Properties

Label 588.2.e.d.491.12
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(491,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.491"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,2,0,0,0,0,2,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.312013725601644544.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{10} - 2x^{8} + 8x^{6} - 8x^{4} - 16x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.12
Root \(1.38193 + 0.300427i\) of defining polynomial
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.d.491.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38193 + 0.300427i) q^{2} +(-1.24483 + 1.20432i) q^{3} +(1.81949 + 0.830342i) q^{4} -2.72774i q^{5} +(-2.08209 + 1.29031i) q^{6} +(2.26495 + 1.69410i) q^{8} +(0.0992110 - 2.99836i) q^{9} +(0.819487 - 3.76955i) q^{10} +2.04025 q^{11} +(-3.26495 + 1.15761i) q^{12} +4.44055 q^{13} +(3.28508 + 3.39557i) q^{15} +(2.62106 + 3.02159i) q^{16} -0.660466i q^{17} +(1.03789 - 4.11373i) q^{18} +2.93921i q^{19} +(2.26495 - 4.96308i) q^{20} +(2.81949 + 0.612946i) q^{22} +1.04242 q^{23} +(-4.85973 + 0.618866i) q^{24} -2.44055 q^{25} +(6.13655 + 1.33406i) q^{26} +(3.48749 + 3.85193i) q^{27} -2.06727i q^{29} +(3.51964 + 5.67939i) q^{30} -3.10397i q^{31} +(2.71437 + 4.96308i) q^{32} +(-2.53976 + 2.45712i) q^{33} +(0.198422 - 0.912721i) q^{34} +(2.67018 - 5.37310i) q^{36} -9.52008 q^{37} +(-0.883020 + 4.06180i) q^{38} +(-5.52774 + 5.34786i) q^{39} +(4.62106 - 6.17820i) q^{40} +7.85889i q^{41} +0.530567i q^{43} +(3.71220 + 1.69410i) q^{44} +(-8.17874 - 0.270622i) q^{45} +(1.44055 + 0.313170i) q^{46} +1.04242 q^{47} +(-6.90176 - 0.604764i) q^{48} +(-3.37268 - 0.733208i) q^{50} +(0.795415 + 0.822169i) q^{51} +(8.07953 + 3.68718i) q^{52} -10.5866i q^{53} +(3.66226 + 6.37086i) q^{54} -5.56526i q^{55} +(-3.53976 - 3.65883i) q^{57} +(0.621065 - 2.85683i) q^{58} -3.48749 q^{59} +(3.15767 + 8.90594i) q^{60} +0.198422 q^{61} +(0.932518 - 4.28949i) q^{62} +(2.26004 + 7.67413i) q^{64} -12.1127i q^{65} +(-4.24797 + 2.63256i) q^{66} -4.76465i q^{67} +(0.548413 - 1.20171i) q^{68} +(-1.29763 + 1.25541i) q^{69} -5.52774 q^{71} +(5.30423 - 6.62307i) q^{72} +3.03582 q^{73} +(-13.1561 - 2.86009i) q^{74} +(3.03808 - 2.93921i) q^{75} +(-2.44055 + 5.34786i) q^{76} +(-9.24562 + 5.72971i) q^{78} +10.9131i q^{79} +(8.24211 - 7.14958i) q^{80} +(-8.98031 - 0.594941i) q^{81} +(-2.36103 + 10.8605i) q^{82} -9.15881 q^{83} -1.80158 q^{85} +(-0.159397 + 0.733208i) q^{86} +(2.48966 + 2.57340i) q^{87} +(4.62106 + 3.45638i) q^{88} +0.541243i q^{89} +(-11.2212 - 2.83110i) q^{90} +(1.89666 + 0.865562i) q^{92} +(3.73818 + 3.86392i) q^{93} +(1.44055 + 0.313170i) q^{94} +8.01740 q^{95} +(-9.35609 - 2.90922i) q^{96} +6.91692 q^{97} +(0.202415 - 6.11739i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{4} + 2 q^{9} - 10 q^{10} - 12 q^{12} + 12 q^{13} + 10 q^{16} + 10 q^{18} + 14 q^{22} - 14 q^{24} + 12 q^{25} + 14 q^{30} + 10 q^{33} + 4 q^{34} + 22 q^{36} + 8 q^{37} + 34 q^{40} - 18 q^{45}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38193 + 0.300427i 0.977175 + 0.212434i
\(3\) −1.24483 + 1.20432i −0.718704 + 0.695316i
\(4\) 1.81949 + 0.830342i 0.909743 + 0.415171i
\(5\) 2.72774i 1.21988i −0.792447 0.609941i \(-0.791193\pi\)
0.792447 0.609941i \(-0.208807\pi\)
\(6\) −2.08209 + 1.29031i −0.850009 + 0.526769i
\(7\) 0 0
\(8\) 2.26495 + 1.69410i 0.800782 + 0.598955i
\(9\) 0.0992110 2.99836i 0.0330703 0.999453i
\(10\) 0.819487 3.76955i 0.259144 1.19204i
\(11\) 2.04025 0.615157 0.307579 0.951523i \(-0.400481\pi\)
0.307579 + 0.951523i \(0.400481\pi\)
\(12\) −3.26495 + 1.15761i −0.942511 + 0.334175i
\(13\) 4.44055 1.23159 0.615794 0.787907i \(-0.288835\pi\)
0.615794 + 0.787907i \(0.288835\pi\)
\(14\) 0 0
\(15\) 3.28508 + 3.39557i 0.848203 + 0.876733i
\(16\) 2.62106 + 3.02159i 0.655266 + 0.755398i
\(17\) 0.660466i 0.160187i −0.996787 0.0800933i \(-0.974478\pi\)
0.996787 0.0800933i \(-0.0255218\pi\)
\(18\) 1.03789 4.11373i 0.244634 0.969616i
\(19\) 2.93921i 0.674302i 0.941451 + 0.337151i \(0.109463\pi\)
−0.941451 + 0.337151i \(0.890537\pi\)
\(20\) 2.26495 4.96308i 0.506459 1.10978i
\(21\) 0 0
\(22\) 2.81949 + 0.612946i 0.601117 + 0.130680i
\(23\) 1.04242 0.217359 0.108679 0.994077i \(-0.465338\pi\)
0.108679 + 0.994077i \(0.465338\pi\)
\(24\) −4.85973 + 0.618866i −0.991989 + 0.126326i
\(25\) −2.44055 −0.488110
\(26\) 6.13655 + 1.33406i 1.20348 + 0.261631i
\(27\) 3.48749 + 3.85193i 0.671168 + 0.741305i
\(28\) 0 0
\(29\) 2.06727i 0.383883i −0.981406 0.191941i \(-0.938522\pi\)
0.981406 0.191941i \(-0.0614783\pi\)
\(30\) 3.51964 + 5.67939i 0.642595 + 1.03691i
\(31\) 3.10397i 0.557490i −0.960365 0.278745i \(-0.910082\pi\)
0.960365 0.278745i \(-0.0899184\pi\)
\(32\) 2.71437 + 4.96308i 0.479838 + 0.877357i
\(33\) −2.53976 + 2.45712i −0.442116 + 0.427729i
\(34\) 0.198422 0.912721i 0.0340291 0.156530i
\(35\) 0 0
\(36\) 2.67018 5.37310i 0.445029 0.895516i
\(37\) −9.52008 −1.56509 −0.782546 0.622593i \(-0.786079\pi\)
−0.782546 + 0.622593i \(0.786079\pi\)
\(38\) −0.883020 + 4.06180i −0.143245 + 0.658911i
\(39\) −5.52774 + 5.34786i −0.885147 + 0.856343i
\(40\) 4.62106 6.17820i 0.730655 0.976859i
\(41\) 7.85889i 1.22735i 0.789558 + 0.613676i \(0.210310\pi\)
−0.789558 + 0.613676i \(0.789690\pi\)
\(42\) 0 0
\(43\) 0.530567i 0.0809106i 0.999181 + 0.0404553i \(0.0128808\pi\)
−0.999181 + 0.0404553i \(0.987119\pi\)
\(44\) 3.71220 + 1.69410i 0.559635 + 0.255395i
\(45\) −8.17874 0.270622i −1.21921 0.0403419i
\(46\) 1.44055 + 0.313170i 0.212398 + 0.0461745i
\(47\) 1.04242 0.152052 0.0760260 0.997106i \(-0.475777\pi\)
0.0760260 + 0.997106i \(0.475777\pi\)
\(48\) −6.90176 0.604764i −0.996183 0.0872901i
\(49\) 0 0
\(50\) −3.37268 0.733208i −0.476969 0.103691i
\(51\) 0.795415 + 0.822169i 0.111380 + 0.115127i
\(52\) 8.07953 + 3.68718i 1.12043 + 0.511319i
\(53\) 10.5866i 1.45419i −0.686539 0.727093i \(-0.740871\pi\)
0.686539 0.727093i \(-0.259129\pi\)
\(54\) 3.66226 + 6.37086i 0.498371 + 0.866964i
\(55\) 5.56526i 0.750419i
\(56\) 0 0
\(57\) −3.53976 3.65883i −0.468853 0.484623i
\(58\) 0.621065 2.85683i 0.0815498 0.375121i
\(59\) −3.48749 −0.454033 −0.227016 0.973891i \(-0.572897\pi\)
−0.227016 + 0.973891i \(0.572897\pi\)
\(60\) 3.15767 + 8.90594i 0.407653 + 1.14975i
\(61\) 0.198422 0.0254053 0.0127027 0.999919i \(-0.495957\pi\)
0.0127027 + 0.999919i \(0.495957\pi\)
\(62\) 0.932518 4.28949i 0.118430 0.544765i
\(63\) 0 0
\(64\) 2.26004 + 7.67413i 0.282505 + 0.959266i
\(65\) 12.1127i 1.50239i
\(66\) −4.24797 + 2.63256i −0.522889 + 0.324046i
\(67\) 4.76465i 0.582095i −0.956709 0.291048i \(-0.905996\pi\)
0.956709 0.291048i \(-0.0940038\pi\)
\(68\) 0.548413 1.20171i 0.0665048 0.145729i
