Properties

Label 588.2.e.e.491.11
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(491,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,2,0,0,0,0,2,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.312013725601644544.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} - 2x^{8} + 8x^{6} - 8x^{4} - 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.11
Root \(1.38193 - 0.300427i\) of defining polynomial
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.e.491.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38193 - 0.300427i) q^{2} +(1.24483 + 1.20432i) q^{3} +(1.81949 - 0.830342i) q^{4} -2.72774i q^{5} +(2.08209 + 1.29031i) q^{6} +(2.26495 - 1.69410i) q^{8} +(0.0992110 + 2.99836i) q^{9} +(-0.819487 - 3.76955i) q^{10} +2.04025 q^{11} +(3.26495 + 1.15761i) q^{12} -4.44055 q^{13} +(3.28508 - 3.39557i) q^{15} +(2.62106 - 3.02159i) q^{16} -0.660466i q^{17} +(1.03789 + 4.11373i) q^{18} +2.93921i q^{19} +(-2.26495 - 4.96308i) q^{20} +(2.81949 - 0.612946i) q^{22} +1.04242 q^{23} +(4.85973 + 0.618866i) q^{24} -2.44055 q^{25} +(-6.13655 + 1.33406i) q^{26} +(-3.48749 + 3.85193i) q^{27} +2.06727i q^{29} +(3.51964 - 5.67939i) q^{30} -3.10397i q^{31} +(2.71437 - 4.96308i) q^{32} +(2.53976 + 2.45712i) q^{33} +(-0.198422 - 0.912721i) q^{34} +(2.67018 + 5.37310i) q^{36} -9.52008 q^{37} +(0.883020 + 4.06180i) q^{38} +(-5.52774 - 5.34786i) q^{39} +(-4.62106 - 6.17820i) q^{40} +7.85889i q^{41} -0.530567i q^{43} +(3.71220 - 1.69410i) q^{44} +(8.17874 - 0.270622i) q^{45} +(1.44055 - 0.313170i) q^{46} -1.04242 q^{47} +(6.90176 - 0.604764i) q^{48} +(-3.37268 + 0.733208i) q^{50} +(0.795415 - 0.822169i) q^{51} +(-8.07953 + 3.68718i) q^{52} +10.5866i q^{53} +(-3.66226 + 6.37086i) q^{54} -5.56526i q^{55} +(-3.53976 + 3.65883i) q^{57} +(0.621065 + 2.85683i) q^{58} +3.48749 q^{59} +(3.15767 - 8.90594i) q^{60} -0.198422 q^{61} +(-0.932518 - 4.28949i) q^{62} +(2.26004 - 7.67413i) q^{64} +12.1127i q^{65} +(4.24797 + 2.63256i) q^{66} +4.76465i q^{67} +(-0.548413 - 1.20171i) q^{68} +(1.29763 + 1.25541i) q^{69} -5.52774 q^{71} +(5.30423 + 6.62307i) q^{72} -3.03582 q^{73} +(-13.1561 + 2.86009i) q^{74} +(-3.03808 - 2.93921i) q^{75} +(2.44055 + 5.34786i) q^{76} +(-9.24562 - 5.72971i) q^{78} -10.9131i q^{79} +(-8.24211 - 7.14958i) q^{80} +(-8.98031 + 0.594941i) q^{81} +(2.36103 + 10.8605i) q^{82} +9.15881 q^{83} -1.80158 q^{85} +(-0.159397 - 0.733208i) q^{86} +(-2.48966 + 2.57340i) q^{87} +(4.62106 - 3.45638i) q^{88} +0.541243i q^{89} +(11.2212 - 2.83110i) q^{90} +(1.89666 - 0.865562i) q^{92} +(3.73818 - 3.86392i) q^{93} +(-1.44055 + 0.313170i) q^{94} +8.01740 q^{95} +(9.35609 - 2.90922i) q^{96} -6.91692 q^{97} +(0.202415 + 6.11739i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{4} + 2 q^{9} + 10 q^{10} + 12 q^{12} - 12 q^{13} + 10 q^{16} + 10 q^{18} + 14 q^{22} + 14 q^{24} + 12 q^{25} + 14 q^{30} - 10 q^{33} - 4 q^{34} + 22 q^{36} + 8 q^{37} - 34 q^{40} + 18 q^{45}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38193 0.300427i 0.977175 0.212434i
\(3\) 1.24483 + 1.20432i 0.718704 + 0.695316i
\(4\) 1.81949 0.830342i 0.909743 0.415171i
\(5\) 2.72774i 1.21988i −0.792447 0.609941i \(-0.791193\pi\)
0.792447 0.609941i \(-0.208807\pi\)
\(6\) 2.08209 + 1.29031i 0.850009 + 0.526769i
\(7\) 0 0
\(8\) 2.26495 1.69410i 0.800782 0.598955i
\(9\) 0.0992110 + 2.99836i 0.0330703 + 0.999453i
\(10\) −0.819487 3.76955i −0.259144 1.19204i
\(11\) 2.04025 0.615157 0.307579 0.951523i \(-0.400481\pi\)
0.307579 + 0.951523i \(0.400481\pi\)
\(12\) 3.26495 + 1.15761i 0.942511 + 0.334175i
\(13\) −4.44055 −1.23159 −0.615794 0.787907i \(-0.711165\pi\)
−0.615794 + 0.787907i \(0.711165\pi\)
\(14\) 0 0
\(15\) 3.28508 3.39557i 0.848203 0.876733i
\(16\) 2.62106 3.02159i 0.655266 0.755398i
\(17\) 0.660466i 0.160187i −0.996787 0.0800933i \(-0.974478\pi\)
0.996787 0.0800933i \(-0.0255218\pi\)
\(18\) 1.03789 + 4.11373i 0.244634 + 0.969616i
\(19\) 2.93921i 0.674302i 0.941451 + 0.337151i \(0.109463\pi\)
−0.941451 + 0.337151i \(0.890537\pi\)
\(20\) −2.26495 4.96308i −0.506459 1.10978i
\(21\) 0 0
\(22\) 2.81949 0.612946i 0.601117 0.130680i
\(23\) 1.04242 0.217359 0.108679 0.994077i \(-0.465338\pi\)
0.108679 + 0.994077i \(0.465338\pi\)
\(24\) 4.85973 + 0.618866i 0.991989 + 0.126326i
\(25\) −2.44055 −0.488110
\(26\) −6.13655 + 1.33406i −1.20348 + 0.261631i
\(27\) −3.48749 + 3.85193i −0.671168 + 0.741305i
\(28\) 0 0
\(29\) 2.06727i 0.383883i 0.981406 + 0.191941i \(0.0614783\pi\)
−0.981406 + 0.191941i \(0.938522\pi\)
\(30\) 3.51964 5.67939i 0.642595 1.03691i
\(31\) 3.10397i 0.557490i −0.960365 0.278745i \(-0.910082\pi\)
0.960365 0.278745i \(-0.0899184\pi\)
\(32\) 2.71437 4.96308i 0.479838 0.877357i
\(33\) 2.53976 + 2.45712i 0.442116 + 0.427729i
\(34\) −0.198422 0.912721i −0.0340291 0.156530i
\(35\) 0 0
\(36\) 2.67018 + 5.37310i 0.445029 + 0.895516i
\(37\) −9.52008 −1.56509 −0.782546 0.622593i \(-0.786079\pi\)
−0.782546 + 0.622593i \(0.786079\pi\)
\(38\) 0.883020 + 4.06180i 0.143245 + 0.658911i
\(39\) −5.52774 5.34786i −0.885147 0.856343i
\(40\) −4.62106 6.17820i −0.730655 0.976859i
\(41\) 7.85889i 1.22735i 0.789558 + 0.613676i \(0.210310\pi\)
−0.789558 + 0.613676i \(0.789690\pi\)
\(42\) 0 0
\(43\) 0.530567i 0.0809106i −0.999181 0.0404553i \(-0.987119\pi\)
0.999181 0.0404553i \(-0.0128808\pi\)
\(44\) 3.71220 1.69410i 0.559635 0.255395i
\(45\) 8.17874 0.270622i 1.21921 0.0403419i
\(46\) 1.44055 0.313170i 0.212398 0.0461745i
\(47\) −1.04242 −0.152052 −0.0760260 0.997106i \(-0.524223\pi\)
−0.0760260 + 0.997106i \(0.524223\pi\)
\(48\) 6.90176 0.604764i 0.996183 0.0872901i
\(49\) 0 0
\(50\) −3.37268 + 0.733208i −0.476969 + 0.103691i
\(51\) 0.795415 0.822169i 0.111380 0.115127i
\(52\) −8.07953 + 3.68718i −1.12043 + 0.511319i
\(53\) 10.5866i 1.45419i 0.686539 + 0.727093i \(0.259129\pi\)
−0.686539 + 0.727093i \(0.740871\pi\)
\(54\) −3.66226 + 6.37086i −0.498371 + 0.866964i
\(55\) 5.56526i 0.750419i
\(56\) 0 0
\(57\) −3.53976 + 3.65883i −0.468853 + 0.484623i
\(58\) 0.621065 + 2.85683i 0.0815498 + 0.375121i
\(59\) 3.48749 0.454033 0.227016 0.973891i \(-0.427103\pi\)
0.227016 + 0.973891i \(0.427103\pi\)
\(60\) 3.15767 8.90594i 0.407653 1.14975i
\(61\) −0.198422 −0.0254053 −0.0127027 0.999919i \(-0.504043\pi\)
−0.0127027 + 0.999919i \(0.504043\pi\)
\(62\) −0.932518 4.28949i −0.118430 0.544765i
\(63\) 0 0
\(64\) 2.26004 7.67413i 0.282505 0.959266i
\(65\) 12.1127i 1.50239i
\(66\) 4.24797 + 2.63256i 0.522889 + 0.324046i
\(67\) 4.76465i 0.582095i 0.956709 + 0.291048i \(0.0940038\pi\)
−0.956709 + 0.291048i \(0.905996\pi\)
\(68\) −0.548413 1.20171i −0.0665048 0.145729i
\(69\) 1.29763 + 1.25541i 0.156217 + 0.151133i
\(70\) 0 0
\(71\) −5.52774 −0.656022 −0.328011 0.944674i \(-0.606378\pi\)
