Properties

Label 585.4.c.e.469.19
Level $585$
Weight $4$
Character 585.469
Analytic conductor $34.516$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,4,Mod(469,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.469"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 585.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,-110,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.5161173534\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.19
Character \(\chi\) \(=\) 585.469
Dual form 585.4.c.e.469.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.60776i q^{2} -13.2315 q^{4} +(3.07988 + 10.7478i) q^{5} -15.5130i q^{7} -24.1055i q^{8} +(-49.5231 + 14.1914i) q^{10} -7.26574 q^{11} -13.0000i q^{13} +71.4805 q^{14} +5.22048 q^{16} -27.0519i q^{17} -73.2802 q^{19} +(-40.7515 - 142.209i) q^{20} -33.4788i q^{22} -198.479i q^{23} +(-106.029 + 66.2037i) q^{25} +59.9009 q^{26} +205.261i q^{28} +210.483 q^{29} -4.60080 q^{31} -168.789i q^{32} +124.649 q^{34} +(166.730 - 47.7784i) q^{35} -311.656i q^{37} -337.658i q^{38} +(259.080 - 74.2421i) q^{40} -266.261 q^{41} -350.071i q^{43} +96.1366 q^{44} +914.545 q^{46} +89.0893i q^{47} +102.345 q^{49} +(-305.051 - 488.555i) q^{50} +172.009i q^{52} +409.598i q^{53} +(-22.3776 - 78.0904i) q^{55} -373.950 q^{56} +969.854i q^{58} -69.1227 q^{59} -705.722 q^{61} -21.1994i q^{62} +819.505 q^{64} +(139.721 - 40.0385i) q^{65} -285.963i q^{67} +357.936i q^{68} +(220.151 + 768.255i) q^{70} +728.849 q^{71} -42.7017i q^{73} +1436.04 q^{74} +969.606 q^{76} +112.714i q^{77} +486.631 q^{79} +(16.0785 + 56.1084i) q^{80} -1226.87i q^{82} +259.760i q^{83} +(290.747 - 83.3166i) q^{85} +1613.04 q^{86} +175.144i q^{88} -71.9228 q^{89} -201.670 q^{91} +2626.17i q^{92} -410.502 q^{94} +(-225.694 - 787.597i) q^{95} -953.857i q^{97} +471.584i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 110 q^{4} - 8 q^{5} - 58 q^{10} - 200 q^{11} + 300 q^{14} + 1022 q^{16} - 88 q^{19} + 296 q^{20} - 346 q^{25} - 78 q^{26} + 560 q^{29} + 512 q^{31} - 156 q^{34} - 36 q^{35} + 10 q^{40} - 1400 q^{41}+ \cdots - 2376 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.60776i 1.62909i 0.580100 + 0.814545i \(0.303014\pi\)
−0.580100 + 0.814545i \(0.696986\pi\)
\(3\) 0 0
\(4\) −13.2315 −1.65394
\(5\) 3.07988 + 10.7478i 0.275473 + 0.961309i
\(6\) 0 0
\(7\) 15.5130i 0.837626i −0.908073 0.418813i \(-0.862446\pi\)
0.908073 0.418813i \(-0.137554\pi\)
\(8\) 24.1055i 1.06532i
\(9\) 0 0
\(10\) −49.5231 + 14.1914i −1.56606 + 0.448771i
\(11\) −7.26574 −0.199155 −0.0995774 0.995030i \(-0.531749\pi\)
−0.0995774 + 0.995030i \(0.531749\pi\)
\(12\) 0 0
\(13\) 13.0000i 0.277350i
\(14\) 71.4805 1.36457
\(15\) 0 0
\(16\) 5.22048 0.0815699
\(17\) 27.0519i 0.385943i −0.981204 0.192972i \(-0.938187\pi\)
0.981204 0.192972i \(-0.0618126\pi\)
\(18\) 0 0
\(19\) −73.2802 −0.884822 −0.442411 0.896812i \(-0.645877\pi\)
−0.442411 + 0.896812i \(0.645877\pi\)
\(20\) −40.7515 142.209i −0.455615 1.58994i
\(21\) 0 0
\(22\) 33.4788i 0.324441i
\(23\) 198.479i 1.79938i −0.436529 0.899690i \(-0.643792\pi\)
0.436529 0.899690i \(-0.356208\pi\)
\(24\) 0 0
\(25\) −106.029 + 66.2037i −0.848229 + 0.529630i
\(26\) 59.9009 0.451828
\(27\) 0 0
\(28\) 205.261i 1.38538i
\(29\) 210.483 1.34778 0.673890 0.738832i \(-0.264622\pi\)
0.673890 + 0.738832i \(0.264622\pi\)
\(30\) 0 0
\(31\) −4.60080 −0.0266558 −0.0133279 0.999911i \(-0.504243\pi\)
−0.0133279 + 0.999911i \(0.504243\pi\)
\(32\) 168.789i 0.932437i
\(33\) 0 0
\(34\) 124.649 0.628737
\(35\) 166.730 47.7784i 0.805217 0.230743i
\(36\) 0 0
\(37\) 311.656i 1.38476i −0.721535 0.692378i \(-0.756563\pi\)
0.721535 0.692378i \(-0.243437\pi\)
\(38\) 337.658i 1.44146i
\(39\) 0 0
\(40\) 259.080 74.2421i 1.02410 0.293468i
\(41\) −266.261 −1.01422 −0.507109 0.861882i \(-0.669286\pi\)
−0.507109 + 0.861882i \(0.669286\pi\)
\(42\) 0 0
\(43\) 350.071i 1.24152i −0.784002 0.620759i \(-0.786825\pi\)
0.784002 0.620759i \(-0.213175\pi\)
\(44\) 96.1366 0.329390
\(45\) 0 0
\(46\) 914.545 2.93135
\(47\) 89.0893i 0.276490i 0.990398 + 0.138245i \(0.0441461\pi\)
−0.990398 + 0.138245i \(0.955854\pi\)
\(48\) 0 0
\(49\) 102.345 0.298383
\(50\) −305.051 488.555i −0.862815 1.38184i
\(51\) 0 0
\(52\) 172.009i 0.458720i
\(53\) 409.598i 1.06156i 0.847510 + 0.530780i \(0.178101\pi\)
−0.847510 + 0.530780i \(0.821899\pi\)
\(54\) 0 0
\(55\) −22.3776 78.0904i −0.0548618 0.191449i
\(56\) −373.950 −0.892341
\(57\) 0 0
\(58\) 969.854i 2.19566i
\(59\) −69.1227 −0.152525 −0.0762627 0.997088i \(-0.524299\pi\)
−0.0762627 + 0.997088i \(0.524299\pi\)
\(60\) 0 0
\(61\) −705.722 −1.48129 −0.740643 0.671899i \(-0.765479\pi\)
−0.740643 + 0.671899i \(0.765479\pi\)
\(62\) 21.1994i 0.0434247i
\(63\) 0 0
\(64\) 819.505 1.60060
\(65\) 139.721 40.0385i 0.266619 0.0764025i
\(66\) 0 0
\(67\) 285.963i 0.521431i −0.965416 0.260716i \(-0.916042\pi\)
0.965416 0.260716i \(-0.0839585\pi\)
\(68\) 357.936i 0.638326i
\(69\) 0 0
