Properties

Label 585.4.c.e.469.6
Level $585$
Weight $4$
Character 585.469
Analytic conductor $34.516$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,4,Mod(469,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.469"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 585.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,-110,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.5161173534\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.6
Character \(\chi\) \(=\) 585.469
Dual form 585.4.c.e.469.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.05864i q^{2} -1.35528 q^{4} +(8.72741 - 6.98802i) q^{5} +23.3910i q^{7} -20.3238i q^{8} +(-21.3738 - 26.6940i) q^{10} -52.9131 q^{11} -13.0000i q^{13} +71.5447 q^{14} -73.0055 q^{16} +49.4789i q^{17} -70.9199 q^{19} +(-11.8281 + 9.47071i) q^{20} +161.842i q^{22} -38.3284i q^{23} +(27.3353 - 121.975i) q^{25} -39.7623 q^{26} -31.7014i q^{28} -104.897 q^{29} -280.737 q^{31} +60.7069i q^{32} +151.338 q^{34} +(163.457 + 204.143i) q^{35} +1.68968i q^{37} +216.918i q^{38} +(-142.023 - 177.374i) q^{40} -455.197 q^{41} -454.499i q^{43} +71.7120 q^{44} -117.233 q^{46} -565.411i q^{47} -204.140 q^{49} +(-373.076 - 83.6087i) q^{50} +17.6186i q^{52} -385.295i q^{53} +(-461.794 + 369.758i) q^{55} +475.395 q^{56} +320.841i q^{58} +270.279 q^{59} +563.622 q^{61} +858.674i q^{62} -398.363 q^{64} +(-90.8442 - 113.456i) q^{65} +620.293i q^{67} -67.0577i q^{68} +(624.400 - 499.956i) q^{70} -816.400 q^{71} +581.269i q^{73} +5.16813 q^{74} +96.1162 q^{76} -1237.69i q^{77} -493.473 q^{79} +(-637.148 + 510.163i) q^{80} +1392.28i q^{82} +495.056i q^{83} +(345.759 + 431.823i) q^{85} -1390.15 q^{86} +1075.40i q^{88} +901.129 q^{89} +304.083 q^{91} +51.9456i q^{92} -1729.39 q^{94} +(-618.946 + 495.589i) q^{95} +3.53365i q^{97} +624.390i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 110 q^{4} - 8 q^{5} - 58 q^{10} - 200 q^{11} + 300 q^{14} + 1022 q^{16} - 88 q^{19} + 296 q^{20} - 346 q^{25} - 78 q^{26} + 560 q^{29} + 512 q^{31} - 156 q^{34} - 36 q^{35} + 10 q^{40} - 1400 q^{41}+ \cdots - 2376 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.05864i 1.08139i −0.841218 0.540696i \(-0.818161\pi\)
0.841218 0.540696i \(-0.181839\pi\)
\(3\) 0 0
\(4\) −1.35528 −0.169410
\(5\) 8.72741 6.98802i 0.780603 0.625027i
\(6\) 0 0
\(7\) 23.3910i 1.26300i 0.775377 + 0.631498i \(0.217560\pi\)
−0.775377 + 0.631498i \(0.782440\pi\)
\(8\) 20.3238i 0.898194i
\(9\) 0 0
\(10\) −21.3738 26.6940i −0.675900 0.844138i
\(11\) −52.9131 −1.45035 −0.725177 0.688562i \(-0.758242\pi\)
−0.725177 + 0.688562i \(0.758242\pi\)
\(12\) 0 0
\(13\) 13.0000i 0.277350i
\(14\) 71.5447 1.36579
\(15\) 0 0
\(16\) −73.0055 −1.14071
\(17\) 49.4789i 0.705906i 0.935641 + 0.352953i \(0.114822\pi\)
−0.935641 + 0.352953i \(0.885178\pi\)
\(18\) 0 0
\(19\) −70.9199 −0.856323 −0.428161 0.903702i \(-0.640839\pi\)
−0.428161 + 0.903702i \(0.640839\pi\)
\(20\) −11.8281 + 9.47071i −0.132242 + 0.105886i
\(21\) 0 0
\(22\) 161.842i 1.56840i
\(23\) 38.3284i 0.347479i −0.984792 0.173739i \(-0.944415\pi\)
0.984792 0.173739i \(-0.0555851\pi\)
\(24\) 0 0
\(25\) 27.3353 121.975i 0.218682 0.975796i
\(26\) −39.7623 −0.299924
\(27\) 0 0
\(28\) 31.7014i 0.213964i
\(29\) −104.897 −0.671683 −0.335842 0.941918i \(-0.609021\pi\)
−0.335842 + 0.941918i \(0.609021\pi\)
\(30\) 0 0
\(31\) −280.737 −1.62651 −0.813256 0.581906i \(-0.802307\pi\)
−0.813256 + 0.581906i \(0.802307\pi\)
\(32\) 60.7069i 0.335362i
\(33\) 0 0
\(34\) 151.338 0.763361
\(35\) 163.457 + 204.143i 0.789407 + 0.985899i
\(36\) 0 0
\(37\) 1.68968i 0.00750762i 0.999993 + 0.00375381i \(0.00119488\pi\)
−0.999993 + 0.00375381i \(0.998805\pi\)
\(38\) 216.918i 0.926021i
\(39\) 0 0
\(40\) −142.023 177.374i −0.561396 0.701133i
\(41\) −455.197 −1.73390 −0.866950 0.498395i \(-0.833923\pi\)
−0.866950 + 0.498395i \(0.833923\pi\)
\(42\) 0 0
\(43\) 454.499i 1.61187i −0.592003 0.805936i \(-0.701662\pi\)
0.592003 0.805936i \(-0.298338\pi\)
\(44\) 71.7120 0.245704
\(45\) 0 0
\(46\) −117.233 −0.375761
\(47\) 565.411i 1.75476i −0.479798 0.877379i \(-0.659290\pi\)
0.479798 0.877379i \(-0.340710\pi\)
\(48\) 0 0
\(49\) −204.140 −0.595160
\(50\) −373.076 83.6087i −1.05522 0.236481i
\(51\) 0 0
\(52\) 17.6186i 0.0469858i
\(53\) 385.295i 0.998573i −0.866437 0.499286i \(-0.833596\pi\)
0.866437 0.499286i \(-0.166404\pi\)
\(54\) 0 0
\(55\) −461.794 + 369.758i −1.13215 + 0.906511i
\(56\) 475.395 1.13442
\(57\) 0 0
\(58\) 320.841i 0.726353i
\(59\) 270.279 0.596395 0.298197 0.954504i \(-0.403615\pi\)
0.298197 + 0.954504i \(0.403615\pi\)
\(60\) 0 0
\(61\) 563.622 1.18302 0.591511 0.806297i \(-0.298532\pi\)
0.591511 + 0.806297i \(0.298532\pi\)
\(62\) 858.674i 1.75890i
\(63\) 0 0
\(64\) −398.363 −0.778053
\(65\) −90.8442 113.456i −0.173351 0.216500i
\(66\) 0 0
\(67\) 620.293i 1.13106i 0.824729 + 0.565529i \(0.191328\pi\)
−0.824729 + 0.565529i \(0.808672\pi\)
\(68\) 67.0577i 0.119587i
\(69\) 0 0
