0.573224 + 0.730349i
\(541\) 11.1510 0.479417 0.239709 0.970845i \(-0.422948\pi\)
0.239709 + 0.970845i \(0.422948\pi\)
\(542\) −7.40732 1.19532i −0.318172 0.0513435i
\(543\) −8.45063 19.5262i −0.362651 0.837950i
\(544\) −11.5939 11.9365i −0.497086 0.511774i
\(545\) 14.1108i 0.604442i
\(546\) 0 0
\(547\) 39.2870i 1.67979i −0.542748 0.839896i \(-0.682616\pi\)
0.542748 0.839896i \(-0.317384\pi\)
\(548\) 9.49897 28.6657i 0.405776 1.22454i
\(549\) 8.43351 8.98215i 0.359933 0.383349i
\(550\) −0.619967 + 3.84188i −0.0264355 + 0.163818i
\(551\) −0.949382 −0.0404450
\(552\) −36.6545 2.62633i −1.56012 0.111784i
\(553\) 0 0
\(554\) 2.83983 17.5982i 0.120653 0.747676i
\(555\) −13.7842 + 5.96559i −0.585107 + 0.253225i
\(556\) −9.10695 + 27.4827i −0.386221 + 1.16553i
\(557\) 29.4625i 1.24836i −0.781279 0.624182i \(-0.785432\pi\)
0.781279 0.624182i \(-0.214568\pi\)
\(558\) 12.3654 9.53558i 0.523470 0.403673i
\(559\) 5.60145i 0.236916i
\(560\) 0 0
\(561\) 18.6474 8.07030i 0.787294 0.340728i
\(562\) 2.83386 + 0.457302i 0.119539 + 0.0192901i
\(563\) −40.6771 −1.71433 −0.857167 0.515039i \(-0.827777\pi\)
−0.857167 + 0.515039i \(0.827777\pi\)
\(564\) −2.29571 25.8835i −0.0966669 1.08989i
\(565\) −6.56789 −0.276313
\(566\) −10.7194 1.72980i −0.450570 0.0727087i
\(567\) 0 0
\(568\) 1.17700 2.26094i 0.0493857 0.0948670i
\(569\) 4.97138i 0.208411i −0.994556 0.104206i \(-0.966770\pi\)
0.994556 0.104206i \(-0.0332300\pi\)
\(570\) −5.40640 + 1.37158i −0.226449 + 0.0574492i
\(571\) 34.9819i 1.46395i 0.681334 + 0.731973i \(0.261400\pi\)
−0.681334 + 0.731973i \(0.738600\pi\)
\(572\) 9.91800 + 3.28653i 0.414693 + 0.137417i
\(573\) −16.3266 37.7245i −0.682052 1.57596i
\(574\) 0 0
\(575\) −5.17599 −0.215854
\(576\) 23.7548 + 3.42168i 0.989785 + 0.142570i
\(577\) 14.6677 0.610625 0.305313 0.952252i \(-0.401239\pi\)
0.305313 + 0.952252i \(0.401239\pi\)
\(578\) 1.88054 11.6535i 0.0782200 0.484722i
\(579\) 2.73385 + 6.31689i 0.113615 + 0.262521i
\(580\) −3.41150 1.13047i −0.141655 0.0469402i
\(581\) 0 0
\(582\) 36.5422 9.27060i 1.51472 0.384279i
\(583\) 19.7048i 0.816091i
\(584\) 16.9928 32.6421i 0.703165 1.35074i
\(585\) 5.94792 + 5.58461i 0.245916 + 0.230895i
\(586\) −2.17157 0.350427i −0.0897066 0.0144760i
\(587\) 18.7469 0.773769 0.386885 0.922128i \(-0.373551\pi\)
0.386885 + 0.922128i \(0.373551\pi\)
\(588\) 0 0
\(589\) 4.03690 0.166337
\(590\) 14.1711 + 2.28681i 0.583417 + 0.0941464i
\(591\) −31.4291 + 13.6020i −1.29282 + 0.559512i
\(592\) 13.4017 + 9.97747i 0.550808 + 0.410072i
\(593\) 44.8989i 1.84378i 0.387456 + 0.921888i \(0.373354\pi\)
−0.387456 + 0.921888i \(0.626646\pi\)
\(594\) −14.1898 + 25.6410i −0.582214 + 1.05206i
\(595\) 0 0
\(596\) −7.16624 + 21.6261i −0.293541 + 0.885838i
\(597\) −12.1865 + 5.27411i −0.498759 + 0.215855i
\(598\) −2.21389 + 13.7193i −0.0905328 + 0.561024i
\(599\) 1.19291 0.0487409 0.0243704 0.999703i \(-0.492242\pi\)
0.0243704 + 0.999703i \(0.492242\pi\)