−0.328011 + 0.944674i \(0.606378\pi\)
\(72\) 5.30423 + 6.62307i 0.625110 + 0.780537i
\(73\) −3.03582 −0.355316 −0.177658 0.984092i \(-0.556852\pi\)
−0.177658 + 0.984092i \(0.556852\pi\)
\(74\) −13.1561 + 2.86009i −1.52937 + 0.332479i
\(75\) −3.03808 2.93921i −0.350807 0.339391i
\(76\) 2.44055 + 5.34786i 0.279950 + 0.613442i
\(77\) 0 0
\(78\) −9.24562 5.72971i −1.04686 0.648762i
\(79\) 10.9131i 1.22782i −0.789375 0.613911i \(-0.789595\pi\)
0.789375 0.613911i \(-0.210405\pi\)
\(80\) −8.24211 7.14958i −0.921496 0.799347i
\(81\) −8.98031 + 0.594941i −0.997813 + 0.0661045i
\(82\) 2.36103 + 10.8605i 0.260732 + 1.19934i
\(83\) 9.15881 1.00531 0.502655 0.864487i \(-0.332357\pi\)
0.502655 + 0.864487i \(0.332357\pi\)
\(84\) 0 0
\(85\) −1.80158 −0.195409
\(86\) −0.159397 0.733208i −0.0171882 0.0790639i
\(87\) −2.48966 + 2.57340i −0.266920 + 0.275898i
\(88\) 4.62106 3.45638i 0.492607 0.368452i
\(89\) 0.541243i 0.0573717i 0.999588 + 0.0286858i \(0.00913224\pi\)
−0.999588 + 0.0286858i \(0.990868\pi\)
\(90\) 11.2212 2.83110i 1.18282 0.298424i
\(91\) 0 0
\(92\) 1.89666 0.865562i 0.197741 0.0902411i
\(93\) 3.73818 3.86392i 0.387632 0.400670i
\(94\) −1.44055 + 0.313170i −0.148582 + 0.0323011i
\(95\) 8.01740 0.822568
\(96\) 9.35609 2.90922i 0.954902 0.296921i
\(97\) −6.91692 −0.702307 −0.351153 0.936318i \(-0.614210\pi\)
−0.351153 + 0.936318i \(0.614210\pi\)
\(98\) 0 0
\(99\) 0.202415 + 6.11739i 0.0203435 + 0.614821i
\(100\) −4.44055 + 2.02649i −0.444055 + 0.202649i
\(101\) 10.1313i 1.00810i −0.863675 0.504049i \(-0.831843\pi\)
0.863675 0.504049i \(-0.168157\pi\)
\(102\) 0.852209 1.37515i 0.0843813 0.136160i
\(103\) 7.32171i 0.721430i −0.932676 0.360715i \(-0.882533\pi\)
0.932676 0.360715i \(-0.117467\pi\)
\(104\) −10.0576 + 7.52275i −0.986234 + 0.737666i
\(105\) 0 0
\(106\) 3.18051 + 14.6300i 0.308919 + 1.42099i
\(107\) −17.5266 −1.69436 −0.847182 0.531303i \(-0.821703\pi\)
−0.847182 + 0.531303i \(0.821703\pi\)
\(108\) −3.14702 + 9.90435i −0.302823 + 0.953047i
\(109\) 0.638974 0.0612026 0.0306013 0.999532i \(-0.490258\pi\)
0.0306013 + 0.999532i \(0.490258\pi\)
\(110\) −1.67195 7.69082i −0.159415 0.733291i
\(111\) −11.8509 11.4653i −1.12484 1.08823i
\(112\) 0 0
\(113\) 10.7917i 1.01520i −0.861593 0.507600i \(-0.830533\pi\)
0.861593 0.507600i \(-0.169467\pi\)
\(114\) −3.79251 + 6.11970i −0.355201 + 0.573162i
\(115\) 2.84344i 0.265152i
\(116\) 1.71654 + 3.76137i 0.159377 + 0.349235i
\(117\) −0.440552 13.3144i −0.0407290 1.23091i
\(118\) 4.81949 1.04774i 0.443670 0.0964521i
\(119\) 0 0
\(120\) 1.68810 13.2561i 0.154102 1.21011i
\(121\) −6.83740 −0.621581
\(122\) −0.274206 + 0.0596114i −0.0248255 + 0.00539696i
\(123\) −9.46465 + 9.78300i −0.853399 + 0.882103i
\(124\) −2.57736 5.64763i −0.231454 0.507173i
\(125\) 6.98150i 0.624445i
\(126\) 0 0
\(127\) 10.9563i 0.972210i 0.873900 + 0.486105i \(0.161583\pi\)
−0.873900 + 0.486105i \(0.838417\pi\)
\(128\) 0.817708 11.2841i 0.0722759 0.997385i
\(129\) 0.638974 0.660466i 0.0562585 0.0581508i
\(130\) 3.63897 + 16.7389i 0.319159 + 1.46810i
\(131\) 22.1555 1.93574 0.967869 0.251454i \(-0.0809086\pi\)
0.967869 + 0.251454i \(0.0809086\pi\)
\(132\) 6.66131 + 2.36182i 0.579793 + 0.205570i
\(133\) 0 0
\(134\) 1.43143 + 6.58444i 0.123657 + 0.568809i
\(135\) 10.5071 + 9.51296i 0.904304 + 0.818746i
\(136\) −1.11890 1.49593i −0.0959446 0.128275i
\(137\) 14.5042i 1.23918i −0.784925 0.619591i \(-0.787299\pi\)
0.784925 0.619591i \(-0.212701\pi\)
\(138\) 2.17040 + 1.34505i 0.184757 + 0.114498i
\(139\) 5.78265i 0.490478i 0.969463 + 0.245239i \(0.0788665\pi\)
−0.969463 + 0.245239i \(0.921134\pi\)
\(140\) 0 0
\(141\) −1.29763 1.25541i −0.109280 0.105724i
\(142\) −7.63897 + 1.66068i −0.641048 + 0.139361i
\(143\) −9.05982 −0.757620
\(144\) 9.31986 + 7.55912i 0.776655 + 0.629927i
\(145\) 5.63897 0.468291
\(146\) −4.19530 + 0.912043i −0.347206 + 0.0754812i
\(147\) 0 0
\(148\) −17.3217 + 7.90492i −1.42383 + 0.649780i
\(149\) 13.8556i 1.13510i −0.823340 0.567548i \(-0.807892\pi\)
0.823340 0.567548i \(-0.192108\pi\)
\(150\) −5.08144 3.14908i −0.414898 0.257121i
\(151\) 11.7732i 0.958089i −0.877791 0.479045i \(-0.840983\pi\)
0.877791 0.479045i \(-0.159017\pi\)
\(152\) 4.97933 + 6.65718i 0.403877 + 0.539969i
\(153\) 1.98031 0.0655255i 0.160099 0.00529742i
\(154\) 0 0
\(155\) −8.46682 −0.680071
\(156\) −14.4982 5.14045i −1.16078 0.411565i
\(157\) −10.6827 −0.852571 −0.426285 0.904589i \(-0.640178\pi\)
−0.426285 + 0.904589i \(0.640178\pi\)
\(158\) −3.27860 15.0812i −0.260831 1.19980i
\(159\) −12.7497 + 13.1786i −1.01112 + 1.04513i
\(160\) −13.5380 7.40409i −1.07027 0.585345i
\(161\) 0 0
\(162\) −12.2315 + 3.52010i −0.960995 + 0.276565i
\(163\) 20.4787i 1.60402i 0.597313 + 0.802008i \(0.296235\pi\)
−0.597313 + 0.802008i \(0.703765\pi\)
\(164\) 6.52557 + 14.2992i 0.509561 + 1.11658i
\(165\) 6.70237 6.92781i 0.521779 0.539329i
\(166\) 12.6569 2.75156i 0.982365 0.213562i
\(167\) 22.4614 1.73811 0.869057 0.494712i \(-0.164727\pi\)
0.869057 + 0.494712i \(0.164727\pi\)
\(168\) 0 0
\(169\) 6.71850 0.516808
\(170\) −2.48966 + 0.541243i −0.190948 + 0.0415115i
\(171\) −8.81282 + 0.291602i −0.673933 + 0.0222994i
\(172\) −0.440552 0.965359i −0.0335917 0.0736079i
\(173\) 19.4303i 1.47726i 0.674112 + 0.738630i \(0.264527\pi\)
−0.674112 + 0.738630i \(0.735473\pi\)
\(174\) −2.66743 + 4.30424i −0.202217 + 0.326304i
\(175\) 0 0
\(176\) 5.34762 6.16479i 0.403092 0.464689i
\(177\) 4.34134 + 4.20007i 0.326315 + 0.315696i
\(178\) 0.162604 + 0.747963i 0.0121877 + 0.0560622i
\(179\) 5.03373 0.376239 0.188119 0.982146i \(-0.439761\pi\)
0.188119 + 0.982146i \(0.439761\pi\)
\(180\) 14.6564 7.28354i 1.09242 0.542883i
\(181\) 5.71850 0.425053 0.212526 0.977155i \(-0.431831\pi\)
0.212526 + 0.977155i \(0.431831\pi\)
\(182\) 0 0
\(183\) −0.247002 0.238964i −0.0182589 0.0176647i
\(184\) 2.36103 1.76596i 0.174057 0.130188i
\(185\) 25.9683i 1.90923i
\(186\) 4.00510 6.46274i 0.293668 0.473871i
\(187\) 1.34751i 0.0985399i
\(188\) −1.89666 + 0.865562i −0.138328 + 0.0631276i
\(189\) 0 0
\(190\) 11.0795 2.40865i 0.803793 0.174742i
\(191\) 9.81507 0.710193 0.355097 0.934830i \(-0.384448\pi\)
0.355097 + 0.934830i \(0.384448\pi\)
\(192\) 12.0555 6.83118i 0.870031 0.492998i
\(193\) 17.1591 1.23514 0.617568 0.786518i \(-0.288118\pi\)
0.617568 + 0.786518i \(0.288118\pi\)
\(194\) −9.55873 + 2.07803i −0.686277 + 0.149194i
\(195\) −14.5876 + 15.0782i −1.04464 + 1.07977i
\(196\) 0 0
\(197\) 11.0302i 0.785867i 0.919567 + 0.392934i \(0.128540\pi\)
−0.919567 + 0.392934i \(0.871460\pi\)
\(198\) 2.11756 + 8.39302i 0.150488 + 0.596466i
\(199\) 22.3042i 1.58110i 0.612398 + 0.790550i \(0.290205\pi\)
−0.612398 + 0.790550i \(0.709795\pi\)
