Properties

Label 585.4.c.e.469.13
Level $585$
Weight $4$
Character 585.469
Analytic conductor $34.516$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,4,Mod(469,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.469"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 585.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,-110,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.5161173534\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.13
Character \(\chi\) \(=\) 585.469
Dual form 585.4.c.e.469.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.29959i q^{2} +6.31107 q^{4} +(-8.47931 - 7.28706i) q^{5} -34.4577i q^{7} +18.5985i q^{8} +(9.47018 - 11.0196i) q^{10} -7.37405 q^{11} -13.0000i q^{13} +44.7808 q^{14} +26.3181 q^{16} +67.1647i q^{17} +63.6576 q^{19} +(-53.5135 - 45.9891i) q^{20} -9.58323i q^{22} -165.181i q^{23} +(18.7975 + 123.579i) q^{25} +16.8947 q^{26} -217.465i q^{28} -212.104 q^{29} -230.655 q^{31} +182.991i q^{32} -87.2865 q^{34} +(-251.095 + 292.177i) q^{35} -316.168i q^{37} +82.7287i q^{38} +(135.528 - 157.703i) q^{40} -76.4857 q^{41} +267.960i q^{43} -46.5381 q^{44} +214.667 q^{46} -47.5459i q^{47} -844.331 q^{49} +(-160.601 + 24.4290i) q^{50} -82.0439i q^{52} -426.730i q^{53} +(62.5268 + 53.7351i) q^{55} +640.861 q^{56} -275.647i q^{58} -818.534 q^{59} +127.566 q^{61} -299.756i q^{62} -27.2677 q^{64} +(-94.7318 + 110.231i) q^{65} +538.837i q^{67} +423.881i q^{68} +(-379.711 - 326.320i) q^{70} +221.935 q^{71} -145.837i q^{73} +410.888 q^{74} +401.747 q^{76} +254.092i q^{77} -1274.18 q^{79} +(-223.160 - 191.782i) q^{80} -99.3999i q^{82} -1010.87i q^{83} +(489.433 - 569.510i) q^{85} -348.238 q^{86} -137.146i q^{88} +1441.62 q^{89} -447.950 q^{91} -1042.47i q^{92} +61.7901 q^{94} +(-539.772 - 463.876i) q^{95} -1000.71i q^{97} -1097.28i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 110 q^{4} - 8 q^{5} - 58 q^{10} - 200 q^{11} + 300 q^{14} + 1022 q^{16} - 88 q^{19} + 296 q^{20} - 346 q^{25} - 78 q^{26} + 560 q^{29} + 512 q^{31} - 156 q^{34} - 36 q^{35} + 10 q^{40} - 1400 q^{41}+ \cdots - 2376 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29959i 0.459474i 0.973253 + 0.229737i \(0.0737866\pi\)
−0.973253 + 0.229737i \(0.926213\pi\)
\(3\) 0 0
\(4\) 6.31107 0.788884
\(5\) −8.47931 7.28706i −0.758413 0.651774i
\(6\) 0 0
\(7\) 34.4577i 1.86054i −0.366876 0.930270i \(-0.619573\pi\)
0.366876 0.930270i \(-0.380427\pi\)
\(8\) 18.5985i 0.821946i
\(9\) 0 0
\(10\) 9.47018 11.0196i 0.299473 0.348471i
\(11\) −7.37405 −0.202123 −0.101062 0.994880i \(-0.532224\pi\)
−0.101062 + 0.994880i \(0.532224\pi\)
\(12\) 0 0
\(13\) 13.0000i 0.277350i
\(14\) 44.7808 0.854870
\(15\) 0 0
\(16\) 26.3181 0.411221
\(17\) 67.1647i 0.958225i 0.877754 + 0.479112i \(0.159041\pi\)
−0.877754 + 0.479112i \(0.840959\pi\)
\(18\) 0 0
\(19\) 63.6576 0.768634 0.384317 0.923201i \(-0.374437\pi\)
0.384317 + 0.923201i \(0.374437\pi\)
\(20\) −53.5135 45.9891i −0.598299 0.514174i
\(21\) 0 0
\(22\) 9.58323i 0.0928705i
\(23\) 165.181i 1.49750i −0.662850 0.748752i \(-0.730653\pi\)
0.662850 0.748752i \(-0.269347\pi\)
\(24\) 0 0
\(25\) 18.7975 + 123.579i 0.150380 + 0.988628i
\(26\) 16.8947 0.127435
\(27\) 0 0
\(28\) 217.465i 1.46775i
\(29\) −212.104 −1.35816 −0.679080 0.734064i \(-0.737621\pi\)
−0.679080 + 0.734064i \(0.737621\pi\)
\(30\) 0 0
\(31\) −230.655 −1.33635 −0.668174 0.744005i \(-0.732924\pi\)
−0.668174 + 0.744005i \(0.732924\pi\)
\(32\) 182.991i 1.01089i
\(33\) 0 0
\(34\) −87.2865 −0.440280
\(35\) −251.095 + 292.177i −1.21265 + 1.41106i
\(36\) 0 0
\(37\) 316.168i 1.40480i −0.711781 0.702401i \(-0.752111\pi\)
0.711781 0.702401i \(-0.247889\pi\)
\(38\) 82.7287i 0.353167i
\(39\) 0 0
\(40\) 135.528 157.703i 0.535723 0.623374i
\(41\) −76.4857 −0.291343 −0.145671 0.989333i \(-0.546534\pi\)
−0.145671 + 0.989333i \(0.546534\pi\)
\(42\) 0 0
\(43\) 267.960i 0.950314i 0.879901 + 0.475157i \(0.157609\pi\)
−0.879901 + 0.475157i \(0.842391\pi\)
\(44\) −46.5381 −0.159452
\(45\) 0 0
\(46\) 214.667 0.688064
\(47\) 47.5459i 0.147559i −0.997275 0.0737796i \(-0.976494\pi\)
0.997275 0.0737796i \(-0.0235061\pi\)
\(48\) 0 0
\(49\) −844.331 −2.46161
\(50\) −160.601 + 24.4290i −0.454249 + 0.0690958i
\(51\) 0 0
\(52\) 82.0439i 0.218797i
\(53\) 426.730i 1.10596i −0.833194 0.552980i \(-0.813490\pi\)
0.833194 0.552980i \(-0.186510\pi\)