\(69\) −1.29763 + 1.25541i −0.156217 + 0.151133i
\(70\) 0 0
\(71\) −5.52774 −0.656022 −0.328011 0.944674i \(-0.606378\pi\)
−0.328011 + 0.944674i \(0.606378\pi\)
\(72\) 5.30423 6.62307i 0.625110 0.780537i
\(73\) 3.03582 0.355316 0.177658 0.984092i \(-0.443148\pi\)
0.177658 + 0.984092i \(0.443148\pi\)
\(74\) −13.1561 2.86009i −1.52937 0.332479i
\(75\) 3.03808 2.93921i 0.350807 0.339391i
\(76\) −2.44055 + 5.34786i −0.279950 + 0.613442i
\(77\) 0 0
\(78\) −9.24562 + 5.72971i −1.04686 + 0.648762i
\(79\) 10.9131i 1.22782i 0.789375 + 0.613911i \(0.210405\pi\)
−0.789375 + 0.613911i \(0.789595\pi\)
\(80\) 8.24211 7.14958i 0.921496 0.799347i
\(81\) −8.98031 0.594941i −0.997813 0.0661045i
\(82\) −2.36103 + 10.8605i −0.260732 + 1.19934i
\(83\) −9.15881 −1.00531 −0.502655 0.864487i \(-0.667643\pi\)
−0.502655 + 0.864487i \(0.667643\pi\)
\(84\) 0 0
\(85\) −1.80158 −0.195409
\(86\) −0.159397 + 0.733208i −0.0171882 + 0.0790639i
\(87\) 2.48966 + 2.57340i 0.266920 + 0.275898i
\(88\) 4.62106 + 3.45638i 0.492607 + 0.368452i
\(89\) 0.541243i 0.0573717i 0.999588 + 0.0286858i \(0.00913224\pi\)
−0.999588 + 0.0286858i \(0.990868\pi\)
\(90\) −11.2212 2.83110i −1.18282 0.298424i
\(91\) 0 0
\(92\) 1.89666 + 0.865562i 0.197741 + 0.0902411i
\(93\) 3.73818 + 3.86392i 0.387632 + 0.400670i
\(94\) 1.44055 + 0.313170i 0.148582 + 0.0323011i
\(95\) 8.01740 0.822568
\(96\) −9.35609 2.90922i −0.954902 0.296921i
\(97\) 6.91692 0.702307 0.351153 0.936318i \(-0.385790\pi\)
0.351153 + 0.936318i \(0.385790\pi\)
\(98\) 0 0
\(99\) 0.202415 6.11739i 0.0203435 0.614821i
\(100\) −4.44055 2.02649i −0.444055 0.202649i
\(101\) 10.1313i 1.00810i −0.863675 0.504049i \(-0.831843\pi\)
0.863675 0.504049i \(-0.168157\pi\)
\(102\) 0.852209 + 1.37515i 0.0843813 + 0.136160i
\(103\) 7.32171i 0.721430i −0.932676 0.360715i \(-0.882533\pi\)
0.932676 0.360715i \(-0.117467\pi\)
\(104\) 10.0576 + 7.52275i 0.986234 + 0.737666i
\(105\) 0 0
\(106\) 3.18051 14.6300i 0.308919 1.42099i
\(107\) −17.5266 −1.69436 −0.847182 0.531303i \(-0.821703\pi\)
−0.847182 + 0.531303i \(0.821703\pi\)
\(108\) 3.14702 + 9.90435i 0.302823 + 0.953047i
\(109\) 0.638974 0.0612026 0.0306013 0.999532i \(-0.490258\pi\)
0.0306013 + 0.999532i \(0.490258\pi\)
\(110\) 1.67195 7.69082i 0.159415 0.733291i
\(111\) 11.8509 11.4653i 1.12484 1.08823i
\(112\) 0 0
\(113\) 10.7917i 1.01520i 0.861593 + 0.507600i \(0.169467\pi\)
−0.861593 + 0.507600i \(0.830533\pi\)
\(114\) −3.79251 6.11970i −0.355201 0.573162i
\(115\) 2.84344i 0.265152i
\(116\) 1.71654 3.76137i 0.159377 0.349235i
\(117\) 0.440552 13.3144i 0.0407290 1.23091i
\(118\) −4.81949 1.04774i −0.443670 0.0964521i
\(119\) 0 0
\(120\) 1.68810 + 13.2561i 0.154102 + 1.21011i
\(121\) −6.83740 −0.621581
\(122\) 0.274206 + 0.0596114i 0.0248255 + 0.00539696i
\(123\) −9.46465 9.78300i −0.853399 0.882103i
\(124\) 2.57736 5.64763i 0.231454 0.507173i
\(125\) 6.98150i 0.624445i
\(126\) 0 0
\(127\) 10.9563i 0.972210i −0.873900 0.486105i \(-0.838417\pi\)
0.873900 0.486105i \(-0.161583\pi\)
\(128\) 0.817708 + 11.2841i 0.0722759 + 0.997385i
\(129\) −0.638974 0.660466i −0.0562585 0.0581508i
\(130\) 3.63897 16.7389i 0.319159 1.46810i
\(131\) −22.1555 −1.93574 −0.967869 0.251454i \(-0.919091\pi\)
−0.967869 + 0.251454i \(0.919091\pi\)
\(132\) −6.66131 + 2.36182i −0.579793 + 0.205570i
\(133\) 0 0
\(134\) 1.43143 6.58444i 0.123657 0.568809i
\(135\) 10.5071 9.51296i 0.904304 0.818746i
\(136\) 1.11890 1.49593i 0.0959446 0.128275i
\(137\) 14.5042i 1.23918i 0.784925 + 0.619591i \(0.212701\pi\)
−0.784925 + 0.619591i \(0.787299\pi\)
\(138\) −2.17040 + 1.34505i −0.184757 + 0.114498i
\(139\) 5.78265i 0.490478i 0.969463 + 0.245239i \(0.0788665\pi\)
−0.969463 + 0.245239i \(0.921134\pi\)
\(140\) 0 0
\(141\) −1.29763 + 1.25541i −0.109280 + 0.105724i
\(142\) −7.63897 1.66068i −0.641048 0.139361i
\(143\) 9.05982 0.757620
\(144\) 9.31986 7.55912i 0.776655 0.629927i
\(145\) −5.63897 −0.468291
\(146\) 4.19530 + 0.912043i 0.347206 + 0.0754812i
\(147\) 0 0
\(148\) −17.3217 7.90492i −1.42383 0.649780i
\(149\) 13.8556i 1.13510i 0.823340 + 0.567548i \(0.192108\pi\)
−0.823340 + 0.567548i \(0.807892\pi\)
\(150\) 5.08144 3.14908i 0.414898 0.257121i
\(151\) 11.7732i 0.958089i 0.877791 + 0.479045i \(0.159017\pi\)
−0.877791 + 0.479045i \(0.840983\pi\)
\(152\) −4.97933 + 6.65718i −0.403877 + 0.539969i
\(153\) −1.98031 0.0655255i −0.160099 0.00529742i
\(154\) 0 0
\(155\) −8.46682 −0.680071
\(156\) −14.4982 + 5.14045i −1.16078 + 0.411565i
\(157\) 10.6827 0.852571 0.426285 0.904589i \(-0.359822\pi\)
0.426285 + 0.904589i \(0.359822\pi\)
\(158\) −3.27860 + 15.0812i −0.260831 + 1.19980i
\(159\) 12.7497 + 13.1786i 1.01112 + 1.04513i
\(160\) 13.5380 7.40409i 1.07027 0.585345i
\(161\) 0 0
\(162\) −12.2315 3.52010i −0.960995 0.276565i
\(163\) 20.4787i 1.60402i −0.597313 0.802008i \(-0.703765\pi\)
0.597313 0.802008i \(-0.296235\pi\)
\(164\) −6.52557 + 14.2992i −0.509561 + 1.11658i
\(165\) 6.70237 + 6.92781i 0.521779 + 0.539329i
\(166\) −12.6569 2.75156i −0.982365 0.213562i
\(167\) −22.4614 −1.73811 −0.869057 0.494712i \(-0.835273\pi\)
−0.869057 + 0.494712i \(0.835273\pi\)
\(168\) 0 0
\(169\) 6.71850 0.516808
\(170\) −2.48966 0.541243i −0.190948 0.0415115i
\(171\) 8.81282 + 0.291602i 0.673933 + 0.0222994i
\(172\) −0.440552 + 0.965359i −0.0335917 + 0.0736079i
\(173\) 19.4303i 1.47726i 0.674112 + 0.738630i \(0.264527\pi\)
−0.674112 + 0.738630i \(0.735473\pi\)
\(174\) 2.66743 + 4.30424i 0.202217 + 0.326304i
\(175\) 0 0
\(176\) 5.34762 + 6.16479i 0.403092 + 0.464689i
\(177\) 4.34134 4.20007i 0.326315 0.315696i
\(178\) −0.162604 + 0.747963i −0.0121877 + 0.0560622i
\(179\) 5.03373 0.376239 0.188119 0.982146i \(-0.439761\pi\)
0.188119 + 0.982146i \(0.439761\pi\)
\(180\) −14.6564 7.28354i −1.09242 0.542883i
\(181\) −5.71850 −0.425053 −0.212526 0.977155i \(-0.568169\pi\)
−0.212526 + 0.977155i \(0.568169\pi\)
\(182\) 0 0
\(183\) −0.247002 + 0.238964i −0.0182589 + 0.0176647i
\(184\) 2.36103 + 1.76596i 0.174057 + 0.130188i
\(185\) 25.9683i 1.90923i
\(186\) 4.00510 + 6.46274i 0.293668 + 0.473871i
\(187\) 1.34751i 0.0985399i
\(188\) 1.89666 + 0.865562i 0.138328 + 0.0631276i
\(189\) 0 0
\(190\) 11.0795 + 2.40865i 0.803793 + 0.174742i
\(191\) 9.81507 0.710193 0.355097 0.934830i \(-0.384448\pi\)
0.355097 + 0.934830i \(0.384448\pi\)
\(192\) −12.0555 6.83118i −0.870031 0.492998i
\(193\) 17.1591 1.23514 0.617568 0.786518i \(-0.288118\pi\)
0.617568 + 0.786518i \(0.288118\pi\)
\(194\) 9.55873 + 2.07803i 0.686277 + 0.149194i
\(195\) 14.5876 + 15.0782i 1.04464 + 1.07977i
\(196\) 0 0
\(197\) 11.0302i 0.785867i −0.919567 0.392934i \(-0.871460\pi\)
0.919567 0.392934i \(-0.128540\pi\)
\(198\) 2.11756 8.39302i 0.150488 0.596466i
\(199\) 22.3042i 1.58110i 0.612398 + 0.790550i \(0.290205\pi\)