\(200\) −5.52774 + 4.13454i −0.390870 + 0.292356i
\(201\) −5.73818 + 5.93119i −0.404740 + 0.418354i
\(202\) −3.04371 14.0007i −0.214155 0.985089i
\(203\) 0 0
\(204\) 0.764565 2.15639i 0.0535303 0.150978i
\(205\) 21.4370 1.49722
\(206\) −2.19964 10.1181i −0.153256 0.704964i
\(207\) 0.103419 + 3.12554i 0.00718813 + 0.217240i
\(208\) −11.6390 + 13.4175i −0.807018 + 0.930339i
\(209\) 5.99672i 0.414802i
\(210\) 0 0
\(211\) 17.9648i 1.23675i −0.785884 0.618374i \(-0.787792\pi\)
0.785884 0.618374i \(-0.212208\pi\)
\(212\) 8.79052 + 19.2622i 0.603736 + 1.32294i
\(213\) −6.88110 6.65718i −0.471485 0.456143i
\(214\) −24.2207 + 5.26548i −1.65569 + 0.359941i
\(215\) −1.44725 −0.0987014
\(216\) −1.37344 + 14.6326i −0.0934510 + 0.995624i
\(217\) 0 0
\(218\) 0.883020 0.191965i 0.0598057 0.0130015i
\(219\) −3.77908 3.65611i −0.255367 0.247057i
\(220\) −4.62106 10.1259i −0.311552 0.682689i
\(221\) 2.93283i 0.197284i
\(222\) −19.8216 12.2839i −1.33034 0.824441i
\(223\) 1.95751i 0.131084i 0.997850 + 0.0655422i \(0.0208777\pi\)
−0.997850 + 0.0655422i \(0.979122\pi\)
\(224\) 0 0
\(225\) −0.242130 7.31765i −0.0161420 0.487843i
\(226\) −3.24213 14.9135i −0.215663 0.992029i
\(227\) 18.1642 1.20560 0.602801 0.797892i \(-0.294051\pi\)
0.602801 + 0.797892i \(0.294051\pi\)
\(228\) −3.40248 + 9.59640i −0.225334 + 0.635537i
\(229\) −9.84529 −0.650595 −0.325297 0.945612i \(-0.605464\pi\)
−0.325297 + 0.945612i \(0.605464\pi\)
\(230\) −0.854247 3.92945i −0.0563274 0.259100i
\(231\) 0 0
\(232\) 3.50217 + 4.68228i 0.229929 + 0.307406i
\(233\) 26.2067i 1.71686i −0.512932 0.858430i \(-0.671441\pi\)
0.512932 0.858430i \(-0.328559\pi\)
\(234\) −4.60881 18.2672i −0.301288 1.19417i
\(235\) 2.84344i 0.185485i
\(236\) 6.34545 2.89581i 0.413053 0.188501i
\(237\) 13.1429 13.5850i 0.853724 0.882440i
\(238\) 0 0
\(239\) 16.9336 1.09535 0.547673 0.836692i \(-0.315514\pi\)
0.547673 + 0.836692i \(0.315514\pi\)
\(240\) −1.64964 18.8262i −0.106484 1.21522i
\(241\) 5.83740 0.376020 0.188010 0.982167i \(-0.439796\pi\)
0.188010 + 0.982167i \(0.439796\pi\)
\(242\) −9.44883 + 2.05414i −0.607394 + 0.132045i
\(243\) −11.8955 10.0746i −0.763095 0.646286i
\(244\) −0.361026 + 0.164758i −0.0231123 + 0.0105476i
\(245\) 0 0
\(246\) −10.1404 + 16.3629i −0.646531 + 1.04326i
\(247\) 13.0517i 0.830462i
\(248\) −5.25844 7.03035i −0.333911 0.446428i
\(249\) 11.4012 + 11.0302i 0.722520 + 0.699009i
\(250\) −2.09743 9.64798i −0.132653 0.610192i
\(251\) −10.1468 −0.640462 −0.320231 0.947340i \(-0.603760\pi\)
−0.320231 + 0.947340i \(0.603760\pi\)
\(252\) 0 0
\(253\) 2.12679 0.133710
\(254\) 3.29156 + 15.1408i 0.206531 + 0.950020i
\(255\) −2.24266 2.16968i −0.140441 0.135871i
\(256\) −2.26004 15.8396i −0.141252 0.989974i
\(257\) 11.9816i 0.747392i −0.927551 0.373696i \(-0.878090\pi\)
0.927551 0.373696i \(-0.121910\pi\)
\(258\) 0.684598 1.10469i 0.0426212 0.0687748i
\(259\) 0 0
\(260\) 10.0576 + 22.0388i 0.623749 + 1.36679i
\(261\) −6.19842 + 0.205096i −0.383673 + 0.0126951i
\(262\) 30.6175 6.65613i 1.89156 0.411217i
\(263\) 14.4440 0.890654 0.445327 0.895368i \(-0.353088\pi\)
0.445327 + 0.895368i \(0.353088\pi\)
\(264\) 9.91505 + 1.26264i 0.610229 + 0.0777101i
\(265\) 28.8775 1.77393
\(266\) 0 0
\(267\) −0.651832 + 0.673757i −0.0398915 + 0.0412332i
\(268\) 3.95629 + 8.66923i 0.241669 + 0.529557i
\(269\) 6.57131i 0.400660i −0.979728 0.200330i \(-0.935799\pi\)
0.979728 0.200330i \(-0.0642014\pi\)
\(270\) 17.3780 + 9.98969i 1.05759 + 0.607953i
\(271\) 0.0163458i 0.000992938i 1.00000 0.000496469i \(0.000158031\pi\)
−1.00000 0.000496469i \(0.999842\pi\)
\(272\) −1.99566 1.73112i −0.121005 0.104965i
\(273\) 0 0
\(274\) −4.35747 20.0439i −0.263245 1.21090i
\(275\) −4.97933 −0.300265
\(276\) 3.40344 + 1.20672i 0.204863 + 0.0726358i
\(277\) −18.3138 −1.10037 −0.550184 0.835044i \(-0.685442\pi\)
−0.550184 + 0.835044i \(0.685442\pi\)
\(278\) 1.73727 + 7.99125i 0.104194 + 0.479283i
\(279\) 9.30682 0.307948i 0.557185 0.0184364i
\(280\) 0 0
\(281\) 1.61190i 0.0961580i 0.998844 + 0.0480790i \(0.0153099\pi\)
−0.998844 + 0.0480790i \(0.984690\pi\)
\(282\) −2.17040 1.34505i −0.129246 0.0800963i
\(283\) 20.5745i 1.22303i −0.791234 0.611513i \(-0.790561\pi\)
0.791234 0.611513i \(-0.209439\pi\)
\(284\) −10.0576 + 4.58991i −0.596812 + 0.272361i
\(285\) 9.98031 + 9.65554i 0.591183 + 0.571945i
\(286\) −12.5201 + 2.72182i −0.740328 + 0.160944i
\(287\) 0 0
\(288\) 15.1504 + 7.64627i 0.892746 + 0.450561i
\(289\) 16.5638 0.974340
\(290\) 7.79269 1.69410i 0.457603 0.0994811i
\(291\) −8.61040 8.33021i −0.504751 0.488325i
\(292\) −5.52363 + 2.52077i −0.323246 + 0.147517i
\(293\) 11.6573i 0.681026i −0.940240 0.340513i \(-0.889399\pi\)
0.940240 0.340513i \(-0.110601\pi\)
\(294\) 0 0
\(295\) 9.51296i 0.553866i
\(296\) −21.5625 + 16.1280i −1.25330 + 0.937420i
\(297\) −7.11534 + 7.85889i −0.412874 + 0.456019i
\(298\) −4.16260 19.1476i −0.241133 1.10919i
\(299\) −4.62890 −0.267696
\(300\) −7.96829 2.82522i −0.460049 0.163114i
\(301\) 0 0
\(302\) −3.53699 16.2698i −0.203531 0.936221i
\(303\) 12.2013 12.6117i 0.700947 0.724524i
\(304\) 8.88110 + 7.70387i 0.509366 + 0.441847i
\(305\) 0.541243i 0.0309915i
\(306\) 2.71698 0.685493i 0.155319 0.0391870i
\(307\) 3.66039i 0.208909i 0.994530 + 0.104455i \(0.0333097\pi\)
−0.994530 + 0.104455i \(0.966690\pi\)
\(308\) 0 0
\(309\) 8.81771 9.11430i 0.501622 0.518494i
\(310\) −11.7006 + 2.54366i −0.664549 + 0.144470i
\(311\) 11.7475 0.666138 0.333069 0.942902i \(-0.391916\pi\)
0.333069 + 0.942902i \(0.391916\pi\)
\(312\) −21.5799 2.74811i −1.22172 0.155581i
\(313\) −14.8338 −0.838458 −0.419229 0.907880i \(-0.637700\pi\)
−0.419229 + 0.907880i \(0.637700\pi\)
\(314\) −14.7628 + 3.20937i −0.833111 + 0.181115i
\(315\) 0 0
\(316\) −9.06162 19.8563i −0.509756 1.11700i
\(317\) 8.30244i 0.466311i 0.972439 + 0.233156i \(0.0749052\pi\)
−0.972439 + 0.233156i \(0.925095\pi\)
\(318\) −13.6601 + 22.0423i −0.766020 + 1.23607i
\(319\) 4.21774i 0.236148i
\(320\) −20.9330 6.16479i −1.17019 0.344622i
\(321\) −21.8177 21.1077i −1.21775 1.17812i
\(322\) 0 0
\(323\) 1.94125 0.108014
\(324\) −15.8456 + 8.53922i −0.880309 + 0.474401i
\(325\) 10.8374 0.601151
\(326\) 6.15237 + 28.3002i 0.340748 + 1.56741i
\(327\) 0.795415 + 0.769531i 0.0439865 + 0.0425552i
\(328\) 13.3138 + 17.8000i 0.735130 + 0.982843i
\(329\) 0 0
\(330\) 7.18093 11.5873i 0.395297 0.637863i
\(331\) 15.2688i 0.839251i 0.907697 + 0.419625i \(0.137839\pi\)
−0.907697 + 0.419625i \(0.862161\pi\)
\(332\) 16.6643 7.60495i 0.914575 0.417376i
\(333\) −0.944497 28.5446i −0.0517581 1.56423i
\(334\) 31.0402 6.74801i 1.69844 0.369235i
\(335\) 12.9967 0.710087
\(336\) 0 0
\(337\) −16.9606 −0.923904 −0.461952 0.886905i \(-0.652851\pi\)
−0.461952 + 0.886905i \(0.652851\pi\)