\(70\) 220.151 + 768.255i 0.375902 + 1.31177i
\(71\) 728.849 1.21829 0.609144 0.793060i \(-0.291513\pi\)
0.609144 + 0.793060i \(0.291513\pi\)
\(72\) 0 0
\(73\) 42.7017i 0.0684638i −0.999414 0.0342319i \(-0.989102\pi\)
0.999414 0.0342319i \(-0.0108985\pi\)
\(74\) 1436.04 2.25589
\(75\) 0 0
\(76\) 969.606 1.46344
\(77\) 112.714i 0.166817i
\(78\) 0 0
\(79\) 486.631 0.693042 0.346521 0.938042i \(-0.387363\pi\)
0.346521 + 0.938042i \(0.387363\pi\)
\(80\) 16.0785 + 56.1084i 0.0224703 + 0.0784139i
\(81\) 0 0
\(82\) 1226.87i 1.65225i
\(83\) 259.760i 0.343522i 0.985139 + 0.171761i \(0.0549457\pi\)
−0.985139 + 0.171761i \(0.945054\pi\)
\(84\) 0 0
\(85\) 290.747 83.3166i 0.371011 0.106317i
\(86\) 1613.04 2.02254
\(87\) 0 0
\(88\) 175.144i 0.212164i
\(89\) −71.9228 −0.0856607 −0.0428304 0.999082i \(-0.513637\pi\)
−0.0428304 + 0.999082i \(0.513637\pi\)
\(90\) 0 0
\(91\) −201.670 −0.232316
\(92\) 2626.17i 2.97606i
\(93\) 0 0
\(94\) −410.502 −0.450427
\(95\) −225.694 787.597i −0.243745 0.850587i
\(96\) 0 0
\(97\) 953.857i 0.998448i −0.866473 0.499224i \(-0.833618\pi\)
0.866473 0.499224i \(-0.166382\pi\)
\(98\) 471.584i 0.486093i
\(99\) 0 0
\(100\) 1402.92 875.974i 1.40292 0.875974i
\(101\) 531.923 0.524043 0.262021 0.965062i \(-0.415611\pi\)
0.262021 + 0.965062i \(0.415611\pi\)
\(102\) 0 0
\(103\) 1417.30i 1.35584i 0.735137 + 0.677918i \(0.237118\pi\)
−0.735137 + 0.677918i \(0.762882\pi\)
\(104\) −313.371 −0.295467
\(105\) 0 0
\(106\) −1887.33 −1.72938
\(107\) 126.610i 0.114391i 0.998363 + 0.0571955i \(0.0182158\pi\)
−0.998363 + 0.0571955i \(0.981784\pi\)
\(108\) 0 0
\(109\) −421.390 −0.370292 −0.185146 0.982711i \(-0.559276\pi\)
−0.185146 + 0.982711i \(0.559276\pi\)
\(110\) 359.822 103.111i 0.311888 0.0893749i
\(111\) 0 0
\(112\) 80.9855i 0.0683251i
\(113\) 1781.99i 1.48350i 0.670674 + 0.741752i \(0.266005\pi\)
−0.670674 + 0.741752i \(0.733995\pi\)
\(114\) 0 0
\(115\) 2133.20 611.292i 1.72976 0.495681i
\(116\) −2785.00 −2.22914
\(117\) 0 0
\(118\) 318.501i 0.248478i
\(119\) −419.657 −0.323276
\(120\) 0 0
\(121\) −1278.21 −0.960337
\(122\) 3251.80i 2.41315i
\(123\) 0 0
\(124\) 60.8755 0.0440869
\(125\) −1038.10 935.670i −0.742802 0.669511i
\(126\) 0 0
\(127\) 2328.29i 1.62679i −0.581712 0.813395i \(-0.697617\pi\)
0.581712 0.813395i \(-0.302383\pi\)
\(128\) 2425.77i 1.67508i
\(129\) 0 0
\(130\) 184.488 + 643.801i 0.124467 + 0.434347i
\(131\) −2036.06 −1.35795 −0.678974 0.734162i \(-0.737575\pi\)
−0.678974 + 0.734162i \(0.737575\pi\)
\(132\) 0 0
\(133\) 1136.80i 0.741150i
\(134\) 1317.65 0.849459
\(135\) 0 0
\(136\) −652.098 −0.411154
\(137\) 2176.47i 1.35729i −0.734467 0.678645i \(-0.762568\pi\)
0.734467 0.678645i \(-0.237432\pi\)
\(138\) 0 0
\(139\) −469.168 −0.286290 −0.143145 0.989702i \(-0.545722\pi\)
−0.143145 + 0.989702i \(0.545722\pi\)
\(140\) −2206.09 + 632.179i −1.33178 + 0.381635i
\(141\) 0 0
\(142\) 3358.36i 1.98470i
\(143\) 94.4546i 0.0552356i
\(144\) 0 0
\(145\) 648.262 + 2262.22i 0.371277 + 1.29563i
\(146\) 196.760 0.111534
\(147\) 0 0
\(148\) 4123.68i 2.29030i
\(149\) 1451.75 0.798201 0.399101 0.916907i \(-0.369322\pi\)
0.399101 + 0.916907i \(0.369322\pi\)
\(150\) 0 0
\(151\) 1055.40 0.568789 0.284395 0.958707i \(-0.408207\pi\)
0.284395 + 0.958707i \(0.408207\pi\)
\(152\) 1766.45i 0.942621i
\(153\) 0 0
\(154\) −519.358 −0.271760
\(155\) −14.1699 49.4483i −0.00734295 0.0256244i
\(156\) 0 0
\(157\) 435.872i 0.221569i 0.993844 + 0.110785i \(0.0353364\pi\)
−0.993844 + 0.110785i \(0.964664\pi\)
\(158\) 2242.28i 1.12903i
\(159\) 0 0
\(160\) 1814.11 519.851i 0.896360 0.256862i
\(161\) −3079.01 −1.50721
\(162\) 0 0
\(163\) 3289.27i 1.58059i −0.612729 0.790293i \(-0.709928\pi\)
0.612729 0.790293i \(-0.290072\pi\)
\(164\) 3523.03 1.67745
\(165\) 0 0
\(166\) −1196.91 −0.559629
\(167\) 1417.63i 0.656882i 0.944525 + 0.328441i \(0.106523\pi\)
−0.944525 + 0.328441i \(0.893477\pi\)
\(168\) 0 0
\(169\) −169.000 −0.0769231
\(170\) 383.903 + 1339.69i 0.173200 + 0.604410i
\(171\) 0 0
\(172\) 4631.96i 2.05339i
\(173\) 3327.52i 1.46235i 0.682191 + 0.731174i \(0.261027\pi\)
−0.682191 + 0.731174i \(0.738973\pi\)
\(174\) 0 0
\(175\) 1027.02 + 1644.83i 0.443631 + 0.710498i
\(176\) −37.9306 −0.0162450
\(177\) 0 0
\(178\) 331.403i 0.139549i
\(179\) −3853.95 −1.60926 −0.804630 0.593777i \(-0.797636\pi\)
−0.804630 + 0.593777i \(0.797636\pi\)
\(180\) 0 0
\(181\) −1552.03 −0.637355 −0.318678 0.947863i \(-0.603239\pi\)
−0.318678 + 0.947863i \(0.603239\pi\)
\(182\) 929.246i 0.378463i
\(183\) 0 0
\(184\) −4784.44 −1.91692
\(185\) 3349.61 959.866i 1.33118 0.381463i
\(186\) 0 0
\(187\) 196.552i 0.0768625i
\(188\) 1178.78i 0.457296i
\(189\) 0 0
\(190\) 3629.06 1039.95i 1.38568 0.397082i
\(191\) 2054.01 0.778129 0.389065 0.921210i \(-0.372798\pi\)
0.389065 + 0.921210i \(0.372798\pi\)
\(192\) 0 0
\(193\) 2971.10i 1.10810i −0.832482 0.554052i \(-0.813081\pi\)
0.832482 0.554052i \(-0.186919\pi\)
\(194\) 4395.15 1.62656