\(70\) 624.400 499.956i 1.06614 0.853659i
\(71\) −816.400 −1.36463 −0.682316 0.731058i \(-0.739027\pi\)
−0.682316 + 0.731058i \(0.739027\pi\)
\(72\) 0 0
\(73\) 581.269i 0.931951i 0.884798 + 0.465976i \(0.154297\pi\)
−0.884798 + 0.465976i \(0.845703\pi\)
\(74\) 5.16813 0.00811868
\(75\) 0 0
\(76\) 96.1162 0.145070
\(77\) 1237.69i 1.83179i
\(78\) 0 0
\(79\) −493.473 −0.702786 −0.351393 0.936228i \(-0.614292\pi\)
−0.351393 + 0.936228i \(0.614292\pi\)
\(80\) −637.148 + 510.163i −0.890442 + 0.712975i
\(81\) 0 0
\(82\) 1392.28i 1.87503i
\(83\) 495.056i 0.654693i 0.944904 + 0.327346i \(0.106154\pi\)
−0.944904 + 0.327346i \(0.893846\pi\)
\(84\) 0 0
\(85\) 345.759 + 431.823i 0.441210 + 0.551032i
\(86\) −1390.15 −1.74307
\(87\) 0 0
\(88\) 1075.40i 1.30270i
\(89\) 901.129 1.07325 0.536626 0.843820i \(-0.319699\pi\)
0.536626 + 0.843820i \(0.319699\pi\)
\(90\) 0 0
\(91\) 304.083 0.350292
\(92\) 51.9456i 0.0588664i
\(93\) 0 0
\(94\) −1729.39 −1.89758
\(95\) −618.946 + 495.589i −0.668448 + 0.535225i
\(96\) 0 0
\(97\) 3.53365i 0.00369884i 0.999998 + 0.00184942i \(0.000588689\pi\)
−0.999998 + 0.00184942i \(0.999411\pi\)
\(98\) 624.390i 0.643601i
\(99\) 0 0
\(100\) −37.0469 + 165.310i −0.0370469 + 0.165310i
\(101\) 911.133 0.897635 0.448818 0.893623i \(-0.351845\pi\)
0.448818 + 0.893623i \(0.351845\pi\)
\(102\) 0 0
\(103\) 2012.57i 1.92528i 0.270776 + 0.962642i \(0.412720\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(104\) −264.210 −0.249114
\(105\) 0 0
\(106\) −1178.48 −1.07985
\(107\) 1513.18i 1.36715i −0.729882 0.683573i \(-0.760425\pi\)
0.729882 0.683573i \(-0.239575\pi\)
\(108\) 0 0
\(109\) 1401.01 1.23112 0.615562 0.788089i \(-0.288929\pi\)
0.615562 + 0.788089i \(0.288929\pi\)
\(110\) 1130.96 + 1412.46i 0.980294 + 1.22430i
\(111\) 0 0
\(112\) 1707.67i 1.44071i
\(113\) 762.555i 0.634825i 0.948288 + 0.317412i \(0.102814\pi\)
−0.948288 + 0.317412i \(0.897186\pi\)
\(114\) 0 0
\(115\) −267.839 334.507i −0.217184 0.271243i
\(116\) 142.164 0.113790
\(117\) 0 0
\(118\) 826.685i 0.644937i
\(119\) −1157.36 −0.891557
\(120\) 0 0
\(121\) 1468.80 1.10353
\(122\) 1723.92i 1.27931i
\(123\) 0 0
\(124\) 380.477 0.275547
\(125\) −613.794 1255.54i −0.439195 0.898392i
\(126\) 0 0
\(127\) 1284.03i 0.897156i −0.893744 0.448578i \(-0.851931\pi\)
0.893744 0.448578i \(-0.148069\pi\)
\(128\) 1704.10i 1.17674i
\(129\) 0 0
\(130\) −347.022 + 277.860i −0.234122 + 0.187461i
\(131\) −198.399 −0.132322 −0.0661612 0.997809i \(-0.521075\pi\)
−0.0661612 + 0.997809i \(0.521075\pi\)
\(132\) 0 0
\(133\) 1658.89i 1.08153i
\(134\) 1897.25 1.22312
\(135\) 0 0
\(136\) 1005.60 0.634040
\(137\) 1685.72i 1.05125i 0.850717 + 0.525624i \(0.176168\pi\)
−0.850717 + 0.525624i \(0.823832\pi\)
\(138\) 0 0
\(139\) −2226.02 −1.35834 −0.679169 0.733982i \(-0.737660\pi\)
−0.679169 + 0.733982i \(0.737660\pi\)
\(140\) −221.530 276.671i −0.133733 0.167021i
\(141\) 0 0
\(142\) 2497.07i 1.47570i
\(143\) 687.870i 0.402256i
\(144\) 0 0
\(145\) −915.476 + 733.019i −0.524318 + 0.419820i
\(146\) 1777.89 1.00781
\(147\) 0 0
\(148\) 2.28999i 0.00127186i
\(149\) 539.815 0.296801 0.148401 0.988927i \(-0.452587\pi\)
0.148401 + 0.988927i \(0.452587\pi\)
\(150\) 0 0
\(151\) 2266.17 1.22131 0.610657 0.791896i \(-0.290906\pi\)
0.610657 + 0.791896i \(0.290906\pi\)
\(152\) 1441.36i 0.769144i
\(153\) 0 0
\(154\) −3785.65 −1.98089
\(155\) −2450.11 + 1961.80i −1.26966 + 1.01661i
\(156\) 0 0
\(157\) 279.967i 0.142317i −0.997465 0.0711585i \(-0.977330\pi\)
0.997465 0.0711585i \(-0.0226696\pi\)
\(158\) 1509.36i 0.759987i
\(159\) 0 0
\(160\) 424.221 + 529.814i 0.209610 + 0.261784i
\(161\) 896.539 0.438865
\(162\) 0 0
\(163\) 719.186i 0.345589i 0.984958 + 0.172795i \(0.0552797\pi\)
−0.984958 + 0.172795i \(0.944720\pi\)
\(164\) 616.919 0.293740
\(165\) 0 0
\(166\) 1514.20 0.707980
\(167\) 658.201i 0.304989i 0.988304 + 0.152494i \(0.0487306\pi\)
−0.988304 + 0.152494i \(0.951269\pi\)
\(168\) 0 0
\(169\) −169.000 −0.0769231
\(170\) 1320.79 1057.55i 0.595882 0.477122i
\(171\) 0 0
\(172\) 615.973i 0.273067i
\(173\) 1009.51i 0.443652i −0.975086 0.221826i \(-0.928798\pi\)
0.975086 0.221826i \(-0.0712018\pi\)
\(174\) 0 0
\(175\) 2853.11 + 639.400i 1.23243 + 0.276195i
\(176\) 3862.94 1.65443
\(177\) 0 0
\(178\) 2756.23i 1.16061i
\(179\) 1299.47 0.542608 0.271304 0.962494i \(-0.412545\pi\)
0.271304 + 0.962494i \(0.412545\pi\)
\(180\) 0 0
\(181\) 417.244 0.171345 0.0856727 0.996323i \(-0.472696\pi\)
0.0856727 + 0.996323i \(0.472696\pi\)
\(182\) 930.081i 0.378803i
\(183\) 0 0
\(184\) −778.978 −0.312103
\(185\) 11.8075 + 14.7465i 0.00469247 + 0.00586047i
\(186\) 0 0
\(187\) 2618.08i 1.02381i
\(188\) 766.289i 0.297273i
\(189\) 0 0
\(190\) 1515.83 + 1893.13i 0.578788 + 0.722855i
\(191\) −1231.11 −0.466389 −0.233195 0.972430i \(-0.574918\pi\)
−0.233195 + 0.972430i \(0.574918\pi\)
\(192\) 0 0
\(193\) 1290.49i 0.481302i −0.970612 0.240651i \(-0.922639\pi\)
0.970612 0.240651i \(-0.0773609\pi\)