\(54\) 0 0
\(55\) 62.5268 + 53.7351i 0.153293 + 0.131739i
\(56\) 640.861 1.52926
\(57\) 0 0
\(58\) 275.647i 0.624039i
\(59\) −818.534 −1.80617 −0.903085 0.429462i \(-0.858703\pi\)
−0.903085 + 0.429462i \(0.858703\pi\)
\(60\) 0 0
\(61\) 127.566 0.267756 0.133878 0.990998i \(-0.457257\pi\)
0.133878 + 0.990998i \(0.457257\pi\)
\(62\) 299.756i 0.614017i
\(63\) 0 0
\(64\) −27.2677 −0.0532573
\(65\) −94.7318 + 110.231i −0.180770 + 0.210346i
\(66\) 0 0
\(67\) 538.837i 0.982528i 0.871011 + 0.491264i \(0.163465\pi\)
−0.871011 + 0.491264i \(0.836535\pi\)
\(68\) 423.881i 0.755928i
\(69\) 0 0
\(70\) −379.711 326.320i −0.648344 0.557182i
\(71\) 221.935 0.370969 0.185485 0.982647i \(-0.440615\pi\)
0.185485 + 0.982647i \(0.440615\pi\)
\(72\) 0 0
\(73\) 145.837i 0.233820i −0.993142 0.116910i \(-0.962701\pi\)
0.993142 0.116910i \(-0.0372989\pi\)
\(74\) 410.888 0.645470
\(75\) 0 0
\(76\) 401.747 0.606363
\(77\) 254.092i 0.376059i
\(78\) 0 0
\(79\) −1274.18 −1.81464 −0.907319 0.420443i \(-0.861875\pi\)
−0.907319 + 0.420443i \(0.861875\pi\)
\(80\) −223.160 191.782i −0.311875 0.268023i
\(81\) 0 0
\(82\) 99.3999i 0.133864i
\(83\) 1010.87i 1.33684i −0.743786 0.668418i \(-0.766972\pi\)
0.743786 0.668418i \(-0.233028\pi\)
\(84\) 0 0
\(85\) 489.433 569.510i 0.624547 0.726730i
\(86\) −348.238 −0.436645
\(87\) 0 0
\(88\) 137.146i 0.166135i
\(89\) 1441.62 1.71698 0.858492 0.512827i \(-0.171402\pi\)
0.858492 + 0.512827i \(0.171402\pi\)
\(90\) 0 0
\(91\) −447.950 −0.516021
\(92\) 1042.47i 1.18136i
\(93\) 0 0
\(94\) 61.7901 0.0677996
\(95\) −539.772 463.876i −0.582942 0.500976i
\(96\) 0 0
\(97\) 1000.71i 1.04749i −0.851875 0.523745i \(-0.824534\pi\)
0.851875 0.523745i \(-0.175466\pi\)
\(98\) 1097.28i 1.13104i
\(99\) 0 0
\(100\) 118.632 + 779.913i 0.118632 + 0.779913i
\(101\) 326.447 0.321611 0.160805 0.986986i \(-0.448591\pi\)
0.160805 + 0.986986i \(0.448591\pi\)
\(102\) 0 0
\(103\) 1530.87i 1.46447i 0.681051 + 0.732236i \(0.261523\pi\)
−0.681051 + 0.732236i \(0.738477\pi\)
\(104\) 241.781 0.227967
\(105\) 0 0
\(106\) 554.574 0.508160
\(107\) 655.262i 0.592024i 0.955184 + 0.296012i \(0.0956568\pi\)
−0.955184 + 0.296012i \(0.904343\pi\)
\(108\) 0 0
\(109\) 433.242 0.380707 0.190353 0.981716i \(-0.439037\pi\)
0.190353 + 0.981716i \(0.439037\pi\)
\(110\) −69.8336 + 81.2592i −0.0605306 + 0.0704342i
\(111\) 0 0
\(112\) 906.862i 0.765093i
\(113\) 134.873i 0.112281i −0.998423 0.0561407i \(-0.982120\pi\)
0.998423 0.0561407i \(-0.0178796\pi\)
\(114\) 0 0
\(115\) −1203.68 + 1400.62i −0.976035 + 1.13573i
\(116\) −1338.60 −1.07143
\(117\) 0 0
\(118\) 1063.76i 0.829888i
\(119\) 2314.34 1.78282
\(120\) 0 0
\(121\) −1276.62 −0.959146
\(122\) 165.783i 0.123027i
\(123\) 0 0
\(124\) −1455.68 −1.05422
\(125\) 741.134 1184.84i 0.530312 0.847802i
\(126\) 0 0
\(127\) 1784.09i 1.24655i −0.782001 0.623277i \(-0.785801\pi\)
0.782001 0.623277i \(-0.214199\pi\)
\(128\) 1428.49i 0.986421i
\(129\) 0 0
\(130\) −143.255 123.112i −0.0966485 0.0830590i
\(131\) −711.220 −0.474348 −0.237174 0.971467i \(-0.576221\pi\)
−0.237174 + 0.971467i \(0.576221\pi\)
\(132\) 0 0
\(133\) 2193.49i 1.43007i
\(134\) −700.266 −0.451446
\(135\) 0 0
\(136\) −1249.16 −0.787609
\(137\) 906.564i 0.565350i −0.959216 0.282675i \(-0.908778\pi\)
0.959216 0.282675i \(-0.0912218\pi\)
\(138\) 0 0
\(139\) −1341.99 −0.818893 −0.409446 0.912334i \(-0.634278\pi\)
−0.409446 + 0.912334i \(0.634278\pi\)
\(140\) −1584.68 + 1843.95i −0.956641 + 1.11316i
\(141\) 0 0
\(142\) 288.424i 0.170451i
\(143\) 95.8626i 0.0560590i
\(144\) 0 0
\(145\) 1798.49 + 1545.61i 1.03005 + 0.885214i
\(146\) 189.528 0.107434
\(147\) 0 0
\(148\) 1995.36i 1.10823i
\(149\) −41.8158 −0.0229912 −0.0114956 0.999934i \(-0.503659\pi\)
−0.0114956 + 0.999934i \(0.503659\pi\)
\(150\) 0 0
\(151\) −659.349 −0.355345 −0.177673 0.984090i \(-0.556857\pi\)
−0.177673 + 0.984090i \(0.556857\pi\)
\(152\) 1183.94i 0.631775i
\(153\) 0 0
\(154\) −330.216 −0.172789
\(155\) 1955.79 + 1680.79i 1.01350 + 0.870998i
\(156\) 0 0
\(157\) 105.446i 0.0536021i −0.999641 0.0268010i \(-0.991468\pi\)
0.999641 0.0268010i \(-0.00853206\pi\)
\(158\) 1655.91i 0.833779i
\(159\) 0 0
\(160\) 1333.47 1551.64i 0.658873 0.766673i
\(161\) −5691.75 −2.78617
\(162\) 0 0
\(163\) 1082.39i 0.520119i −0.965593 0.260060i \(-0.916258\pi\)
0.965593 0.260060i \(-0.0837422\pi\)