\(600\) 3.37173 + 0.241588i 0.137650 + 0.00986279i
\(601\) −37.4089 −1.52594 −0.762970 0.646434i \(-0.776259\pi\)
−0.762970 + 0.646434i \(0.776259\pi\)
\(602\) 0 0
\(603\) 5.29775 + 4.97415i 0.215741 + 0.202563i
\(604\) −0.577641 + 1.74319i −0.0235039 + 0.0709293i
\(605\) 10.1808i 0.413907i
\(606\) −3.67747 14.4956i −0.149387 0.588843i
\(607\) 21.4299i 0.869812i −0.900476 0.434906i \(-0.856782\pi\)
0.900476 0.434906i \(-0.143218\pi\)
\(608\) 4.32298 + 4.45073i 0.175320 + 0.180501i
\(609\) 0 0
\(610\) 11.9039 + 1.92094i 0.481975 + 0.0777766i
\(611\) −9.82651 −0.397538
\(612\) −8.41379 15.5152i −0.340107 0.627163i
\(613\) −40.5347 −1.63718 −0.818591 0.574377i \(-0.805245\pi\)
−0.818591 + 0.574377i \(0.805245\pi\)
\(614\) −44.0905 7.11492i −1.77935 0.287135i
\(615\) 10.0219 + 23.1567i 0.404120 + 0.933768i
\(616\) 0 0
\(617\) 46.2548i 1.86215i 0.364830 + 0.931074i \(0.381127\pi\)
−0.364830 + 0.931074i \(0.618873\pi\)
\(618\) 4.29614 + 16.9342i 0.172816 + 0.681194i
\(619\) 25.7964i 1.03684i −0.855125 0.518421i \(-0.826520\pi\)
0.855125 0.518421i \(-0.173480\pi\)
\(620\) 14.5062 + 4.80691i 0.582581 + 0.193050i
\(621\) −36.6748 13.1990i −1.47171 0.529657i
\(622\) 4.11780 25.5177i 0.165109 1.02317i
\(623\) 0 0
\(624\) 2.08252 8.83368i 0.0833674 0.353630i
\(625\) −21.0738 −0.842952
\(626\) −6.70977 + 41.5799i −0.268177 + 1.66187i
\(627\) −6.95299 + 3.00914i −0.277676 + 0.120174i
\(628\) −16.5679 5.49011i −0.661131 0.219079i
\(629\) 12.2871i 0.489920i
\(630\) 0 0
\(631\) 26.5913i 1.05858i 0.848440 + 0.529291i \(0.177542\pi\)
−0.848440 + 0.529291i \(0.822458\pi\)
\(632\) 25.9954 + 13.5326i 1.03404 + 0.538299i
\(633\) 18.6748 8.08217i 0.742258 0.321238i
\(634\) −24.7063 3.98687i −0.981213 0.158339i
\(635\) −31.3252 −1.24310
\(636\) −17.0494 + 1.51218i −0.676054 + 0.0599620i
\(637\) 0 0
\(638\) −4.81932 0.777697i −0.190799 0.0307893i
\(639\) 1.85057 1.97096i 0.0732076 0.0779701i
\(640\) 10.2345 + 21.1408i 0.404554 + 0.835663i
\(641\) 6.05241i 0.239056i −0.992831 0.119528i \(-0.961862\pi\)
0.992831 0.119528i \(-0.0381381\pi\)
\(642\) 5.73803 1.45572i 0.226462 0.0574525i
\(643\) 9.95426i 0.392558i −0.980548 0.196279i \(-0.937114\pi\)
0.980548 0.196279i \(-0.0628858\pi\)
\(644\) 0 0
\(645\) −6.10695 14.1108i −0.240461 0.555614i
\(646\) 0.726914 4.50462i 0.0286000 0.177232i
\(647\) 30.9902 1.21835 0.609175 0.793035i \(-0.291501\pi\)
0.609175 + 0.793035i \(0.291501\pi\)
\(648\) 23.2746 + 10.3098i 0.914313 + 0.405009i
\(649\) 19.4978 0.765357
\(650\) 0.203649 1.26200i 0.00798778 0.0494996i
\(651\) 0 0
\(652\) 5.65686 17.0711i 0.221540 0.668557i
\(653\) 8.10471i 0.317162i 0.987346 + 0.158581i \(0.0506919\pi\)
−0.987346 + 0.158581i \(0.949308\pi\)
\(654\) 16.1379 4.09411i 0.631040 0.160092i
\(655\) 15.3830i 0.601065i
\(656\) 16.7616 22.5142i 0.654430 0.879031i
\(657\) 26.7174 28.4556i 1.04235 1.11016i
\(658\) 0 0
\(659\) 38.3085 1.49229 0.746143 0.665785i \(-0.231903\pi\)
0.746143 + 0.665785i \(0.231903\pi\)