\(194\) 10.8082 0.00399990
\(195\) 0 0
\(196\) 276.666 0.100826
\(197\) 2815.55i 1.01827i 0.860686 + 0.509136i \(0.170035\pi\)
−0.860686 + 0.509136i \(0.829965\pi\)
\(198\) 0 0
\(199\) −1894.42 −0.674833 −0.337417 0.941355i \(-0.609553\pi\)
−0.337417 + 0.941355i \(0.609553\pi\)
\(200\) −2478.99 555.557i −0.876454 0.196419i
\(201\) 0 0
\(202\) 2786.83i 0.970696i
\(203\) 2453.64i 0.848333i
\(204\) 0 0
\(205\) −3972.69 + 3180.93i −1.35349 + 1.08373i
\(206\) 6155.73 2.08199
\(207\) 0 0
\(208\) 949.071i 0.316376i
\(209\) 3752.59 1.24197
\(210\) 0 0
\(211\) 4940.22 1.61184 0.805921 0.592023i \(-0.201671\pi\)
0.805921 + 0.592023i \(0.201671\pi\)
\(212\) 522.183i 0.169168i
\(213\) 0 0
\(214\) −4628.27 −1.47842
\(215\) −3176.05 3966.60i −1.00746 1.25823i
\(216\) 0 0
\(217\) 6566.73i 2.05428i
\(218\) 4285.19i 1.33133i
\(219\) 0 0
\(220\) 625.860 501.125i 0.191798 0.153572i
\(221\) 643.226 0.195783
\(222\) 0 0
\(223\) 1893.57i 0.568622i −0.958732 0.284311i \(-0.908235\pi\)
0.958732 0.284311i \(-0.0917647\pi\)
\(224\) −1420.00 −0.423560
\(225\) 0 0
\(226\) 2332.38 0.686495
\(227\) 1405.63i 0.410990i −0.978658 0.205495i \(-0.934120\pi\)
0.978658 0.205495i \(-0.0658804\pi\)
\(228\) 0 0
\(229\) 2033.07 0.586676 0.293338 0.956009i \(-0.405234\pi\)
0.293338 + 0.956009i \(0.405234\pi\)
\(230\) −1023.14 + 819.224i −0.293320 + 0.234861i
\(231\) 0 0
\(232\) 2131.90i 0.603302i
\(233\) 5297.72i 1.48955i −0.667315 0.744775i \(-0.732557\pi\)
0.667315 0.744775i \(-0.267443\pi\)
\(234\) 0 0
\(235\) −3951.10 4934.57i −1.09677 1.36977i
\(236\) −366.303 −0.101035
\(237\) 0 0
\(238\) 3539.96i 0.964123i
\(239\) −2335.56 −0.632113 −0.316057 0.948740i \(-0.602359\pi\)
−0.316057 + 0.948740i \(0.602359\pi\)
\(240\) 0 0
\(241\) 4733.71 1.26525 0.632625 0.774458i \(-0.281978\pi\)
0.632625 + 0.774458i \(0.281978\pi\)
\(242\) 4492.52i 1.19335i
\(243\) 0 0
\(244\) −763.865 −0.200416
\(245\) −1781.61 + 1426.53i −0.464584 + 0.371991i
\(246\) 0 0
\(247\) 921.958i 0.237501i
\(248\) 5705.65i 1.46092i
\(249\) 0 0
\(250\) −3840.25 + 1877.37i −0.971514 + 0.474942i
\(251\) −6940.51 −1.74534 −0.872671 0.488308i \(-0.837614\pi\)
−0.872671 + 0.488308i \(0.837614\pi\)
\(252\) 0 0
\(253\) 2028.07i 0.503968i
\(254\) −3927.37 −0.970178
\(255\) 0 0
\(256\) 2025.34 0.494467
\(257\) 1177.03i 0.285686i 0.989745 + 0.142843i \(0.0456244\pi\)
−0.989745 + 0.142843i \(0.954376\pi\)
\(258\) 0 0
\(259\) −39.5234 −0.00948209
\(260\) 123.119 + 153.765i 0.0293674 + 0.0366773i
\(261\) 0 0
\(262\) 606.832i 0.143092i
\(263\) 7802.79i 1.82943i −0.404097 0.914716i \(-0.632414\pi\)
0.404097 0.914716i \(-0.367586\pi\)
\(264\) 0 0
\(265\) −2692.45 3362.63i −0.624135 0.779489i
\(266\) −5073.94 −1.16956
\(267\) 0 0
\(268\) 840.670i 0.191612i
\(269\) −5042.71 −1.14297 −0.571486 0.820612i \(-0.693633\pi\)
−0.571486 + 0.820612i \(0.693633\pi\)
\(270\) 0 0
\(271\) −8864.90 −1.98710 −0.993551 0.113390i \(-0.963829\pi\)
−0.993551 + 0.113390i \(0.963829\pi\)
\(272\) 3612.23i 0.805234i
\(273\) 0 0
\(274\) 5156.01 1.13681
\(275\) −1446.39 + 6454.05i −0.317167 + 1.41525i
\(276\) 0 0
\(277\) 6320.33i 1.37095i −0.728098 0.685473i \(-0.759596\pi\)
0.728098 0.685473i \(-0.240404\pi\)
\(278\) 6808.61i 1.46890i
\(279\) 0 0
\(280\) 4148.96 3322.07i 0.885528 0.709041i
\(281\) −1980.02 −0.420348 −0.210174 0.977664i \(-0.567403\pi\)
−0.210174 + 0.977664i \(0.567403\pi\)
\(282\) 0 0
\(283\) 0.330895i 6.95042e-5i 1.00000 3.47521e-5i \(1.10619e-5\pi\)
−1.00000 3.47521e-5i \(0.999989\pi\)
\(284\) 1106.45 0.231182
\(285\) 0 0
\(286\) 2103.95 0.434997
\(287\) 10647.5i 2.18991i
\(288\) 0 0
\(289\) 2464.84 0.501697
\(290\) 2242.04 + 2800.11i 0.453991 + 0.566994i
\(291\) 0 0
\(292\) 787.782i 0.157882i
\(293\) 486.067i 0.0969159i 0.998825 + 0.0484580i \(0.0154307\pi\)
−0.998825 + 0.0484580i \(0.984569\pi\)
\(294\) 0 0
\(295\) 2358.83 1888.71i 0.465548 0.372763i
\(296\) 34.3408 0.00674330
\(297\) 0 0
\(298\) 1651.10i 0.320959i
\(299\) −498.269 −0.0963733
\(300\) 0 0
\(301\) 10631.2 2.03579
\(302\) 6931.40i 1.32072i
\(303\) 0 0
\(304\) 5177.54 0.976816
\(305\) 4918.96 3938.60i 0.923471 0.739421i
\(306\) 0 0
\(307\) 2414.57i 0.448882i −0.974488 0.224441i \(-0.927944\pi\)
0.974488 0.224441i \(-0.0720556\pi\)
\(308\) 1677.42i 0.310324i
\(309\) 0 0
\(310\) 6000.43 + 7494.00i 1.09936 + 1.37300i
\(311\) −1563.08 −0.284996 −0.142498 0.989795i \(-0.545514\pi\)
−0.142498 + 0.989795i \(0.545514\pi\)
\(312\) 0 0
\(313\) 4198.11i 0.758119i −0.925372 0.379060i \(-0.876248\pi\)
0.925372 0.379060i \(-0.123752\pi\)
\(314\) −856.317 −0.153901
\(315\) 0 0
\(316\) 668.794 0.119059
\(317\) 1790.36i 0.317213i 0.987342 + 0.158607i \(0.0507001\pi\)
−0.987342 + 0.158607i \(0.949300\pi\)
\(318\) 0 0
\(319\) 5550.41 0.974179
\(320\) −3476.68 + 2783.77i −0.607350 + 0.486304i
\(321\) 0 0
\(322\) 2742.19i 0.474585i
\(323\) 3509.04i 0.604483i
\(324\) 0 0
\(325\) −1585.67 355.358i −0.270637 0.0606515i
\(326\) 2199.73 0.373718