\(195\) 0 0
\(196\) −1354.18 −0.493507
\(197\) 4538.98i 1.64157i −0.571239 0.820784i \(-0.693537\pi\)
0.571239 0.820784i \(-0.306463\pi\)
\(198\) 0 0
\(199\) −2664.57 −0.949177 −0.474588 0.880208i \(-0.657403\pi\)
−0.474588 + 0.880208i \(0.657403\pi\)
\(200\) 1595.87 + 2555.87i 0.564226 + 0.903637i
\(201\) 0 0
\(202\) 2450.98i 0.853713i
\(203\) 3265.23i 1.12894i
\(204\) 0 0
\(205\) −820.053 2861.71i −0.279390 0.974978i
\(206\) −6530.60 −2.20878
\(207\) 0 0
\(208\) 67.8662i 0.0226234i
\(209\) 532.435 0.176217
\(210\) 0 0
\(211\) 3958.31 1.29148 0.645738 0.763559i \(-0.276550\pi\)
0.645738 + 0.763559i \(0.276550\pi\)
\(212\) 5419.60i 1.75575i
\(213\) 0 0
\(214\) −583.388 −0.186353
\(215\) 3762.47 1078.18i 1.19348 0.342005i
\(216\) 0 0
\(217\) 71.3725i 0.0223275i
\(218\) 1941.67i 0.603239i
\(219\) 0 0
\(220\) 296.090 + 1033.25i 0.0907380 + 0.316645i
\(221\) −351.674 −0.107041
\(222\) 0 0
\(223\) 5306.39i 1.59346i −0.604334 0.796731i \(-0.706561\pi\)
0.604334 0.796731i \(-0.293439\pi\)
\(224\) −2618.43 −0.781034
\(225\) 0 0
\(226\) −8211.01 −2.41676
\(227\) 4651.05i 1.35992i −0.733251 0.679958i \(-0.761998\pi\)
0.733251 0.679958i \(-0.238002\pi\)
\(228\) 0 0
\(229\) −211.979 −0.0611702 −0.0305851 0.999532i \(-0.509737\pi\)
−0.0305851 + 0.999532i \(0.509737\pi\)
\(230\) 2816.69 + 9829.31i 0.807509 + 2.81794i
\(231\) 0 0
\(232\) 5073.79i 1.43582i
\(233\) 2907.23i 0.817420i −0.912664 0.408710i \(-0.865979\pi\)
0.912664 0.408710i \(-0.134021\pi\)
\(234\) 0 0
\(235\) −957.510 + 274.385i −0.265792 + 0.0761655i
\(236\) 914.596 0.252267
\(237\) 0 0
\(238\) 1933.68i 0.526646i
\(239\) 1656.44 0.448310 0.224155 0.974554i \(-0.428038\pi\)
0.224155 + 0.974554i \(0.428038\pi\)
\(240\) 0 0
\(241\) −731.123 −0.195418 −0.0977091 0.995215i \(-0.531151\pi\)
−0.0977091 + 0.995215i \(0.531151\pi\)
\(242\) 5889.69i 1.56448i
\(243\) 0 0
\(244\) 9337.75 2.44995
\(245\) 315.212 + 1099.98i 0.0821966 + 0.286838i
\(246\) 0 0
\(247\) 952.642i 0.245406i
\(248\) 110.905i 0.0283970i
\(249\) 0 0
\(250\) 4311.35 4783.31i 1.09069 1.21009i
\(251\) −3711.12 −0.933242 −0.466621 0.884457i \(-0.654529\pi\)
−0.466621 + 0.884457i \(0.654529\pi\)
\(252\) 0 0
\(253\) 1442.10i 0.358355i
\(254\) 10728.2 2.65019
\(255\) 0 0
\(256\) −4621.34 −1.12826
\(257\) 4243.03i 1.02986i −0.857233 0.514928i \(-0.827818\pi\)
0.857233 0.514928i \(-0.172182\pi\)
\(258\) 0 0
\(259\) −4834.74 −1.15991
\(260\) −1848.72 + 529.769i −0.440971 + 0.126365i
\(261\) 0 0
\(262\) 9381.68i 2.21222i
\(263\) 4234.49i 0.992813i −0.868090 0.496407i \(-0.834652\pi\)
0.868090 0.496407i \(-0.165348\pi\)
\(264\) 0 0
\(265\) −4402.26 + 1261.52i −1.02049 + 0.292431i
\(266\) −5238.10 −1.20740
\(267\) 0 0
\(268\) 3783.71i 0.862414i
\(269\) −2511.08 −0.569156 −0.284578 0.958653i \(-0.591854\pi\)
−0.284578 + 0.958653i \(0.591854\pi\)
\(270\) 0 0
\(271\) 16.4711 0.00369207 0.00184604 0.999998i \(-0.499412\pi\)
0.00184604 + 0.999998i \(0.499412\pi\)
\(272\) 141.224i 0.0314814i
\(273\) 0 0
\(274\) 10028.7 2.21115
\(275\) 770.377 481.019i 0.168929 0.105478i
\(276\) 0 0
\(277\) 5246.31i 1.13798i 0.822345 + 0.568990i \(0.192666\pi\)
−0.822345 + 0.568990i \(0.807334\pi\)
\(278\) 2161.81i 0.466392i
\(279\) 0 0
\(280\) −1151.72 4019.12i −0.245816 0.857815i
\(281\) −2303.88 −0.489104 −0.244552 0.969636i \(-0.578641\pi\)
−0.244552 + 0.969636i \(0.578641\pi\)
\(282\) 0 0
\(283\) 7433.79i 1.56146i −0.624869 0.780730i \(-0.714847\pi\)
0.624869 0.780730i \(-0.285153\pi\)
\(284\) −9643.76 −2.01497
\(285\) 0 0
\(286\) −435.225 −0.0899838
\(287\) 4130.52i 0.849536i
\(288\) 0 0
\(289\) 4181.20 0.851048
\(290\) −10423.8 + 2987.04i −2.11070 + 0.604844i
\(291\) 0 0
\(292\) 565.008i 0.113235i
\(293\) 2524.65i 0.503384i 0.967807 + 0.251692i \(0.0809870\pi\)
−0.967807 + 0.251692i \(0.919013\pi\)
\(294\) 0 0
\(295\) −212.890 742.914i −0.0420167 0.146624i
\(296\) −7512.63 −1.47521
\(297\) 0 0
\(298\) 6689.32i 1.30034i
\(299\) −2580.23 −0.499058
\(300\) 0 0
\(301\) −5430.66 −1.03993
\(302\) 4863.03i 0.926609i
\(303\) 0 0
\(304\) −382.557 −0.0721749
\(305\) −2173.54 7584.93i −0.408054 1.42397i
\(306\) 0 0
\(307\) 5733.57i 1.06590i −0.846146 0.532951i \(-0.821083\pi\)
0.846146 0.532951i \(-0.178917\pi\)
\(308\) 1491.37i 0.275905i
\(309\) 0 0
\(310\) 227.846 65.2917i 0.0417445 0.0119623i
\(311\) 3971.45 0.724117 0.362058 0.932155i \(-0.382074\pi\)
0.362058 + 0.932155i \(0.382074\pi\)
\(312\) 0 0
\(313\) 1184.44i 0.213893i 0.994265 + 0.106947i \(0.0341074\pi\)
−0.994265 + 0.106947i \(0.965893\pi\)
\(314\) −2008.40 −0.360956
\(315\) 0 0
\(316\) −6438.86 −1.14625
\(317\) 7759.96i 1.37490i 0.726232 + 0.687449i \(0.241270\pi\)
−0.726232 + 0.687449i \(0.758730\pi\)
\(318\) 0 0
\(319\) −1529.31 −0.268417
\(320\) 2523.98 + 8807.84i 0.440921 + 1.53867i
\(321\) 0 0
\(322\) 14187.4i 2.45538i
\(323\) 1982.36i 0.341491i
\(324\) 0 0
\(325\) 860.648 + 1378.37i 0.146893 + 0.235256i
\(326\) 15156.2 2.57492
\(327\) 0 0