\(164\) −482.706 −0.229836
\(165\) 0 0
\(166\) 1313.71 0.614241
\(167\) 3290.24i 1.52459i −0.647231 0.762294i \(-0.724073\pi\)
0.647231 0.762294i \(-0.275927\pi\)
\(168\) 0 0
\(169\) −169.000 −0.0769231
\(170\) 740.129 + 636.062i 0.333914 + 0.286963i
\(171\) 0 0
\(172\) 1691.11i 0.749687i
\(173\) 980.954i 0.431101i −0.976493 0.215551i \(-0.930845\pi\)
0.976493 0.215551i \(-0.0691547\pi\)
\(174\) 0 0
\(175\) 4258.23 647.719i 1.83938 0.279788i
\(176\) −194.071 −0.0831174
\(177\) 0 0
\(178\) 1873.52i 0.788910i
\(179\) 2488.93 1.03928 0.519642 0.854384i \(-0.326065\pi\)
0.519642 + 0.854384i \(0.326065\pi\)
\(180\) 0 0
\(181\) 3993.42 1.63994 0.819969 0.572407i \(-0.193990\pi\)
0.819969 + 0.572407i \(0.193990\pi\)
\(182\) 582.151i 0.237098i
\(183\) 0 0
\(184\) 3072.12 1.23087
\(185\) −2303.94 + 2680.89i −0.915615 + 1.06542i
\(186\) 0 0
\(187\) 495.275i 0.193680i
\(188\) 300.065i 0.116407i
\(189\) 0 0
\(190\) 602.849 701.482i 0.230185 0.267847i
\(191\) 975.573 0.369581 0.184791 0.982778i \(-0.440839\pi\)
0.184791 + 0.982778i \(0.440839\pi\)
\(192\) 0 0
\(193\) 677.513i 0.252686i −0.991987 0.126343i \(-0.959676\pi\)
0.991987 0.126343i \(-0.0403240\pi\)
\(194\) 1300.51 0.481294
\(195\) 0 0
\(196\) −5328.63 −1.94192
\(197\) 61.4612i 0.0222280i 0.999938 + 0.0111140i \(0.00353778\pi\)
−0.999938 + 0.0111140i \(0.996462\pi\)
\(198\) 0 0
\(199\) 3554.74 1.26628 0.633138 0.774039i \(-0.281767\pi\)
0.633138 + 0.774039i \(0.281767\pi\)
\(200\) −2298.38 + 349.606i −0.812599 + 0.123604i
\(201\) 0 0
\(202\) 424.247i 0.147772i
\(203\) 7308.59i 2.52691i
\(204\) 0 0
\(205\) 648.546 + 557.356i 0.220958 + 0.189890i
\(206\) −1989.50 −0.672887
\(207\) 0 0
\(208\) 342.136i 0.114052i
\(209\) −469.414 −0.155359
\(210\) 0 0
\(211\) −3462.80 −1.12980 −0.564902 0.825158i \(-0.691086\pi\)
−0.564902 + 0.825158i \(0.691086\pi\)
\(212\) 2693.12i 0.872474i
\(213\) 0 0
\(214\) −851.571 −0.272020
\(215\) 1952.64 2272.12i 0.619391 0.720730i
\(216\) 0 0
\(217\) 7947.82i 2.48633i
\(218\) 563.036i 0.174925i
\(219\) 0 0
\(220\) 394.611 + 339.126i 0.120930 + 0.103927i
\(221\) 873.141 0.265764
\(222\) 0 0
\(223\) 5484.63i 1.64699i 0.567326 + 0.823494i \(0.307978\pi\)
−0.567326 + 0.823494i \(0.692022\pi\)
\(224\) 6305.44 1.88080
\(225\) 0 0
\(226\) 175.280 0.0515904
\(227\) 426.505i 0.124706i −0.998054 0.0623528i \(-0.980140\pi\)
0.998054 0.0623528i \(-0.0198604\pi\)
\(228\) 0 0
\(229\) 4057.32 1.17081 0.585405 0.810741i \(-0.300935\pi\)
0.585405 + 0.810741i \(0.300935\pi\)
\(230\) −1820.23 1564.29i −0.521837 0.448463i
\(231\) 0 0
\(232\) 3944.81i 1.11633i
\(233\) 4462.65i 1.25476i 0.778715 + 0.627378i \(0.215872\pi\)
−0.778715 + 0.627378i \(0.784128\pi\)
\(234\) 0 0
\(235\) −346.470 + 403.156i −0.0961753 + 0.111911i
\(236\) −5165.82 −1.42486
\(237\) 0 0
\(238\) 3007.69i 0.819157i
\(239\) 1052.41 0.284832 0.142416 0.989807i \(-0.454513\pi\)
0.142416 + 0.989807i \(0.454513\pi\)
\(240\) 0 0
\(241\) 4364.55 1.16658 0.583289 0.812264i \(-0.301765\pi\)
0.583289 + 0.812264i \(0.301765\pi\)
\(242\) 1659.09i 0.440703i
\(243\) 0 0
\(244\) 805.075 0.211228
\(245\) 7159.35 + 6152.69i 1.86691 + 1.60441i
\(246\) 0 0
\(247\) 827.548i 0.213181i
\(248\) 4289.83i 1.09841i
\(249\) 0 0
\(250\) 1539.80 + 963.170i 0.389543 + 0.243665i
\(251\) 4805.44 1.20843 0.604216 0.796821i \(-0.293486\pi\)
0.604216 + 0.796821i \(0.293486\pi\)
\(252\) 0 0
\(253\) 1218.05i 0.302681i
\(254\) 2318.58 0.572759
\(255\) 0 0
\(256\) −2074.59 −0.506492
\(257\) 2347.80i 0.569851i −0.958550 0.284925i \(-0.908031\pi\)
0.958550 0.284925i \(-0.0919688\pi\)
\(258\) 0 0
\(259\) −10894.4 −2.61369
\(260\) −597.859 + 695.676i −0.142606 + 0.165938i
\(261\) 0 0
\(262\) 924.294i 0.217951i
\(263\) 4806.77i 1.12699i 0.826120 + 0.563494i \(0.190543\pi\)
−0.826120 + 0.563494i \(0.809457\pi\)
\(264\) 0 0
\(265\) −3109.61 + 3618.38i −0.720837 + 0.838775i
\(266\) 2850.64 0.657082
\(267\) 0 0
\(268\) 3400.64i 0.775100i
\(269\) −8182.98 −1.85474 −0.927370 0.374146i \(-0.877936\pi\)
−0.927370 + 0.374146i \(0.877936\pi\)
\(270\) 0 0
\(271\) −1339.97 −0.300358 −0.150179 0.988659i \(-0.547985\pi\)
−0.150179 + 0.988659i \(0.547985\pi\)
\(272\) 1767.65i 0.394042i
\(273\) 0 0
\(274\) 1178.16 0.259764
\(275\) −138.614 911.274i −0.0303953 0.199825i
\(276\) 0 0
\(277\) 5200.44i 1.12803i 0.825765 + 0.564015i \(0.190744\pi\)