\(327\) 0 0
\(328\) 9251.35i 1.55738i
\(329\) 13225.5 2.21625
\(330\) 0 0
\(331\) −1077.36 −0.178904 −0.0894521 0.995991i \(-0.528512\pi\)
−0.0894521 + 0.995991i \(0.528512\pi\)
\(332\) 670.939i 0.110911i
\(333\) 0 0
\(334\) 2013.20 0.329812
\(335\) 4334.62 + 5413.55i 0.706942 + 0.882907i
\(336\) 0 0
\(337\) 2564.26i 0.414493i −0.978289 0.207246i \(-0.933550\pi\)
0.978289 0.207246i \(-0.0664502\pi\)
\(338\) 516.910i 0.0831840i
\(339\) 0 0
\(340\) −468.601 585.240i −0.0747454 0.0933503i
\(341\) 14854.7 2.35902
\(342\) 0 0
\(343\) 3248.08i 0.511312i
\(344\) −9237.16 −1.44777
\(345\) 0 0
\(346\) −3087.74 −0.479763
\(347\) 5426.27i 0.839473i −0.907646 0.419737i \(-0.862122\pi\)
0.907646 0.419737i \(-0.137878\pi\)
\(348\) 0 0
\(349\) −1044.75 −0.160241 −0.0801203 0.996785i \(-0.525530\pi\)
−0.0801203 + 0.996785i \(0.525530\pi\)
\(350\) 1955.69 8726.63i 0.298675 1.33274i
\(351\) 0 0
\(352\) 3212.19i 0.486393i
\(353\) 2608.59i 0.393318i 0.980472 + 0.196659i \(0.0630093\pi\)
−0.980472 + 0.196659i \(0.936991\pi\)
\(354\) 0 0
\(355\) −7125.05 + 5705.01i −1.06524 + 0.852932i
\(356\) −1221.28 −0.181820
\(357\) 0 0
\(358\) 3974.61i 0.586773i
\(359\) 3550.24 0.521935 0.260967 0.965348i \(-0.415959\pi\)
0.260967 + 0.965348i \(0.415959\pi\)
\(360\) 0 0
\(361\) −1829.37 −0.266711
\(362\) 1276.20i 0.185292i
\(363\) 0 0
\(364\) −412.118 −0.0593430
\(365\) 4061.92 + 5072.97i 0.582495 + 0.727484i
\(366\) 0 0
\(367\) 3013.25i 0.428585i −0.976770 0.214292i \(-0.931256\pi\)
0.976770 0.214292i \(-0.0687445\pi\)
\(368\) 2798.18i 0.396373i
\(369\) 0 0
\(370\) 45.1043 36.1150i 0.00633747 0.00507440i
\(371\) 9012.45 1.26119
\(372\) 0 0
\(373\) 1861.68i 0.258430i 0.991617 + 0.129215i \(0.0412457\pi\)
−0.991617 + 0.129215i \(0.958754\pi\)
\(374\) −8007.77 −1.10714
\(375\) 0 0
\(376\) −11491.3 −1.57611
\(377\) 1363.66i 0.186291i
\(378\) 0 0
\(379\) 2021.24 0.273943 0.136971 0.990575i \(-0.456263\pi\)
0.136971 + 0.990575i \(0.456263\pi\)
\(380\) 838.845 671.662i 0.113242 0.0906724i
\(381\) 0 0
\(382\) 3765.54i 0.504350i
\(383\) 5533.46i 0.738242i 0.929381 + 0.369121i \(0.120341\pi\)
−0.929381 + 0.369121i \(0.879659\pi\)
\(384\) 0 0
\(385\) −8649.01 10801.8i −1.14492 1.42990i
\(386\) −3947.13 −0.520476
\(387\) 0 0
\(388\) 4.78908i 0.000626620i
\(389\) 7493.91 0.976752 0.488376 0.872633i \(-0.337590\pi\)
0.488376 + 0.872633i \(0.337590\pi\)
\(390\) 0 0
\(391\) 1896.45 0.245287
\(392\) 4148.90i 0.534569i
\(393\) 0 0
\(394\) 8611.75 1.10115
\(395\) −4306.74 + 3448.40i −0.548597 + 0.439260i
\(396\) 0 0
\(397\) 8446.68i 1.06782i 0.845540 + 0.533912i \(0.179279\pi\)
−0.845540 + 0.533912i \(0.820721\pi\)
\(398\) 5794.35i 0.729760i
\(399\) 0 0
\(400\) −1995.62 + 8904.80i −0.249453 + 1.11310i
\(401\) −7883.98 −0.981814 −0.490907 0.871212i \(-0.663334\pi\)
−0.490907 + 0.871212i \(0.663334\pi\)
\(402\) 0 0
\(403\) 3649.58i 0.451113i
\(404\) −1234.84 −0.152068
\(405\) 0 0
\(406\) −7504.80 −0.917382
\(407\) 89.4063i 0.0108887i
\(408\) 0 0
\(409\) −2089.46 −0.252609 −0.126305 0.991992i \(-0.540312\pi\)
−0.126305 + 0.991992i \(0.540312\pi\)
\(410\) 9729.31 + 12151.0i 1.17194 + 1.46365i
\(411\) 0 0
\(412\) 2727.59i 0.326162i
\(413\) 6322.10i 0.753245i
\(414\) 0 0
\(415\) 3459.46 + 4320.56i 0.409201 + 0.511055i
\(416\) 789.190 0.0930125
\(417\) 0 0
\(418\) 11477.8i 1.34306i
\(419\) 8066.10 0.940465 0.470232 0.882543i \(-0.344170\pi\)
0.470232 + 0.882543i \(0.344170\pi\)
\(420\) 0 0
\(421\) −13021.8 −1.50747 −0.753736 0.657177i \(-0.771750\pi\)
−0.753736 + 0.657177i \(0.771750\pi\)
\(422\) 15110.3i 1.74303i
\(423\) 0 0
\(424\) −7830.67 −0.896912
\(425\) 6035.17 + 1352.52i 0.688820 + 0.154369i
\(426\) 0 0
\(427\) 13183.7i 1.49415i
\(428\) 2050.78i 0.231608i
\(429\) 0 0
\(430\) −12132.4 + 9714.39i −1.36064 + 1.08946i
\(431\) 7530.49 0.841603 0.420802 0.907153i \(-0.361749\pi\)
0.420802 + 0.907153i \(0.361749\pi\)
\(432\) 0 0
\(433\) 790.361i 0.0877190i −0.999038 0.0438595i \(-0.986035\pi\)
0.999038 0.0438595i \(-0.0139654\pi\)
\(434\) −20085.3 −2.22148
\(435\) 0 0
\(436\) −1898.76 −0.208564
\(437\) 2718.24i 0.297554i
\(438\) 0 0
\(439\) 9607.62 1.04453 0.522263 0.852785i \(-0.325088\pi\)
0.522263 + 0.852785i \(0.325088\pi\)
\(440\) 7514.88 + 9385.42i 0.814223 + 1.01689i
\(441\) 0 0
\(442\) 1967.40i 0.211718i
\(443\) 6282.26i 0.673767i −0.941546 0.336884i \(-0.890627\pi\)
0.941546 0.336884i \(-0.109373\pi\)
\(444\) 0 0
\(445\) 7864.52 6297.10i 0.837784 0.670812i
\(446\) −5791.74 −0.614903
\(447\) 0 0
\(448\) 9318.12i 0.982678i
\(449\) 8666.17 0.910873 0.455437 0.890268i \(-0.349483\pi\)
0.455437 + 0.890268i \(0.349483\pi\)
\(450\) 0 0
\(451\) 24085.9 2.51477
\(452\) 1033.48i 0.107546i
\(453\) 0 0
\(454\) −4299.30 −0.444441
\(455\) 2653.86 2124.94i 0.273439 0.218942i
\(456\) 0 0
\(457\) 11944.5i 1.22263i −0.791387 0.611315i \(-0.790641\pi\)
0.791387 0.611315i \(-0.209359\pi\)
\(458\) 6218.42i 0.634427i
\(459\) 0 0
\(460\) 362.997 + 453.351i 0.0367931 + 0.0459513i