\(328\) 6418.35i 1.08047i
\(329\) 1382.05 0.231595
\(330\) 0 0
\(331\) −2742.15 −0.455353 −0.227677 0.973737i \(-0.573113\pi\)
−0.227677 + 0.973737i \(0.573113\pi\)
\(332\) 3437.01i 0.568164i
\(333\) 0 0
\(334\) −6532.09 −1.07012
\(335\) 3073.46 880.731i 0.501256 0.143640i
\(336\) 0 0
\(337\) 8277.10i 1.33793i 0.743294 + 0.668965i \(0.233263\pi\)
−0.743294 + 0.668965i \(0.766737\pi\)
\(338\) 778.712i 0.125315i
\(339\) 0 0
\(340\) −3847.01 + 1102.40i −0.613628 + 0.175842i
\(341\) 33.4282 0.00530862
\(342\) 0 0
\(343\) 6908.66i 1.08756i
\(344\) −8438.62 −1.32262
\(345\) 0 0
\(346\) −15332.4 −2.38230
\(347\) 6827.30i 1.05622i −0.849176 0.528110i \(-0.822901\pi\)
0.849176 0.528110i \(-0.177099\pi\)
\(348\) 0 0
\(349\) −11728.9 −1.79895 −0.899474 0.436975i \(-0.856050\pi\)
−0.899474 + 0.436975i \(0.856050\pi\)
\(350\) −7578.97 + 4732.27i −1.15747 + 0.722716i
\(351\) 0 0
\(352\) 1226.38i 0.185699i
\(353\) 2260.06i 0.340767i −0.985378 0.170384i \(-0.945499\pi\)
0.985378 0.170384i \(-0.0545007\pi\)
\(354\) 0 0
\(355\) 2244.77 + 7833.49i 0.335606 + 1.17115i
\(356\) 951.646 0.141677
\(357\) 0 0
\(358\) 17758.1i 2.62163i
\(359\) 5043.28 0.741432 0.370716 0.928746i \(-0.379112\pi\)
0.370716 + 0.928746i \(0.379112\pi\)
\(360\) 0 0
\(361\) −1489.02 −0.217090
\(362\) 7151.38i 1.03831i
\(363\) 0 0
\(364\) 2668.39 0.384235
\(365\) 458.948 131.516i 0.0658149 0.0188600i
\(366\) 0 0
\(367\) 8537.90i 1.21437i −0.794559 0.607186i \(-0.792298\pi\)
0.794559 0.607186i \(-0.207702\pi\)
\(368\) 1036.16i 0.146775i
\(369\) 0 0
\(370\) 4422.83 + 15434.2i 0.621438 + 2.16861i
\(371\) 6354.12 0.889190
\(372\) 0 0
\(373\) 12709.6i 1.76429i 0.470981 + 0.882143i \(0.343900\pi\)
−0.470981 + 0.882143i \(0.656100\pi\)
\(374\) −905.664 −0.125216
\(375\) 0 0
\(376\) 2147.54 0.294550
\(377\) 2736.27i 0.373807i
\(378\) 0 0
\(379\) −235.876 −0.0319687 −0.0159844 0.999872i \(-0.505088\pi\)
−0.0159844 + 0.999872i \(0.505088\pi\)
\(380\) 2986.27 + 10421.1i 0.403138 + 1.40682i
\(381\) 0 0
\(382\) 9464.38i 1.26764i
\(383\) 8586.76i 1.14560i 0.819697 + 0.572798i \(0.194142\pi\)
−0.819697 + 0.572798i \(0.805858\pi\)
\(384\) 0 0
\(385\) −1211.42 + 347.145i −0.160363 + 0.0459537i
\(386\) 13690.1 1.80520
\(387\) 0 0
\(388\) 12621.0i 1.65137i
\(389\) −3296.96 −0.429723 −0.214862 0.976645i \(-0.568930\pi\)
−0.214862 + 0.976645i \(0.568930\pi\)
\(390\) 0 0
\(391\) −5369.23 −0.694459
\(392\) 2467.09i 0.317874i
\(393\) 0 0
\(394\) 20914.5 2.67426
\(395\) 1498.77 + 5230.20i 0.190914 + 0.666227i
\(396\) 0 0
\(397\) 4730.33i 0.598006i 0.954252 + 0.299003i \(0.0966541\pi\)
−0.954252 + 0.299003i \(0.903346\pi\)
\(398\) 12277.7i 1.54630i
\(399\) 0 0
\(400\) −553.520 + 345.615i −0.0691900 + 0.0432018i
\(401\) −12626.0 −1.57235 −0.786177 0.618002i \(-0.787943\pi\)
−0.786177 + 0.618002i \(0.787943\pi\)
\(402\) 0 0
\(403\) 59.8104i 0.00739298i
\(404\) −7038.14 −0.866734
\(405\) 0 0
\(406\) 15045.4 1.83914
\(407\) 2264.42i 0.275781i
\(408\) 0 0
\(409\) −7326.05 −0.885697 −0.442848 0.896597i \(-0.646032\pi\)
−0.442848 + 0.896597i \(0.646032\pi\)
\(410\) 13186.1 3778.61i 1.58833 0.455152i
\(411\) 0 0
\(412\) 18753.1i 2.24247i
\(413\) 1072.30i 0.127759i
\(414\) 0 0
\(415\) −2791.83 + 800.030i −0.330231 + 0.0946311i
\(416\) −2194.26 −0.258612
\(417\) 0 0
\(418\) 2453.33i 0.287073i
\(419\) 10595.9 1.23542 0.617712 0.786404i \(-0.288060\pi\)
0.617712 + 0.786404i \(0.288060\pi\)
\(420\) 0 0
\(421\) 13411.1 1.55253 0.776266 0.630406i \(-0.217112\pi\)
0.776266 + 0.630406i \(0.217112\pi\)
\(422\) 18239.0i 2.10393i
\(423\) 0 0
\(424\) 9873.57 1.13090
\(425\) 1790.93 + 2868.27i 0.204407 + 0.327368i
\(426\) 0 0
\(427\) 10947.9i 1.24076i
\(428\) 1675.24i 0.189195i
\(429\) 0 0
\(430\) 4967.98 + 17336.6i 0.557157 + 1.94429i
\(431\) −3483.79 −0.389347 −0.194673 0.980868i \(-0.562365\pi\)
−0.194673 + 0.980868i \(0.562365\pi\)
\(432\) 0 0
\(433\) 7229.81i 0.802407i −0.915989 0.401204i \(-0.868592\pi\)
0.915989 0.401204i \(-0.131408\pi\)
\(434\) −328.867 −0.0363736
\(435\) 0 0
\(436\) 5575.62 0.612439
\(437\) 14544.6i 1.59213i
\(438\) 0 0
\(439\) 2991.18 0.325196 0.162598 0.986692i \(-0.448013\pi\)
0.162598 + 0.986692i \(0.448013\pi\)
\(440\) −1882.41 + 539.424i −0.203955 + 0.0584455i
\(441\) 0 0
\(442\) 1620.43i 0.174380i
\(443\) 9683.42i 1.03854i 0.854610 + 0.519270i \(0.173796\pi\)
−0.854610 + 0.519270i \(0.826204\pi\)
\(444\) 0 0
\(445\) −221.514 773.009i −0.0235972 0.0823464i
\(446\) 24450.6 2.59589
\(447\) 0 0
\(448\) 12713.0i 1.34070i
\(449\) −13916.7 −1.46273 −0.731367 0.681984i \(-0.761117\pi\)
−0.731367 + 0.681984i \(0.761117\pi\)
\(450\) 0 0
\(451\) 1934.58 0.201987
\(452\) 23578.5i 2.45362i
\(453\) 0 0
\(454\) 21430.9 2.21543
\(455\) −621.119 2167.50i −0.0639967 0.223327i
\(456\) 0 0
\(457\) 11538.4i 1.18106i 0.807016 + 0.590529i \(0.201081\pi\)
−0.807016 + 0.590529i \(0.798919\pi\)
\(458\) 976.750i 0.0996518i
\(459\) 0 0
\(460\) −28225.5 + 8088.31i −2.86091 + 0.819825i