−0.612398 + 0.790550i \(0.709795\pi\)
\(200\) −5.52774 4.13454i −0.390870 0.292356i
\(201\) 5.73818 + 5.93119i 0.404740 + 0.418354i
\(202\) 3.04371 14.0007i 0.214155 0.985089i
\(203\) 0 0
\(204\) 0.764565 + 2.15639i 0.0535303 + 0.150978i
\(205\) 21.4370 1.49722
\(206\) 2.19964 10.1181i 0.153256 0.704964i
\(207\) 0.103419 3.12554i 0.00718813 0.217240i
\(208\) 11.6390 + 13.4175i 0.807018 + 0.930339i
\(209\) 5.99672i 0.414802i
\(210\) 0 0
\(211\) 17.9648i 1.23675i 0.785884 + 0.618374i \(0.212208\pi\)
−0.785884 + 0.618374i \(0.787792\pi\)
\(212\) 8.79052 19.2622i 0.603736 1.32294i
\(213\) 6.88110 6.65718i 0.471485 0.456143i
\(214\) −24.2207 5.26548i −1.65569 0.359941i
\(215\) 1.44725 0.0987014
\(216\) 1.37344 + 14.6326i 0.0934510 + 0.995624i
\(217\) 0 0
\(218\) 0.883020 + 0.191965i 0.0598057 + 0.0130015i
\(219\) −3.77908 + 3.65611i −0.255367 + 0.247057i
\(220\) 4.62106 10.1259i 0.311552 0.682689i
\(221\) 2.93283i 0.197284i
\(222\) 19.8216 12.2839i 1.33034 0.824441i
\(223\) 1.95751i 0.131084i 0.997850 + 0.0655422i \(0.0208777\pi\)
−0.997850 + 0.0655422i \(0.979122\pi\)
\(224\) 0 0
\(225\) −0.242130 + 7.31765i −0.0161420 + 0.487843i
\(226\) −3.24213 + 14.9135i −0.215663 + 0.992029i
\(227\) −18.1642 −1.20560 −0.602801 0.797892i \(-0.705949\pi\)
−0.602801 + 0.797892i \(0.705949\pi\)
\(228\) −3.40248 9.59640i −0.225334 0.635537i
\(229\) 9.84529 0.650595 0.325297 0.945612i \(-0.394536\pi\)
0.325297 + 0.945612i \(0.394536\pi\)
\(230\) 0.854247 3.92945i 0.0563274 0.259100i
\(231\) 0 0
\(232\) 3.50217 4.68228i 0.229929 0.307406i
\(233\) 26.2067i 1.71686i 0.512932 + 0.858430i \(0.328559\pi\)
−0.512932 + 0.858430i \(0.671441\pi\)
\(234\) 4.60881 18.2672i 0.301288 1.19417i
\(235\) 2.84344i 0.185485i
\(236\) −6.34545 2.89581i −0.413053 0.188501i
\(237\) −13.1429 13.5850i −0.853724 0.882440i
\(238\) 0 0
\(239\) 16.9336 1.09535 0.547673 0.836692i \(-0.315514\pi\)
0.547673 + 0.836692i \(0.315514\pi\)
\(240\) −1.64964 + 18.8262i −0.106484 + 1.21522i
\(241\) −5.83740 −0.376020 −0.188010 0.982167i \(-0.560204\pi\)
−0.188010 + 0.982167i \(0.560204\pi\)
\(242\) −9.44883 2.05414i −0.607394 0.132045i
\(243\) 11.8955 10.0746i 0.763095 0.646286i
\(244\) 0.361026 + 0.164758i 0.0231123 + 0.0105476i
\(245\) 0 0
\(246\) −10.1404 16.3629i −0.646531 1.04326i
\(247\) 13.0517i 0.830462i
\(248\) 5.25844 7.03035i 0.333911 0.446428i
\(249\) 11.4012 11.0302i 0.722520 0.699009i
\(250\) 2.09743 9.64798i 0.132653 0.610192i
\(251\) 10.1468 0.640462 0.320231 0.947340i \(-0.396240\pi\)
0.320231 + 0.947340i \(0.396240\pi\)
\(252\) 0 0
\(253\) 2.12679 0.133710
\(254\) 3.29156 15.1408i 0.206531 0.950020i
\(255\) 2.24266 2.16968i 0.140441 0.135871i
\(256\) −2.26004 + 15.8396i −0.141252 + 0.989974i
\(257\) 11.9816i 0.747392i −0.927551 0.373696i \(-0.878090\pi\)
0.927551 0.373696i \(-0.121910\pi\)
\(258\) −0.684598 1.10469i −0.0426212 0.0687748i
\(259\) 0 0
\(260\) 10.0576 22.0388i 0.623749 1.36679i
\(261\) −6.19842 0.205096i −0.383673 0.0126951i
\(262\) −30.6175 6.65613i −1.89156 0.411217i
\(263\) 14.4440 0.890654 0.445327 0.895368i \(-0.353088\pi\)
0.445327 + 0.895368i \(0.353088\pi\)
\(264\) −9.91505 + 1.26264i −0.610229 + 0.0777101i
\(265\) −28.8775 −1.77393
\(266\) 0 0
\(267\) −0.651832 0.673757i −0.0398915 0.0412332i
\(268\) 3.95629 8.66923i 0.241669 0.529557i
\(269\) 6.57131i 0.400660i −0.979728 0.200330i \(-0.935799\pi\)
0.979728 0.200330i \(-0.0642014\pi\)
\(270\) 17.3780 9.98969i 1.05759 0.607953i
\(271\) 0.0163458i 0.000992938i 1.00000 0.000496469i \(0.000158031\pi\)
−1.00000 0.000496469i \(0.999842\pi\)
\(272\) 1.99566 1.73112i 0.121005 0.104965i
\(273\) 0 0
\(274\) −4.35747 + 20.0439i −0.263245 + 1.21090i
\(275\) −4.97933 −0.300265
\(276\) −3.40344 + 1.20672i −0.204863 + 0.0726358i
\(277\) −18.3138 −1.10037 −0.550184 0.835044i \(-0.685442\pi\)
−0.550184 + 0.835044i \(0.685442\pi\)
\(278\) −1.73727 + 7.99125i −0.104194 + 0.479283i
\(279\) −9.30682 0.307948i −0.557185 0.0184364i
\(280\) 0 0
\(281\) 1.61190i 0.0961580i −0.998844 0.0480790i \(-0.984690\pi\)
0.998844 0.0480790i \(-0.0153099\pi\)
\(282\) −2.17040 + 1.34505i −0.129246 + 0.0800963i
\(283\) 20.5745i 1.22303i −0.791234 0.611513i \(-0.790561\pi\)
0.791234 0.611513i \(-0.209439\pi\)
\(284\) −10.0576 4.58991i −0.596812 0.272361i
\(285\) −9.98031 + 9.65554i −0.591183 + 0.571945i
\(286\) 12.5201 + 2.72182i 0.740328 + 0.160944i
\(287\) 0 0
\(288\) 15.1504 7.64627i 0.892746 0.450561i
\(289\) 16.5638 0.974340
\(290\) −7.79269 1.69410i −0.457603 0.0994811i
\(291\) −8.61040 + 8.33021i −0.504751 + 0.488325i
\(292\) 5.52363 + 2.52077i 0.323246 + 0.147517i
\(293\) 11.6573i 0.681026i −0.940240 0.340513i \(-0.889399\pi\)
0.940240 0.340513i \(-0.110601\pi\)
\(294\) 0 0
\(295\) 9.51296i 0.553866i
\(296\) −21.5625 16.1280i −1.25330 0.937420i
\(297\) 7.11534 + 7.85889i 0.412874 + 0.456019i
\(298\) −4.16260 + 19.1476i −0.241133 + 1.10919i
\(299\) 4.62890 0.267696
\(300\) 7.96829 2.82522i 0.460049 0.163114i
\(301\) 0 0
\(302\) −3.53699 + 16.2698i −0.203531 + 0.936221i
\(303\) 12.2013 + 12.6117i 0.700947 + 0.724524i
\(304\) −8.88110 + 7.70387i −0.509366 + 0.441847i
\(305\) 0.541243i 0.0309915i
\(306\) −2.71698 0.685493i −0.155319 0.0391870i
\(307\) 3.66039i 0.208909i 0.994530 + 0.104455i \(0.0333097\pi\)
−0.994530 + 0.104455i \(0.966690\pi\)
\(308\) 0 0
\(309\) 8.81771 + 9.11430i 0.501622 + 0.518494i
\(310\) −11.7006 2.54366i −0.664549 0.144470i
\(311\) −11.7475 −0.666138 −0.333069 0.942902i \(-0.608084\pi\)
−0.333069 + 0.942902i \(0.608084\pi\)
\(312\) −21.5799 + 2.74811i −1.22172 + 0.155581i
\(313\) 14.8338 0.838458 0.419229 0.907880i \(-0.362300\pi\)
0.419229 + 0.907880i \(0.362300\pi\)
\(314\) 14.7628 + 3.20937i 0.833111 + 0.181115i
\(315\) 0 0
\(316\) −9.06162 + 19.8563i −0.509756 + 1.11700i
\(317\) 8.30244i 0.466311i −0.972439 0.233156i \(-0.925095\pi\)
0.972439 0.233156i \(-0.0749052\pi\)
\(318\) 13.6601 + 22.0423i 0.766020 + 1.23607i
\(319\) 4.21774i 0.236148i
\(320\) 20.9330 6.16479i 1.17019 0.344622i
\(321\) 21.8177 21.1077i 1.21775 1.17812i
\(322\) 0 0
\(323\) 1.94125 0.108014
\(324\) −15.8456 8.53922i −0.880309 0.474401i
\(325\) −10.8374 −0.601151
\(326\) 6.15237 28.3002i 0.340748 1.56741i
\(327\) −0.795415 + 0.769531i −0.0439865 + 0.0425552i
\(328\) −13.3138 + 17.8000i −0.735130 + 0.982843i
\(329\) 0 0
\(330\) 7.18093 + 11.5873i 0.395297 + 0.637863i
\(331\) 15.2688i 0.839251i −0.907697 0.419625i \(-0.862161\pi\)
0.907697 0.419625i \(-0.137839\pi\)
\(332\) −16.6643 7.60495i −0.914575 0.417376i
\(333\) −0.944497 + 28.5446i −0.0517581 + 1.56423i
\(334\) −31.0402 6.74801i −1.69844 0.369235i
\(335\) −12.9967 −0.710087
\(336\) 0 0
\(337\) −16.9606 −0.923904 −0.461952 0.886905i \(-0.652851\pi\)