\(461\) −4144.88 −0.418755 −0.209378 0.977835i \(-0.567144\pi\)
−0.209378 + 0.977835i \(0.567144\pi\)
\(462\) 0 0
\(463\) 8572.00i 0.860421i 0.902729 + 0.430210i \(0.141561\pi\)
−0.902729 + 0.430210i \(0.858439\pi\)
\(464\) 7658.03 0.766196
\(465\) 0 0
\(466\) −16203.8 −1.61079
\(467\) 8107.44i 0.803357i 0.915781 + 0.401678i \(0.131573\pi\)
−0.915781 + 0.401678i \(0.868427\pi\)
\(468\) 0 0
\(469\) −14509.3 −1.42852
\(470\) −15093.1 + 12085.0i −1.48126 + 1.18604i
\(471\) 0 0
\(472\) 5493.09i 0.535678i
\(473\) 24049.0i 2.33779i
\(474\) 0 0
\(475\) −1938.61 + 8650.42i −0.187262 + 0.835596i
\(476\) 1568.55 0.151039
\(477\) 0 0
\(478\) 7143.65i 0.683562i
\(479\) −20524.1 −1.95777 −0.978884 0.204414i \(-0.934471\pi\)
−0.978884 + 0.204414i \(0.934471\pi\)
\(480\) 0 0
\(481\) 21.9659 0.00208224
\(482\) 14478.7i 1.36823i
\(483\) 0 0
\(484\) −1990.63 −0.186949
\(485\) 24.6932 + 30.8396i 0.00231188 + 0.00288733i
\(486\) 0 0
\(487\) 11390.8i 1.05989i −0.848033 0.529943i \(-0.822213\pi\)
0.848033 0.529943i \(-0.177787\pi\)
\(488\) 11454.9i 1.06258i
\(489\) 0 0
\(490\) 4363.25 + 5449.31i 0.402268 + 0.502397i
\(491\) −12827.9 −1.17905 −0.589525 0.807750i \(-0.700685\pi\)
−0.589525 + 0.807750i \(0.700685\pi\)
\(492\) 0 0
\(493\) 5190.17i 0.474145i
\(494\) 2819.94 0.256832
\(495\) 0 0
\(496\) 20495.3 1.85538
\(497\) 19096.4i 1.72352i
\(498\) 0 0
\(499\) 20141.2 1.80691 0.903453 0.428688i \(-0.141024\pi\)
0.903453 + 0.428688i \(0.141024\pi\)
\(500\) 831.862 + 1701.61i 0.0744040 + 0.152196i
\(501\) 0 0
\(502\) 21228.5i 1.88740i
\(503\) 18757.4i 1.66273i 0.555728 + 0.831364i \(0.312440\pi\)
−0.555728 + 0.831364i \(0.687560\pi\)
\(504\) 0 0
\(505\) 7951.83 6367.01i 0.700697 0.561046i
\(506\) 6203.14 0.544987
\(507\) 0 0
\(508\) 1740.21i 0.151987i
\(509\) −21180.7 −1.84444 −0.922219 0.386668i \(-0.873626\pi\)
−0.922219 + 0.386668i \(0.873626\pi\)
\(510\) 0 0
\(511\) −13596.5 −1.17705
\(512\) 7438.06i 0.642029i
\(513\) 0 0
\(514\) 3600.12 0.308939
\(515\) 14063.9 + 17564.5i 1.20336 + 1.50288i
\(516\) 0 0
\(517\) 29917.6i 2.54502i
\(518\) 120.888i 0.0102539i
\(519\) 0 0
\(520\) −2305.86 + 1846.30i −0.194459 + 0.155703i
\(521\) −6568.62 −0.552354 −0.276177 0.961107i \(-0.589068\pi\)
−0.276177 + 0.961107i \(0.589068\pi\)
\(522\) 0 0
\(523\) 5901.75i 0.493433i −0.969088 0.246717i \(-0.920648\pi\)
0.969088 0.246717i \(-0.0793517\pi\)
\(524\) 268.887 0.0224167
\(525\) 0 0
\(526\) −23865.9 −1.97833
\(527\) 13890.6i 1.14816i
\(528\) 0 0
\(529\) 10697.9 0.879258
\(530\) −10285.1 + 8235.23i −0.842934 + 0.674935i
\(531\) 0 0
\(532\) 2248.26i 0.183222i
\(533\) 5917.57i 0.480897i
\(534\) 0 0
\(535\) −10574.1 13206.1i −0.854504 1.06720i
\(536\) 12606.7 1.01591
\(537\) 0 0
\(538\) 15423.8i 1.23600i
\(539\) 10801.7 0.863193
\(540\) 0 0
\(541\) −11634.0 −0.924555 −0.462278 0.886735i \(-0.652968\pi\)
−0.462278 + 0.886735i \(0.652968\pi\)
\(542\) 27114.5i 2.14884i
\(543\) 0 0
\(544\) −3003.71 −0.236734
\(545\) 12227.2 9790.28i 0.961019 0.769486i
\(546\) 0 0
\(547\) 146.415i 0.0114447i 0.999984 + 0.00572235i \(0.00182149\pi\)
−0.999984 + 0.00572235i \(0.998179\pi\)
\(548\) 2284.62i 0.178092i
\(549\) 0 0
\(550\) 19740.6 + 4424.00i 1.53044 + 0.342982i
\(551\) 7439.25 0.575178
\(552\) 0 0
\(553\) 11542.8i 0.887616i
\(554\) −19331.6 −1.48253
\(555\) 0 0
\(556\) 3016.88 0.230116
\(557\) 24443.9i 1.85946i −0.368242 0.929730i \(-0.620040\pi\)
0.368242 0.929730i \(-0.379960\pi\)
\(558\) 0 0
\(559\) −5908.49 −0.447053
\(560\) −11933.2 14903.5i −0.900485 1.12462i
\(561\) 0 0
\(562\) 6056.16i 0.454561i
\(563\) 3271.79i 0.244920i 0.992473 + 0.122460i \(0.0390782\pi\)
−0.992473 + 0.122460i \(0.960922\pi\)
\(564\) 0 0
\(565\) 5328.75 + 6655.13i 0.396783 + 0.495546i
\(566\) 1.01209 7.51613e−5
\(567\) 0 0
\(568\) 16592.4i 1.22570i
\(569\) 17910.6 1.31960 0.659801 0.751441i \(-0.270641\pi\)
0.659801 + 0.751441i \(0.270641\pi\)
\(570\) 0 0
\(571\) 21000.7 1.53915 0.769573 0.638559i \(-0.220469\pi\)
0.769573 + 0.638559i \(0.220469\pi\)
\(572\) 932.256i 0.0681461i
\(573\) 0 0
\(574\) −32567.0 −2.36815
\(575\) −4675.08 1047.72i −0.339069 0.0759874i
\(576\) 0 0
\(577\) 11643.7i 0.840096i −0.907502 0.420048i \(-0.862013\pi\)
0.907502 0.420048i \(-0.137987\pi\)
\(578\) 7539.05i 0.542531i
\(579\) 0 0
\(580\) 1240.72 993.446i 0.0888246 0.0711217i
\(581\) −11579.9 −0.826874
\(582\) 0 0
\(583\) 20387.2i 1.44828i
\(584\) 11813.6 0.837073
\(585\) 0 0
\(586\) 1486.71 0.104804
\(587\) 27008.3i 1.89907i −0.313666 0.949533i \(-0.601557\pi\)
0.313666 0.949533i \(-0.398443\pi\)
\(588\) 0 0
\(589\) 19909.8 1.39282
\(590\) −5776.89 7214.82i −0.403103 0.503440i
\(591\) 0 0
\(592\) 123.356i 0.00856402i
\(593\) 13608.0i 0.942347i −0.882041 0.471173i \(-0.843831\pi\)
0.882041 0.471173i \(-0.156169\pi\)
\(594\) 0 0
\(595\) −10100.8 + 8087.67i −0.695952 + 0.557247i
\(596\) −731.600 −0.0502811
\(597\) 0 0
\(598\) 1524.02i 0.104217i