\(660\) −28.5679 + 2.53381i −1.11201 + 0.0986283i
\(661\) −6.65686 −0.258922 −0.129461 0.991585i \(-0.541325\pi\)
−0.129461 + 0.991585i \(0.541325\pi\)
\(662\) 48.9797 + 7.90388i 1.90365 + 0.307193i
\(663\) −6.12537 + 2.65096i −0.237890 + 0.102955i
\(664\) −16.2454 + 31.2064i −0.630442 + 1.21104i
\(665\) 0 0
\(666\) 10.8219 + 14.0335i 0.419340 + 0.543786i
\(667\) 6.49285i 0.251404i
\(668\) 30.7232 + 10.1808i 1.18872 + 0.393906i
\(669\) 23.0809 9.98905i 0.892359 0.386199i
\(670\) −1.13299 + 7.02103i −0.0437711 + 0.271246i
\(671\) 16.3784 0.632280
\(672\) 0 0
\(673\) −22.0809 −0.851156 −0.425578 0.904922i \(-0.639929\pi\)
−0.425578 + 0.904922i \(0.639929\pi\)
\(674\) −0.0299618 + 0.185671i −0.00115408 + 0.00715176i
\(675\) 3.37360 + 1.21413i 0.129850 + 0.0467320i
\(676\) 21.4224 + 7.09873i 0.823937 + 0.273028i
\(677\) 45.0746i 1.73236i 0.499733 + 0.866180i \(0.333431\pi\)
−0.499733 + 0.866180i \(0.666569\pi\)
\(678\) 1.90560 + 7.51136i 0.0731842 + 0.288472i
\(679\) 0 0
\(680\) 7.97594 15.3213i 0.305863 0.587546i
\(681\) −14.7652 34.1168i −0.565804 1.30736i
\(682\) 20.4924 + 3.30687i 0.784695 + 0.126627i
\(683\) −15.6169 −0.597563 −0.298781 0.954322i \(-0.596580\pi\)
−0.298781 + 0.954322i \(0.596580\pi\)
\(684\) 3.13722 + 5.78508i 0.119955 + 0.221198i
\(685\) 31.3469 1.19770
\(686\) 0 0
\(687\) −13.5049 31.2046i −0.515242 1.19053i
\(688\) −10.2139 + 13.7193i −0.389401 + 0.523044i
\(689\) 6.47272i 0.246591i
\(690\) −9.38028 36.9745i −0.357101 1.40760i
\(691\) 38.3128i 1.45749i −0.684786 0.728744i \(-0.740104\pi\)
0.684786 0.728744i \(-0.259896\pi\)
\(692\) 2.66028 8.02811i 0.101129 0.305183i
\(693\) 0 0
\(694\) 0.0440088 0.272719i 0.00167055 0.0103523i
\(695\) −30.0532 −1.13998
\(696\) −0.303052 + 4.22956i −0.0114872 + 0.160321i
\(697\) −20.6417 −0.781859
\(698\) −1.30849 + 8.10860i −0.0495271 + 0.306915i
\(699\) 22.6737 9.81282i 0.857598 0.371155i
\(700\) 0 0
\(701\) 36.6488i 1.38420i −0.721799 0.692102i \(-0.756685\pi\)
0.721799 0.692102i \(-0.243315\pi\)
\(702\) 4.66111 8.42265i 0.175922 0.317893i
\(703\) 4.58146i 0.172793i
\(704\) 18.2988 + 26.1344i 0.689662 + 0.984975i
\(705\) 24.7543 10.7133i 0.932303 0.403486i
\(706\) 27.9148 + 4.50462i 1.05059 + 0.169534i
\(707\) 0 0
\(708\) −1.49630 16.8703i −0.0562344 0.634026i
\(709\) 36.5347 1.37209 0.686045 0.727559i \(-0.259345\pi\)
0.686045 + 0.727559i \(0.259345\pi\)
\(710\) 2.61209 + 0.421514i 0.0980299 + 0.0158191i
\(711\) 22.6613 + 21.2771i 0.849867 + 0.797955i
\(712\) 21.3909 + 11.1356i 0.801657 + 0.417325i
\(713\) 27.6084i 1.03394i
\(714\) 0 0
\(715\) 10.8457i 0.405604i
\(716\) −12.4386 4.12178i −0.464852 0.154038i
\(717\) −10.5130 24.2916i −0.392616 0.907186i
\(718\) 3.13299 19.4149i 0.116922 0.724556i
\(719\) 24.5373 0.915087 0.457543 0.889187i \(-0.348729\pi\)
0.457543 + 0.889187i \(0.348729\pi\)
\(720\) 4.38471 + 24.5237i 0.163408 + 0.913944i
\(721\) 0 0
\(722\) 4.00962 24.8473i 0.149223 0.924720i
\(723\) −4.06154 9.38469i −0.151050 0.349020i