\(461\) −5478.18 −0.553458 −0.276729 0.960948i \(-0.589250\pi\)
−0.276729 + 0.960948i \(0.589250\pi\)
\(462\) 0 0
\(463\) 14242.4i 1.42959i 0.699333 + 0.714796i \(0.253480\pi\)
−0.699333 + 0.714796i \(0.746520\pi\)
\(464\) 1098.82 0.109938
\(465\) 0 0
\(466\) 13395.8 1.33165
\(467\) 17956.2i 1.77926i 0.456685 + 0.889629i \(0.349037\pi\)
−0.456685 + 0.889629i \(0.650963\pi\)
\(468\) 0 0
\(469\) −4436.15 −0.436764
\(470\) −1264.30 4411.98i −0.124080 0.432999i
\(471\) 0 0
\(472\) 1666.24i 0.162489i
\(473\) 2543.52i 0.247254i
\(474\) 0 0
\(475\) 7769.80 4851.42i 0.750532 0.468628i
\(476\) 5552.68 0.534678
\(477\) 0 0
\(478\) 7632.47i 0.730337i
\(479\) −19663.3 −1.87566 −0.937830 0.347096i \(-0.887168\pi\)
−0.937830 + 0.347096i \(0.887168\pi\)
\(480\) 0 0
\(481\) −4051.53 −0.384062
\(482\) 3368.84i 0.318354i
\(483\) 0 0
\(484\) 16912.6 1.58834
\(485\) 10251.8 2937.77i 0.959817 0.275046i
\(486\) 0 0
\(487\) 14318.4i 1.33229i −0.745821 0.666147i \(-0.767942\pi\)
0.745821 0.666147i \(-0.232058\pi\)
\(488\) 17011.8i 1.57805i
\(489\) 0 0
\(490\) −5068.47 + 1452.42i −0.467286 + 0.133906i
\(491\) −16948.2 −1.55776 −0.778880 0.627172i \(-0.784212\pi\)
−0.778880 + 0.627172i \(0.784212\pi\)
\(492\) 0 0
\(493\) 5693.94i 0.520167i
\(494\) −4389.55 −0.399788
\(495\) 0 0
\(496\) −24.0184 −0.00217431
\(497\) 11306.7i 1.02047i
\(498\) 0 0
\(499\) −7039.18 −0.631497 −0.315749 0.948843i \(-0.602256\pi\)
−0.315749 + 0.948843i \(0.602256\pi\)
\(500\) 13735.6 + 12380.3i 1.22855 + 1.10733i
\(501\) 0 0
\(502\) 17100.0i 1.52034i
\(503\) 18039.0i 1.59905i −0.600636 0.799523i \(-0.705086\pi\)
0.600636 0.799523i \(-0.294914\pi\)
\(504\) 0 0
\(505\) 1638.26 + 5716.98i 0.144360 + 0.503767i
\(506\) −6644.85 −0.583793
\(507\) 0 0
\(508\) 30806.7i 2.69061i
\(509\) 15072.8 1.31256 0.656278 0.754519i \(-0.272130\pi\)
0.656278 + 0.754519i \(0.272130\pi\)
\(510\) 0 0
\(511\) −662.434 −0.0573471
\(512\) 1887.90i 0.162957i
\(513\) 0 0
\(514\) 19550.9 1.67773
\(515\) −15232.8 + 4365.13i −1.30338 + 0.373497i
\(516\) 0 0
\(517\) 647.300i 0.0550642i
\(518\) 22277.3i 1.88960i
\(519\) 0 0
\(520\) −965.147 3368.04i −0.0813933 0.284035i
\(521\) 15226.2 1.28037 0.640183 0.768223i \(-0.278859\pi\)
0.640183 + 0.768223i \(0.278859\pi\)
\(522\) 0 0
\(523\) 11261.4i 0.941545i 0.882255 + 0.470773i \(0.156025\pi\)
−0.882255 + 0.470773i \(0.843975\pi\)
\(524\) 26940.1 2.24596
\(525\) 0 0
\(526\) 19511.5 1.61738
\(527\) 124.460i 0.0102876i
\(528\) 0 0
\(529\) −27226.9 −2.23777
\(530\) −5812.77 20284.6i −0.476397 1.66247i
\(531\) 0 0
\(532\) 15041.5i 1.22581i
\(533\) 3461.39i 0.281294i
\(534\) 0 0
\(535\) −1360.77 + 389.943i −0.109965 + 0.0315116i
\(536\) −6893.27 −0.555492
\(537\) 0 0
\(538\) 11570.5i 0.927208i
\(539\) −743.616 −0.0594245
\(540\) 0 0
\(541\) 340.898 0.0270912 0.0135456 0.999908i \(-0.495688\pi\)
0.0135456 + 0.999908i \(0.495688\pi\)
\(542\) 75.8952i 0.00601472i
\(543\) 0 0
\(544\) −4566.06 −0.359868
\(545\) −1297.83 4529.00i −0.102006 0.355965i
\(546\) 0 0
\(547\) 9854.49i 0.770288i 0.922856 + 0.385144i \(0.125848\pi\)
−0.922856 + 0.385144i \(0.874152\pi\)
\(548\) 28798.0i 2.24487i
\(549\) 0 0
\(550\) 2216.42 + 3549.71i 0.171834 + 0.275201i
\(551\) −15424.2 −1.19255
\(552\) 0 0
\(553\) 7549.14i 0.580510i
\(554\) −24173.8 −1.85387
\(555\) 0 0
\(556\) 6207.79 0.473505
\(557\) 24514.0i 1.86479i −0.361436 0.932397i \(-0.617713\pi\)
0.361436 0.932397i \(-0.382287\pi\)
\(558\) 0 0
\(559\) −4550.92 −0.344335
\(560\) 870.412 249.426i 0.0656815 0.0188217i
\(561\) 0 0
\(562\) 10615.7i 0.796794i
\(563\) 25586.8i 1.91537i 0.287815 + 0.957686i \(0.407071\pi\)
−0.287815 + 0.957686i \(0.592929\pi\)
\(564\) 0 0
\(565\) −19152.5 + 5488.34i −1.42611 + 0.408666i
\(566\) 34253.2 2.54376
\(567\) 0 0
\(568\) 17569.3i 1.29787i
\(569\) −19238.6 −1.41744 −0.708720 0.705490i \(-0.750727\pi\)
−0.708720 + 0.705490i \(0.750727\pi\)
\(570\) 0 0
\(571\) 15889.4 1.16453 0.582267 0.812998i \(-0.302166\pi\)
0.582267 + 0.812998i \(0.302166\pi\)
\(572\) 1249.78i 0.0913562i
\(573\) 0 0
\(574\) −19032.5 −1.38397
\(575\) 13140.0 + 21044.5i 0.953005 + 1.52629i
\(576\) 0 0
\(577\) 25125.7i 1.81282i −0.422401 0.906409i \(-0.638813\pi\)
0.422401 0.906409i \(-0.361187\pi\)
\(578\) 19266.0i 1.38643i
\(579\) 0 0
\(580\) −8577.47 29932.5i −0.614069 2.14290i
\(581\) 4029.66 0.287743
\(582\) 0 0
\(583\) 2976.04i 0.211415i
\(584\) −1029.35 −0.0729361
\(585\) 0 0
\(586\) −11633.0 −0.820058
\(587\) 12738.4i 0.895691i 0.894111 + 0.447846i \(0.147809\pi\)
−0.894111 + 0.447846i \(0.852191\pi\)
\(588\) 0 0
\(589\) 337.148 0.0235856
\(590\) 3423.17 980.946i 0.238864 0.0684490i
\(591\) 0 0
\(592\) 1626.99i 0.112955i
\(593\) 6645.07i 0.460169i 0.973171 + 0.230085i \(0.0739003\pi\)
−0.973171 + 0.230085i \(0.926100\pi\)
\(594\) 0 0
\(595\) −1292.49 4510.37i −0.0890539 0.310768i
\(596\) −19208.8 −1.32017
\(597\) 0 0
\(598\) 11889.1i 0.813011i