−0.461952 + 0.886905i \(0.652851\pi\)
\(338\) 9.28453 + 2.01842i 0.505012 + 0.109788i
\(339\) −12.9967 13.4339i −0.705885 0.729628i
\(340\) −3.27795 1.49593i −0.177772 0.0811280i
\(341\) 6.33287i 0.342944i
\(342\) 12.0911 + 3.05059i 0.653813 + 0.164957i
\(343\) 0 0
\(344\) −0.898834 + 1.20171i −0.0484619 + 0.0647918i
\(345\) 3.42442 + 3.53960i 0.184365 + 0.190566i
\(346\) −5.83740 + 26.8514i −0.313820 + 1.44354i
\(347\) −22.0565 −1.18406 −0.592029 0.805917i \(-0.701673\pi\)
−0.592029 + 0.805917i \(0.701673\pi\)
\(348\) 2.39310 + 6.74955i 0.128284 + 0.361814i
\(349\) 17.6748 0.946110 0.473055 0.881033i \(-0.343151\pi\)
0.473055 + 0.881033i \(0.343151\pi\)
\(350\) 0 0
\(351\) 15.4864 + 17.1047i 0.826602 + 0.912982i
\(352\) 5.53799 + 10.1259i 0.295176 + 0.539713i
\(353\) 0.422020i 0.0224619i −0.999937 0.0112309i \(-0.996425\pi\)
0.999937 0.0112309i \(-0.00357499\pi\)
\(354\) 7.26126 4.49996i 0.385932 0.239170i
\(355\) 15.0782i 0.800269i
\(356\) −0.449417 + 0.984785i −0.0238190 + 0.0521935i
\(357\) 0 0
\(358\) 6.95629 + 1.51227i 0.367651 + 0.0799260i
\(359\) 14.4440 0.762324 0.381162 0.924508i \(-0.375524\pi\)
0.381162 + 0.924508i \(0.375524\pi\)
\(360\) −18.0660 14.4686i −0.952162 0.762560i
\(361\) 10.3610 0.545317
\(362\) −7.90259 1.71799i −0.415351 0.0902957i
\(363\) 8.51141 8.23443i 0.446733 0.432196i
\(364\) 0 0
\(365\) 8.28091i 0.433443i
\(366\) −0.413132 + 0.256027i −0.0215948 + 0.0133827i
\(367\) 21.8004i 1.13797i −0.822348 0.568985i \(-0.807336\pi\)
0.822348 0.568985i \(-0.192664\pi\)
\(368\) 2.73224 + 3.14976i 0.142428 + 0.164192i
\(369\) 23.5638 + 0.779689i 1.22668 + 0.0405890i
\(370\) −7.80158 + 35.8865i −0.405585 + 1.86565i
\(371\) 0 0
\(372\) 3.59320 + 10.1343i 0.186299 + 0.525440i
\(373\) 19.5201 1.01071 0.505356 0.862911i \(-0.331361\pi\)
0.505356 + 0.862911i \(0.331361\pi\)
\(374\) 0.404830 1.86218i 0.0209333 0.0962908i
\(375\) 8.40799 + 8.69080i 0.434187 + 0.448791i
\(376\) 2.36103 + 1.76596i 0.121761 + 0.0910724i
\(377\) 9.17983i 0.472785i
\(378\) 0 0
\(379\) 34.1136i 1.75230i −0.482038 0.876150i \(-0.660103\pi\)
0.482038 0.876150i \(-0.339897\pi\)
\(380\) 14.5876 + 6.65718i 0.748326 + 0.341506i
\(381\) 13.1949 + 13.6387i 0.675994 + 0.698731i
\(382\) 13.5638 + 2.94871i 0.693984 + 0.150869i
\(383\) −8.21539 −0.419787 −0.209893 0.977724i \(-0.567312\pi\)
−0.209893 + 0.977724i \(0.567312\pi\)
\(384\) −14.6076 13.0620i −0.745443 0.666570i
\(385\) 0 0
\(386\) 23.7127 + 5.15505i 1.20694 + 0.262385i
\(387\) 1.59083 + 0.0526381i 0.0808664 + 0.00267574i
\(388\) 12.5852 + 5.74341i 0.638919 + 0.291577i
\(389\) 4.79501i 0.243117i 0.992584 + 0.121558i \(0.0387891\pi\)
−0.992584 + 0.121558i \(0.961211\pi\)
\(390\) 15.6291 + 25.2196i 0.791412 + 1.27704i
\(391\) 0.688481i 0.0348180i
\(392\) 0 0
\(393\) 27.5799 26.6824i 1.39122 1.34595i
\(394\) 3.31377 15.2430i 0.166945 0.767930i
\(395\) 29.7681 1.49780
\(396\) 5.44782 10.9624i 0.273763 0.550883i
\(397\) −10.4012 −0.522020 −0.261010 0.965336i \(-0.584056\pi\)
−0.261010 + 0.965336i \(0.584056\pi\)
\(398\) −6.70078 + 30.8229i −0.335880 + 1.54501i
\(399\) 0 0
\(400\) −6.39684 7.37435i −0.319842 0.368718i
\(401\) 11.5714i 0.577849i −0.957352 0.288924i \(-0.906702\pi\)
0.957352 0.288924i \(-0.0932976\pi\)
\(402\) 6.14790 + 9.92043i 0.306630 + 0.494786i
\(403\) 13.7833i 0.686597i
\(404\) 8.41241 18.4337i 0.418533 0.917111i
\(405\) −1.62284 + 24.4959i −0.0806396 + 1.21721i
\(406\) 0 0
\(407\) −19.4233 −0.962777
\(408\) 0.408740 + 3.20969i 0.0202357 + 0.158903i
\(409\) −20.4370 −1.01054 −0.505272 0.862960i \(-0.668608\pi\)
−0.505272 + 0.862960i \(0.668608\pi\)
\(410\) 29.6245 + 6.44026i 1.46305 + 0.318062i
\(411\) −17.4678 18.0553i −0.861623 0.890605i
\(412\) 6.07953 13.3218i 0.299517 0.656316i
\(413\) 0 0
\(414\) 1.08192 4.28822i 0.0531733 0.210755i
\(415\) 24.9828i 1.22636i
\(416\) 12.0533 + 22.0388i 0.590962 + 1.08054i
\(417\) −6.96418 7.19843i −0.341037 0.352509i
\(418\) −1.80158 + 8.28707i −0.0881181 + 0.405334i
\(419\) 21.9130 1.07052 0.535259 0.844688i \(-0.320214\pi\)
0.535259 + 0.844688i \(0.320214\pi\)
\(420\) 0 0
\(421\) 14.1153 0.687940 0.343970 0.938981i \(-0.388228\pi\)
0.343970 + 0.938981i \(0.388228\pi\)
\(422\) −5.39712 + 24.8262i −0.262727 + 1.20852i
\(423\) 0.103419 3.12554i 0.00502841 0.151969i
\(424\) 17.9348 23.9782i 0.870992 1.16449i
\(425\) 1.61190i 0.0781887i
\(426\) 11.5092 7.13252i 0.557624 0.345572i
\(427\) 0 0
\(428\) −31.8895 14.5531i −1.54144 0.703451i
\(429\) −11.2779 + 10.9109i −0.544504 + 0.526786i
\(430\) 2.00000 + 0.434792i 0.0964486 + 0.0209675i
\(431\) 29.1207 1.40270 0.701348 0.712820i \(-0.252582\pi\)
0.701348 + 0.712820i \(0.252582\pi\)
\(432\) −2.49803 + 20.6339i −0.120187 + 0.992751i
\(433\) −26.1153 −1.25502 −0.627512 0.778607i \(-0.715927\pi\)
−0.627512 + 0.778607i \(0.715927\pi\)
\(434\) 0 0
\(435\) 7.01957 6.79115i 0.336563 0.325611i
\(436\) 1.16260 + 0.530567i 0.0556786 + 0.0254095i
\(437\) 3.06388i 0.146565i
\(438\) −6.32084 + 3.91716i −0.302021 + 0.187169i
\(439\) 18.3832i 0.877384i 0.898637 + 0.438692i \(0.144558\pi\)
−0.898637 + 0.438692i \(0.855442\pi\)
\(440\) 9.42811 12.6051i 0.449467 0.600922i
\(441\) 0 0
\(442\) 0.881103 4.05298i 0.0419098 0.192781i
\(443\) −8.26883 −0.392864 −0.196432 0.980517i \(-0.562935\pi\)
−0.196432 + 0.980517i \(0.562935\pi\)
\(444\) 31.0826 11.0206i 1.47512 0.523014i
\(445\) 1.47637 0.0699866
\(446\) −0.588089 + 2.70515i −0.0278468 + 0.128092i
\(447\) −16.6866 17.2479i −0.789251 0.815798i
\(448\) 0 0
\(449\) 24.1061i 1.13764i 0.822463 + 0.568818i \(0.192599\pi\)
−0.822463 + 0.568818i \(0.807401\pi\)
\(450\) −2.53303 + 10.0398i −0.119408 + 0.473279i
\(451\) 16.0341i 0.755015i
\(452\) −8.96082 + 19.6354i −0.421482 + 0.923572i
\(453\) −14.1787 14.6556i −0.666175 0.688582i
\(454\) −25.1018 5.45703i −1.17808 0.256111i
\(455\) 0 0
\(456\) −1.81898 14.2838i −0.0851815 0.668900i
\(457\) −18.6906 −0.874308 −0.437154 0.899387i \(-0.644014\pi\)
−0.437154 + 0.899387i \(0.644014\pi\)
\(458\) 13.6055 + 2.95779i 0.635745 + 0.138209i
\(459\) 2.54407 2.30337i 0.118747 0.107512i
\(460\) 2.36103 5.17360i 0.110083 0.241220i
\(461\) 16.3664i 0.762260i 0.924521 + 0.381130i \(0.124465\pi\)
−0.924521 + 0.381130i \(0.875535\pi\)
\(462\) 0 0
\(463\) 11.3643i 0.528142i 0.964503 + 0.264071i \(0.0850653\pi\)
−0.964503 + 0.264071i \(0.914935\pi\)
\(464\) 6.24645 5.41845i 0.289984 0.251545i
\(465\) 10.5398 10.1968i 0.488770 0.472865i
\(466\) −7.87321 + 36.2160i −0.364720 + 1.67767i
\(467\) 36.2937 1.67947 0.839736 0.542995i \(-0.182710\pi\)
0.839736 + 0.542995i \(0.182710\pi\)
\(468\) 11.8571 23.8595i 0.548093 1.10291i
\(469\) 0 0
\(470\) 0.854247 3.92945i 0.0394035 0.181252i