\(724\) −23.3208 7.72783i −0.866712 0.287203i
\(725\) 0.597256i 0.0221815i
\(726\) −11.6432 + 2.95384i −0.432121 + 0.109627i
\(727\) 7.89691i 0.292880i −0.989220 0.146440i \(-0.953218\pi\)
0.989220 0.146440i \(-0.0467816\pi\)
\(728\) 0 0
\(729\) 20.8078 + 17.2057i 0.770660 + 0.637247i
\(730\) 37.7117 + 6.08557i 1.39577 + 0.225237i
\(731\) 12.5783 0.465224
\(732\) −1.25691 14.1713i −0.0464566 0.523784i
\(733\) −5.84472 −0.215880 −0.107940 0.994157i \(-0.534425\pi\)
−0.107940 + 0.994157i \(0.534425\pi\)
\(734\) −26.2664 4.23863i −0.969511 0.156451i
\(735\) 0 0
\(736\) −30.4386 + 29.5650i −1.12198 + 1.08978i
\(737\) 9.66011i 0.355835i
\(738\) 23.5754 18.1802i 0.867823 0.669221i
\(739\) 1.41957i 0.0522198i 0.999659 + 0.0261099i \(0.00831198\pi\)
−0.999659 + 0.0261099i \(0.991688\pi\)
\(740\) −5.45534 + 16.4630i −0.200542 + 0.605191i
\(741\) 2.28394 0.988455i 0.0839027 0.0363118i
\(742\) 0 0
\(743\) 1.70600 0.0625872 0.0312936 0.999510i \(-0.490037\pi\)
0.0312936 + 0.999510i \(0.490037\pi\)
\(744\) 1.28862 17.9846i 0.0472430 0.659349i
\(745\) −23.6488 −0.866425
\(746\) 1.31191 8.12980i 0.0480325 0.297653i
\(747\) −25.5423 + 27.2040i −0.934545 + 0.995343i
\(748\) 7.38003 22.2713i 0.269841 0.814318i
\(749\) 0 0
\(750\) 7.11534 + 28.0467i 0.259815 + 1.02412i
\(751\) 26.7854i 0.977414i −0.872448 0.488707i \(-0.837469\pi\)
0.872448 0.488707i \(-0.162531\pi\)
\(752\) −24.0675 17.9180i −0.877651 0.653403i
\(753\) 16.3317 + 37.7364i 0.595160 + 1.37519i
\(754\) 1.58307 + 0.255461i 0.0576520 + 0.00930334i
\(755\) −1.90623 −0.0693749
\(756\) 0 0
\(757\) −23.8816 −0.867992 −0.433996 0.900915i \(-0.642897\pi\)
−0.433996 + 0.900915i \(0.642897\pi\)
\(758\) 16.8373 + 2.71704i 0.611558 + 0.0986875i
\(759\) −20.5796 47.5517i −0.746992 1.72602i
\(760\) −2.97396 + 5.71280i −0.107877 + 0.207225i
\(761\) 15.0915i 0.547067i −0.961862 0.273533i \(-0.911808\pi\)
0.961862 0.273533i \(-0.0881924\pi\)
\(762\) 9.08868 + 35.8251i 0.329248 + 1.29781i
\(763\) 0 0
\(764\) −45.0557 14.9301i −1.63006 0.540153i
\(765\) 12.5405 13.3563i 0.453401 0.482897i
\(766\) 2.73777 16.9657i 0.0989197 0.612997i
\(767\) −6.40472 −0.231261
\(768\) 21.2082 17.8385i 0.765286 0.643690i
\(769\) −12.6792 −0.457222 −0.228611 0.973518i \(-0.573418\pi\)
−0.228611 + 0.973518i \(0.573418\pi\)
\(770\) 0 0
\(771\) −23.5267 + 10.1820i −0.847294 + 0.366695i
\(772\) 7.54449 + 2.50002i 0.271532 + 0.0899777i
\(773\) 38.7248i 1.39283i 0.717637 + 0.696417i \(0.245224\pi\)
−0.717637 + 0.696417i \(0.754776\pi\)
\(774\) −14.3660 + 11.0783i −0.516375 + 0.398202i
\(775\) 2.53961i 0.0912256i
\(776\) 20.1012 38.6132i 0.721590 1.38613i
\(777\) 0 0
\(778\) 1.69002 + 0.272719i 0.0605900 + 0.00977745i
\(779\) 7.69659 0.275759
\(780\) 9.38410 0.832315i 0.336005 0.0298016i
\(781\) 3.59393 0.128601
\(782\) 30.8072 + 4.97138i 1.10166 + 0.177776i
\(783\) −1.52303 + 4.23190i −0.0544286 + 0.151236i
\(784\) 0 0
\(785\) 18.1175i 0.646642i