\(599\) 593.901 0.0405111 0.0202555 0.999795i \(-0.493552\pi\)
0.0202555 + 0.999795i \(0.493552\pi\)
\(600\) 0 0
\(601\) 25783.8 1.74999 0.874995 0.484131i \(-0.160864\pi\)
0.874995 + 0.484131i \(0.160864\pi\)
\(602\) 25023.2i 1.69414i
\(603\) 0 0
\(604\) −13964.5 −0.940741
\(605\) −3936.74 13737.9i −0.264547 0.923181i
\(606\) 0 0
\(607\) 13616.8i 0.910524i 0.890357 + 0.455262i \(0.150454\pi\)
−0.890357 + 0.455262i \(0.849546\pi\)
\(608\) 12368.9i 0.825041i
\(609\) 0 0
\(610\) 34949.6 10015.2i 2.31978 0.664758i
\(611\) 1158.16 0.0766844
\(612\) 0 0
\(613\) 8294.23i 0.546494i −0.961944 0.273247i \(-0.911902\pi\)
0.961944 0.273247i \(-0.0880976\pi\)
\(614\) 26418.9 1.73645
\(615\) 0 0
\(616\) 2717.02 0.177714
\(617\) 24173.6i 1.57730i −0.614845 0.788648i \(-0.710781\pi\)
0.614845 0.788648i \(-0.289219\pi\)
\(618\) 0 0
\(619\) 19579.7 1.27137 0.635684 0.771950i \(-0.280718\pi\)
0.635684 + 0.771950i \(0.280718\pi\)
\(620\) 187.489 + 654.275i 0.0121448 + 0.0423812i
\(621\) 0 0
\(622\) 18299.5i 1.17965i
\(623\) 1115.74i 0.0717516i
\(624\) 0 0
\(625\) 6859.14 14039.0i 0.438985 0.898494i
\(626\) −5457.62 −0.348451
\(627\) 0 0
\(628\) 5767.24i 0.366462i
\(629\) −8430.88 −0.534438
\(630\) 0 0
\(631\) 23156.0 1.46090 0.730449 0.682967i \(-0.239311\pi\)
0.730449 + 0.682967i \(0.239311\pi\)
\(632\) 11730.5i 0.738313i
\(633\) 0 0
\(634\) −35756.1 −2.23983
\(635\) 25023.9 7170.86i 1.56385 0.448137i
\(636\) 0 0
\(637\) 1330.49i 0.0827566i
\(638\) 7046.71i 0.437276i
\(639\) 0 0
\(640\) −26071.6 + 7471.09i −1.61027 + 0.461439i
\(641\) 17175.7 1.05835 0.529173 0.848514i \(-0.322502\pi\)
0.529173 + 0.848514i \(0.322502\pi\)
\(642\) 0 0
\(643\) 22948.5i 1.40747i 0.710464 + 0.703734i \(0.248485\pi\)
−0.710464 + 0.703734i \(0.751515\pi\)
\(644\) 40740.0 2.49282
\(645\) 0 0
\(646\) −9134.27 −0.556320
\(647\) 2612.89i 0.158768i −0.996844 0.0793842i \(-0.974705\pi\)
0.996844 0.0793842i \(-0.0252954\pi\)
\(648\) 0 0
\(649\) 502.227 0.0303762
\(650\) −6351.21 + 3965.66i −0.383254 + 0.239302i
\(651\) 0 0
\(652\) 43522.0i 2.61419i
\(653\) 18404.3i 1.10294i 0.834196 + 0.551468i \(0.185932\pi\)
−0.834196 + 0.551468i \(0.814068\pi\)
\(654\) 0 0
\(655\) −6270.82 21883.1i −0.374078 1.30541i
\(656\) −1390.01 −0.0827298
\(657\) 0 0
\(658\) 6368.14i 0.377289i
\(659\) −2276.60 −0.134573 −0.0672867 0.997734i \(-0.521434\pi\)
−0.0672867 + 0.997734i \(0.521434\pi\)
\(660\) 0 0
\(661\) −12436.5 −0.731807 −0.365903 0.930653i \(-0.619240\pi\)
−0.365903 + 0.930653i \(0.619240\pi\)
\(662\) 12635.2i 0.741812i
\(663\) 0 0
\(664\) 6261.63 0.365962
\(665\) −12218.0 + 3501.21i −0.712474 + 0.204167i
\(666\) 0 0
\(667\) 41776.4i 2.42517i
\(668\) 18757.3i 1.08644i
\(669\) 0 0
\(670\) 4058.20 + 14161.8i 0.234003 + 0.816592i
\(671\) 5127.59 0.295005
\(672\) 0 0
\(673\) 27945.7i 1.60064i 0.599575 + 0.800319i \(0.295336\pi\)
−0.599575 + 0.800319i \(0.704664\pi\)
\(674\) −38138.9 −2.17961
\(675\) 0 0
\(676\) 2236.12 0.127226
\(677\) 5001.39i 0.283928i −0.989872 0.141964i \(-0.954658\pi\)
0.989872 0.141964i \(-0.0453417\pi\)
\(678\) 0 0
\(679\) −14797.2 −0.836326
\(680\) −2008.39 7008.59i −0.113262 0.395246i
\(681\) 0 0
\(682\) 154.029i 0.00864823i
\(683\) 19835.3i 1.11124i 0.831437 + 0.555619i \(0.187519\pi\)
−0.831437 + 0.555619i \(0.812481\pi\)
\(684\) 0 0
\(685\) 23392.2 6703.29i 1.30477 0.373897i
\(686\) 31833.5 1.77173
\(687\) 0 0
\(688\) 1827.53i 0.101270i
\(689\) 5324.78 0.294424
\(690\) 0 0
\(691\) 18355.0 1.01050 0.505250 0.862973i \(-0.331400\pi\)
0.505250 + 0.862973i \(0.331400\pi\)
\(692\) 44028.0i 2.41863i
\(693\) 0 0
\(694\) 31458.6 1.72068
\(695\) −1444.98 5042.50i −0.0788652 0.275213i
\(696\) 0 0
\(697\) 7202.85i 0.391431i
\(698\) 54043.9i 2.93065i
\(699\) 0 0
\(700\) −13589.0 21763.5i −0.733738 1.17512i
\(701\) 4531.23 0.244140 0.122070 0.992521i \(-0.461047\pi\)
0.122070 + 0.992521i \(0.461047\pi\)
\(702\) 0 0
\(703\) 22838.2i 1.22526i
\(704\) −5954.31 −0.318766
\(705\) 0 0
\(706\) 10413.8 0.555141
\(707\) 8251.75i 0.438952i
\(708\) 0 0
\(709\) −11693.2 −0.619392 −0.309696 0.950836i \(-0.600227\pi\)
−0.309696 + 0.950836i \(0.600227\pi\)
\(710\) −36094.9 + 10343.4i −1.90791 + 0.546732i
\(711\) 0 0
\(712\) 1733.74i 0.0912563i
\(713\) 913.163i 0.0479638i
\(714\) 0 0
\(715\) −1015.18 + 290.909i −0.0530985 + 0.0152159i
\(716\) 50993.5 2.66161
\(717\) 0 0
\(718\) 23238.2i 1.20786i
\(719\) −17181.6 −0.891190 −0.445595 0.895235i \(-0.647008\pi\)
−0.445595 + 0.895235i \(0.647008\pi\)
\(720\) 0 0
\(721\) 21986.7 1.13568
\(722\) 6861.04i 0.353659i
\(723\) 0 0
\(724\) 20535.6 1.05414
\(725\) −22317.2 + 13934.7i −1.14323 + 0.713824i
\(726\) 0 0
\(727\) 7061.52i 0.360244i −0.983644 0.180122i \(-0.942351\pi\)
0.983644 0.180122i \(-0.0576493\pi\)
\(728\) 4861.34i 0.247491i
\(729\) 0 0
\(730\) 605.997 + 2114.72i 0.0307246 + 0.107218i
\(731\) −9470.06 −0.479156
\(732\) 0 0
\(733\) 33615.1i 1.69386i −0.531703 0.846931i \(-0.678448\pi\)
0.531703 0.846931i \(-0.321552\pi\)