\(599\) −24055.7 −1.64088 −0.820440 0.571732i \(-0.806272\pi\)
−0.820440 + 0.571732i \(0.806272\pi\)
\(600\) 0 0
\(601\) −6660.65 −0.452069 −0.226035 0.974119i \(-0.572576\pi\)
−0.226035 + 0.974119i \(0.572576\pi\)
\(602\) 32517.0i 2.20149i
\(603\) 0 0
\(604\) −3071.29 −0.206903
\(605\) 12818.8 10264.0i 0.861417 0.689735i
\(606\) 0 0
\(607\) 19022.2i 1.27197i −0.771700 0.635986i \(-0.780593\pi\)
0.771700 0.635986i \(-0.219407\pi\)
\(608\) 4305.33i 0.287178i
\(609\) 0 0
\(610\) −12046.8 15045.3i −0.799605 0.998635i
\(611\) −7350.34 −0.486682
\(612\) 0 0
\(613\) 9274.89i 0.611108i 0.952175 + 0.305554i \(0.0988417\pi\)
−0.952175 + 0.305554i \(0.901158\pi\)
\(614\) −7385.30 −0.485417
\(615\) 0 0
\(616\) −25154.6 −1.64530
\(617\) 19322.8i 1.26079i 0.776276 + 0.630393i \(0.217106\pi\)
−0.776276 + 0.630393i \(0.782894\pi\)
\(618\) 0 0
\(619\) 8665.16 0.562653 0.281327 0.959612i \(-0.409226\pi\)
0.281327 + 0.959612i \(0.409226\pi\)
\(620\) 3320.58 2658.78i 0.215093 0.172225i
\(621\) 0 0
\(622\) 4780.89i 0.308193i
\(623\) 21078.3i 1.35551i
\(624\) 0 0
\(625\) −14130.6 6668.41i −0.904356 0.426778i
\(626\) −12840.5 −0.819824
\(627\) 0 0
\(628\) 379.433i 0.0241099i
\(629\) −83.6036 −0.00529967
\(630\) 0 0
\(631\) 6938.93 0.437773 0.218886 0.975750i \(-0.429758\pi\)
0.218886 + 0.975750i \(0.429758\pi\)
\(632\) 10029.3i 0.631238i
\(633\) 0 0
\(634\) 5476.06 0.343032
\(635\) −8972.79 11206.2i −0.560747 0.700323i
\(636\) 0 0
\(637\) 2653.82i 0.165068i
\(638\) 16976.7i 1.05347i
\(639\) 0 0
\(640\) 11908.3 + 14872.4i 0.735496 + 0.918568i
\(641\) 718.616 0.0442803 0.0221401 0.999755i \(-0.492952\pi\)
0.0221401 + 0.999755i \(0.492952\pi\)
\(642\) 0 0
\(643\) 19271.5i 1.18195i 0.806690 + 0.590975i \(0.201257\pi\)
−0.806690 + 0.590975i \(0.798743\pi\)
\(644\) −1215.06 −0.0743480
\(645\) 0 0
\(646\) −10732.9 −0.653684
\(647\) 19909.3i 1.20976i 0.796317 + 0.604880i \(0.206779\pi\)
−0.796317 + 0.604880i \(0.793221\pi\)
\(648\) 0 0
\(649\) −14301.3 −0.864984
\(650\) −1086.91 + 4849.99i −0.0655881 + 0.292665i
\(651\) 0 0
\(652\) 974.698i 0.0585462i
\(653\) 3104.48i 0.186045i 0.995664 + 0.0930227i \(0.0296529\pi\)
−0.995664 + 0.0930227i \(0.970347\pi\)
\(654\) 0 0
\(655\) −1731.51 + 1386.42i −0.103291 + 0.0827051i
\(656\) 33231.9 1.97788
\(657\) 0 0
\(658\) 40452.1i 2.39664i
\(659\) −22088.3 −1.30567 −0.652837 0.757498i \(-0.726421\pi\)
−0.652837 + 0.757498i \(0.726421\pi\)
\(660\) 0 0
\(661\) 15905.4 0.935930 0.467965 0.883747i \(-0.344987\pi\)
0.467965 + 0.883747i \(0.344987\pi\)
\(662\) 3295.27i 0.193466i
\(663\) 0 0
\(664\) 10061.4 0.588041
\(665\) −11592.3 14477.8i −0.675987 0.844248i
\(666\) 0 0
\(667\) 4020.52i 0.233396i
\(668\) 892.046i 0.0516681i
\(669\) 0 0
\(670\) 16558.1 13258.0i 0.954769 0.764481i
\(671\) −29823.0 −1.71580
\(672\) 0 0
\(673\) 6334.82i 0.362837i −0.983406 0.181419i \(-0.941931\pi\)
0.983406 0.181419i \(-0.0580689\pi\)
\(674\) −7843.14 −0.448229
\(675\) 0 0
\(676\) 229.042 0.0130315
\(677\) 18414.8i 1.04540i 0.852516 + 0.522701i \(0.175076\pi\)
−0.852516 + 0.522701i \(0.824924\pi\)
\(678\) 0 0
\(679\) −82.6556 −0.00467162
\(680\) 8776.28 7027.15i 0.494934 0.396293i
\(681\) 0 0
\(682\) 45435.1i 2.55103i
\(683\) 17256.2i 0.966749i −0.875414 0.483374i \(-0.839411\pi\)
0.875414 0.483374i \(-0.160589\pi\)
\(684\) 0 0
\(685\) 11779.8 + 14712.0i 0.657058 + 0.820607i
\(686\) 9934.71 0.552929
\(687\) 0 0
\(688\) 33180.9i 1.83868i
\(689\) −5008.84 −0.276954
\(690\) 0 0
\(691\) −32243.8 −1.77513 −0.887564 0.460684i \(-0.847604\pi\)
−0.887564 + 0.460684i \(0.847604\pi\)
\(692\) 1368.17i 0.0751591i
\(693\) 0 0
\(694\) −16597.0 −0.907800
\(695\) −19427.4 + 15555.5i −1.06032 + 0.848998i
\(696\) 0 0
\(697\) 22522.7i 1.22397i
\(698\) 3195.50i 0.173283i
\(699\) 0 0
\(700\) −3866.76 866.565i −0.208785 0.0467901i
\(701\) −20420.4 −1.10024 −0.550120 0.835085i \(-0.685418\pi\)
−0.550120 + 0.835085i \(0.685418\pi\)
\(702\) 0 0
\(703\) 119.832i 0.00642894i
\(704\) 21078.6 1.12845
\(705\) 0 0
\(706\) 7978.75 0.425332
\(707\) 21312.3i 1.13371i
\(708\) 0 0
\(709\) 13991.6 0.741137 0.370568 0.928805i \(-0.379163\pi\)
0.370568 + 0.928805i \(0.379163\pi\)
\(710\) 17449.6 + 21793.0i 0.922354 + 1.15194i
\(711\) 0 0
\(712\) 18314.4i 0.963989i
\(713\) 10760.2i 0.565179i
\(714\) 0 0
\(715\) 4806.85 + 6003.32i 0.251421 + 0.314002i
\(716\) −1761.14 −0.0919232
\(717\) 0 0
\(718\) 10858.9i 0.564416i
\(719\) 19706.6 1.02216 0.511080 0.859533i \(-0.329246\pi\)
0.511080 + 0.859533i \(0.329246\pi\)
\(720\) 0 0
\(721\) −47076.1 −2.43163
\(722\) 5595.39i 0.288420i
\(723\) 0 0
\(724\) −565.482 −0.0290276
\(725\) −2867.38 + 12794.7i −0.146885 + 0.655426i
\(726\) 0 0
\(727\) 10826.8i 0.552329i −0.961110 0.276165i \(-0.910937\pi\)
0.961110 0.276165i \(-0.0890635\pi\)
\(728\) 6180.13i 0.314630i
\(729\) 0 0
\(730\) 15516.4 12424.0i 0.786696 0.629906i
\(731\) 22488.1 1.13783
\(732\) 0 0
\(733\) 11970.1i 0.603171i −0.953439 0.301586i \(-0.902484\pi\)