−0.825765 + 0.564015i \(0.809256\pi\)
\(278\) 1744.03i 0.376260i
\(279\) 0 0
\(280\) −5434.06 4669.99i −1.15981 0.996734i
\(281\) 319.973 0.0679288 0.0339644 0.999423i \(-0.489187\pi\)
0.0339644 + 0.999423i \(0.489187\pi\)
\(282\) 0 0
\(283\) 1977.17i 0.415301i 0.978203 + 0.207651i \(0.0665817\pi\)
−0.978203 + 0.207651i \(0.933418\pi\)
\(284\) 1400.65 0.292651
\(285\) 0 0
\(286\) −124.582 −0.0257576
\(287\) 2635.52i 0.542055i
\(288\) 0 0
\(289\) 401.908 0.0818049
\(290\) −2008.66 + 2337.30i −0.406733 + 0.473279i
\(291\) 0 0
\(292\) 920.384i 0.184457i
\(293\) 1406.36i 0.280412i −0.990122 0.140206i \(-0.955224\pi\)
0.990122 0.140206i \(-0.0447764\pi\)
\(294\) 0 0
\(295\) 6940.60 + 5964.71i 1.36982 + 1.17722i
\(296\) 5880.25 1.15467
\(297\) 0 0
\(298\) 54.3434i 0.0105639i
\(299\) −2147.35 −0.415333
\(300\) 0 0
\(301\) 9233.28 1.76810
\(302\) 856.883i 0.163272i
\(303\) 0 0
\(304\) 1675.35 0.316078
\(305\) −1081.67 929.578i −0.203069 0.174516i
\(306\) 0 0
\(307\) 2911.87i 0.541332i −0.962673 0.270666i \(-0.912756\pi\)
0.962673 0.270666i \(-0.0872439\pi\)
\(308\) 1603.59i 0.296667i
\(309\) 0 0
\(310\) −2184.34 + 2541.73i −0.400201 + 0.465679i
\(311\) −503.366 −0.0917789 −0.0458895 0.998947i \(-0.514612\pi\)
−0.0458895 + 0.998947i \(0.514612\pi\)
\(312\) 0 0
\(313\) 2245.38i 0.405483i −0.979232 0.202741i \(-0.935015\pi\)
0.979232 0.202741i \(-0.0649851\pi\)
\(314\) 137.037 0.0246288
\(315\) 0 0
\(316\) −8041.43 −1.43154
\(317\) 5949.98i 1.05421i −0.849801 0.527104i \(-0.823278\pi\)
0.849801 0.527104i \(-0.176722\pi\)
\(318\) 0 0
\(319\) 1564.06 0.274516
\(320\) 231.212 + 198.701i 0.0403910 + 0.0347117i
\(321\) 0 0
\(322\) 7396.93i 1.28017i
\(323\) 4275.54i 0.736524i
\(324\) 0 0
\(325\) 1606.52 244.368i 0.274196 0.0417079i
\(326\) 1406.66 0.238981
\(327\) 0 0
\(328\) 1422.52i 0.239468i
\(329\) −1638.32 −0.274540
\(330\) 0 0
\(331\) 3442.15 0.571594 0.285797 0.958290i \(-0.407742\pi\)
0.285797 + 0.958290i \(0.407742\pi\)
\(332\) 6379.67i 1.05461i
\(333\) 0 0
\(334\) 4275.96 0.700509
\(335\) 3926.54 4568.97i 0.640387 0.745162i
\(336\) 0 0
\(337\) 7274.80i 1.17592i −0.808892 0.587958i \(-0.799932\pi\)
0.808892 0.587958i \(-0.200068\pi\)
\(338\) 219.631i 0.0353442i
\(339\) 0 0
\(340\) 3088.85 3594.22i 0.492695 0.573305i
\(341\) 1700.86 0.270107
\(342\) 0 0
\(343\) 17274.7i 2.71938i
\(344\) −4983.65 −0.781107
\(345\) 0 0
\(346\) 1274.84 0.198080
\(347\) 5232.06i 0.809429i −0.914443 0.404714i \(-0.867371\pi\)
0.914443 0.404714i \(-0.132629\pi\)
\(348\) 0 0
\(349\) −887.135 −0.136067 −0.0680333 0.997683i \(-0.521672\pi\)
−0.0680333 + 0.997683i \(0.521672\pi\)
\(350\) 841.768 + 5533.95i 0.128555 + 0.845148i
\(351\) 0 0
\(352\) 1349.38i 0.204325i
\(353\) 458.015i 0.0690586i −0.999404 0.0345293i \(-0.989007\pi\)
0.999404 0.0345293i \(-0.0109932\pi\)
\(354\) 0 0
\(355\) −1881.85 1617.25i −0.281348 0.241788i
\(356\) 9098.17 1.35450
\(357\) 0 0
\(358\) 3234.59i 0.477524i
\(359\) −7501.93 −1.10289 −0.551444 0.834212i \(-0.685923\pi\)
−0.551444 + 0.834212i \(0.685923\pi\)
\(360\) 0 0
\(361\) −2806.71 −0.409202
\(362\) 5189.81i 0.753509i
\(363\) 0 0
\(364\) −2827.04 −0.407080
\(365\) −1062.72 + 1236.59i −0.152398 + 0.177332i
\(366\) 0 0
\(367\) 690.319i 0.0981862i −0.998794 0.0490931i \(-0.984367\pi\)
0.998794 0.0490931i \(-0.0156331\pi\)
\(368\) 4347.25i 0.615805i
\(369\) 0 0
\(370\) −3484.05 2994.17i −0.489533 0.420701i
\(371\) −14704.1 −2.05768
\(372\) 0 0
\(373\) 7288.68i 1.01178i −0.862598 0.505889i \(-0.831164\pi\)
0.862598 0.505889i \(-0.168836\pi\)
\(374\) 643.654 0.0889908
\(375\) 0 0
\(376\) 884.282 0.121286
\(377\) 2757.35i 0.376686i
\(378\) 0 0
\(379\) −2989.30 −0.405146 −0.202573 0.979267i \(-0.564930\pi\)
−0.202573 + 0.979267i \(0.564930\pi\)
\(380\) −3406.54 2927.56i −0.459873 0.395212i
\(381\) 0 0
\(382\) 1267.84i 0.169813i
\(383\) 3767.68i 0.502661i −0.967901 0.251331i \(-0.919132\pi\)
0.967901 0.251331i \(-0.0808681\pi\)
\(384\) 0 0
\(385\) 1851.59 2154.53i 0.245105 0.285208i
\(386\) 880.488 0.116103
\(387\) 0 0
\(388\) 6315.54i 0.826348i
\(389\) −1109.98 −0.144675 −0.0723373 0.997380i \(-0.523046\pi\)
−0.0723373 + 0.997380i \(0.523046\pi\)
\(390\) 0 0
\(391\) 11094.3 1.43495
\(392\) 15703.3i 2.02331i
\(393\) 0 0
\(394\) −79.8742 −0.0102132
\(395\) 10804.2 + 9285.02i 1.37624 + 1.18273i