\(786\) −17.5928 + 4.46322i −0.627515 + 0.159198i
\(787\) 20.3831i 0.726578i 0.931676 + 0.363289i \(0.118346\pi\)
−0.931676 + 0.363289i \(0.881654\pi\)
\(788\) −12.4386 + 37.5369i −0.443107 + 1.33720i
\(789\) −9.56649 22.1045i −0.340576 0.786942i
\(790\) −4.84640 + 30.0327i −0.172427 + 1.06852i
\(791\) 0 0
\(792\) 11.1865 + 31.9366i 0.397494 + 1.13482i
\(793\) −5.38003 −0.191051
\(794\) 2.15318 13.3431i 0.0764135 0.473528i
\(795\) −7.05684 16.3057i −0.250280 0.578302i
\(796\) −4.82300 + 14.5547i −0.170947 + 0.515879i
\(797\) 27.9005i 0.988287i 0.869380 + 0.494143i \(0.164518\pi\)
−0.869380 + 0.494143i \(0.835482\pi\)
\(798\) 0 0
\(799\) 22.0658i 0.780632i
\(800\) 2.79996 2.71959i 0.0989934 0.0961521i
\(801\) 18.6474 + 17.5084i 0.658873 + 0.618628i
\(802\) −15.7009 2.53366i −0.554417 0.0894666i
\(803\) 51.8869 1.83105
\(804\) 8.35832 0.741334i 0.294775 0.0261448i
\(805\) 0 0
\(806\) −6.73142 1.08625i −0.237104 0.0382617i
\(807\) −13.1265 + 5.68096i −0.462076 + 0.199979i
\(808\) −15.3171 7.97374i −0.538854 0.280515i
\(809\) 14.2640i 0.501497i 0.968052 + 0.250748i \(0.0806767\pi\)
−0.968052 + 0.250748i \(0.919323\pi\)
\(810\) −2.55925 + 26.2996i −0.0899229 + 0.924073i
\(811\) 38.4069i 1.34865i 0.738435 + 0.674325i \(0.235565\pi\)
−0.738435 + 0.674325i \(0.764435\pi\)
\(812\) 0 0
\(813\) −8.43351 + 3.64989i −0.295776 + 0.128007i
\(814\) −3.75295 + 23.2567i −0.131541 + 0.815148i
\(815\) 18.6678 0.653905
\(816\) −19.8364 4.67637i −0.694412 0.163706i
\(817\) −4.69002 −0.164083
\(818\) 3.50741 21.7351i 0.122634 0.759951i
\(819\) 0 0
\(820\) 27.6569 + 9.16466i 0.965820 + 0.320044i
\(821\) 52.7894i 1.84236i 0.389135 + 0.921181i \(0.372774\pi\)
−0.389135 + 0.921181i \(0.627226\pi\)
\(822\) −9.09496 35.8499i −0.317223 1.25041i
\(823\) 5.73006i 0.199737i −0.995001 0.0998687i \(-0.968158\pi\)
0.995001 0.0998687i \(-0.0318423\pi\)
\(824\) 17.8939 + 9.31519i 0.623365 + 0.324510i
\(825\) 1.89305 + 4.37413i 0.0659077 + 0.152288i
\(826\) 0 0
\(827\) −44.5253 −1.54830 −0.774149 0.633003i \(-0.781822\pi\)
−0.774149 + 0.633003i \(0.781822\pi\)
\(828\) −39.5643 + 21.4555i −1.37496 + 0.745631i
\(829\) −26.0586 −0.905053 −0.452526 0.891751i \(-0.649477\pi\)
−0.452526 + 0.891751i \(0.649477\pi\)
\(830\) −36.0531 5.81791i −1.25142 0.201942i
\(831\) −8.67135 20.0362i −0.300806 0.695048i
\(832\) −6.01086 8.58471i −0.208389 0.297621i
\(833\) 0 0
\(834\) 8.71961 + 34.3703i 0.301935 + 1.19015i
\(835\) 33.5968i 1.16267i
\(836\) −2.75177 + 8.30420i −0.0951718 + 0.287207i
\(837\) 6.47612 17.9946i 0.223848 0.621985i
\(838\) 4.06294 25.1777i 0.140352 0.869748i
\(839\) −46.0533 −1.58994 −0.794968 0.606652i \(-0.792512\pi\)
−0.794968 + 0.606652i \(0.792512\pi\)
\(840\) 0 0
\(841\) 28.2508 0.974165
\(842\) −2.81574 + 17.4489i −0.0970367 + 0.601328i
\(843\) 3.22646 1.39636i 0.111125 0.0480932i
\(844\) 7.39089 22.3040i 0.254405 0.767736i
\(845\) 23.4260i 0.805880i
\(846\) −19.4345 25.2020i −0.668171 0.866462i
\(847\) 0 0