\(338\) 9.28453 2.01842i 0.505012 0.109788i
\(339\) 12.9967 13.4339i 0.705885 0.729628i
\(340\) −3.27795 + 1.49593i −0.177772 + 0.0811280i
\(341\) 6.33287i 0.342944i
\(342\) −12.0911 + 3.05059i −0.653813 + 0.164957i
\(343\) 0 0
\(344\) −0.898834 1.20171i −0.0484619 0.0647918i
\(345\) 3.42442 3.53960i 0.184365 0.190566i
\(346\) 5.83740 + 26.8514i 0.313820 + 1.44354i
\(347\) −22.0565 −1.18406 −0.592029 0.805917i \(-0.701673\pi\)
−0.592029 + 0.805917i \(0.701673\pi\)
\(348\) −2.39310 + 6.74955i −0.128284 + 0.361814i
\(349\) −17.6748 −0.946110 −0.473055 0.881033i \(-0.656849\pi\)
−0.473055 + 0.881033i \(0.656849\pi\)
\(350\) 0 0
\(351\) 15.4864 17.1047i 0.826602 0.912982i
\(352\) 5.53799 10.1259i 0.295176 0.539713i
\(353\) 0.422020i 0.0224619i −0.999937 0.0112309i \(-0.996425\pi\)
0.999937 0.0112309i \(-0.00357499\pi\)
\(354\) 7.26126 + 4.49996i 0.385932 + 0.239170i
\(355\) 15.0782i 0.800269i
\(356\) 0.449417 + 0.984785i 0.0238190 + 0.0521935i
\(357\) 0 0
\(358\) 6.95629 1.51227i 0.367651 0.0799260i
\(359\) 14.4440 0.762324 0.381162 0.924508i \(-0.375524\pi\)
0.381162 + 0.924508i \(0.375524\pi\)
\(360\) 18.0660 14.4686i 0.952162 0.762560i
\(361\) 10.3610 0.545317
\(362\) 7.90259 1.71799i 0.415351 0.0902957i
\(363\) −8.51141 8.23443i −0.446733 0.432196i
\(364\) 0 0
\(365\) 8.28091i 0.433443i
\(366\) −0.413132 0.256027i −0.0215948 0.0133827i
\(367\) 21.8004i 1.13797i −0.822348 0.568985i \(-0.807336\pi\)
0.822348 0.568985i \(-0.192664\pi\)
\(368\) 2.73224 3.14976i 0.142428 0.164192i
\(369\) −23.5638 + 0.779689i −1.22668 + 0.0405890i
\(370\) 7.80158 + 35.8865i 0.405585 + 1.86565i
\(371\) 0 0
\(372\) 3.59320 10.1343i 0.186299 0.525440i
\(373\) 19.5201 1.01071 0.505356 0.862911i \(-0.331361\pi\)
0.505356 + 0.862911i \(0.331361\pi\)
\(374\) −0.404830 1.86218i −0.0209333 0.0962908i
\(375\) 8.40799 8.69080i 0.434187 0.448791i
\(376\) −2.36103 + 1.76596i −0.121761 + 0.0910724i
\(377\) 9.17983i 0.472785i
\(378\) 0 0
\(379\) 34.1136i 1.75230i 0.482038 + 0.876150i \(0.339897\pi\)
−0.482038 + 0.876150i \(0.660103\pi\)
\(380\) 14.5876 6.65718i 0.748326 0.341506i
\(381\) −13.1949 + 13.6387i −0.675994 + 0.698731i
\(382\) 13.5638 2.94871i 0.693984 0.150869i
\(383\) 8.21539 0.419787 0.209893 0.977724i \(-0.432688\pi\)
0.209893 + 0.977724i \(0.432688\pi\)
\(384\) 14.6076 13.0620i 0.745443 0.666570i
\(385\) 0 0
\(386\) 23.7127 5.15505i 1.20694 0.262385i
\(387\) 1.59083 0.0526381i 0.0808664 0.00267574i
\(388\) −12.5852 + 5.74341i −0.638919 + 0.291577i
\(389\) 4.79501i 0.243117i −0.992584 0.121558i \(-0.961211\pi\)
0.992584 0.121558i \(-0.0387891\pi\)
\(390\) −15.6291 + 25.2196i −0.791412 + 1.27704i
\(391\) 0.688481i 0.0348180i
\(392\) 0 0
\(393\) 27.5799 + 26.6824i 1.39122 + 1.34595i
\(394\) 3.31377 + 15.2430i 0.166945 + 0.767930i
\(395\) −29.7681 −1.49780
\(396\) 5.44782 + 10.9624i 0.273763 + 0.550883i
\(397\) 10.4012 0.522020 0.261010 0.965336i \(-0.415944\pi\)
0.261010 + 0.965336i \(0.415944\pi\)
\(398\) 6.70078 + 30.8229i 0.335880 + 1.54501i
\(399\) 0 0
\(400\) −6.39684 + 7.37435i −0.319842 + 0.368718i
\(401\) 11.5714i 0.577849i 0.957352 + 0.288924i \(0.0932976\pi\)
−0.957352 + 0.288924i \(0.906702\pi\)
\(402\) −6.14790 + 9.92043i −0.306630 + 0.494786i
\(403\) 13.7833i 0.686597i
\(404\) −8.41241 18.4337i −0.418533 0.917111i
\(405\) 1.62284 + 24.4959i 0.0806396 + 1.21721i
\(406\) 0 0
\(407\) −19.4233 −0.962777
\(408\) 0.408740 3.20969i 0.0202357 0.158903i
\(409\) 20.4370 1.01054 0.505272 0.862960i \(-0.331392\pi\)
0.505272 + 0.862960i \(0.331392\pi\)
\(410\) 29.6245 6.44026i 1.46305 0.318062i
\(411\) 17.4678 18.0553i 0.861623 0.890605i
\(412\) −6.07953 13.3218i −0.299517 0.656316i
\(413\) 0 0
\(414\) 1.08192 + 4.28822i 0.0531733 + 0.210755i
\(415\) 24.9828i 1.22636i
\(416\) −12.0533 + 22.0388i −0.590962 + 1.08054i
\(417\) −6.96418 + 7.19843i −0.341037 + 0.352509i
\(418\) 1.80158 + 8.28707i 0.0881181 + 0.405334i
\(419\) −21.9130 −1.07052 −0.535259 0.844688i \(-0.679786\pi\)
−0.535259 + 0.844688i \(0.679786\pi\)
\(420\) 0 0
\(421\) 14.1153 0.687940 0.343970 0.938981i \(-0.388228\pi\)
0.343970 + 0.938981i \(0.388228\pi\)
\(422\) −5.39712 24.8262i −0.262727 1.20852i
\(423\) −0.103419 3.12554i −0.00502841 0.151969i
\(424\) 17.9348 + 23.9782i 0.870992 + 1.16449i
\(425\) 1.61190i 0.0781887i
\(426\) −11.5092 7.13252i −0.557624 0.345572i
\(427\) 0 0
\(428\) −31.8895 + 14.5531i −1.54144 + 0.703451i
\(429\) −11.2779 10.9109i −0.544504 0.526786i
\(430\) −2.00000 + 0.434792i −0.0964486 + 0.0209675i
\(431\) 29.1207 1.40270 0.701348 0.712820i \(-0.252582\pi\)
0.701348 + 0.712820i \(0.252582\pi\)
\(432\) 2.49803 + 20.6339i 0.120187 + 0.992751i
\(433\) 26.1153 1.25502 0.627512 0.778607i \(-0.284073\pi\)
0.627512 + 0.778607i \(0.284073\pi\)
\(434\) 0 0
\(435\) 7.01957 + 6.79115i 0.336563 + 0.325611i
\(436\) 1.16260 0.530567i 0.0556786 0.0254095i
\(437\) 3.06388i 0.146565i
\(438\) −6.32084 3.91716i −0.302021 0.187169i
\(439\) 18.3832i 0.877384i 0.898637 + 0.438692i \(0.144558\pi\)
−0.898637 + 0.438692i \(0.855442\pi\)
\(440\) −9.42811 12.6051i −0.449467 0.600922i
\(441\) 0 0
\(442\) 0.881103 + 4.05298i 0.0419098 + 0.192781i
\(443\) −8.26883 −0.392864 −0.196432 0.980517i \(-0.562935\pi\)
−0.196432 + 0.980517i \(0.562935\pi\)
\(444\) −31.0826 11.0206i −1.47512 0.523014i
\(445\) 1.47637 0.0699866
\(446\) 0.588089 + 2.70515i 0.0278468 + 0.128092i
\(447\) 16.6866 17.2479i 0.789251 0.815798i
\(448\) 0 0
\(449\) 24.1061i 1.13764i −0.822463 0.568818i \(-0.807401\pi\)
0.822463 0.568818i \(-0.192599\pi\)
\(450\) −2.53303 10.0398i −0.119408 0.473279i
\(451\) 16.0341i 0.755015i
\(452\) −8.96082 19.6354i −0.421482 0.923572i
\(453\) 14.1787 14.6556i 0.666175 0.688582i
\(454\) 25.1018 5.45703i 1.17808 0.256111i
\(455\) 0 0
\(456\) −1.81898 + 14.2838i −0.0851815 + 0.668900i
\(457\) −18.6906 −0.874308 −0.437154 0.899387i \(-0.644014\pi\)
−0.437154 + 0.899387i \(0.644014\pi\)
\(458\) −13.6055 + 2.95779i −0.635745 + 0.138209i
\(459\) 2.54407 + 2.30337i 0.118747 + 0.107512i
\(460\) −2.36103 5.17360i −0.110083 0.241220i
\(461\) 16.3664i 0.762260i 0.924521 + 0.381130i \(0.124465\pi\)
−0.924521 + 0.381130i \(0.875535\pi\)
\(462\) 0 0
\(463\) 11.3643i 0.528142i −0.964503 0.264071i \(-0.914935\pi\)
0.964503 0.264071i \(-0.0850653\pi\)
\(464\) 6.24645 + 5.41845i 0.289984 + 0.251545i
\(465\) −10.5398 10.1968i −0.488770 0.472865i
\(466\) −7.87321 36.2160i −0.364720 1.67767i
\(467\) −36.2937 −1.67947 −0.839736 0.542995i \(-0.817290\pi\)
−0.839736 + 0.542995i \(0.817290\pi\)
\(468\) −11.8571 23.8595i −0.548093 1.10291i
\(469\) 0 0
\(470\) 0.854247 + 3.92945i 0.0394035 + 0.181252i
\(471\) −13.2981 12.8654i −0.612746 0.592806i
\(472\) 7.89901 5.90817i 0.363582 0.271945i