\(396\) 0 0
\(397\) 3401.28i 0.429988i −0.976615 0.214994i \(-0.931027\pi\)
0.976615 0.214994i \(-0.0689732\pi\)
\(398\) 4619.70i 0.581821i
\(399\) 0 0
\(400\) 494.716 + 3252.36i 0.0618394 + 0.406545i
\(401\) 2705.68 0.336945 0.168473 0.985706i \(-0.446117\pi\)
0.168473 + 0.985706i \(0.446117\pi\)
\(402\) 0 0
\(403\) 2998.51i 0.370636i
\(404\) 2060.23 0.253713
\(405\) 0 0
\(406\) −9498.17 −1.16105
\(407\) 2331.44i 0.283944i
\(408\) 0 0
\(409\) 6105.65 0.738153 0.369077 0.929399i \(-0.379674\pi\)
0.369077 + 0.929399i \(0.379674\pi\)
\(410\) −724.333 + 842.843i −0.0872495 + 0.101525i
\(411\) 0 0
\(412\) 9661.40i 1.15530i
\(413\) 28204.8i 3.36045i
\(414\) 0 0
\(415\) −7366.26 + 8571.48i −0.871315 + 1.01387i
\(416\) 2378.88 0.280371
\(417\) 0 0
\(418\) 610.045i 0.0713834i
\(419\) −1808.37 −0.210846 −0.105423 0.994427i \(-0.533620\pi\)
−0.105423 + 0.994427i \(0.533620\pi\)
\(420\) 0 0
\(421\) 7391.07 0.855627 0.427813 0.903867i \(-0.359284\pi\)
0.427813 + 0.903867i \(0.359284\pi\)
\(422\) 4500.21i 0.519116i
\(423\) 0 0
\(424\) 7936.55 0.909040
\(425\) −8300.11 + 1262.53i −0.947328 + 0.144098i
\(426\) 0 0
\(427\) 4395.61i 0.498170i
\(428\) 4135.40i 0.467038i
\(429\) 0 0
\(430\) 2952.82 + 2537.63i 0.331157 + 0.284594i
\(431\) 3726.18 0.416436 0.208218 0.978082i \(-0.433234\pi\)
0.208218 + 0.978082i \(0.433234\pi\)
\(432\) 0 0
\(433\) 6064.24i 0.673046i −0.941675 0.336523i \(-0.890749\pi\)
0.941675 0.336523i \(-0.109251\pi\)
\(434\) −10328.9 −1.14240
\(435\) 0 0
\(436\) 2734.22 0.300333
\(437\) 10515.0i 1.15103i
\(438\) 0 0
\(439\) 2083.49 0.226514 0.113257 0.993566i \(-0.463872\pi\)
0.113257 + 0.993566i \(0.463872\pi\)
\(440\) −999.393 + 1162.91i −0.108282 + 0.125999i
\(441\) 0 0
\(442\) 1134.72i 0.122112i
\(443\) 4087.56i 0.438388i −0.975681 0.219194i \(-0.929657\pi\)
0.975681 0.219194i \(-0.0703428\pi\)
\(444\) 0 0
\(445\) −12224.0 10505.2i −1.30218 1.11909i
\(446\) −7127.77 −0.756748
\(447\) 0 0
\(448\) 939.582i 0.0990872i
\(449\) −5467.89 −0.574712 −0.287356 0.957824i \(-0.592776\pi\)
−0.287356 + 0.957824i \(0.592776\pi\)
\(450\) 0 0
\(451\) 564.009 0.0588872
\(452\) 851.194i 0.0885770i
\(453\) 0 0
\(454\) 554.282 0.0572989
\(455\) 3798.31 + 3264.24i 0.391357 + 0.336329i
\(456\) 0 0
\(457\) 5504.65i 0.563450i −0.959495 0.281725i \(-0.909093\pi\)
0.959495 0.281725i \(-0.0909066\pi\)
\(458\) 5272.85i 0.537957i
\(459\) 0 0
\(460\) −7596.53 + 8839.41i −0.769978 + 0.895956i
\(461\) 10313.0 1.04192 0.520961 0.853580i \(-0.325574\pi\)
0.520961 + 0.853580i \(0.325574\pi\)
\(462\) 0 0
\(463\) 6518.86i 0.654335i −0.944966 0.327168i \(-0.893906\pi\)
0.944966 0.327168i \(-0.106094\pi\)
\(464\) −5582.17 −0.558504
\(465\) 0 0
\(466\) −5799.62 −0.576528
\(467\) 6516.94i 0.645756i −0.946441 0.322878i \(-0.895350\pi\)
0.946441 0.322878i \(-0.104650\pi\)
\(468\) 0 0
\(469\) 18567.1 1.82803
\(470\) −523.937 450.268i −0.0514201 0.0441900i
\(471\) 0 0
\(472\) 15223.5i 1.48457i
\(473\) 1975.95i 0.192081i
\(474\) 0 0
\(475\) 1196.60 + 7866.71i 0.115587 + 0.759893i
\(476\) 14605.9 1.40643
\(477\) 0 0
\(478\) 1367.70i 0.130873i
\(479\) 8778.84 0.837401 0.418701 0.908124i \(-0.362486\pi\)
0.418701 + 0.908124i \(0.362486\pi\)
\(480\) 0 0
\(481\) −4110.18 −0.389622
\(482\) 5672.12i 0.536013i
\(483\) 0 0
\(484\) −8056.86 −0.756655
\(485\) −7292.22 + 8485.32i −0.682727 + 0.794430i
\(486\) 0 0
\(487\) 15756.7i 1.46613i −0.680161 0.733063i \(-0.738090\pi\)
0.680161 0.733063i \(-0.261910\pi\)
\(488\) 2372.53i 0.220081i
\(489\) 0 0
\(490\) −7995.97 + 9304.21i −0.737186 + 0.857799i
\(491\) 4658.98 0.428222 0.214111 0.976809i \(-0.431315\pi\)
0.214111 + 0.976809i \(0.431315\pi\)
\(492\) 0 0
\(493\) 14245.9i 1.30142i
\(494\) 1075.47 0.0979510
\(495\) 0 0
\(496\) −6070.40 −0.549534
\(497\) 7647.35i 0.690203i
\(498\) 0 0
\(499\) 20634.7 1.85117 0.925586 0.378538i \(-0.123573\pi\)
0.925586 + 0.378538i \(0.123573\pi\)
\(500\) 4677.35 7477.60i 0.418355 0.668817i
\(501\) 0 0
\(502\) 6245.09i 0.555243i
\(503\) 17508.7i 1.55204i −0.630709 0.776020i \(-0.717236\pi\)
0.630709 0.776020i \(-0.282764\pi\)
\(504\) 0 0
\(505\) −2768.05 2378.84i −0.243914 0.209618i
\(506\) −1582.97 −0.139074
\(507\) 0 0
\(508\) 11259.5i 0.983386i
\(509\) −4358.36 −0.379530 −0.189765 0.981830i \(-0.560773\pi\)
−0.189765 + 0.981830i \(0.560773\pi\)
\(510\) 0 0