\(848\) −11.8026 + 15.8532i −0.405302 + 0.544403i
\(849\) −12.2044 + 5.28188i −0.418855 + 0.181274i
\(850\) −2.83386 0.457302i −0.0972006 0.0156853i
\(851\) −31.3327 −1.07407
\(852\) −0.275804 3.10961i −0.00944890 0.106534i
\(853\) −46.3274 −1.58622 −0.793109 0.609079i \(-0.791539\pi\)
−0.793109 + 0.609079i \(0.791539\pi\)
\(854\) 0 0
\(855\) −4.67591 + 4.98011i −0.159913 + 0.170316i
\(856\) 3.15638 6.06323i 0.107883 0.207237i
\(857\) 41.1458i 1.40551i 0.711431 + 0.702756i \(0.248048\pi\)
−0.711431 + 0.702756i \(0.751952\pi\)
\(858\) 12.4036 3.14675i 0.423453 0.107428i
\(859\) 57.4109i 1.95883i 0.201846 + 0.979417i \(0.435306\pi\)
−0.201846 + 0.979417i \(0.564694\pi\)
\(860\) −16.8531 5.58461i −0.574685 0.190434i
\(861\) 0 0
\(862\) −2.80407 + 17.3766i −0.0955072 + 0.591850i
\(863\) 25.4867 0.867577 0.433788 0.901015i \(-0.357177\pi\)
0.433788 + 0.901015i \(0.357177\pi\)
\(864\) 26.7744 12.1299i 0.910882 0.412666i
\(865\) 8.77899 0.298495
\(866\) 0.112162 0.695056i 0.00381141 0.0236190i
\(867\) −5.74216 13.2680i −0.195014 0.450604i
\(868\) 0 0
\(869\) 41.3215i 1.40174i
\(870\) −4.26649 + 1.08239i −0.144647 + 0.0366964i
\(871\) 3.17319i 0.107519i
\(872\) 8.87713 17.0525i 0.300618 0.577469i
\(873\) 31.6048 33.6609i 1.06966 1.13925i
\(874\) −11.4870 1.85366i −0.388553 0.0627010i
\(875\) 0 0
\(876\) −3.98189 44.8947i −0.134536 1.51685i
\(877\) 41.8627 1.41360 0.706801 0.707412i \(-0.250138\pi\)
0.706801 + 0.707412i \(0.250138\pi\)
\(878\) 6.50613 + 1.04990i 0.219571 + 0.0354323i
\(879\) −2.47241 + 1.07002i −0.0833923 + 0.0360909i
\(880\) −19.7764 + 26.5636i −0.666661 + 0.895459i
\(881\) 38.5556i 1.29897i 0.760373 + 0.649486i \(0.225016\pi\)
−0.760373 + 0.649486i \(0.774984\pi\)
\(882\) 0 0
\(883\) 4.56420i 0.153597i −0.997047 0.0767987i \(-0.975530\pi\)
0.997047 0.0767987i \(-0.0244699\pi\)
\(884\) −2.42422 + 7.31575i −0.0815354 + 0.246055i
\(885\) 16.1344 6.98270i 0.542351 0.234721i
\(886\) −4.97228 + 30.8128i −0.167047 + 1.03518i
\(887\) −40.4892 −1.35949 −0.679747 0.733447i \(-0.737910\pi\)
−0.679747 + 0.733447i \(0.737910\pi\)
\(888\) 20.4107 + 1.46245i 0.684938 + 0.0490765i
\(889\) 0 0
\(890\) −3.98797 + 24.7131i −0.133677 + 0.828385i
\(891\) 2.25916 + 35.8206i 0.0756847 + 1.20003i
\(892\) 9.13467 27.5664i 0.305851 0.922990i
\(893\) 8.22760i 0.275326i
\(894\) 6.86144 + 27.0459i 0.229481 + 0.904552i
\(895\) 13.6020i 0.454665i
\(896\) 0 0
\(897\) 6.76007 + 15.6199i 0.225712 + 0.521535i
\(898\) −8.41693 1.35825i −0.280877 0.0453252i
\(899\) 3.18574 0.106250
\(900\) 3.63940 1.97363i 0.121313 0.0657875i
\(901\) 14.5347 0.484222
\(902\) 39.0700 + 6.30475i 1.30089 + 0.209925i
\(903\) 0 0
\(904\) 7.93706 + 4.13186i 0.263983 + 0.137424i
\(905\) 25.5021i 0.847718i
\(906\) 0.553073 + 2.18006i 0.0183746 + 0.0724277i
\(907\) 2.73314i 0.0907526i −0.998970 0.0453763i \(-0.985551\pi\)
0.998970 0.0453763i \(-0.0144487\pi\)
\(908\) −40.7469 13.5023i −1.35223 0.448090i
\(909\) −13.3526 12.5370i −0.442878 0.415826i