\(471\) −13.2981 + 12.8654i −0.612746 + 0.592806i
\(472\) −7.89901 5.90817i −0.363582 0.271945i
\(473\) 1.08249i 0.0497728i
\(474\) −14.0814 22.7221i −0.646778 1.04366i
\(475\) 7.17330i 0.329134i
\(476\) 0 0
\(477\) −31.7425 1.05031i −1.45339 0.0480904i
\(478\) 23.4012 + 5.08733i 1.07035 + 0.232689i
\(479\) 11.1991 0.511698 0.255849 0.966717i \(-0.417645\pi\)
0.255849 + 0.966717i \(0.417645\pi\)
\(480\) −7.93559 + 25.5210i −0.362208 + 1.16487i
\(481\) −42.2744 −1.92755
\(482\) −8.06690 1.75371i −0.367437 0.0798794i
\(483\) 0 0
\(484\) −12.4406 5.67738i −0.565480 0.258063i
\(485\) 18.8675i 0.856731i
\(486\) 19.4655 10.3487i 0.882971 0.469427i
\(487\) 9.93825i 0.450345i −0.974319 0.225173i \(-0.927705\pi\)
0.974319 0.225173i \(-0.0722946\pi\)
\(488\) 0.449417 + 0.336147i 0.0203441 + 0.0152167i
\(489\) 24.6630 + 25.4926i 1.11530 + 1.15281i
\(490\) 0 0
\(491\) 2.64307 0.119280 0.0596400 0.998220i \(-0.481005\pi\)
0.0596400 + 0.998220i \(0.481005\pi\)
\(492\) −9.09757 25.6589i −0.410150 1.15679i
\(493\) −1.36536 −0.0614928
\(494\) −3.92110 + 18.0366i −0.176418 + 0.811507i
\(495\) −16.6866 0.552135i −0.750008 0.0248166i
\(496\) 9.37894 8.13571i 0.421127 0.365304i
\(497\) 0 0
\(498\) 19.0695 11.8178i 0.854523 0.529566i
\(499\) 19.8429i 0.888289i −0.895955 0.444145i \(-0.853508\pi\)
0.895955 0.444145i \(-0.146492\pi\)
\(500\) 5.79703 12.7028i 0.259251 0.568084i
\(501\) 27.9606 27.0508i 1.24919 1.20854i
\(502\) 14.0222 + 3.04838i 0.625843 + 0.136056i
\(503\) −3.07284 −0.137011 −0.0685056 0.997651i \(-0.521823\pi\)
−0.0685056 + 0.997651i \(0.521823\pi\)
\(504\) 0 0
\(505\) −27.6354 −1.22976
\(506\) 2.93908 + 0.638945i 0.130658 + 0.0284046i
\(507\) −8.36340 + 8.09124i −0.371432 + 0.359345i
\(508\) 9.09743 19.9348i 0.403633 0.884462i
\(509\) 16.8861i 0.748465i 0.927335 + 0.374233i \(0.122094\pi\)
−0.927335 + 0.374233i \(0.877906\pi\)
\(510\) 3.75104 2.32460i 0.166099 0.102935i
\(511\) 0 0
\(512\) −7.88187 + 21.2103i −0.348333 + 0.937371i
\(513\) −11.3217 + 10.2505i −0.499863 + 0.452570i
\(514\) 3.59960 16.5578i 0.158772 0.730333i
\(515\) −19.9717 −0.880059
\(516\) −0.614192 1.73228i −0.0270383 0.0762592i
\(517\) 2.12679 0.0935360
\(518\) 0 0
\(519\) −23.4004 24.1875i −1.02716 1.06171i
\(520\) 20.5201 27.4346i 0.899865 1.20309i
\(521\) 31.5430i 1.38192i −0.722892 0.690961i \(-0.757188\pi\)
0.722892 0.690961i \(-0.242812\pi\)
\(522\) −8.50420 2.14560i −0.372219 0.0939106i
\(523\) 33.5304i 1.46618i −0.680129 0.733092i \(-0.738076\pi\)
0.680129 0.733092i \(-0.261924\pi\)
\(524\) −40.3117 18.3967i −1.76103 0.803662i
\(525\) 0 0
\(526\) 19.9606 + 4.33936i 0.870325 + 0.189205i
\(527\) −2.05007 −0.0893023
\(528\) −14.0813 1.23387i −0.612809 0.0536972i
\(529\) −21.9134 −0.952755
\(530\) −39.9069 8.67560i −1.73344 0.376844i
\(531\) −0.345998 + 10.4568i −0.0150150 + 0.453785i
\(532\) 0 0
\(533\) 34.8978i 1.51159i
\(534\) −0.698374 1.12692i −0.0302216 0.0487664i
\(535\) 47.8081i 2.06692i
\(536\) 8.07181 10.7917i 0.348649 0.466132i
\(537\) −6.26615 + 6.06224i −0.270404 + 0.261605i
\(538\) 1.97420 9.08112i 0.0851139 0.391515i
\(539\) 0 0
\(540\) 27.0165 8.58426i 1.16260 0.369408i
\(541\) −23.6791 −1.01805 −0.509023 0.860753i \(-0.669993\pi\)
−0.509023 + 0.860753i \(0.669993\pi\)
\(542\) −0.00491073 + 0.0225889i −0.000210934 + 0.000970275i
\(543\) 7.11857 6.88692i 0.305487 0.295546i
\(544\) 3.27795 1.79275i 0.140541 0.0768635i
\(545\) 1.74295i 0.0746599i
\(546\) 0 0
\(547\) 10.9063i 0.466318i 0.972439 + 0.233159i \(0.0749063\pi\)
−0.972439 + 0.233159i \(0.925094\pi\)
\(548\) −12.0435 + 26.3903i −0.514472 + 1.12734i
\(549\) 0.0196857 0.594941i 0.000840163 0.0253914i
\(550\) −6.88110 1.49593i −0.293411 0.0637865i
\(551\) 6.07615 0.258853
\(552\) −5.06587 + 0.645116i −0.215618 + 0.0274580i
\(553\) 0 0
\(554\) −25.3084 5.50196i −1.07525 0.233756i
\(555\) −31.2742 32.3261i −1.32752 1.37217i
\(556\) −4.80158 + 10.5215i −0.203632 + 0.446209i
\(557\) 10.9443i 0.463725i −0.972749 0.231862i \(-0.925518\pi\)
0.972749 0.231862i \(-0.0744819\pi\)
\(558\) −12.7689 3.22159i −0.540551 0.136381i
\(559\) 2.35601i 0.0996485i
\(560\) 0 0
\(561\) 1.62284 + 1.67743i 0.0685164 + 0.0708210i
\(562\) 0.484259 2.22754i 0.0204272 0.0939632i
\(563\) −28.2949 −1.19249 −0.596245 0.802803i \(-0.703341\pi\)
−0.596245 + 0.802803i \(0.703341\pi\)
\(564\) −3.40344 + 1.20672i −0.143311 + 0.0508119i
\(565\) 29.4370 1.23842
\(566\) 6.18114 28.4326i 0.259813 1.19511i
\(567\) 0 0
\(568\) −12.5201 9.36455i −0.525331 0.392928i
\(569\) 0.951435i 0.0398862i 0.999801 + 0.0199431i \(0.00634851\pi\)
−0.999801 + 0.0199431i \(0.993651\pi\)
\(570\) −16.6929 + 10.3450i −0.699190 + 0.433303i
\(571\) 16.3835i 0.685630i 0.939403 + 0.342815i \(0.111380\pi\)
−0.939403 + 0.342815i \(0.888620\pi\)
\(572\) 16.4842 + 7.52275i 0.689240 + 0.314542i
\(573\) −12.2181 + 11.8205i −0.510419 + 0.493809i
\(574\) 0 0
\(575\) −2.54407 −0.106095
\(576\) 23.2340 6.01505i 0.968084 0.250627i
\(577\) 9.96852 0.414995 0.207497 0.978236i \(-0.433468\pi\)
0.207497 + 0.978236i \(0.433468\pi\)
\(578\) 22.8901 + 4.97621i 0.952101 + 0.206983i
\(579\) −21.3601 + 20.6650i −0.887697 + 0.858810i
\(580\) −10.2600 4.68228i −0.426025 0.194421i
\(581\) 0 0
\(582\) −14.4016 + 8.92500i −0.596967 + 0.369953i
\(583\) 21.5993i 0.894553i
\(584\) 6.87599 + 5.14298i 0.284530 + 0.212818i
\(585\) −36.3181 1.20171i −1.50157 0.0496846i
\(586\) 3.50217 16.1096i 0.144673 0.665482i
\(587\) 29.5354 1.21905 0.609527 0.792765i \(-0.291359\pi\)
0.609527 + 0.792765i \(0.291359\pi\)
\(588\) 0 0
\(589\) 9.12323 0.375916
\(590\) −2.85795 + 13.1463i −0.117660 + 0.541224i
\(591\) 13.2839 + 13.7307i 0.546426 + 0.564806i
\(592\) −24.9527 28.7658i −1.02555 1.18227i
\(593\) 21.0659i 0.865071i −0.901617 0.432536i \(-0.857619\pi\)
0.901617 0.432536i \(-0.142381\pi\)
\(594\) 7.47191 + 12.9981i 0.306576 + 0.533319i
\(595\) 0 0
\(596\) −11.5049 + 25.2101i −0.471259 + 1.03265i
\(597\) −26.8614 27.7649i −1.09936 1.13634i
\(598\) 6.39684 + 1.39065i 0.261586 + 0.0568679i
\(599\) −39.7366 −1.62359 −0.811796 0.583940i \(-0.801510\pi\)
−0.811796 + 0.583940i \(0.801510\pi\)
\(600\) 11.8604 1.51037i 0.484200 0.0616608i
\(601\) 36.5567 1.49118 0.745589 0.666406i \(-0.232168\pi\)
0.745589 + 0.666406i \(0.232168\pi\)
\(602\) 0 0
\(603\) −14.2861 0.472706i −0.581777 0.0192501i
\(604\) −9.77578 + 21.4212i −0.397771 + 0.871615i
\(605\) 18.6506i 0.758256i
\(606\) 13.0725 + 21.0942i 0.531035 + 0.856892i
\(607\) 13.1733i 0.534690i 0.963601 + 0.267345i \(0.0861463\pi\)
−0.963601 + 0.267345i \(0.913854\pi\)
\(608\) −14.5876 + 7.97812i −0.591604 + 0.323555i
\(609\) 0 0
\(610\) 0.162604 0.747963i 0.00658365 0.0302841i
\(611\) 4.62890 0.187265
\(612\) −3.54875 1.76356i −0.143450 0.0712877i