\(511\) −5025.19 −0.435032
\(512\) 8731.80i 0.753701i
\(513\) 0 0
\(514\) 3051.17 0.261832
\(515\) 11155.5 12980.7i 0.954506 1.11067i
\(516\) 0 0
\(517\) 350.605i 0.0298252i
\(518\) 14158.3i 1.20092i
\(519\) 0 0
\(520\) −2050.13 1761.87i −0.172893 0.148583i
\(521\) 11846.0 0.996128 0.498064 0.867140i \(-0.334045\pi\)
0.498064 + 0.867140i \(0.334045\pi\)
\(522\) 0 0
\(523\) 9865.36i 0.824822i −0.910998 0.412411i \(-0.864687\pi\)
0.910998 0.412411i \(-0.135313\pi\)
\(524\) −4488.56 −0.374205
\(525\) 0 0
\(526\) −6246.82 −0.517822
\(527\) 15491.8i 1.28052i
\(528\) 0 0
\(529\) −15117.7 −1.24252
\(530\) −4702.41 4041.21i −0.385395 0.331206i
\(531\) 0 0
\(532\) 13843.3i 1.12816i
\(533\) 994.314i 0.0808040i
\(534\) 0 0
\(535\) 4774.93 5556.17i 0.385866 0.448998i
\(536\) −10021.6 −0.807585
\(537\) 0 0
\(538\) 10634.5i 0.852205i
\(539\) 6226.14 0.497549
\(540\) 0 0
\(541\) −6987.96 −0.555334 −0.277667 0.960677i \(-0.589561\pi\)
−0.277667 + 0.960677i \(0.589561\pi\)
\(542\) 1741.40i 0.138007i
\(543\) 0 0
\(544\) −12290.5 −0.968661
\(545\) −3673.59 3157.06i −0.288733 0.248135i
\(546\) 0 0
\(547\) 4266.50i 0.333496i −0.986000 0.166748i \(-0.946673\pi\)
0.986000 0.166748i \(-0.0533266\pi\)
\(548\) 5721.39i 0.445995i
\(549\) 0 0
\(550\) 1184.28 180.141i 0.0918144 0.0139659i
\(551\) −13502.0 −1.04393
\(552\) 0 0
\(553\) 43905.3i 3.37621i
\(554\) −6758.44 −0.518300
\(555\) 0 0
\(556\) −8469.39 −0.646011
\(557\) 4717.62i 0.358873i 0.983770 + 0.179436i \(0.0574274\pi\)
−0.983770 + 0.179436i \(0.942573\pi\)
\(558\) 0 0
\(559\) 3483.48 0.263570
\(560\) −6608.36 + 7689.57i −0.498668 + 0.580256i
\(561\) 0 0
\(562\) 415.834i 0.0312115i
\(563\) 7201.26i 0.539071i −0.962990 0.269536i \(-0.913130\pi\)
0.962990 0.269536i \(-0.0868702\pi\)
\(564\) 0 0
\(565\) −982.830 + 1143.63i −0.0731822 + 0.0851557i
\(566\) −2569.50 −0.190820
\(567\) 0 0
\(568\) 4127.65i 0.304916i
\(569\) 3826.65 0.281936 0.140968 0.990014i \(-0.454979\pi\)
0.140968 + 0.990014i \(0.454979\pi\)
\(570\) 0 0
\(571\) −25460.9 −1.86604 −0.933018 0.359830i \(-0.882835\pi\)
−0.933018 + 0.359830i \(0.882835\pi\)
\(572\) 604.995i 0.0442240i
\(573\) 0 0
\(574\) −3425.09 −0.249060
\(575\) 20412.8 3104.99i 1.48047 0.225195i
\(576\) 0 0
\(577\) 15564.3i 1.12296i 0.827489 + 0.561481i \(0.189768\pi\)
−0.827489 + 0.561481i \(0.810232\pi\)
\(578\) 522.315i 0.0375872i
\(579\) 0 0
\(580\) 11350.4 + 9754.46i 0.812586 + 0.698331i
\(581\) −34832.2 −2.48723
\(582\) 0 0
\(583\) 3146.73i 0.223541i
\(584\) 2712.34 0.192188
\(585\) 0 0
\(586\) 1827.69 0.128842
\(587\) 17777.5i 1.25001i −0.780622 0.625004i \(-0.785097\pi\)
0.780622 0.625004i \(-0.214903\pi\)
\(588\) 0 0
\(589\) −14682.9 −1.02716
\(590\) −7751.66 + 9019.93i −0.540900 + 0.629398i
\(591\) 0 0
\(592\) 8320.95i 0.577684i
\(593\) 23341.0i 1.61636i 0.588937 + 0.808179i \(0.299547\pi\)
−0.588937 + 0.808179i \(0.700453\pi\)
\(594\) 0 0
\(595\) −19624.0 16864.7i −1.35211 1.16199i
\(596\) −263.903 −0.0181374
\(597\) 0 0
\(598\) 2790.67i 0.190835i
\(599\) −10743.4 −0.732824 −0.366412 0.930453i \(-0.619414\pi\)
−0.366412 + 0.930453i \(0.619414\pi\)
\(600\) 0 0
\(601\) 19744.4 1.34009 0.670043 0.742323i \(-0.266276\pi\)
0.670043 + 0.742323i \(0.266276\pi\)
\(602\) 11999.5i 0.812395i
\(603\) 0 0
\(604\) −4161.20 −0.280326
\(605\) 10824.9 + 9302.83i 0.727429 + 0.625147i
\(606\) 0 0
\(607\) 8231.01i 0.550389i −0.961389 0.275195i \(-0.911258\pi\)
0.961389 0.275195i \(-0.0887423\pi\)
\(608\) 11648.7i 0.777005i
\(609\) 0 0
\(610\) 1208.07 1405.72i 0.0801858 0.0933051i
\(611\) −618.096 −0.0409255
\(612\) 0 0
\(613\) 1430.13i 0.0942292i −0.998889 0.0471146i \(-0.984997\pi\)
0.998889 0.0471146i \(-0.0150026\pi\)
\(614\) 3784.23 0.248728
\(615\) 0 0
\(616\) −4725.74 −0.309100
\(617\) 10008.4i 0.653037i 0.945191 + 0.326519i \(0.105876\pi\)
−0.945191 + 0.326519i \(0.894124\pi\)
\(618\) 0 0
\(619\) −14399.2 −0.934979 −0.467490 0.883999i \(-0.654841\pi\)
−0.467490 + 0.883999i \(0.654841\pi\)
\(620\) 12343.1 + 10607.6i 0.799536 + 0.687116i
\(621\) 0 0
\(622\) 654.169i 0.0421700i
\(623\) 49674.9i 3.19452i
\(624\) 0 0
\(625\) −14918.3 + 4645.94i −0.954772 + 0.297340i
\(626\) 2918.07 0.186309
\(627\) 0 0
\(628\) 665.479i 0.0422858i
\(629\) 21235.3 1.34612
\(630\) 0 0
\(631\) −22166.7 −1.39848 −0.699241 0.714886i \(-0.746479\pi\)
−0.699241 + 0.714886i \(0.746479\pi\)