\(473\) 1.08249i 0.0497728i
\(474\) 14.0814 22.7221i 0.646778 1.04366i
\(475\) 7.17330i 0.329134i
\(476\) 0 0
\(477\) −31.7425 + 1.05031i −1.45339 + 0.0480904i
\(478\) 23.4012 5.08733i 1.07035 0.232689i
\(479\) −11.1991 −0.511698 −0.255849 0.966717i \(-0.582355\pi\)
−0.255849 + 0.966717i \(0.582355\pi\)
\(480\) −7.93559 25.5210i −0.362208 1.16487i
\(481\) 42.2744 1.92755
\(482\) 8.06690 1.75371i 0.367437 0.0798794i
\(483\) 0 0
\(484\) −12.4406 + 5.67738i −0.565480 + 0.258063i
\(485\) 18.8675i 0.856731i
\(486\) −19.4655 10.3487i −0.882971 0.469427i
\(487\) 9.93825i 0.450345i 0.974319 + 0.225173i \(0.0722946\pi\)
−0.974319 + 0.225173i \(0.927705\pi\)
\(488\) −0.449417 + 0.336147i −0.0203441 + 0.0152167i
\(489\) −24.6630 + 25.4926i −1.11530 + 1.15281i
\(490\) 0 0
\(491\) 2.64307 0.119280 0.0596400 0.998220i \(-0.481005\pi\)
0.0596400 + 0.998220i \(0.481005\pi\)
\(492\) −9.09757 + 25.6589i −0.410150 + 1.15679i
\(493\) 1.36536 0.0614928
\(494\) −3.92110 18.0366i −0.176418 0.811507i
\(495\) 16.6866 0.552135i 0.750008 0.0248166i
\(496\) −9.37894 8.13571i −0.421127 0.365304i
\(497\) 0 0
\(498\) 19.0695 + 11.8178i 0.854523 + 0.529566i
\(499\) 19.8429i 0.888289i 0.895955 + 0.444145i \(0.146492\pi\)
−0.895955 + 0.444145i \(0.853508\pi\)
\(500\) −5.79703 12.7028i −0.259251 0.568084i
\(501\) 27.9606 + 27.0508i 1.24919 + 1.20854i
\(502\) −14.0222 + 3.04838i −0.625843 + 0.136056i
\(503\) 3.07284 0.137011 0.0685056 0.997651i \(-0.478177\pi\)
0.0685056 + 0.997651i \(0.478177\pi\)
\(504\) 0 0
\(505\) −27.6354 −1.22976
\(506\) 2.93908 0.638945i 0.130658 0.0284046i
\(507\) 8.36340 + 8.09124i 0.371432 + 0.359345i
\(508\) 9.09743 + 19.9348i 0.403633 + 0.884462i
\(509\) 16.8861i 0.748465i 0.927335 + 0.374233i \(0.122094\pi\)
−0.927335 + 0.374233i \(0.877906\pi\)
\(510\) −3.75104 2.32460i −0.166099 0.102935i
\(511\) 0 0
\(512\) −7.88187 21.2103i −0.348333 0.937371i
\(513\) −11.3217 10.2505i −0.499863 0.452570i
\(514\) −3.59960 16.5578i −0.158772 0.730333i
\(515\) −19.9717 −0.880059
\(516\) 0.614192 1.73228i 0.0270383 0.0762592i
\(517\) −2.12679 −0.0935360
\(518\) 0 0
\(519\) −23.4004 + 24.1875i −1.02716 + 1.06171i
\(520\) 20.5201 + 27.4346i 0.899865 + 1.20309i
\(521\) 31.5430i 1.38192i −0.722892 0.690961i \(-0.757188\pi\)
0.722892 0.690961i \(-0.242812\pi\)
\(522\) −8.50420 + 2.14560i −0.372219 + 0.0939106i
\(523\) 33.5304i 1.46618i −0.680129 0.733092i \(-0.738076\pi\)
0.680129 0.733092i \(-0.261924\pi\)
\(524\) 40.3117 18.3967i 1.76103 0.803662i
\(525\) 0 0
\(526\) 19.9606 4.33936i 0.870325 0.189205i
\(527\) −2.05007 −0.0893023
\(528\) 14.0813 1.23387i 0.612809 0.0536972i
\(529\) −21.9134 −0.952755
\(530\) 39.9069 8.67560i 1.73344 0.376844i
\(531\) 0.345998 + 10.4568i 0.0150150 + 0.453785i
\(532\) 0 0
\(533\) 34.8978i 1.51159i
\(534\) −0.698374 + 1.12692i −0.0302216 + 0.0487664i
\(535\) 47.8081i 2.06692i
\(536\) 8.07181 + 10.7917i 0.348649 + 0.466132i
\(537\) 6.26615 + 6.06224i 0.270404 + 0.261605i
\(538\) −1.97420 9.08112i −0.0851139 0.391515i
\(539\) 0 0
\(540\) 27.0165 + 8.58426i 1.16260 + 0.369408i
\(541\) −23.6791 −1.01805 −0.509023 0.860753i \(-0.669993\pi\)
−0.509023 + 0.860753i \(0.669993\pi\)
\(542\) 0.00491073 + 0.0225889i 0.000210934 + 0.000970275i
\(543\) 7.11857 + 6.88692i 0.305487 + 0.295546i
\(544\) −3.27795 1.79275i −0.140541 0.0768635i
\(545\) 1.74295i 0.0746599i
\(546\) 0 0
\(547\) 10.9063i 0.466318i −0.972439 0.233159i \(-0.925094\pi\)
0.972439 0.233159i \(-0.0749063\pi\)
\(548\) −12.0435 26.3903i −0.514472 1.12734i
\(549\) −0.0196857 0.594941i −0.000840163 0.0253914i
\(550\) −6.88110 + 1.49593i −0.293411 + 0.0637865i
\(551\) −6.07615 −0.258853
\(552\) 5.06587 + 0.645116i 0.215618 + 0.0274580i
\(553\) 0 0
\(554\) −25.3084 + 5.50196i −1.07525 + 0.233756i
\(555\) −31.2742 + 32.3261i −1.32752 + 1.37217i
\(556\) 4.80158 + 10.5215i 0.203632 + 0.446209i
\(557\) 10.9443i 0.463725i 0.972749 + 0.231862i \(0.0744819\pi\)
−0.972749 + 0.231862i \(0.925518\pi\)
\(558\) 12.7689 3.22159i 0.540551 0.136381i
\(559\) 2.35601i 0.0996485i
\(560\) 0 0
\(561\) 1.62284 1.67743i 0.0685164 0.0708210i
\(562\) 0.484259 + 2.22754i 0.0204272 + 0.0939632i
\(563\) 28.2949 1.19249 0.596245 0.802803i \(-0.296659\pi\)
0.596245 + 0.802803i \(0.296659\pi\)
\(564\) −3.40344 1.20672i −0.143311 0.0508119i
\(565\) −29.4370 −1.23842
\(566\) −6.18114 28.4326i −0.259813 1.19511i
\(567\) 0 0
\(568\) −12.5201 + 9.36455i −0.525331 + 0.392928i
\(569\) 0.951435i 0.0398862i −0.999801 0.0199431i \(-0.993651\pi\)
0.999801 0.0199431i \(-0.00634851\pi\)
\(570\) 16.6929 + 10.3450i 0.699190 + 0.433303i
\(571\) 16.3835i 0.685630i −0.939403 0.342815i \(-0.888620\pi\)
0.939403 0.342815i \(-0.111380\pi\)
\(572\) −16.4842 + 7.52275i −0.689240 + 0.314542i
\(573\) 12.2181 + 11.8205i 0.510419 + 0.493809i
\(574\) 0 0
\(575\) −2.54407 −0.106095
\(576\) 23.2340 + 6.01505i 0.968084 + 0.250627i
\(577\) −9.96852 −0.414995 −0.207497 0.978236i \(-0.566532\pi\)
−0.207497 + 0.978236i \(0.566532\pi\)
\(578\) 22.8901 4.97621i 0.952101 0.206983i
\(579\) 21.3601 + 20.6650i 0.887697 + 0.858810i
\(580\) 10.2600 4.68228i 0.426025 0.194421i
\(581\) 0 0
\(582\) −14.4016 8.92500i −0.596967 0.369953i
\(583\) 21.5993i 0.894553i
\(584\) −6.87599 + 5.14298i −0.284530 + 0.212818i
\(585\) −36.3181 + 1.20171i −1.50157 + 0.0496846i
\(586\) −3.50217 16.1096i −0.144673 0.665482i
\(587\) −29.5354 −1.21905 −0.609527 0.792765i \(-0.708641\pi\)
−0.609527 + 0.792765i \(0.708641\pi\)
\(588\) 0 0
\(589\) 9.12323 0.375916
\(590\) −2.85795 13.1463i −0.117660 0.541224i
\(591\) −13.2839 + 13.7307i −0.546426 + 0.564806i
\(592\) −24.9527 + 28.7658i −1.02555 + 1.18227i
\(593\) 21.0659i 0.865071i −0.901617 0.432536i \(-0.857619\pi\)
0.901617 0.432536i \(-0.142381\pi\)
\(594\) −7.47191 + 12.9981i −0.306576 + 0.533319i
\(595\) 0 0
\(596\) −11.5049 25.2101i −0.471259 1.03265i
\(597\) −26.8614 + 27.7649i −1.09936 + 1.13634i
\(598\) −6.39684 + 1.39065i −0.261586 + 0.0568679i
\(599\) −39.7366 −1.62359 −0.811796 0.583940i \(-0.801510\pi\)
−0.811796 + 0.583940i \(0.801510\pi\)
\(600\) −11.8604 1.51037i −0.484200 0.0616608i
\(601\) −36.5567 −1.49118 −0.745589 0.666406i \(-0.767832\pi\)
−0.745589 + 0.666406i \(0.767832\pi\)
\(602\) 0 0
\(603\) −14.2861 + 0.472706i −0.581777 + 0.0192501i
\(604\) −9.77578 21.4212i −0.397771 0.871615i
\(605\) 18.6506i 0.758256i
\(606\) 13.0725 21.0942i 0.531035 0.856892i
\(607\) 13.1733i 0.534690i 0.963601 + 0.267345i \(0.0861463\pi\)
−0.963601 + 0.267345i \(0.913854\pi\)
\(608\) 14.5876 + 7.97812i 0.591604 + 0.323555i
\(609\) 0 0
\(610\) 0.162604 + 0.747963i 0.00658365 + 0.0302841i
\(611\) 4.62890 0.187265
\(612\) 3.54875 1.76356i 0.143450 0.0712877i