\(613\) −19.0079 −0.767721 −0.383861 0.923391i \(-0.625406\pi\)
−0.383861 + 0.923391i \(0.625406\pi\)
\(614\) −1.09968 + 5.05841i −0.0443795 + 0.204141i
\(615\) −26.6855 + 25.8171i −1.07606 + 1.04104i
\(616\) 0 0
\(617\) 41.6979i 1.67869i −0.543596 0.839347i \(-0.682938\pi\)
0.543596 0.839347i \(-0.317062\pi\)
\(618\) 9.44731 + 15.2444i 0.380027 + 0.613222i
\(619\) 13.4107i 0.539021i 0.962997 + 0.269511i \(0.0868619\pi\)
−0.962997 + 0.269511i \(0.913138\pi\)
\(620\) −15.4053 7.03035i −0.618690 0.282346i
\(621\) 3.63542 + 4.01532i 0.145884 + 0.161129i
\(622\) −16.2342 3.52926i −0.650934 0.141511i
\(623\) 0 0
\(624\) −30.6476 2.68549i −1.22689 0.107505i
\(625\) −31.2465 −1.24986
\(626\) 20.4994 + 4.45649i 0.819321 + 0.178117i
\(627\) −7.22199 7.46490i −0.288418 0.298120i
\(628\) 19.4370 + 8.87028i 0.775621 + 0.353963i
\(629\) 6.28769i 0.250707i
\(630\) 0 0
\(631\) 10.7225i 0.426856i 0.976959 + 0.213428i \(0.0684629\pi\)
−0.976959 + 0.213428i \(0.931537\pi\)
\(632\) −18.4879 + 24.7177i −0.735410 + 0.983218i
\(633\) −21.6354 22.3631i −0.859931 0.888855i
\(634\) 2.49428 11.4734i 0.0990604 0.455668i
\(635\) −29.8858 −1.18598
\(636\) 12.2552 + 34.5649i 0.485952 + 1.37059i
\(637\) 0 0
\(638\) 1.26713 5.82864i 0.0501660 0.230758i
\(639\) −0.548413 + 16.5741i −0.0216949 + 0.655663i
\(640\) 30.7801 2.23049i 1.21669 0.0881680i
\(641\) 23.9750i 0.946957i −0.880805 0.473479i \(-0.842998\pi\)
0.880805 0.473479i \(-0.157002\pi\)
\(642\) 36.4920 22.6149i 1.44022 0.892538i
\(643\) 24.5118i 0.966649i 0.875441 + 0.483325i \(0.160571\pi\)
−0.875441 + 0.483325i \(0.839429\pi\)
\(644\) 0 0
\(645\) −1.80158 + 1.74295i −0.0709371 + 0.0686287i
\(646\) 2.68268 + 0.583205i 0.105549 + 0.0229459i
\(647\) 42.4331 1.66822 0.834108 0.551601i \(-0.185983\pi\)
0.834108 + 0.551601i \(0.185983\pi\)
\(648\) −19.3321 16.5611i −0.759437 0.650581i
\(649\) −7.11534 −0.279302
\(650\) −14.9766 3.25585i −0.587430 0.127705i
\(651\) 0 0
\(652\) 17.0043 37.2608i 0.665941 1.45924i
\(653\) 21.3784i 0.836600i −0.908309 0.418300i \(-0.862626\pi\)
0.908309 0.418300i \(-0.137374\pi\)
\(654\) −1.33040 + 0.824477i −0.0520227 + 0.0322396i
\(655\) 60.4345i 2.36137i
\(656\) −23.7464 + 20.5987i −0.927140 + 0.804243i
\(657\) 0.301187 9.10247i 0.0117504 0.355121i
\(658\) 0 0
\(659\) −0.835578 −0.0325495 −0.0162748 0.999868i \(-0.505181\pi\)
−0.0162748 + 0.999868i \(0.505181\pi\)
\(660\) 6.44242 + 18.1703i 0.250771 + 0.707278i
\(661\) −18.0043 −0.700288 −0.350144 0.936696i \(-0.613867\pi\)
−0.350144 + 0.936696i \(0.613867\pi\)
\(662\) 4.58717 21.1005i 0.178286 0.820095i
\(663\) 3.53208 + 3.65088i 0.137175 + 0.141789i
\(664\) −20.7443 15.5160i −0.805035 0.602136i
\(665\) 0 0
\(666\) −9.88081 + 39.1630i −0.382874 + 1.51754i
\(667\) 2.15496i 0.0834403i
\(668\) −40.8682 18.6506i −1.58124 0.721614i
\(669\) −2.35747 2.43677i −0.0911452 0.0942109i
\(670\) −17.9606 3.90457i −0.693880 0.150847i
\(671\) 0.404830 0.0156283
\(672\) 0 0
\(673\) 3.35747 0.129421 0.0647105 0.997904i \(-0.479388\pi\)
0.0647105 + 0.997904i \(0.479388\pi\)
\(674\) −23.4385 5.09544i −0.902817 0.196269i
\(675\) −8.51141 9.40084i −0.327604 0.361839i
\(676\) 12.2242 + 5.57865i 0.470162 + 0.214563i
\(677\) 36.8577i 1.41656i −0.705933 0.708278i \(-0.749472\pi\)
0.705933 0.708278i \(-0.250528\pi\)
\(678\) −13.9247 22.4693i −0.534776 0.862929i
\(679\) 0 0
\(680\) −4.08049 3.05206i −0.156480 0.117041i
\(681\) 22.6114 21.8756i 0.866471 0.838275i
\(682\) 1.90257 8.75161i 0.0728530 0.335116i
\(683\) −4.38633 −0.167838 −0.0839191 0.996473i \(-0.526744\pi\)
−0.0839191 + 0.996473i \(0.526744\pi\)
\(684\) 15.7927 + 7.84822i 0.603848 + 0.300084i
\(685\) 39.5638 1.51165
\(686\) 0 0
\(687\) −12.2557 + 11.8569i −0.467585 + 0.452369i
\(688\) −1.60316 + 1.39065i −0.0611197 + 0.0530180i
\(689\) 47.0105i 1.79096i
\(690\) 3.66893 + 5.92029i 0.139674 + 0.225382i
\(691\) 40.2595i 1.53154i −0.643113 0.765771i \(-0.722358\pi\)
0.643113 0.765771i \(-0.277642\pi\)
\(692\) −16.1338 + 35.3532i −0.613315 + 1.34393i
\(693\) 0 0
\(694\) −30.4807 6.62639i −1.15703 0.251534i
\(695\) 15.7736 0.598325
\(696\) 1.27936 + 10.0464i 0.0484942 + 0.380807i
\(697\) 5.19053 0.196605
\(698\) 24.4254 + 5.30999i 0.924515 + 0.200986i
\(699\) −31.5614 32.6229i −1.19376 1.23391i
\(700\) 0 0
\(701\) 25.7395i 0.972168i −0.873912 0.486084i \(-0.838425\pi\)
0.873912 0.486084i \(-0.161575\pi\)
\(702\) 16.2625 + 28.2901i 0.613787 + 1.06774i
\(703\) 27.9815i 1.05534i
\(704\) 4.61103 + 15.6571i 0.173785 + 0.590099i
\(705\) 3.42442 + 3.53960i 0.128971 + 0.133309i
\(706\) 0.126786 0.583205i 0.00477167 0.0219492i
\(707\) 0 0
\(708\) 11.3865 4.03717i 0.427931 0.151726i
\(709\) 15.0079 0.563633 0.281817 0.959468i \(-0.409063\pi\)
0.281817 + 0.959468i \(0.409063\pi\)
\(710\) −4.52991 + 20.8371i −0.170004 + 0.782003i
\(711\) 32.7214 + 1.08270i 1.22715 + 0.0406045i
\(712\) −0.916921 + 1.22589i −0.0343631 + 0.0459422i
\(713\) 3.23563i 0.121175i
\(714\) 0 0
\(715\) 24.7128i 0.924207i
\(716\) 9.15881 + 4.17972i 0.342281 + 0.156203i
\(717\) −21.0795 + 20.3936i −0.787229 + 0.761612i
\(718\) 19.9606 + 4.33936i 0.744924 + 0.161944i
\(719\) 38.5506 1.43769 0.718847 0.695168i \(-0.244670\pi\)
0.718847 + 0.695168i \(0.244670\pi\)
\(720\) −20.6193 25.4221i −0.768436 0.947427i
\(721\) 0 0
\(722\) 14.3183 + 3.11274i 0.532871 + 0.115844i
\(723\) 7.26657 7.03011i 0.270247 0.261453i
\(724\) −10.4047 4.74831i −0.386689 0.176470i
\(725\) 5.04528i 0.187377i
\(726\) 14.2361 8.82239i 0.528350 0.327430i
\(727\) 50.3452i 1.86720i −0.358318 0.933600i \(-0.616650\pi\)
0.358318 0.933600i \(-0.383350\pi\)
\(728\) 0 0
\(729\) −2.67479 + 26.8672i −0.0990664 + 0.995081i
\(730\) 2.48781 11.4437i 0.0920781 0.423550i
\(731\) 0.350421 0.0129608
\(732\) −0.647839 + 0.229696i −0.0239448 + 0.00848982i
\(733\) 12.5516 0.463602 0.231801 0.972763i \(-0.425538\pi\)
0.231801 + 0.972763i \(0.425538\pi\)
\(734\) 6.54943 30.1267i 0.241744 1.11200i
\(735\) 0 0
\(736\) 2.82951 + 5.17360i 0.104297 + 0.190701i
\(737\) 9.72107i 0.358080i
\(738\) 32.3294 + 8.15668i 1.19006 + 0.300252i
\(739\) 6.26058i 0.230299i −0.993348 0.115150i \(-0.963265\pi\)
0.993348 0.115150i \(-0.0367347\pi\)
\(740\) −21.5625 + 47.2489i −0.792655 + 1.73691i
\(741\) −15.7185 16.2472i −0.577433 0.596856i
\(742\) 0 0
\(743\) 34.2633 1.25700 0.628498 0.777811i \(-0.283670\pi\)
0.628498 + 0.777811i \(0.283670\pi\)
\(744\) 1.92094 + 15.0845i 0.0704252 + 0.553024i
\(745\) 37.7945 1.38468
\(746\) 26.9755 + 5.86436i 0.987642 + 0.214710i
\(747\) −0.908655 + 27.4614i −0.0332460 + 1.00476i
\(748\) 1.11890 2.45178i 0.0409109 0.0896461i
\(749\) 0 0
\(750\) 9.00834 + 14.5361i 0.328938 + 0.530783i
\(751\) 29.0159i 1.05880i 0.848371 + 0.529402i \(0.177584\pi\)