\(632\) 23697.8i 1.49153i
\(633\) 0 0
\(634\) 7732.53 0.484382
\(635\) −13000.8 + 15127.9i −0.812472 + 0.945403i
\(636\) 0 0
\(637\) 10976.3i 0.682727i
\(638\) 2032.64i 0.126133i
\(639\) 0 0
\(640\) 10409.5 12112.6i 0.642924 0.748114i
\(641\) −10016.5 −0.617202 −0.308601 0.951192i \(-0.599861\pi\)
−0.308601 + 0.951192i \(0.599861\pi\)
\(642\) 0 0
\(643\) 5085.35i 0.311892i 0.987766 + 0.155946i \(0.0498426\pi\)
−0.987766 + 0.155946i \(0.950157\pi\)
\(644\) −35921.0 −2.19796
\(645\) 0 0
\(646\) −5556.44 −0.338414
\(647\) 16584.2i 1.00772i 0.863787 + 0.503858i \(0.168086\pi\)
−0.863787 + 0.503858i \(0.831914\pi\)
\(648\) 0 0
\(649\) 6035.91 0.365069
\(650\) 317.577 + 2087.82i 0.0191637 + 0.125986i
\(651\) 0 0
\(652\) 6831.04i 0.410313i
\(653\) 811.964i 0.0486594i −0.999704 0.0243297i \(-0.992255\pi\)
0.999704 0.0243297i \(-0.00774515\pi\)
\(654\) 0 0
\(655\) 6030.66 + 5182.70i 0.359752 + 0.309168i
\(656\) −2012.96 −0.119806
\(657\) 0 0
\(658\) 2129.14i 0.126144i
\(659\) 16570.7 0.979516 0.489758 0.871858i \(-0.337085\pi\)
0.489758 + 0.871858i \(0.337085\pi\)
\(660\) 0 0
\(661\) 23023.9 1.35480 0.677402 0.735613i \(-0.263106\pi\)
0.677402 + 0.735613i \(0.263106\pi\)
\(662\) 4473.38i 0.262633i
\(663\) 0 0
\(664\) 18800.7 1.09881
\(665\) −15984.1 + 18599.3i −0.932086 + 1.08459i
\(666\) 0 0
\(667\) 35035.4i 2.03385i
\(668\) 20764.9i 1.20272i
\(669\) 0 0
\(670\) 5937.78 + 5102.88i 0.342383 + 0.294241i
\(671\) −940.675 −0.0541197
\(672\) 0 0
\(673\) 19697.5i 1.12821i 0.825704 + 0.564104i \(0.190778\pi\)
−0.825704 + 0.564104i \(0.809222\pi\)
\(674\) 9454.25 0.540303
\(675\) 0 0
\(676\) −1066.57 −0.0606834
\(677\) 32440.9i 1.84166i −0.389963 0.920831i \(-0.627512\pi\)
0.389963 0.920831i \(-0.372488\pi\)
\(678\) 0 0
\(679\) −34482.1 −1.94890
\(680\) 10592.0 + 9102.72i 0.597333 + 0.513343i
\(681\) 0 0
\(682\) 2210.42i 0.124107i
\(683\) 33834.7i 1.89553i 0.318963 + 0.947767i \(0.396665\pi\)
−0.318963 + 0.947767i \(0.603335\pi\)
\(684\) 0 0
\(685\) −6606.18 + 7687.04i −0.368481 + 0.428769i
\(686\) −22450.0 −1.24948
\(687\) 0 0
\(688\) 7052.21i 0.390789i
\(689\) −5547.49 −0.306738
\(690\) 0 0
\(691\) 24823.5 1.36661 0.683306 0.730132i \(-0.260541\pi\)
0.683306 + 0.730132i \(0.260541\pi\)
\(692\) 6190.87i 0.340089i
\(693\) 0 0
\(694\) 6799.53 0.371911
\(695\) 11379.2 + 9779.16i 0.621059 + 0.533733i
\(696\) 0 0
\(697\) 5137.14i 0.279172i
\(698\) 1152.91i 0.0625191i
\(699\) 0 0
\(700\) 26874.0 4087.80i 1.45106 0.220720i
\(701\) 17310.4 0.932675 0.466338 0.884607i \(-0.345573\pi\)
0.466338 + 0.884607i \(0.345573\pi\)
\(702\) 0 0
\(703\) 20126.5i 1.07978i
\(704\) 201.073 0.0107645
\(705\) 0 0
\(706\) 595.231 0.0317306
\(707\) 11248.6i 0.598369i
\(708\) 0 0
\(709\) −29550.3 −1.56528 −0.782642 0.622472i \(-0.786128\pi\)
−0.782642 + 0.622472i \(0.786128\pi\)
\(710\) 2101.76 2445.64i 0.111095 0.129272i
\(711\) 0 0
\(712\) 26812.0i 1.41127i
\(713\) 38099.7i 2.00119i
\(714\) 0 0
\(715\) 698.556 812.849i 0.0365378 0.0425158i
\(716\) 15707.8 0.819873
\(717\) 0 0
\(718\) 9749.42i 0.506748i
\(719\) 30745.3 1.59473 0.797363 0.603500i \(-0.206228\pi\)
0.797363 + 0.603500i \(0.206228\pi\)
\(720\) 0 0
\(721\) 52750.1 2.72471
\(722\) 3647.57i 0.188018i
\(723\) 0 0
\(724\) 25202.8 1.29372
\(725\) −3987.02 26211.4i −0.204240 1.34272i
\(726\) 0 0
\(727\) 13223.2i 0.674581i −0.941401 0.337290i \(-0.890490\pi\)
0.941401 0.337290i \(-0.109510\pi\)
\(728\) 8331.20i 0.424141i
\(729\) 0 0
\(730\) −1607.06 1381.10i −0.0814796 0.0700230i
\(731\) −17997.4 −0.910615
\(732\) 0 0
\(733\) 15543.6i 0.783241i −0.920127 0.391621i \(-0.871915\pi\)
0.920127 0.391621i \(-0.128085\pi\)
\(734\) 897.131 0.0451140
\(735\) 0 0
\(736\) 30226.6 1.51381
\(737\) 3973.41i 0.198592i
\(738\) 0 0
\(739\) 34338.2 1.70927 0.854635 0.519230i \(-0.173781\pi\)
0.854635 + 0.519230i \(0.173781\pi\)
\(740\) −14540.3 + 16919.3i −0.722313 + 0.840493i
\(741\) 0 0
\(742\) 19109.3i 0.945452i
\(743\) 31456.9i 1.55322i 0.629982 + 0.776610i \(0.283062\pi\)
−0.629982 + 0.776610i \(0.716938\pi\)
\(744\) 0 0
\(745\) 354.570 + 304.715i 0.0174368 + 0.0149851i
\(746\) 9472.29 0.464886
\(747\) 0 0
\(748\) 3125.72i 0.152791i
\(749\) 22578.8 1.10148
\(750\) 0 0
\(751\) −2665.04 −0.129492 −0.0647461 0.997902i \(-0.520624\pi\)
−0.0647461 + 0.997902i \(0.520624\pi\)
\(752\) 1251.32i 0.0606794i