\(613\) −19.0079 −0.767721 −0.383861 0.923391i \(-0.625406\pi\)
−0.383861 + 0.923391i \(0.625406\pi\)
\(614\) 1.09968 + 5.05841i 0.0443795 + 0.204141i
\(615\) 26.6855 + 25.8171i 1.07606 + 1.04104i
\(616\) 0 0
\(617\) 41.6979i 1.67869i 0.543596 + 0.839347i \(0.317062\pi\)
−0.543596 + 0.839347i \(0.682938\pi\)
\(618\) 9.44731 15.2444i 0.380027 0.613222i
\(619\) 13.4107i 0.539021i 0.962997 + 0.269511i \(0.0868619\pi\)
−0.962997 + 0.269511i \(0.913138\pi\)
\(620\) −15.4053 + 7.03035i −0.618690 + 0.282346i
\(621\) −3.63542 + 4.01532i −0.145884 + 0.161129i
\(622\) 16.2342 3.52926i 0.650934 0.141511i
\(623\) 0 0
\(624\) −30.6476 + 2.68549i −1.22689 + 0.107505i
\(625\) −31.2465 −1.24986
\(626\) −20.4994 + 4.45649i −0.819321 + 0.178117i
\(627\) −7.22199 + 7.46490i −0.288418 + 0.298120i
\(628\) −19.4370 + 8.87028i −0.775621 + 0.353963i
\(629\) 6.28769i 0.250707i
\(630\) 0 0
\(631\) 10.7225i 0.426856i −0.976959 0.213428i \(-0.931537\pi\)
0.976959 0.213428i \(-0.0684629\pi\)
\(632\) −18.4879 24.7177i −0.735410 0.983218i
\(633\) 21.6354 22.3631i 0.859931 0.888855i
\(634\) 2.49428 + 11.4734i 0.0990604 + 0.455668i
\(635\) 29.8858 1.18598
\(636\) −12.2552 + 34.5649i −0.485952 + 1.37059i
\(637\) 0 0
\(638\) 1.26713 + 5.82864i 0.0501660 + 0.230758i
\(639\) −0.548413 16.5741i −0.0216949 0.655663i
\(640\) −30.7801 2.23049i −1.21669 0.0881680i
\(641\) 23.9750i 0.946957i 0.880805 + 0.473479i \(0.157002\pi\)
−0.880805 + 0.473479i \(0.842998\pi\)
\(642\) −36.4920 22.6149i −1.44022 0.892538i
\(643\) 24.5118i 0.966649i 0.875441 + 0.483325i \(0.160571\pi\)
−0.875441 + 0.483325i \(0.839429\pi\)
\(644\) 0 0
\(645\) −1.80158 1.74295i −0.0709371 0.0686287i
\(646\) 2.68268 0.583205i 0.105549 0.0229459i
\(647\) −42.4331 −1.66822 −0.834108 0.551601i \(-0.814017\pi\)
−0.834108 + 0.551601i \(0.814017\pi\)
\(648\) −19.3321 + 16.5611i −0.759437 + 0.650581i
\(649\) 7.11534 0.279302
\(650\) 14.9766 3.25585i 0.587430 0.127705i
\(651\) 0 0
\(652\) 17.0043 + 37.2608i 0.665941 + 1.45924i
\(653\) 21.3784i 0.836600i 0.908309 + 0.418300i \(0.137374\pi\)
−0.908309 + 0.418300i \(0.862626\pi\)
\(654\) 1.33040 + 0.824477i 0.0520227 + 0.0322396i
\(655\) 60.4345i 2.36137i
\(656\) 23.7464 + 20.5987i 0.927140 + 0.804243i
\(657\) −0.301187 9.10247i −0.0117504 0.355121i
\(658\) 0 0
\(659\) −0.835578 −0.0325495 −0.0162748 0.999868i \(-0.505181\pi\)
−0.0162748 + 0.999868i \(0.505181\pi\)
\(660\) 6.44242 18.1703i 0.250771 0.707278i
\(661\) 18.0043 0.700288 0.350144 0.936696i \(-0.386133\pi\)
0.350144 + 0.936696i \(0.386133\pi\)
\(662\) 4.58717 + 21.1005i 0.178286 + 0.820095i
\(663\) −3.53208 + 3.65088i −0.137175 + 0.141789i
\(664\) 20.7443 15.5160i 0.805035 0.602136i
\(665\) 0 0
\(666\) −9.88081 39.1630i −0.382874 1.51754i
\(667\) 2.15496i 0.0834403i
\(668\) 40.8682 18.6506i 1.58124 0.721614i
\(669\) −2.35747 + 2.43677i −0.0911452 + 0.0942109i
\(670\) 17.9606 3.90457i 0.693880 0.150847i
\(671\) −0.404830 −0.0156283
\(672\) 0 0
\(673\) 3.35747 0.129421 0.0647105 0.997904i \(-0.479388\pi\)
0.0647105 + 0.997904i \(0.479388\pi\)
\(674\) −23.4385 + 5.09544i −0.902817 + 0.196269i
\(675\) 8.51141 9.40084i 0.327604 0.361839i
\(676\) 12.2242 5.57865i 0.470162 0.214563i
\(677\) 36.8577i 1.41656i −0.705933 0.708278i \(-0.749472\pi\)
0.705933 0.708278i \(-0.250528\pi\)
\(678\) 13.9247 22.4693i 0.534776 0.862929i
\(679\) 0 0
\(680\) −4.08049 + 3.05206i −0.156480 + 0.117041i
\(681\) 22.6114 + 21.8756i 0.866471 + 0.838275i
\(682\) −1.90257 8.75161i −0.0728530 0.335116i
\(683\) −4.38633 −0.167838 −0.0839191 0.996473i \(-0.526744\pi\)
−0.0839191 + 0.996473i \(0.526744\pi\)
\(684\) −15.7927 + 7.84822i −0.603848 + 0.300084i
\(685\) −39.5638 −1.51165
\(686\) 0 0
\(687\) −12.2557 11.8569i −0.467585 0.452369i
\(688\) −1.60316 1.39065i −0.0611197 0.0530180i
\(689\) 47.0105i 1.79096i
\(690\) 3.66893 5.92029i 0.139674 0.225382i
\(691\) 40.2595i 1.53154i −0.643113 0.765771i \(-0.722358\pi\)
0.643113 0.765771i \(-0.277642\pi\)
\(692\) 16.1338 + 35.3532i 0.613315 + 1.34393i
\(693\) 0 0
\(694\) −30.4807 + 6.62639i −1.15703 + 0.251534i
\(695\) 15.7736 0.598325
\(696\) −1.27936 + 10.0464i −0.0484942 + 0.380807i
\(697\) 5.19053 0.196605
\(698\) −24.4254 + 5.30999i −0.924515 + 0.200986i
\(699\) 31.5614 32.6229i 1.19376 1.23391i
\(700\) 0 0
\(701\) 25.7395i 0.972168i 0.873912 + 0.486084i \(0.161575\pi\)
−0.873912 + 0.486084i \(0.838425\pi\)
\(702\) 16.2625 28.2901i 0.613787 1.06774i
\(703\) 27.9815i 1.05534i
\(704\) 4.61103 15.6571i 0.173785 0.590099i
\(705\) −3.42442 + 3.53960i −0.128971 + 0.133309i
\(706\) −0.126786 0.583205i −0.00477167 0.0219492i
\(707\) 0 0
\(708\) 11.3865 + 4.03717i 0.427931 + 0.151726i
\(709\) 15.0079 0.563633 0.281817 0.959468i \(-0.409063\pi\)
0.281817 + 0.959468i \(0.409063\pi\)
\(710\) 4.52991 + 20.8371i 0.170004 + 0.782003i
\(711\) 32.7214 1.08270i 1.22715 0.0406045i
\(712\) 0.916921 + 1.22589i 0.0343631 + 0.0459422i
\(713\) 3.23563i 0.121175i
\(714\) 0 0
\(715\) 24.7128i 0.924207i
\(716\) 9.15881 4.17972i 0.342281 0.156203i
\(717\) 21.0795 + 20.3936i 0.787229 + 0.761612i
\(718\) 19.9606 4.33936i 0.744924 0.161944i
\(719\) −38.5506 −1.43769 −0.718847 0.695168i \(-0.755330\pi\)
−0.718847 + 0.695168i \(0.755330\pi\)
\(720\) 20.6193 25.4221i 0.768436 0.947427i
\(721\) 0 0
\(722\) 14.3183 3.11274i 0.532871 0.115844i
\(723\) 7.26657 + 7.03011i 0.270247 + 0.261453i
\(724\) 10.4047 4.74831i 0.386689 0.176470i
\(725\) 5.04528i 0.187377i
\(726\) −14.2361 8.82239i −0.528350 0.327430i
\(727\) 50.3452i 1.86720i −0.358318 0.933600i \(-0.616650\pi\)
0.358318 0.933600i \(-0.383350\pi\)
\(728\) 0 0
\(729\) −2.67479 26.8672i −0.0990664 0.995081i
\(730\) 2.48781 + 11.4437i 0.0920781 + 0.423550i
\(731\) −0.350421 −0.0129608
\(732\) −0.647839 0.229696i −0.0239448 0.00848982i
\(733\) −12.5516 −0.463602 −0.231801 0.972763i \(-0.574462\pi\)
−0.231801 + 0.972763i \(0.574462\pi\)
\(734\) −6.54943 30.1267i −0.241744 1.11200i
\(735\) 0 0
\(736\) 2.82951 5.17360i 0.104297 0.190701i
\(737\) 9.72107i 0.358080i
\(738\) −32.3294 + 8.15668i −1.19006 + 0.300252i
\(739\) 6.26058i 0.230299i 0.993348 + 0.115150i \(0.0367347\pi\)
−0.993348 + 0.115150i \(0.963265\pi\)
\(740\) 21.5625 + 47.2489i 0.792655 + 1.73691i
\(741\) 15.7185 16.2472i 0.577433 0.596856i
\(742\) 0 0
\(743\) 34.2633 1.25700 0.628498 0.777811i \(-0.283670\pi\)
0.628498 + 0.777811i \(0.283670\pi\)
\(744\) 1.92094 15.0845i 0.0704252 0.553024i
\(745\) −37.7945 −1.38468
\(746\) 26.9755 5.86436i 0.987642 0.214710i
\(747\) 0.908655 + 27.4614i 0.0332460 + 1.00476i
\(748\) −1.11890 2.45178i −0.0409109 0.0896461i
\(749\) 0 0
\(750\) 9.00834 14.5361i 0.328938 0.530783i
\(751\) 29.0159i 1.05880i −0.848371 0.529402i \(-0.822416\pi\)
0.848371 0.529402i \(-0.177584\pi\)