\(910\) 0 0
\(911\) 5.16105 0.170993 0.0854966 0.996338i \(-0.472752\pi\)
0.0854966 + 0.996338i \(0.472752\pi\)
\(912\) 7.39631 + 1.74366i 0.244916 + 0.0577384i
\(913\) −49.6048 −1.64168
\(914\) −8.62027 + 53.4191i −0.285133 + 1.76695i
\(915\) 13.5530 5.86554i 0.448050 0.193909i
\(916\) −37.2688 12.3498i −1.23139 0.408048i
\(917\) 0 0
\(918\) −18.9134 10.4667i −0.624235 0.345453i
\(919\) 39.8384i 1.31415i 0.753826 + 0.657074i \(0.228206\pi\)
−0.753826 + 0.657074i \(0.771794\pi\)
\(920\) −39.0700 20.3390i −1.28810 0.670556i
\(921\) −50.1987 + 21.7252i −1.65410 + 0.715870i
\(922\) 17.3909 + 2.80638i 0.572738 + 0.0924232i
\(923\) −1.18055 −0.0388582
\(924\) 0 0
\(925\) 2.88220 0.0947660
\(926\) −39.1773 6.32206i −1.28745 0.207756i
\(927\) 15.5990 + 14.6461i 0.512337 + 0.481042i
\(928\) 3.41150 + 3.51231i 0.111988 + 0.115297i
\(929\) 25.7241i 0.843981i 0.906600 + 0.421990i \(0.138668\pi\)
−0.906600 + 0.421990i \(0.861332\pi\)
\(930\) 18.1417 4.60246i 0.594889 0.150921i
\(931\) 0 0
\(932\) 8.97351 27.0800i 0.293937 0.887035i
\(933\) −12.5736 29.0528i −0.411641 0.951147i
\(934\) −3.85183 + 23.8695i −0.126036 + 0.781032i
\(935\) 24.3543 0.796472
\(936\) −3.67457 10.4906i −0.120107 0.342897i
\(937\) −20.2068 −0.660127 −0.330063 0.943959i \(-0.607070\pi\)
−0.330063 + 0.943959i \(0.607070\pi\)
\(938\) 0 0
\(939\) 20.4881 + 47.3403i 0.668604 + 1.54489i
\(940\) 9.79696 29.5650i 0.319542 0.964304i
\(941\) 47.8868i 1.56107i −0.625115 0.780533i \(-0.714948\pi\)
0.625115 0.780533i \(-0.285052\pi\)
\(942\) −20.7201 + 5.25660i −0.675097 + 0.171269i
\(943\) 52.6372i 1.71410i
\(944\) −15.6867 11.6786i −0.510559 0.380106i
\(945\) 0 0
\(946\) −23.8078 3.84188i −0.774059 0.124910i
\(947\) −6.32070 −0.205395 −0.102698 0.994713i \(-0.532747\pi\)
−0.102698 + 0.994713i \(0.532747\pi\)
\(948\) 35.7531 3.17109i 1.16121 0.102992i
\(949\) −17.0440 −0.553272
\(950\) 1.05665 + 0.170512i 0.0342823 + 0.00553215i
\(951\) −28.1290 + 12.1738i −0.912147 + 0.394763i
\(952\) 0 0
\(953\) 3.70027i 0.119863i −0.998202 0.0599317i \(-0.980912\pi\)
0.998202 0.0599317i \(-0.0190883\pi\)
\(954\) −16.6005 + 12.8015i −0.537462 + 0.414463i
\(955\) 49.2698i 1.59433i
\(956\) −29.0123 9.61382i −0.938326 0.310933i
\(957\) −5.48698 + 2.37468i −0.177369 + 0.0767624i
\(958\) −3.70087 + 22.9340i −0.119570 + 0.740964i
\(959\) 0 0
\(960\) 24.5016 + 15.0728i 0.790786 + 0.486472i
\(961\) 17.4538 0.563027
\(962\) 1.23278 7.63946i 0.0397466 0.246306i
\(963\) 4.96274 5.28559i 0.159922 0.170326i
\(964\) −11.2085 3.71415i −0.361000 0.119625i
\(965\) 8.25014i 0.265581i
\(966\) 0 0
\(967\) 14.5970i 0.469409i 0.972067 + 0.234705i \(0.0754123\pi\)
−0.972067 + 0.234705i \(0.924588\pi\)
\(968\) −6.40472 + 12.3031i −0.205856 + 0.395437i
\(969\) −2.21961 5.12868i −0.0713042 0.164757i
\(970\) 44.6102 + 7.19878i 1.43235 + 0.231139i
\(971\) 8.21458 0.263618 0.131809 0.991275i \(-0.457921\pi\)
0.131809 + 0.991275i \(0.457921\pi\)