\(734\) 39340.6 1.97832
\(735\) 0 0
\(736\) −33501.1 −1.67781
\(737\) 2077.73i 0.103846i
\(738\) 0 0
\(739\) 20338.2 1.01238 0.506192 0.862421i \(-0.331053\pi\)
0.506192 + 0.862421i \(0.331053\pi\)
\(740\) −44320.3 + 12700.5i −2.20169 + 0.630916i
\(741\) 0 0
\(742\) 29278.3i 1.44857i
\(743\) 3421.96i 0.168963i 0.996425 + 0.0844815i \(0.0269234\pi\)
−0.996425 + 0.0844815i \(0.973077\pi\)
\(744\) 0 0
\(745\) 4471.22 + 15603.1i 0.219883 + 0.767318i
\(746\) −58562.9 −2.87418
\(747\) 0 0
\(748\) 2600.67i 0.127126i
\(749\) 1964.10 0.0958168
\(750\) 0 0
\(751\) 9652.18 0.468992 0.234496 0.972117i \(-0.424656\pi\)
0.234496 + 0.972117i \(0.424656\pi\)
\(752\) 465.088i 0.0225532i
\(753\) 0 0
\(754\) 12608.1 0.608966
\(755\) 3250.51 + 11343.2i 0.156686 + 0.546782i
\(756\) 0 0
\(757\) 9943.18i 0.477399i −0.971093 0.238700i \(-0.923279\pi\)
0.971093 0.238700i \(-0.0767211\pi\)
\(758\) 1086.86i 0.0520799i
\(759\) 0 0
\(760\) −18985.4 + 5440.47i −0.906150 + 0.259667i
\(761\) 19328.5 0.920704 0.460352 0.887736i \(-0.347723\pi\)
0.460352 + 0.887736i \(0.347723\pi\)
\(762\) 0 0
\(763\) 6537.04i 0.310166i
\(764\) −27177.6 −1.28698
\(765\) 0 0
\(766\) −39565.8 −1.86628
\(767\) 898.595i 0.0423030i
\(768\) 0 0
\(769\) −29180.1 −1.36835 −0.684174 0.729319i \(-0.739837\pi\)
−0.684174 + 0.729319i \(0.739837\pi\)
\(770\) −1599.56 5581.94i −0.0748627 0.261246i
\(771\) 0 0
\(772\) 39312.0i 1.83273i
\(773\) 13489.9i 0.627684i −0.949475 0.313842i \(-0.898384\pi\)
0.949475 0.313842i \(-0.101616\pi\)
\(774\) 0 0
\(775\) 487.817 304.590i 0.0226102 0.0141177i
\(776\) −22993.2 −1.06367
\(777\) 0 0
\(778\) 15191.6i 0.700058i
\(779\) 19511.6 0.897403
\(780\) 0 0
\(781\) −5295.63 −0.242628
\(782\) 24740.1i 1.13134i
\(783\) 0 0
\(784\) 534.292 0.0243391
\(785\) −4684.65 + 1342.44i −0.212996 + 0.0610364i
\(786\) 0 0
\(787\) 20683.4i 0.936829i 0.883509 + 0.468414i \(0.155175\pi\)
−0.883509 + 0.468414i \(0.844825\pi\)
\(788\) 60057.4i 2.71505i
\(789\) 0 0
\(790\) −24099.5 + 6905.97i −1.08534 + 0.311017i
\(791\) 27644.2 1.24262
\(792\) 0 0
\(793\) 9174.38i 0.410835i
\(794\) −21796.2 −0.974206
\(795\) 0 0
\(796\) 35256.2 1.56988
\(797\) 708.657i 0.0314955i −0.999876 0.0157478i \(-0.994987\pi\)
0.999876 0.0157478i \(-0.00501288\pi\)
\(798\) 0 0
\(799\) 2410.03 0.106709
\(800\) 11174.5 + 17896.5i 0.493846 + 0.790921i
\(801\) 0 0
\(802\) 58177.8i 2.56151i
\(803\) 310.260i 0.0136349i
\(804\) 0 0
\(805\) −9483.01 33092.5i −0.415195 1.44889i
\(806\) −275.592 −0.0120438
\(807\) 0 0
\(808\) 12822.3i 0.558275i
\(809\) 30881.0 1.34205 0.671025 0.741435i \(-0.265854\pi\)
0.671025 + 0.741435i \(0.265854\pi\)
\(810\) 0 0
\(811\) −5265.77 −0.227998 −0.113999 0.993481i \(-0.536366\pi\)
−0.113999 + 0.993481i \(0.536366\pi\)
\(812\) 43203.8i 1.86719i
\(813\) 0 0
\(814\) −10433.9 −0.449272
\(815\) 35352.3 10130.6i 1.51943 0.435409i
\(816\) 0 0
\(817\) 25653.2i 1.09852i
\(818\) 33756.7i 1.44288i
\(819\) 0 0
\(820\) 10850.5 + 37864.7i 0.462094 + 1.61255i
\(821\) 2427.29 0.103183 0.0515915 0.998668i \(-0.483571\pi\)
0.0515915 + 0.998668i \(0.483571\pi\)
\(822\) 0 0
\(823\) 33181.6i 1.40539i −0.711491 0.702696i \(-0.751980\pi\)
0.711491 0.702696i \(-0.248020\pi\)
\(824\) 34164.8 1.44440
\(825\) 0 0
\(826\) −4940.92 −0.208131
\(827\) 18438.8i 0.775310i −0.921805 0.387655i \(-0.873285\pi\)
0.921805 0.387655i \(-0.126715\pi\)
\(828\) 0 0
\(829\) −19682.4 −0.824604 −0.412302 0.911047i \(-0.635275\pi\)
−0.412302 + 0.911047i \(0.635275\pi\)
\(830\) −3686.35 12864.1i −0.154163 0.537976i
\(831\) 0 0
\(832\) 10653.6i 0.443925i
\(833\) 2768.63i 0.115159i
\(834\) 0 0
\(835\) −15236.3 + 4366.13i −0.631466 + 0.180953i
\(836\) −7044.91 −0.291451
\(837\) 0 0
\(838\) 48823.4i 2.01262i
\(839\) 29228.3 1.20271 0.601355 0.798982i \(-0.294628\pi\)
0.601355 + 0.798982i \(0.294628\pi\)
\(840\) 0 0
\(841\) 19913.9 0.816512
\(842\) 61795.1i 2.52921i
\(843\) 0 0
\(844\) −52374.4 −2.13602
\(845\) −520.500 1816.37i −0.0211902 0.0739468i
\(846\) 0 0
\(847\) 19828.9i 0.804403i
\(848\) 2138.30i 0.0865914i
\(849\) 0 0
\(850\) −13216.3 + 8252.20i −0.533313 + 0.332998i
\(851\) −61857.3 −2.49170
\(852\) 0 0
\(853\) 6132.64i 0.246163i 0.992397 + 0.123082i \(0.0392777\pi\)
−0.992397 + 0.123082i \(0.960722\pi\)
\(854\) −50445.3 −2.02131
\(855\) 0 0
\(856\) 3051.99 0.121863
\(857\) 21620.7i 0.861784i 0.902404 + 0.430892i \(0.141801\pi\)
−0.902404 + 0.430892i \(0.858199\pi\)
\(858\) 0 0
\(859\) −10726.9 −0.426073 −0.213037 0.977044i \(-0.568335\pi\)
−0.213037 + 0.977044i \(0.568335\pi\)
\(860\) −49783.1 + 14265.9i −1.97394 + 0.565654i
\(861\) 0 0
\(862\) 16052.5i 0.634281i
\(863\) 7036.86i 0.277564i 0.990323 + 0.138782i \(0.0443187\pi\)
−0.990323 + 0.138782i \(0.955681\pi\)
\(864\) 0 0
\(865\) −35763.3 + 10248.4i −1.40577 + 0.402838i
\(866\) 33313.3 1.30719
\(867\) 0 0
\(868\) 944.364i 0.0369284i
\(869\) −3535.74 −0.138023
\(870\) 0 0
\(871\) −3717.51 −0.144619
\(872\) 10157.8i 0.394480i