0.953439 0.301586i \(-0.0975159\pi\)
\(734\) −9216.46 −0.463468
\(735\) 0 0
\(736\) 2326.80 0.116531
\(737\) 32821.6i 1.64043i
\(738\) 0 0
\(739\) 11147.2 0.554881 0.277440 0.960743i \(-0.410514\pi\)
0.277440 + 0.960743i \(0.410514\pi\)
\(740\) −16.0025 19.9857i −0.000794950 0.000992821i
\(741\) 0 0
\(742\) 27565.8i 1.36385i
\(743\) 18552.2i 0.916033i 0.888944 + 0.458017i \(0.151440\pi\)
−0.888944 + 0.458017i \(0.848560\pi\)
\(744\) 0 0
\(745\) 4711.19 3772.24i 0.231684 0.185509i
\(746\) 5694.22 0.279464
\(747\) 0 0
\(748\) 3548.23i 0.173444i
\(749\) 35394.8 1.72670
\(750\) 0 0
\(751\) 1479.95 0.0719096 0.0359548 0.999353i \(-0.488553\pi\)
0.0359548 + 0.999353i \(0.488553\pi\)
\(752\) 41278.1i 2.00167i
\(753\) 0 0
\(754\) 4170.93 0.201454
\(755\) 19777.8 15836.0i 0.953361 0.763354i
\(756\) 0 0
\(757\) 11865.0i 0.569669i −0.958577 0.284834i \(-0.908061\pi\)
0.958577 0.284834i \(-0.0919386\pi\)
\(758\) 6182.25i 0.296239i
\(759\) 0 0
\(760\) 10072.3 + 12579.4i 0.480736 + 0.600396i
\(761\) −8558.59 −0.407686 −0.203843 0.979004i \(-0.565343\pi\)
−0.203843 + 0.979004i \(0.565343\pi\)
\(762\) 0 0
\(763\) 32771.1i 1.55490i
\(764\) 1668.50 0.0790109
\(765\) 0 0
\(766\) 16924.9 0.798329
\(767\) 3513.62i 0.165410i
\(768\) 0 0
\(769\) −20203.5 −0.947409 −0.473704 0.880684i \(-0.657084\pi\)
−0.473704 + 0.880684i \(0.657084\pi\)
\(770\) −33038.9 + 26454.2i −1.54629 + 1.23811i
\(771\) 0 0
\(772\) 1748.97i 0.0815373i
\(773\) 22049.9i 1.02597i −0.858396 0.512987i \(-0.828539\pi\)
0.858396 0.512987i \(-0.171461\pi\)
\(774\) 0 0
\(775\) −7674.03 + 34242.8i −0.355689 + 1.58714i
\(776\) 71.8172 0.00332228
\(777\) 0 0
\(778\) 22921.2i 1.05625i
\(779\) 32282.5 1.48478
\(780\) 0 0
\(781\) 43198.2 1.97920
\(782\) 5800.54i 0.265252i
\(783\) 0 0
\(784\) 14903.3 0.678905
\(785\) −1956.41 2443.38i −0.0889520 0.111093i
\(786\) 0 0
\(787\) 1316.61i 0.0596342i −0.999555 0.0298171i \(-0.990508\pi\)
0.999555 0.0298171i \(-0.00949248\pi\)
\(788\) 3815.86i 0.172505i
\(789\) 0 0
\(790\) 10547.4 + 13172.8i 0.475013 + 0.593248i
\(791\) −17836.9 −0.801781
\(792\) 0 0
\(793\) 7327.08i 0.328111i
\(794\) 25835.3 1.15474
\(795\) 0 0
\(796\) 2567.47 0.114323
\(797\) 1967.65i 0.0874502i 0.999044 + 0.0437251i \(0.0139226\pi\)
−0.999044 + 0.0437251i \(0.986077\pi\)
\(798\) 0 0
\(799\) 27975.9 1.23869
\(800\) 7404.70 + 1659.44i 0.327244 + 0.0733376i
\(801\) 0 0
\(802\) 24114.3i 1.06173i
\(803\) 30756.8i 1.35166i
\(804\) 0 0
\(805\) 7824.46 6265.03i 0.342579 0.274302i
\(806\) 11162.8 0.487831
\(807\) 0 0
\(808\) 18517.7i 0.806250i
\(809\) 29356.4 1.27579 0.637897 0.770122i \(-0.279805\pi\)
0.637897 + 0.770122i \(0.279805\pi\)
\(810\) 0 0
\(811\) −16910.3 −0.732183 −0.366092 0.930579i \(-0.619304\pi\)
−0.366092 + 0.930579i \(0.619304\pi\)
\(812\) 3325.37i 0.143716i
\(813\) 0 0
\(814\) −273.462 −0.0117750
\(815\) 5025.69 + 6276.63i 0.216003 + 0.269768i
\(816\) 0 0
\(817\) 32233.0i 1.38028i
\(818\) 6390.91i 0.273170i
\(819\) 0 0
\(820\) 5384.11 4311.04i 0.229294 0.183595i
\(821\) −32568.4 −1.38446 −0.692231 0.721676i \(-0.743372\pi\)
−0.692231 + 0.721676i \(0.743372\pi\)
\(822\) 0 0
\(823\) 12859.0i 0.544635i −0.962207 0.272318i \(-0.912210\pi\)
0.962207 0.272318i \(-0.0877902\pi\)
\(824\) 40903.1 1.72928
\(825\) 0 0
\(826\) 19337.0 0.814553
\(827\) 24021.4i 1.01004i −0.863107 0.505022i \(-0.831484\pi\)
0.863107 0.505022i \(-0.168516\pi\)
\(828\) 0 0
\(829\) −44341.2 −1.85770 −0.928850 0.370456i \(-0.879202\pi\)
−0.928850 + 0.370456i \(0.879202\pi\)
\(830\) 13215.0 10581.2i 0.552651 0.442507i
\(831\) 0 0
\(832\) 5178.72i 0.215793i
\(833\) 10100.6i 0.420127i
\(834\) 0 0
\(835\) 4599.52 + 5744.39i 0.190626 + 0.238075i
\(836\) −5085.81 −0.210402
\(837\) 0 0
\(838\) 24671.3i 1.01701i
\(839\) −1668.57 −0.0686594 −0.0343297 0.999411i \(-0.510930\pi\)
−0.0343297 + 0.999411i \(0.510930\pi\)
\(840\) 0 0
\(841\) −13385.7 −0.548842
\(842\) 39829.1i 1.63017i
\(843\) 0 0
\(844\) −6695.37 −0.273062
\(845\) −1474.93 + 1180.97i −0.0600464 + 0.0480790i
\(846\) 0 0
\(847\) 34356.6i 1.39375i
\(848\) 28128.7i 1.13908i
\(849\) 0 0
\(850\) 4136.87 18459.4i 0.166933 0.744885i
\(851\) 64.7627 0.00260874
\(852\) 0 0
\(853\) 5729.70i 0.229990i 0.993366 + 0.114995i \(0.0366852\pi\)
−0.993366 + 0.114995i \(0.963315\pi\)
\(854\) 40324.2 1.61577
\(855\) 0 0
\(856\) −30753.6 −1.22796
\(857\) 1248.23i 0.0497534i −0.999691 0.0248767i \(-0.992081\pi\)
0.999691 0.0248767i \(-0.00791931\pi\)
\(858\) 0 0
\(859\) −33870.7 −1.34535 −0.672674 0.739939i \(-0.734854\pi\)
−0.672674 + 0.739939i \(0.734854\pi\)
\(860\) 4304.43 + 5375.85i 0.170674 + 0.213157i
\(861\) 0 0
\(862\) 23033.1i 0.910104i
\(863\) 12216.6i 0.481875i 0.970541 + 0.240938i \(0.0774549\pi\)
−0.970541 + 0.240938i \(0.922545\pi\)
\(864\) 0 0
\(865\) −7054.50 8810.43i −0.277295 0.346316i
\(866\) −2417.43 −0.0948587
\(867\) 0 0
\(868\) 8899.75i 0.348015i
\(869\) 26111.2 1.01929
\(870\) 0 0
\(871\) 8063.81 0.313699