\(972\) 30.8201 4.70365i 0.988554 0.150870i
\(973\) 0 0
\(974\) −44.6592 7.20668i −1.43097 0.230917i
\(975\) −0.621837 1.43683i −0.0199147 0.0460154i
\(976\) −13.1770 9.81015i −0.421785 0.314015i
\(977\) 35.6140i 1.13939i −0.821855 0.569697i \(-0.807061\pi\)
0.821855 0.569697i \(-0.192939\pi\)
\(978\) −5.41627 21.3495i −0.173193 0.682680i
\(979\) 34.0023i 1.08672i
\(980\) 0 0
\(981\) 13.9574 14.8654i 0.445625 0.474615i
\(982\) −0.459257 + 2.84597i −0.0146555 + 0.0908187i
\(983\) −31.1497 −0.993522 −0.496761 0.867887i \(-0.665477\pi\)
−0.496761 + 0.867887i \(0.665477\pi\)
\(984\) 2.45683 34.2888i 0.0783208 1.09309i
\(985\) −41.0478 −1.30789
\(986\) 0.573647 3.55484i 0.0182687 0.113209i
\(987\) 0 0
\(988\) 0.903910 2.72779i 0.0287572 0.0867827i
\(989\) 32.0751i 1.01993i
\(990\) −27.8157 + 21.4501i −0.884042 + 0.681728i
\(991\) 34.8265i 1.10630i 0.833082 + 0.553149i \(0.186574\pi\)
−0.833082 + 0.553149i \(0.813426\pi\)
\(992\) −14.5062 14.9348i −0.460571 0.474181i
\(993\) 55.7652 24.1343i 1.76966 0.765879i
\(994\) 0 0
\(995\) −15.9161 −0.504573
\(996\) 3.80676 + 42.9201i 0.120622 + 1.35998i
\(997\) −8.45719 −0.267842 −0.133921 0.990992i \(-0.542757\pi\)
−0.133921 + 0.990992i \(0.542757\pi\)
\(998\) −5.99400 0.967256i −0.189737 0.0306180i
\(999\) 20.4220 + 7.34972i 0.646124 + 0.232535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.d.491.7 12
3.2 odd 2 inner 588.2.e.d.491.6 12
4.3 odd 2 inner 588.2.e.d.491.5 12
7.2 even 3 588.2.n.e.263.1 24
7.3 odd 6 84.2.n.a.23.10 yes 24
7.4 even 3 588.2.n.e.275.10 24
7.5 odd 6 84.2.n.a.11.1 24
7.6 odd 2 588.2.e.e.491.7 12
12.11 even 2 inner 588.2.e.d.491.8 12
21.2 odd 6 588.2.n.e.263.12 24
21.5 even 6 84.2.n.a.11.12 yes 24
21.11 odd 6 588.2.n.e.275.3 24
21.17 even 6 84.2.n.a.23.3 yes 24
21.20 even 2 588.2.e.e.491.6 12
28.3 even 6 84.2.n.a.23.12 yes 24
28.11 odd 6 588.2.n.e.275.12 24
28.19 even 6 84.2.n.a.11.3 yes 24
28.23 odd 6 588.2.n.e.263.3 24
28.27 even 2 588.2.e.e.491.5 12
84.11 even 6 588.2.n.e.275.1 24
84.23 even 6 588.2.n.e.263.10 24
84.47 odd 6 84.2.n.a.11.10 yes 24
84.59 odd 6 84.2.n.a.23.1 yes 24
84.83 odd 2 588.2.e.e.491.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.n.a.11.1 24 7.5 odd 6
84.2.n.a.11.3 yes 24 28.19 even 6
84.2.n.a.11.10 yes 24 84.47 odd 6
84.2.n.a.11.12 yes 24 21.5 even 6
84.2.n.a.23.1 yes 24 84.59 odd 6
84.2.n.a.23.3 yes 24 21.17 even 6
84.2.n.a.23.10 yes 24 7.3 odd 6
84.2.n.a.23.12 yes 24 28.3 even 6
588.2.e.d.491.5 12 4.3 odd 2 inner
588.2.e.d.491.6 12 3.2 odd 2 inner
588.2.e.d.491.7 12 1.1 even 1 trivial
588.2.e.d.491.8 12 12.11 even 2 inner
588.2.e.e.491.5 12 28.27 even 2
588.2.e.e.491.6 12 21.20 even 2
588.2.e.e.491.7 12 7.6 odd 2
588.2.e.e.491.8 12 84.83 odd 2
588.2.n.e.263.1 24 7.2 even 3
588.2.n.e.263.3 24 28.23 odd 6
588.2.n.e.263.10 24 84.23 even 6
588.2.n.e.263.12 24 21.2 odd 6
588.2.n.e.275.1 24 84.11 even 6
588.2.n.e.275.3 24 21.11 odd 6
588.2.n.e.275.10 24 7.4 even 3
588.2.n.e.275.12 24 28.11 odd 6