\(752\) −2.73224 + 3.14976i −0.0996346 + 0.114860i
\(753\) −12.6311 12.2201i −0.460302 0.445324i
\(754\) −2.75787 12.6859i −0.100436 0.461994i
\(755\) −32.1142 −1.16876
\(756\) 0 0
\(757\) −10.5717 −0.384234 −0.192117 0.981372i \(-0.561535\pi\)
−0.192117 + 0.981372i \(0.561535\pi\)
\(758\) 10.2487 + 47.1428i 0.372249 + 1.71230i
\(759\) 2.64749 + 2.56134i 0.0960978 + 0.0929707i
\(760\) 18.1591 13.5823i 0.658698 0.492682i
\(761\) 38.8724i 1.40913i 0.709642 + 0.704563i \(0.248857\pi\)
−0.709642 + 0.704563i \(0.751143\pi\)
\(762\) −14.1370 + 22.8119i −0.512130 + 0.826387i
\(763\) 0 0
\(764\) 17.8584 8.14986i 0.646094 0.294852i
\(765\) −0.178736 5.40178i −0.00646223 0.195302i
\(766\) 11.3531 2.46813i 0.410205 0.0891771i
\(767\) −15.4864 −0.559181
\(768\) 16.2626 22.4394i 0.586826 0.809713i
\(769\) 25.5953 0.922989 0.461494 0.887143i \(-0.347313\pi\)
0.461494 + 0.887143i \(0.347313\pi\)
\(770\) 0 0
\(771\) 14.4297 14.9151i 0.519674 0.537154i
\(772\) 31.2207 14.2479i 1.12366 0.512792i
\(773\) 28.4673i 1.02390i 0.859016 + 0.511948i \(0.171076\pi\)
−0.859016 + 0.511948i \(0.828924\pi\)
\(774\) 2.18261 0.550671i 0.0784522 0.0197935i
\(775\) 7.57540i 0.272116i
\(776\) −15.6665 + 11.7180i −0.562395 + 0.420651i
\(777\) 0 0
\(778\) −1.44055 6.62639i −0.0516463 0.237568i
\(779\) −23.0990 −0.827606
\(780\) −14.0218 + 39.5473i −0.502061 + 1.41602i
\(781\) −11.2779 −0.403557
\(782\) −0.206838 0.951435i −0.00739653 0.0340233i
\(783\) −7.96299 7.20959i −0.284574 0.257650i
\(784\) 0 0
\(785\) 29.1395i 1.04004i
\(786\) 46.1298 + 28.5876i 1.64539 + 1.01969i
\(787\) 31.9387i 1.13849i −0.822167 0.569247i \(-0.807235\pi\)
0.822167 0.569247i \(-0.192765\pi\)
\(788\) 9.15881 + 20.0693i 0.326269 + 0.714938i
\(789\) 17.9803 + 17.3952i 0.640116 + 0.619286i
\(790\) −41.1376 + 8.94315i −1.46361 + 0.318183i
\(791\) 0 0
\(792\) 10.8219 + 13.5127i 0.384541 + 0.480153i
\(793\) 0.881103 0.0312889
\(794\) 14.3738 3.12480i 0.510105 0.110895i
\(795\) 35.9477 + 34.7779i 1.27493 + 1.23345i
\(796\) 18.5201 + 40.5821i 0.656427 + 1.43840i
\(797\) 37.7330i 1.33657i 0.743905 + 0.668285i \(0.232971\pi\)
−0.743905 + 0.668285i \(0.767029\pi\)
\(798\) 0 0
\(799\) 0.688481i 0.0243567i
\(800\) −6.62456 + 12.1127i −0.234214 + 0.428247i
\(801\) −1.62284 + 0.0536973i −0.0573403 + 0.00189730i
\(802\) 3.47637 + 15.9909i 0.122755 + 0.564660i
\(803\) −6.19382 −0.218575
\(804\) −5.51563 + 15.5564i −0.194521 + 0.548631i
\(805\) 0 0
\(806\) 4.14089 + 19.0477i 0.145857 + 0.670926i
\(807\) 7.91398 8.18017i 0.278585 0.287956i
\(808\) −17.1634 22.9468i −0.603806 0.807267i
\(809\) 26.2067i 0.921379i −0.887561 0.460690i \(-0.847602\pi\)
0.887561 0.460690i \(-0.152398\pi\)
\(810\) 9.60191 + 33.3642i 0.337377 + 1.17230i
\(811\) 32.1734i 1.12976i 0.825172 + 0.564881i \(0.191078\pi\)
−0.825172 + 0.564881i \(0.808922\pi\)
\(812\) 0 0
\(813\) −0.0196857 + 0.0203478i −0.000690406 + 0.000713628i
\(814\) −26.8417 + 5.83529i −0.940802 + 0.204527i
\(815\) 55.8606 1.95671
\(816\) −0.399426 4.55838i −0.0139827 0.159575i
\(817\) 1.55945 0.0545582
\(818\) 28.2426 6.13983i 0.987479 0.214674i
\(819\) 0 0
\(820\) 39.0043 17.8000i 1.36209 0.621604i
\(821\) 22.3847i 0.781230i −0.920554 0.390615i \(-0.872262\pi\)
0.920554 0.390615i \(-0.127738\pi\)
\(822\) 18.7150 30.1991i 0.652762 1.05332i
\(823\) 32.8946i 1.14663i 0.819334 + 0.573317i \(0.194344\pi\)
−0.819334 + 0.573317i \(0.805656\pi\)
\(824\) −12.4037 16.5833i −0.432104 0.577708i
\(825\) −6.19842 5.99672i −0.215801 0.208779i
\(826\) 0 0
\(827\) −16.7455 −0.582297 −0.291148 0.956678i \(-0.594037\pi\)
−0.291148 + 0.956678i \(0.594037\pi\)
\(828\) 2.78344 + 5.60100i 0.0967311 + 0.194648i
\(829\) −0.948403 −0.0329394 −0.0164697 0.999864i \(-0.505243\pi\)
−0.0164697 + 0.999864i \(0.505243\pi\)
\(830\) −7.50553 34.5247i −0.260521 1.19837i
\(831\) −22.7976 22.0557i −0.790838 0.765104i
\(832\) −10.0358 + 34.0774i −0.347929 + 1.18142i
\(833\) 0 0
\(834\) −7.46144 + 12.0400i −0.258369 + 0.416911i
\(835\) 61.2687i 2.12029i
\(836\) 4.97933 + 10.9109i 0.172214 + 0.377363i
\(837\) 11.9563 + 10.8251i 0.413270 + 0.374169i
\(838\) −30.2823 + 6.58325i −1.04608 + 0.227415i
\(839\) −35.5384 −1.22692 −0.613461 0.789725i \(-0.710223\pi\)
−0.613461 + 0.789725i \(0.710223\pi\)
\(840\) 0 0
\(841\) 24.7264 0.852634
\(842\) 19.5065 4.24063i 0.672238 0.146142i
\(843\) −1.94125 + 2.00655i −0.0668602 + 0.0691091i
\(844\) −14.9169 32.6867i −0.513462 1.12512i
\(845\) 18.3263i 0.630444i
\(846\) −1.08192 4.28822i −0.0371970 0.147432i
\(847\) 0 0
\(848\) 31.9885 + 27.7482i 1.09849 + 0.952879i
\(849\) 24.7783 25.6118i 0.850390 0.878994i
\(850\) 0.484259 + 2.22754i 0.0166100 + 0.0764041i
\(851\) −9.92389 −0.340186
\(852\) −18.0478 6.39899i −0.618308 0.219226i
\(853\) −35.8618 −1.22788 −0.613942 0.789351i \(-0.710417\pi\)
−0.613942 + 0.789351i \(0.710417\pi\)
\(854\) 0 0
\(855\) 0.795415 + 24.0390i 0.0272026 + 0.822118i
\(856\) −39.6970 + 29.6919i −1.35682 + 1.01485i
\(857\) 38.0573i 1.30001i 0.759929 + 0.650006i \(0.225234\pi\)
−0.759929 + 0.650006i \(0.774766\pi\)
\(858\) −18.8633 11.6900i −0.643984 0.399091i
\(859\) 21.5535i 0.735397i 0.929945 + 0.367699i \(0.119854\pi\)
−0.929945 + 0.367699i \(0.880146\pi\)
\(860\) −2.63325 + 1.20171i −0.0897929 + 0.0409779i
\(861\) 0 0
\(862\) 40.2429 8.74866i 1.37068 0.297980i
\(863\) 32.4744 1.10544 0.552721 0.833366i \(-0.313589\pi\)
0.552721 + 0.833366i \(0.313589\pi\)
\(864\) 9.65112 + 27.7643i 0.328338 + 0.944560i
\(865\) 53.0008 1.80208
\(866\) 36.0897 7.84576i 1.22638 0.266610i
\(867\) 20.6191 + 19.9482i 0.700262 + 0.677475i
\(868\) 0 0
\(869\) 22.2654i 0.755303i
\(870\) 11.7408 + 7.27605i 0.398052 + 0.246681i
\(871\) 21.1577i 0.716901i
\(872\) 1.44725 1.08249i 0.0490099 0.0366576i
\(873\) −0.686235 20.7394i −0.0232255 0.701923i
\(874\) 0.920475 + 4.23409i 0.0311355 + 0.143220i
\(875\) 0 0
\(876\) −9.91181 3.51431i −0.334889 0.118737i
\(877\) −28.1913 −0.951953 −0.475977 0.879458i \(-0.657905\pi\)
−0.475977 + 0.879458i \(0.657905\pi\)
\(878\) 5.52283 + 25.4044i 0.186386 + 0.857358i
\(879\) 14.0391 14.5114i 0.473529 0.489456i
\(880\) −16.8159 14.5869i −0.566865 0.491724i
\(881\) 5.81314i 0.195850i 0.995194 + 0.0979249i \(0.0312205\pi\)
−0.995194 + 0.0979249i \(0.968780\pi\)
\(882\) 0 0
\(883\) 47.2938i 1.59156i −0.605583 0.795782i \(-0.707060\pi\)
0.605583 0.795782i \(-0.292940\pi\)
\(884\) 2.43525 + 5.33625i 0.0819065 + 0.179478i
\(885\) 11.4567 11.8420i 0.385112 0.398066i
\(886\) −11.4270 + 2.48418i −0.383897 + 0.0834577i
\(887\) 30.3896 1.02038 0.510192 0.860061i \(-0.329575\pi\)
0.510192 + 0.860061i \(0.329575\pi\)
\(888\) −46.2650 5.89165i −1.55255 0.197711i
\(889\) 0 0
\(890\) 2.04025 0.443542i 0.0683892 0.0148676i