−0.848371 + 0.529402i \(0.822416\pi\)
\(752\) 2.73224 + 3.14976i 0.0996346 + 0.114860i
\(753\) −12.6311 + 12.2201i −0.460302 + 0.445324i
\(754\) 2.75787 12.6859i 0.100436 0.461994i
\(755\) 32.1142 1.16876
\(756\) 0 0
\(757\) −10.5717 −0.384234 −0.192117 0.981372i \(-0.561535\pi\)
−0.192117 + 0.981372i \(0.561535\pi\)
\(758\) 10.2487 47.1428i 0.372249 1.71230i
\(759\) −2.64749 + 2.56134i −0.0960978 + 0.0929707i
\(760\) 18.1591 + 13.5823i 0.658698 + 0.492682i
\(761\) 38.8724i 1.40913i 0.709642 + 0.704563i \(0.248857\pi\)
−0.709642 + 0.704563i \(0.751143\pi\)
\(762\) 14.1370 + 22.8119i 0.512130 + 0.826387i
\(763\) 0 0
\(764\) 17.8584 + 8.14986i 0.646094 + 0.294852i
\(765\) −0.178736 + 5.40178i −0.00646223 + 0.195302i
\(766\) −11.3531 2.46813i −0.410205 0.0891771i
\(767\) −15.4864 −0.559181
\(768\) −16.2626 22.4394i −0.586826 0.809713i
\(769\) −25.5953 −0.922989 −0.461494 0.887143i \(-0.652687\pi\)
−0.461494 + 0.887143i \(0.652687\pi\)
\(770\) 0 0
\(771\) 14.4297 + 14.9151i 0.519674 + 0.537154i
\(772\) 31.2207 + 14.2479i 1.12366 + 0.512792i
\(773\) 28.4673i 1.02390i 0.859016 + 0.511948i \(0.171076\pi\)
−0.859016 + 0.511948i \(0.828924\pi\)
\(774\) 2.18261 + 0.550671i 0.0784522 + 0.0197935i
\(775\) 7.57540i 0.272116i
\(776\) 15.6665 + 11.7180i 0.562395 + 0.420651i
\(777\) 0 0
\(778\) −1.44055 + 6.62639i −0.0516463 + 0.237568i
\(779\) −23.0990 −0.827606
\(780\) 14.0218 + 39.5473i 0.502061 + 1.41602i
\(781\) −11.2779 −0.403557
\(782\) 0.206838 0.951435i 0.00739653 0.0340233i
\(783\) 7.96299 7.20959i 0.284574 0.257650i
\(784\) 0 0
\(785\) 29.1395i 1.04004i
\(786\) 46.1298 28.5876i 1.64539 1.01969i
\(787\) 31.9387i 1.13849i −0.822167 0.569247i \(-0.807235\pi\)
0.822167 0.569247i \(-0.192765\pi\)
\(788\) 9.15881 20.0693i 0.326269 0.714938i
\(789\) −17.9803 + 17.3952i −0.640116 + 0.619286i
\(790\) 41.1376 + 8.94315i 1.46361 + 0.318183i
\(791\) 0 0
\(792\) 10.8219 13.5127i 0.384541 0.480153i
\(793\) 0.881103 0.0312889
\(794\) −14.3738 3.12480i −0.510105 0.110895i
\(795\) 35.9477 34.7779i 1.27493 1.23345i
\(796\) −18.5201 + 40.5821i −0.656427 + 1.43840i
\(797\) 37.7330i 1.33657i 0.743905 + 0.668285i \(0.232971\pi\)
−0.743905 + 0.668285i \(0.767029\pi\)
\(798\) 0 0
\(799\) 0.688481i 0.0243567i
\(800\) −6.62456 12.1127i −0.234214 0.428247i
\(801\) 1.62284 + 0.0536973i 0.0573403 + 0.00189730i
\(802\) 3.47637 15.9909i 0.122755 0.564660i
\(803\) 6.19382 0.218575
\(804\) 5.51563 + 15.5564i 0.194521 + 0.548631i
\(805\) 0 0
\(806\) 4.14089 19.0477i 0.145857 0.670926i
\(807\) 7.91398 + 8.18017i 0.278585 + 0.287956i
\(808\) 17.1634 22.9468i 0.603806 0.807267i
\(809\) 26.2067i 0.921379i 0.887561 + 0.460690i \(0.152398\pi\)
−0.887561 + 0.460690i \(0.847602\pi\)
\(810\) −9.60191 + 33.3642i −0.337377 + 1.17230i
\(811\) 32.1734i 1.12976i 0.825172 + 0.564881i \(0.191078\pi\)
−0.825172 + 0.564881i \(0.808922\pi\)
\(812\) 0 0
\(813\) −0.0196857 0.0203478i −0.000690406 0.000713628i
\(814\) −26.8417 5.83529i −0.940802 0.204527i
\(815\) −55.8606 −1.95671
\(816\) −0.399426 + 4.55838i −0.0139827 + 0.159575i
\(817\) −1.55945 −0.0545582
\(818\) −28.2426 6.13983i −0.987479 0.214674i
\(819\) 0 0
\(820\) 39.0043 + 17.8000i 1.36209 + 0.621604i
\(821\) 22.3847i 0.781230i 0.920554 + 0.390615i \(0.127738\pi\)
−0.920554 + 0.390615i \(0.872262\pi\)
\(822\) −18.7150 30.1991i −0.652762 1.05332i
\(823\) 32.8946i 1.14663i −0.819334 0.573317i \(-0.805656\pi\)
0.819334 0.573317i \(-0.194344\pi\)
\(824\) 12.4037 16.5833i 0.432104 0.577708i
\(825\) 6.19842 5.99672i 0.215801 0.208779i
\(826\) 0 0
\(827\) −16.7455 −0.582297 −0.291148 0.956678i \(-0.594037\pi\)
−0.291148 + 0.956678i \(0.594037\pi\)
\(828\) 2.78344 5.60100i 0.0967311 0.194648i
\(829\) 0.948403 0.0329394 0.0164697 0.999864i \(-0.494757\pi\)
0.0164697 + 0.999864i \(0.494757\pi\)
\(830\) −7.50553 + 34.5247i −0.260521 + 1.19837i
\(831\) 22.7976 22.0557i 0.790838 0.765104i
\(832\) 10.0358 + 34.0774i 0.347929 + 1.18142i
\(833\) 0 0
\(834\) −7.46144 12.0400i −0.258369 0.416911i
\(835\) 61.2687i 2.12029i
\(836\) −4.97933 + 10.9109i −0.172214 + 0.377363i
\(837\) 11.9563 10.8251i 0.413270 0.374169i
\(838\) 30.2823 + 6.58325i 1.04608 + 0.227415i
\(839\) 35.5384 1.22692 0.613461 0.789725i \(-0.289777\pi\)
0.613461 + 0.789725i \(0.289777\pi\)
\(840\) 0 0
\(841\) 24.7264 0.852634
\(842\) 19.5065 + 4.24063i 0.672238 + 0.146142i
\(843\) 1.94125 + 2.00655i 0.0668602 + 0.0691091i
\(844\) −14.9169 + 32.6867i −0.513462 + 1.12512i
\(845\) 18.3263i 0.630444i
\(846\) 1.08192 4.28822i 0.0371970 0.147432i
\(847\) 0 0
\(848\) 31.9885 27.7482i 1.09849 0.952879i
\(849\) 24.7783 + 25.6118i 0.850390 + 0.878994i
\(850\) −0.484259 + 2.22754i −0.0166100 + 0.0764041i
\(851\) −9.92389 −0.340186
\(852\) 18.0478 6.39899i 0.618308 0.219226i
\(853\) 35.8618 1.22788 0.613942 0.789351i \(-0.289583\pi\)
0.613942 + 0.789351i \(0.289583\pi\)
\(854\) 0 0
\(855\) 0.795415 24.0390i 0.0272026 0.822118i
\(856\) −39.6970 29.6919i −1.35682 1.01485i
\(857\) 38.0573i 1.30001i 0.759929 + 0.650006i \(0.225234\pi\)
−0.759929 + 0.650006i \(0.774766\pi\)
\(858\) −18.8633 + 11.6900i −0.643984 + 0.399091i
\(859\) 21.5535i 0.735397i 0.929945 + 0.367699i \(0.119854\pi\)
−0.929945 + 0.367699i \(0.880146\pi\)
\(860\) 2.63325 + 1.20171i 0.0897929 + 0.0409779i
\(861\) 0 0
\(862\) 40.2429 + 8.74866i 1.37068 + 0.297980i
\(863\) 32.4744 1.10544 0.552721 0.833366i \(-0.313589\pi\)
0.552721 + 0.833366i \(0.313589\pi\)
\(864\) −9.65112 + 27.7643i −0.328338 + 0.944560i
\(865\) 53.0008 1.80208
\(866\) −36.0897 7.84576i −1.22638 0.266610i
\(867\) −20.6191 + 19.9482i −0.700262 + 0.677475i
\(868\) 0 0
\(869\) 22.2654i 0.755303i
\(870\) 11.7408 7.27605i 0.398052 0.246681i
\(871\) 21.1577i 0.716901i
\(872\) 1.44725 + 1.08249i 0.0490099 + 0.0366576i
\(873\) 0.686235 20.7394i 0.0232255 0.701923i
\(874\) −0.920475 + 4.23409i −0.0311355 + 0.143220i
\(875\) 0 0
\(876\) −9.91181 + 3.51431i −0.334889 + 0.118737i
\(877\) −28.1913 −0.951953 −0.475977 0.879458i \(-0.657905\pi\)
−0.475977 + 0.879458i \(0.657905\pi\)
\(878\) −5.52283 + 25.4044i −0.186386 + 0.857358i
\(879\) 14.0391 + 14.5114i 0.473529 + 0.489456i
\(880\) 16.8159 14.5869i 0.566865 0.491724i
\(881\) 5.81314i 0.195850i 0.995194 + 0.0979249i \(0.0312205\pi\)
−0.995194 + 0.0979249i \(0.968780\pi\)
\(882\) 0 0
\(883\) 47.2938i 1.59156i 0.605583 + 0.795782i \(0.292940\pi\)
−0.605583 + 0.795782i \(0.707060\pi\)
\(884\) 2.43525 5.33625i 0.0819065 0.179478i
\(885\) −11.4567 11.8420i −0.385112 0.398066i
\(886\) −11.4270 2.48418i −0.383897 0.0834577i
\(887\) −30.3896 −1.02038 −0.510192 0.860061i \(-0.670425\pi\)
−0.510192 + 0.860061i \(0.670425\pi\)
\(888\) 46.2650 5.89165i 1.55255 0.197711i
\(889\) 0 0
\(890\) 2.04025 + 0.443542i 0.0683892 + 0.0148676i