\(873\) 0 0
\(874\) −67018.0 −2.59373
\(875\) −14515.1 + 16104.0i −0.560800 + 0.622190i
\(876\) 0 0
\(877\) 4785.61i 0.184263i 0.995747 + 0.0921315i \(0.0293680\pi\)
−0.995747 + 0.0921315i \(0.970632\pi\)
\(878\) 13782.6i 0.529774i
\(879\) 0 0
\(880\) −116.822 407.669i −0.00447507 0.0156165i
\(881\) −32703.8 −1.25065 −0.625324 0.780365i \(-0.715033\pi\)
−0.625324 + 0.780365i \(0.715033\pi\)
\(882\) 0 0
\(883\) 14021.1i 0.534368i −0.963645 0.267184i \(-0.913907\pi\)
0.963645 0.267184i \(-0.0860932\pi\)
\(884\) 4653.17 0.177040
\(885\) 0 0
\(886\) −44618.9 −1.69188
\(887\) 22537.4i 0.853136i 0.904455 + 0.426568i \(0.140278\pi\)
−0.904455 + 0.426568i \(0.859722\pi\)
\(888\) 0 0
\(889\) −36118.8 −1.36264
\(890\) 3561.84 1020.68i 0.134150 0.0384420i
\(891\) 0 0
\(892\) 70211.4i 2.63548i
\(893\) 6528.48i 0.244644i
\(894\) 0 0
\(895\) −11869.7 41421.3i −0.443308 1.54700i
\(896\) 37631.1 1.40309
\(897\) 0 0
\(898\) 64124.7i 2.38293i
\(899\) −968.389 −0.0359261
\(900\) 0 0
\(901\) 11080.4 0.409702
\(902\) 8914.10i 0.329055i
\(903\) 0 0
\(904\) 42955.9 1.58041
\(905\) −4780.06 16680.8i −0.175574 0.612695i
\(906\) 0 0
\(907\) 23079.9i 0.844935i −0.906378 0.422467i \(-0.861164\pi\)
0.906378 0.422467i \(-0.138836\pi\)
\(908\) 61540.3i 2.24921i
\(909\) 0 0
\(910\) 9987.31 2861.97i 0.363820 0.104256i
\(911\) 7039.90 0.256029 0.128014 0.991772i \(-0.459140\pi\)
0.128014 + 0.991772i \(0.459140\pi\)
\(912\) 0 0
\(913\) 1887.35i 0.0684141i
\(914\) −53166.2 −1.92405
\(915\) 0 0
\(916\) 2804.80 0.101172
\(917\) 31585.5i 1.13745i
\(918\) 0 0
\(919\) −19802.7 −0.710806 −0.355403 0.934713i \(-0.615656\pi\)
−0.355403 + 0.934713i \(0.615656\pi\)
\(920\) −14735.5 51422.0i −0.528060 1.84275i
\(921\) 0 0
\(922\) 25242.2i 0.901634i
\(923\) 9475.04i 0.337892i
\(924\) 0 0
\(925\) 20632.8 + 33044.5i 0.733408 + 1.17459i
\(926\) −65625.7 −2.32893
\(927\) 0 0
\(928\) 35527.2i 1.25672i
\(929\) 33592.5 1.18636 0.593182 0.805068i \(-0.297871\pi\)
0.593182 + 0.805068i \(0.297871\pi\)
\(930\) 0 0
\(931\) −7499.89 −0.264016
\(932\) 38467.0i 1.35196i
\(933\) 0 0
\(934\) −82737.9 −2.89857
\(935\) −2112.49 + 605.357i −0.0738886 + 0.0211736i
\(936\) 0 0
\(937\) 47627.5i 1.66054i −0.557365 0.830268i \(-0.688188\pi\)
0.557365 0.830268i \(-0.311812\pi\)
\(938\) 20440.7i 0.711528i
\(939\) 0 0
\(940\) 12669.3 3630.52i 0.439603 0.125973i
\(941\) −12356.8 −0.428077 −0.214038 0.976825i \(-0.568662\pi\)
−0.214038 + 0.976825i \(0.568662\pi\)
\(942\) 0 0
\(943\) 52847.2i 1.82497i
\(944\) −360.853 −0.0124415
\(945\) 0 0
\(946\) −11719.9 −0.402800
\(947\) 17132.5i 0.587888i 0.955823 + 0.293944i \(0.0949680\pi\)
−0.955823 + 0.293944i \(0.905032\pi\)
\(948\) 0 0
\(949\) −555.123 −0.0189885
\(950\) 22354.2 + 35801.4i 0.763438 + 1.22268i
\(951\) 0 0
\(952\) 10116.0i 0.344393i
\(953\) 18815.9i 0.639566i −0.947491 0.319783i \(-0.896390\pi\)
0.947491 0.319783i \(-0.103610\pi\)
\(954\) 0 0
\(955\) 6326.10 + 22076.0i 0.214354 + 0.748022i
\(956\) −21917.1 −0.741476
\(957\) 0 0
\(958\) 90604.0i 3.05562i
\(959\) −33763.7 −1.13690
\(960\) 0 0
\(961\) −29769.8 −0.999289
\(962\) 18668.5i 0.625673i
\(963\) 0 0
\(964\) 9673.85 0.323209
\(965\) 31932.6 9150.63i 1.06523 0.305253i
\(966\) 0 0
\(967\) 4660.19i 0.154976i −0.996993 0.0774878i \(-0.975310\pi\)
0.996993 0.0774878i \(-0.0246899\pi\)
\(968\) 30811.9i 1.02307i
\(969\) 0 0
\(970\) 13536.5 + 47238.0i 0.448074 + 1.56363i
\(971\) 7114.83 0.235145 0.117572 0.993064i \(-0.462489\pi\)
0.117572 + 0.993064i \(0.462489\pi\)
\(972\) 0 0
\(973\) 7278.22i 0.239804i
\(974\) 65975.7 2.17043
\(975\) 0 0
\(976\) −3684.20 −0.120828
\(977\) 6368.51i 0.208543i 0.994549 + 0.104272i \(0.0332511\pi\)
−0.994549 + 0.104272i \(0.966749\pi\)
\(978\) 0 0
\(979\) 522.573 0.0170597
\(980\) −4170.73 14554.4i −0.135948 0.474413i
\(981\) 0 0
\(982\) 78093.2i 2.53773i
\(983\) 19570.3i 0.634990i −0.948260 0.317495i \(-0.897158\pi\)
0.948260 0.317495i \(-0.102842\pi\)
\(984\) 0 0
\(985\) 48783.8 13979.5i 1.57805 0.452208i
\(986\) 26236.3 0.847399
\(987\) 0 0
\(988\) 12604.9i 0.405885i
\(989\) −69481.7 −2.23396
\(990\) 0 0
\(991\) 61858.8 1.98286 0.991428 0.130653i \(-0.0417072\pi\)
0.991428 + 0.130653i \(0.0417072\pi\)
\(992\) 776.566i 0.0248548i
\(993\) 0 0
\(994\) 52098.5 1.66244
\(995\) −8206.56 28638.1i −0.261473 0.912452i
\(996\) 0 0
\(997\) 14499.2i 0.460576i −0.973123 0.230288i \(-0.926033\pi\)
0.973123 0.230288i \(-0.0739668\pi\)
\(998\) 32434.9i 1.02877i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.4.c.e.469.19 22
3.2 odd 2 195.4.c.c.79.4 22
5.4 even 2 inner 585.4.c.e.469.4 22
15.2 even 4 975.4.a.bb.1.10 11
15.8 even 4 975.4.a.bc.1.2 11
15.14 odd 2 195.4.c.c.79.19 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.4.c.c.79.4 22 3.2 odd 2
195.4.c.c.79.19 yes 22 15.14 odd 2
585.4.c.e.469.4 22 5.4 even 2 inner
585.4.c.e.469.19 22 1.1 even 1 trivial
975.4.a.bb.1.10 11 15.2 even 4
975.4.a.bc.1.2 11 15.8 even 4