\(891\) −18.3221 + 1.21383i −0.613812 + 0.0406647i
\(892\) 1.62540 + 3.56166i 0.0544225 + 0.119253i
\(893\) 3.06388i 0.102529i
\(894\) 17.8781 28.8486i 0.597933 0.964841i
\(895\) 13.7307i 0.458967i
\(896\) 0 0
\(897\) −5.76221 5.57470i −0.192394 0.186134i
\(898\) −7.24213 33.3130i −0.241673 1.11167i
\(899\) 6.41675 0.214011
\(900\) −6.51670 13.1133i −0.217223 0.437111i
\(901\) 6.99211 0.232941
\(902\) 4.81707 + 22.1580i 0.160391 + 0.737782i
\(903\) 0 0
\(904\) −18.2823 24.4428i −0.608060 0.812954i
\(905\) 15.5986i 0.518514i
\(906\) 15.1911 24.5128i 0.504691 0.814384i
\(907\) 42.6975i 1.41775i 0.705335 + 0.708874i \(0.250797\pi\)
−0.705335 + 0.708874i \(0.749203\pi\)
\(908\) 33.0496 15.0825i 1.09679 0.500531i
\(909\) 30.3772 1.00513i 1.00755 0.0333381i
\(910\) 0 0
\(911\) 42.4679 1.40702 0.703511 0.710684i \(-0.251614\pi\)
0.703511 + 0.710684i \(0.251614\pi\)
\(912\) 1.77753 + 20.2857i 0.0588599 + 0.671728i
\(913\) 18.6862 0.618424
\(914\) −25.8291 + 5.61516i −0.854352 + 0.185733i
\(915\) −0.651832 + 0.673757i −0.0215489 + 0.0222737i
\(916\) −17.9134 + 8.17495i −0.591874 + 0.270108i
\(917\) 0 0
\(918\) 4.20774 + 2.41880i 0.138876 + 0.0798323i
\(919\) 21.2198i 0.699978i 0.936754 + 0.349989i \(0.113815\pi\)
−0.936754 + 0.349989i \(0.886185\pi\)
\(920\) −4.81707 6.44026i −0.158814 0.212329i
\(921\) −4.40829 + 4.55656i −0.145258 + 0.150144i
\(922\) 4.91692 + 22.6173i 0.161930 + 0.744862i
\(923\) 24.5462 0.807948
\(924\) 0 0
\(925\) 23.2342 0.763937
\(926\) −3.41413 15.7047i −0.112195 0.516087i
\(927\) 21.9531 0.726395i 0.721035 0.0238579i
\(928\) 10.2600 + 5.61134i 0.336802 + 0.184201i
\(929\) 27.0508i 0.887507i −0.896149 0.443753i \(-0.853647\pi\)
0.896149 0.443753i \(-0.146353\pi\)
\(930\) −17.6287 10.9249i −0.578066 0.358240i
\(931\) 0 0
\(932\) −21.7605 47.6828i −0.712790 1.56190i
\(933\) 14.6236 + 14.1478i 0.478756 + 0.463177i
\(934\) −50.1555 + 10.9036i −1.64114 + 0.356777i
\(935\) −3.67566 −0.120207
\(936\) −23.5537 29.4101i −0.769878 0.961299i
\(937\) 47.2071 1.54219 0.771094 0.636721i \(-0.219710\pi\)
0.771094 + 0.636721i \(0.219710\pi\)
\(938\) 0 0
\(939\) −18.4656 17.8647i −0.602603 0.582994i
\(940\) 2.36103 + 5.17360i 0.0770082 + 0.168744i
\(941\) 16.0658i 0.523729i 0.965105 + 0.261864i \(0.0843373\pi\)
−0.965105 + 0.261864i \(0.915663\pi\)
\(942\) −22.2423 13.7840i −0.724693 0.449108i
\(943\) 8.19224i 0.266776i
\(944\) 9.14094 10.5378i 0.297512 0.342976i
\(945\) 0 0
\(946\) −0.325209 1.49593i −0.0105734 0.0486367i
\(947\) 25.5886 0.831519 0.415759 0.909475i \(-0.363516\pi\)
0.415759 + 0.909475i \(0.363516\pi\)
\(948\) 12.6332 35.6308i 0.410307 1.15724i
\(949\) 13.4807 0.437602
\(950\) −2.15506 9.91303i −0.0699192 0.321621i
\(951\) −9.99882 + 10.3351i −0.324234 + 0.335140i
\(952\) 0 0
\(953\) 25.0168i 0.810375i −0.914234 0.405187i \(-0.867206\pi\)
0.914234 0.405187i \(-0.132794\pi\)
\(954\) −43.5505 + 10.9878i −1.41000 + 0.355743i
\(955\) 26.7729i 0.866352i
\(956\) 30.8105 14.0607i 0.996484 0.454756i
\(957\) −5.07953 + 5.25038i −0.164198 + 0.169721i
\(958\) −15.4764 + 3.36450i −0.500019 + 0.108702i
\(959\) 0 0
\(960\) −18.6337 32.8842i −0.601399 1.06133i
\(961\) 21.3654 0.689205
\(962\) 58.4205 12.7004i 1.88355 0.409477i
\(963\) −1.73884 52.5512i −0.0560332 1.69344i
\(964\) 10.6211 4.84703i 0.342081 0.156112i
\(965\) 46.8054i 1.50672i
\(966\) 0 0
\(967\) 25.4408i 0.818122i 0.912507 + 0.409061i \(0.134144\pi\)
−0.912507 + 0.409061i \(0.865856\pi\)
\(968\) −15.4864 + 11.5832i −0.497751 + 0.372300i
\(969\) 2.41653 + 2.33789i 0.0776301 + 0.0751039i
\(970\) 5.66833 + 26.0737i 0.181999 + 0.837177i
\(971\) −6.57998 −0.211162 −0.105581 0.994411i \(-0.533670\pi\)
−0.105581 + 0.994411i \(0.533670\pi\)
\(972\) −30.0090 8.45329i −0.962540 0.271139i
\(973\) 0 0
\(974\) 2.98572 + 13.7340i 0.0956687 + 0.440066i
\(975\) 13.4907 + 13.0517i 0.432049 + 0.417990i
\(976\) −0.520077 + 0.599550i −0.0166473 + 0.0191911i
\(977\) 5.15268i 0.164849i 0.996597 + 0.0824244i \(0.0262663\pi\)
−0.996597 + 0.0824244i \(0.973734\pi\)
\(978\) −26.4240 + 42.6385i −0.844946 + 1.36343i
\(979\) 1.10427i 0.0352926i
\(980\) 0 0
\(981\) 0.0633932 + 1.91587i 0.00202399 + 0.0611691i
\(982\) 3.65255 0.794050i 0.116557 0.0253391i
\(983\) −32.3024 −1.03029 −0.515143 0.857104i \(-0.672261\pi\)
−0.515143 + 0.857104i \(0.672261\pi\)
\(984\) −4.86360 + 38.1921i −0.155046 + 1.21752i
\(985\) 30.0874 0.958665
\(986\) 1.88684 0.410192i 0.0600893 0.0130632i
\(987\) 0 0
\(988\) −10.8374 23.7474i −0.344783 0.755507i
\(989\) 0.553071i 0.0175866i
\(990\) 22.8940 5.77614i 0.727618 0.183578i
\(991\) 2.58291i 0.0820487i 0.999158 + 0.0410244i \(0.0130621\pi\)
−0.999158 + 0.0410244i \(0.986938\pi\)
\(992\) −15.4053 8.42533i −0.489118 0.267505i
\(993\) −18.3886 + 19.0071i −0.583545 + 0.603173i
\(994\) 0 0
\(995\) 60.8399 1.92875
\(996\) 29.9031 + 10.6024i 0.947516 + 0.335949i
\(997\) −42.8067 −1.35570 −0.677851 0.735199i \(-0.737088\pi\)
−0.677851 + 0.735199i \(0.737088\pi\)
\(998\) 5.96134 + 27.4216i 0.188703 + 0.868014i
\(999\) 33.2012 36.6707i 1.05044 1.16021i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.e.491.11 12
3.2 odd 2 inner 588.2.e.e.491.2 12
4.3 odd 2 inner 588.2.e.e.491.1 12
7.2 even 3 84.2.n.a.11.4 24
7.3 odd 6 588.2.n.e.275.5 24
7.4 even 3 84.2.n.a.23.5 yes 24
7.5 odd 6 588.2.n.e.263.4 24
7.6 odd 2 588.2.e.d.491.11 12
12.11 even 2 inner 588.2.e.e.491.12 12
21.2 odd 6 84.2.n.a.11.9 yes 24
21.5 even 6 588.2.n.e.263.9 24
21.11 odd 6 84.2.n.a.23.8 yes 24
21.17 even 6 588.2.n.e.275.8 24
21.20 even 2 588.2.e.d.491.2 12
28.3 even 6 588.2.n.e.275.9 24
28.11 odd 6 84.2.n.a.23.9 yes 24
28.19 even 6 588.2.n.e.263.8 24
28.23 odd 6 84.2.n.a.11.8 yes 24
28.27 even 2 588.2.e.d.491.1 12
84.11 even 6 84.2.n.a.23.4 yes 24
84.23 even 6 84.2.n.a.11.5 yes 24
84.47 odd 6 588.2.n.e.263.5 24
84.59 odd 6 588.2.n.e.275.4 24
84.83 odd 2 588.2.e.d.491.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.n.a.11.4 24 7.2 even 3
84.2.n.a.11.5 yes 24 84.23 even 6
84.2.n.a.11.8 yes 24 28.23 odd 6
84.2.n.a.11.9 yes 24 21.2 odd 6
84.2.n.a.23.4 yes 24 84.11 even 6
84.2.n.a.23.5 yes 24 7.4 even 3
84.2.n.a.23.8 yes 24 21.11 odd 6
84.2.n.a.23.9 yes 24 28.11 odd 6
588.2.e.d.491.1 12 28.27 even 2
588.2.e.d.491.2 12 21.20 even 2
588.2.e.d.491.11 12 7.6 odd 2
588.2.e.d.491.12 12 84.83 odd 2
588.2.e.e.491.1 12 4.3 odd 2 inner
588.2.e.e.491.2 12 3.2 odd 2 inner
588.2.e.e.491.11 12 1.1 even 1 trivial
588.2.e.e.491.12 12 12.11 even 2 inner
588.2.n.e.263.4 24 7.5 odd 6
588.2.n.e.263.5 24 84.47 odd 6
588.2.n.e.263.8 24 28.19 even 6
588.2.n.e.263.9 24 21.5 even 6
588.2.n.e.275.4 24 84.59 odd 6
588.2.n.e.275.5 24 7.3 odd 6
588.2.n.e.275.8 24 21.17 even 6
588.2.n.e.275.9 24 28.3 even 6