\(891\) −18.3221 1.21383i −0.613812 0.0406647i
\(892\) −1.62540 + 3.56166i −0.0544225 + 0.119253i
\(893\) 3.06388i 0.102529i
\(894\) −17.8781 28.8486i −0.597933 0.964841i
\(895\) 13.7307i 0.458967i
\(896\) 0 0
\(897\) −5.76221 + 5.57470i −0.192394 + 0.186134i
\(898\) −7.24213 + 33.3130i −0.241673 + 1.11167i
\(899\) −6.41675 −0.214011
\(900\) −6.51670 + 13.1133i −0.217223 + 0.437111i
\(901\) −6.99211 −0.232941
\(902\) −4.81707 + 22.1580i −0.160391 + 0.737782i
\(903\) 0 0
\(904\) −18.2823 + 24.4428i −0.608060 + 0.812954i
\(905\) 15.5986i 0.518514i
\(906\) −15.1911 24.5128i −0.504691 0.814384i
\(907\) 42.6975i 1.41775i −0.705335 0.708874i \(-0.749203\pi\)
0.705335 0.708874i \(-0.250797\pi\)
\(908\) −33.0496 15.0825i −1.09679 0.500531i
\(909\) −30.3772 1.00513i −1.00755 0.0333381i
\(910\) 0 0
\(911\) 42.4679 1.40702 0.703511 0.710684i \(-0.251614\pi\)
0.703511 + 0.710684i \(0.251614\pi\)
\(912\) 1.77753 20.2857i 0.0588599 0.671728i
\(913\) −18.6862 −0.618424
\(914\) −25.8291 5.61516i −0.854352 0.185733i
\(915\) 0.651832 + 0.673757i 0.0215489 + 0.0222737i
\(916\) 17.9134 + 8.17495i 0.591874 + 0.270108i
\(917\) 0 0
\(918\) 4.20774 2.41880i 0.138876 0.0798323i
\(919\) 21.2198i 0.699978i −0.936754 0.349989i \(-0.886185\pi\)
0.936754 0.349989i \(-0.113815\pi\)
\(920\) 4.81707 6.44026i 0.158814 0.212329i
\(921\) −4.40829 4.55656i −0.145258 0.150144i
\(922\) −4.91692 + 22.6173i −0.161930 + 0.744862i
\(923\) −24.5462 −0.807948
\(924\) 0 0
\(925\) 23.2342 0.763937
\(926\) −3.41413 + 15.7047i −0.112195 + 0.516087i
\(927\) −21.9531 0.726395i −0.721035 0.0238579i
\(928\) 10.2600 5.61134i 0.336802 0.184201i
\(929\) 27.0508i 0.887507i −0.896149 0.443753i \(-0.853647\pi\)
0.896149 0.443753i \(-0.146353\pi\)
\(930\) 17.6287 10.9249i 0.578066 0.358240i
\(931\) 0 0
\(932\) −21.7605 + 47.6828i −0.712790 + 1.56190i
\(933\) 14.6236 14.1478i 0.478756 0.463177i
\(934\) 50.1555 + 10.9036i 1.64114 + 0.356777i
\(935\) −3.67566 −0.120207
\(936\) 23.5537 29.4101i 0.769878 0.961299i
\(937\) −47.2071 −1.54219 −0.771094 0.636721i \(-0.780290\pi\)
−0.771094 + 0.636721i \(0.780290\pi\)
\(938\) 0 0
\(939\) −18.4656 + 17.8647i −0.602603 + 0.582994i
\(940\) 2.36103 5.17360i 0.0770082 0.168744i
\(941\) 16.0658i 0.523729i 0.965105 + 0.261864i \(0.0843373\pi\)
−0.965105 + 0.261864i \(0.915663\pi\)
\(942\) −22.2423 + 13.7840i −0.724693 + 0.449108i
\(943\) 8.19224i 0.266776i
\(944\) −9.14094 10.5378i −0.297512 0.342976i
\(945\) 0 0
\(946\) −0.325209 + 1.49593i −0.0105734 + 0.0486367i
\(947\) 25.5886 0.831519 0.415759 0.909475i \(-0.363516\pi\)
0.415759 + 0.909475i \(0.363516\pi\)
\(948\) −12.6332 35.6308i −0.410307 1.15724i
\(949\) 13.4807 0.437602
\(950\) 2.15506 9.91303i 0.0699192 0.321621i
\(951\) 9.99882 + 10.3351i 0.324234 + 0.335140i
\(952\) 0 0
\(953\) 25.0168i 0.810375i 0.914234 + 0.405187i \(0.132794\pi\)
−0.914234 + 0.405187i \(0.867206\pi\)
\(954\) −43.5505 10.9878i −1.41000 0.355743i
\(955\) 26.7729i 0.866352i
\(956\) 30.8105 + 14.0607i 0.996484 + 0.454756i
\(957\) 5.07953 + 5.25038i 0.164198 + 0.169721i
\(958\) 15.4764 + 3.36450i 0.500019 + 0.108702i
\(959\) 0 0
\(960\) −18.6337 + 32.8842i −0.601399 + 1.06133i
\(961\) 21.3654 0.689205
\(962\) −58.4205 12.7004i −1.88355 0.409477i
\(963\) −1.73884 + 52.5512i −0.0560332 + 1.69344i
\(964\) −10.6211 4.84703i −0.342081 0.156112i
\(965\) 46.8054i 1.50672i
\(966\) 0 0
\(967\) 25.4408i 0.818122i −0.912507 0.409061i \(-0.865856\pi\)
0.912507 0.409061i \(-0.134144\pi\)
\(968\) −15.4864 11.5832i −0.497751 0.372300i
\(969\) −2.41653 + 2.33789i −0.0776301 + 0.0751039i
\(970\) 5.66833 26.0737i 0.181999 0.837177i
\(971\) 6.57998 0.211162 0.105581 0.994411i \(-0.466330\pi\)
0.105581 + 0.994411i \(0.466330\pi\)
\(972\) 30.0090 8.45329i 0.962540 0.271139i
\(973\) 0 0
\(974\) 2.98572 13.7340i 0.0956687 0.440066i
\(975\) 13.4907 13.0517i 0.432049 0.417990i
\(976\) 0.520077 + 0.599550i 0.0166473 + 0.0191911i
\(977\) 5.15268i 0.164849i −0.996597 0.0824244i \(-0.973734\pi\)
0.996597 0.0824244i \(-0.0262663\pi\)
\(978\) 26.4240 + 42.6385i 0.844946 + 1.36343i
\(979\) 1.10427i 0.0352926i
\(980\) 0 0
\(981\) 0.0633932 1.91587i 0.00202399 0.0611691i
\(982\) 3.65255 + 0.794050i 0.116557 + 0.0253391i
\(983\) 32.3024 1.03029 0.515143 0.857104i \(-0.327739\pi\)
0.515143 + 0.857104i \(0.327739\pi\)
\(984\) −4.86360 38.1921i −0.155046 1.21752i
\(985\) −30.0874 −0.958665
\(986\) −1.88684 0.410192i −0.0600893 0.0130632i
\(987\) 0 0
\(988\) −10.8374 + 23.7474i −0.344783 + 0.755507i
\(989\) 0.553071i 0.0175866i
\(990\) −22.8940 5.77614i −0.727618 0.183578i
\(991\) 2.58291i 0.0820487i −0.999158 0.0410244i \(-0.986938\pi\)
0.999158 0.0410244i \(-0.0130621\pi\)
\(992\) 15.4053 8.42533i 0.489118 0.267505i
\(993\) 18.3886 + 19.0071i 0.583545 + 0.603173i
\(994\) 0 0
\(995\) 60.8399 1.92875
\(996\) 29.9031 10.6024i 0.947516 0.335949i
\(997\) 42.8067 1.35570 0.677851 0.735199i \(-0.262912\pi\)
0.677851 + 0.735199i \(0.262912\pi\)
\(998\) 5.96134 27.4216i 0.188703 0.868014i
\(999\) −33.2012 36.6707i −1.05044 1.16021i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.d.491.12 12
3.2 odd 2 inner 588.2.e.d.491.1 12
4.3 odd 2 inner 588.2.e.d.491.2 12
7.2 even 3 588.2.n.e.263.5 24
7.3 odd 6 84.2.n.a.23.4 yes 24
7.4 even 3 588.2.n.e.275.4 24
7.5 odd 6 84.2.n.a.11.5 yes 24
7.6 odd 2 588.2.e.e.491.12 12
12.11 even 2 inner 588.2.e.d.491.11 12
21.2 odd 6 588.2.n.e.263.8 24
21.5 even 6 84.2.n.a.11.8 yes 24
21.11 odd 6 588.2.n.e.275.9 24
21.17 even 6 84.2.n.a.23.9 yes 24
21.20 even 2 588.2.e.e.491.1 12
28.3 even 6 84.2.n.a.23.8 yes 24
28.11 odd 6 588.2.n.e.275.8 24
28.19 even 6 84.2.n.a.11.9 yes 24
28.23 odd 6 588.2.n.e.263.9 24
28.27 even 2 588.2.e.e.491.2 12
84.11 even 6 588.2.n.e.275.5 24
84.23 even 6 588.2.n.e.263.4 24
84.47 odd 6 84.2.n.a.11.4 24
84.59 odd 6 84.2.n.a.23.5 yes 24
84.83 odd 2 588.2.e.e.491.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.n.a.11.4 24 84.47 odd 6
84.2.n.a.11.5 yes 24 7.5 odd 6
84.2.n.a.11.8 yes 24 21.5 even 6
84.2.n.a.11.9 yes 24 28.19 even 6
84.2.n.a.23.4 yes 24 7.3 odd 6
84.2.n.a.23.5 yes 24 84.59 odd 6
84.2.n.a.23.8 yes 24 28.3 even 6
84.2.n.a.23.9 yes 24 21.17 even 6
588.2.e.d.491.1 12 3.2 odd 2 inner
588.2.e.d.491.2 12 4.3 odd 2 inner
588.2.e.d.491.11 12 12.11 even 2 inner
588.2.e.d.491.12 12 1.1 even 1 trivial
588.2.e.e.491.1 12 21.20 even 2
588.2.e.e.491.2 12 28.27 even 2
588.2.e.e.491.11 12 84.83 odd 2
588.2.e.e.491.12 12 7.6 odd 2
588.2.n.e.263.4 24 84.23 even 6
588.2.n.e.263.5 24 7.2 even 3
588.2.n.e.263.8 24 21.2 odd 6
588.2.n.e.263.9 24 28.23 odd 6
588.2.n.e.275.4 24 7.4 even 3
588.2.n.e.275.5 24 84.11 even 6
588.2.n.e.275.8 24 28.11 odd 6
588.2.n.e.275.9 24 21.11 odd 6