\(872\) 28473.9i 1.10579i
\(873\) 0 0
\(874\) 8314.12 0.321773
\(875\) 29368.4 14357.3i 1.13467 0.554702i
\(876\) 0 0
\(877\) 18452.1i 0.710470i −0.934777 0.355235i \(-0.884401\pi\)
0.934777 0.355235i \(-0.115599\pi\)
\(878\) 29386.3i 1.12954i
\(879\) 0 0
\(880\) 33713.5 26994.3i 1.29146 1.03407i
\(881\) 10016.3 0.383041 0.191521 0.981489i \(-0.438658\pi\)
0.191521 + 0.981489i \(0.438658\pi\)
\(882\) 0 0
\(883\) 4225.09i 0.161025i −0.996754 0.0805127i \(-0.974344\pi\)
0.996754 0.0805127i \(-0.0256558\pi\)
\(884\) −871.751 −0.0331676
\(885\) 0 0
\(886\) −19215.2 −0.728607
\(887\) 37432.5i 1.41698i −0.705721 0.708490i \(-0.749377\pi\)
0.705721 0.708490i \(-0.250623\pi\)
\(888\) 0 0
\(889\) 30034.7 1.13310
\(890\) −19260.6 24054.7i −0.725411 0.905973i
\(891\) 0 0
\(892\) 2566.31i 0.0963301i
\(893\) 40098.8i 1.50264i
\(894\) 0 0
\(895\) 11341.0 9080.71i 0.423562 0.339145i
\(896\) −39860.7 −1.48622
\(897\) 0 0
\(898\) 26506.7i 0.985012i
\(899\) 29448.4 1.09250
\(900\) 0 0
\(901\) 19064.0 0.704899
\(902\) 73670.1i 2.71945i
\(903\) 0 0
\(904\) 15498.0 0.570196
\(905\) 3641.46 2915.71i 0.133753 0.107095i
\(906\) 0 0
\(907\) 12442.0i 0.455490i −0.973721 0.227745i \(-0.926865\pi\)
0.973721 0.227745i \(-0.0731353\pi\)
\(908\) 1905.01i 0.0696257i
\(909\) 0 0
\(910\) −6499.42 8117.20i −0.236762 0.295695i
\(911\) −22262.1 −0.809635 −0.404818 0.914397i \(-0.632665\pi\)
−0.404818 + 0.914397i \(0.632665\pi\)
\(912\) 0 0
\(913\) 26195.0i 0.949536i
\(914\) −36534.0 −1.32214
\(915\) 0 0
\(916\) −2755.37 −0.0993888
\(917\) 4640.76i 0.167123i
\(918\) 0 0
\(919\) 42011.8 1.50799 0.753994 0.656882i \(-0.228125\pi\)
0.753994 + 0.656882i \(0.228125\pi\)
\(920\) −6798.46 + 5443.51i −0.243629 + 0.195073i
\(921\) 0 0
\(922\) 12677.7i 0.452839i
\(923\) 10613.2i 0.378481i
\(924\) 0 0
\(925\) 206.098 + 46.1879i 0.00732590 + 0.00164178i
\(926\) 26218.7 0.930453
\(927\) 0 0
\(928\) 6367.95i 0.225257i
\(929\) −44065.6 −1.55624 −0.778119 0.628117i \(-0.783826\pi\)
−0.778119 + 0.628117i \(0.783826\pi\)
\(930\) 0 0
\(931\) 14477.6 0.509649
\(932\) 7179.89i 0.252345i
\(933\) 0 0
\(934\) 24797.7 0.868744
\(935\) −18295.2 22849.1i −0.639911 0.799192i
\(936\) 0 0
\(937\) 41905.4i 1.46104i −0.682894 0.730518i \(-0.739279\pi\)
0.682894 0.730518i \(-0.260721\pi\)
\(938\) 44378.7i 1.54479i
\(939\) 0 0
\(940\) 5354.84 + 6687.72i 0.185804 + 0.232052i
\(941\) 27117.1 0.939418 0.469709 0.882821i \(-0.344359\pi\)
0.469709 + 0.882821i \(0.344359\pi\)
\(942\) 0 0
\(943\) 17447.0i 0.602494i
\(944\) −19731.8 −0.680314
\(945\) 0 0
\(946\) 73557.1 2.52806
\(947\) 44607.8i 1.53069i 0.643622 + 0.765343i \(0.277431\pi\)
−0.643622 + 0.765343i \(0.722569\pi\)
\(948\) 0 0
\(949\) 7556.50 0.258477
\(950\) 26458.5 + 5929.52i 0.903608 + 0.202504i
\(951\) 0 0
\(952\) 23522.0i 0.800791i
\(953\) 30550.0i 1.03842i 0.854647 + 0.519209i \(0.173773\pi\)
−0.854647 + 0.519209i \(0.826227\pi\)
\(954\) 0 0
\(955\) −10744.4 + 8603.05i −0.364065 + 0.291506i
\(956\) 3165.34 0.107086
\(957\) 0 0
\(958\) 62775.9i 2.11712i
\(959\) −39430.7 −1.32772
\(960\) 0 0
\(961\) 49022.4 1.64554
\(962\) 67.1856i 0.00225172i
\(963\) 0 0
\(964\) −6415.50 −0.214346
\(965\) −9017.94 11262.6i −0.300827 0.375706i
\(966\) 0 0
\(967\) 40412.4i 1.34393i 0.740585 + 0.671963i \(0.234549\pi\)
−0.740585 + 0.671963i \(0.765451\pi\)
\(968\) 29851.5i 0.991182i
\(969\) 0 0
\(970\) 94.3271 75.5275i 0.00312233 0.00250004i
\(971\) 46775.8 1.54594 0.772970 0.634443i \(-0.218770\pi\)
0.772970 + 0.634443i \(0.218770\pi\)
\(972\) 0 0
\(973\) 52069.0i 1.71558i
\(974\) −34840.2 −1.14615
\(975\) 0 0
\(976\) −41147.5 −1.34949
\(977\) 7003.40i 0.229333i −0.993404 0.114667i \(-0.963420\pi\)
0.993404 0.114667i \(-0.0365800\pi\)
\(978\) 0 0
\(979\) −47681.5 −1.55660
\(980\) 2414.58 1933.35i 0.0787050 0.0630190i
\(981\) 0 0
\(982\) 39235.9i 1.27502i
\(983\) 19541.2i 0.634048i −0.948418 0.317024i \(-0.897316\pi\)
0.948418 0.317024i \(-0.102684\pi\)
\(984\) 0 0
\(985\) 19675.1 + 24572.4i 0.636448 + 0.794866i
\(986\) −15874.9 −0.512737
\(987\) 0 0
\(988\) 1249.51i 0.0402350i
\(989\) −17420.2 −0.560092
\(990\) 0 0
\(991\) −31571.3 −1.01200 −0.506002 0.862532i \(-0.668877\pi\)
−0.506002 + 0.862532i \(0.668877\pi\)
\(992\) 17042.7i 0.545470i
\(993\) 0 0
\(994\) −58409.1 −1.86381
\(995\) −16533.4 + 13238.2i −0.526777 + 0.421789i
\(996\) 0 0
\(997\) 27558.5i 0.875413i 0.899118 + 0.437706i \(0.144209\pi\)
−0.899118 + 0.437706i \(0.855791\pi\)
\(998\) 61604.8i 1.95397i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.4.c.e.469.6 22
3.2 odd 2 195.4.c.c.79.17 yes 22
5.4 even 2 inner 585.4.c.e.469.17 22
15.2 even 4 975.4.a.bb.1.4 11
15.8 even 4 975.4.a.bc.1.8 11
15.14 odd 2 195.4.c.c.79.6 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.4.c.c.79.6 22 15.14 odd 2
195.4.c.c.79.17 yes 22 3.2 odd 2
585.4.c.e.469.6 22 1.1 even 1 trivial
585.4.c.e.469.17 22 5.4 even 2 inner
975.4.a.bb.1.4 11 15.2 even 4
975.4.a.bc.1.8 11 15.8 even 4