\(753\) 0 0
\(754\) −3583.42 −0.173077
\(755\) 5590.83 + 4804.72i 0.269498 + 0.231605i
\(756\) 0 0
\(757\) 5447.26i 0.261538i −0.991413 0.130769i \(-0.958255\pi\)
0.991413 0.130769i \(-0.0417446\pi\)
\(758\) 3884.87i 0.186154i
\(759\) 0 0
\(760\) 8627.41 10039.0i 0.411775 0.479147i
\(761\) 32255.4 1.53648 0.768238 0.640164i \(-0.221134\pi\)
0.768238 + 0.640164i \(0.221134\pi\)
\(762\) 0 0
\(763\) 14928.5i 0.708320i
\(764\) 6156.91 0.291557
\(765\) 0 0
\(766\) 4896.43 0.230960
\(767\) 10640.9i 0.500941i
\(768\) 0 0
\(769\) −2752.71 −0.129084 −0.0645418 0.997915i \(-0.520559\pi\)
−0.0645418 + 0.997915i \(0.520559\pi\)
\(770\) 2800.00 + 2406.30i 0.131046 + 0.112620i
\(771\) 0 0
\(772\) 4275.83i 0.199340i
\(773\) 10269.8i 0.477850i −0.971038 0.238925i \(-0.923205\pi\)
0.971038 0.238925i \(-0.0767951\pi\)
\(774\) 0 0
\(775\) −4335.73 28504.0i −0.200960 1.32115i
\(776\) 18611.7 0.860980
\(777\) 0 0
\(778\) 1442.52i 0.0664742i
\(779\) −4868.89 −0.223936
\(780\) 0 0
\(781\) −1636.56 −0.0749815
\(782\) 14418.1i 0.659320i
\(783\) 0 0
\(784\) −22221.2 −1.01226
\(785\) −768.393 + 894.112i −0.0349365 + 0.0406525i
\(786\) 0 0
\(787\) 17070.3i 0.773177i −0.922252 0.386589i \(-0.873653\pi\)
0.922252 0.386589i \(-0.126347\pi\)
\(788\) 387.886i 0.0175353i
\(789\) 0 0
\(790\) −12066.7 + 14041.0i −0.543436 + 0.632349i
\(791\) −4647.42 −0.208904
\(792\) 0 0
\(793\) 1658.35i 0.0742621i
\(794\) 4420.26 0.197568
\(795\) 0 0
\(796\) 22434.2 0.998944
\(797\) 8366.45i 0.371838i 0.982565 + 0.185919i \(0.0595262\pi\)
−0.982565 + 0.185919i \(0.940474\pi\)
\(798\) 0 0
\(799\) 3193.40 0.141395
\(800\) −22613.7 + 3439.77i −0.999395 + 0.152018i
\(801\) 0 0
\(802\) 3516.27i 0.154818i
\(803\) 1075.41i 0.0472606i
\(804\) 0 0
\(805\) 48262.1 + 41476.1i 2.11306 + 1.81595i
\(806\) −3896.83 −0.170298
\(807\) 0 0
\(808\) 6071.42i 0.264346i
\(809\) −35142.0 −1.52723 −0.763613 0.645674i \(-0.776576\pi\)
−0.763613 + 0.645674i \(0.776576\pi\)
\(810\) 0 0
\(811\) 7588.23 0.328556 0.164278 0.986414i \(-0.447471\pi\)
0.164278 + 0.986414i \(0.447471\pi\)
\(812\) 46125.0i 1.99344i
\(813\) 0 0
\(814\) −3029.91 −0.130465
\(815\) −7887.45 + 9177.93i −0.339000 + 0.394465i
\(816\) 0 0
\(817\) 17057.7i 0.730444i
\(818\) 7934.83i 0.339162i
\(819\) 0 0
\(820\) 4093.02 + 3517.51i 0.174310 + 0.149801i
\(821\) 8416.56 0.357783 0.178892 0.983869i \(-0.442749\pi\)
0.178892 + 0.983869i \(0.442749\pi\)
\(822\) 0 0
\(823\) 29841.8i 1.26394i 0.774993 + 0.631969i \(0.217753\pi\)
−0.774993 + 0.631969i \(0.782247\pi\)
\(824\) −28471.8 −1.20372
\(825\) 0 0
\(826\) −36654.6 −1.54404
\(827\) 20935.7i 0.880298i −0.897925 0.440149i \(-0.854926\pi\)
0.897925 0.440149i \(-0.145074\pi\)
\(828\) 0 0
\(829\) −9906.70 −0.415047 −0.207524 0.978230i \(-0.566540\pi\)
−0.207524 + 0.978230i \(0.566540\pi\)
\(830\) −11139.4 9573.12i −0.465848 0.400347i
\(831\) 0 0
\(832\) 354.480i 0.0147709i
\(833\) 56709.2i 2.35877i
\(834\) 0 0
\(835\) −23976.2 + 27899.0i −0.993688 + 1.15627i
\(836\) −2962.50 −0.122560
\(837\) 0 0
\(838\) 2350.13i 0.0968783i
\(839\) 5870.13 0.241549 0.120774 0.992680i \(-0.461462\pi\)
0.120774 + 0.992680i \(0.461462\pi\)
\(840\) 0 0
\(841\) 20598.9 0.844598
\(842\) 9605.36i 0.393138i
\(843\) 0 0
\(844\) −21853.9 −0.891284
\(845\) 1433.00 + 1231.51i 0.0583394 + 0.0501365i
\(846\) 0 0
\(847\) 43989.5i 1.78453i
\(848\) 11230.7i 0.454794i
\(849\) 0 0
\(850\) −1640.77 10786.7i −0.0662093 0.435273i
\(851\) −52224.9 −2.10370
\(852\) 0 0
\(853\) 9104.66i 0.365460i 0.983163 + 0.182730i \(0.0584935\pi\)
−0.983163 + 0.182730i \(0.941507\pi\)
\(854\) 5712.49 0.228896
\(855\) 0 0
\(856\) −12186.9 −0.486611
\(857\) 32110.0i 1.27988i 0.768425 + 0.639940i \(0.221041\pi\)
−0.768425 + 0.639940i \(0.778959\pi\)
\(858\) 0 0
\(859\) 12871.9 0.511272 0.255636 0.966773i \(-0.417715\pi\)
0.255636 + 0.966773i \(0.417715\pi\)
\(860\) 12323.2 14339.5i 0.488627 0.568572i
\(861\) 0 0
\(862\) 4842.50i 0.191341i
\(863\) 4537.25i 0.178969i −0.995988 0.0894843i \(-0.971478\pi\)
0.995988 0.0894843i \(-0.0285219\pi\)
\(864\) 0 0
\(865\) −7148.27 + 8317.82i −0.280981 + 0.326953i
\(866\) 7881.02 0.309247
\(867\) 0 0
\(868\) 50159.3i 1.96142i
\(869\) 9395.86 0.366781
\(870\) 0 0
\(871\) 7004.88 0.272504
\(872\) 8057.65i 0.312920i
\(873\) 0 0
\(874\) 13665.2 0.528870
\(875\) −40826.8 25537.8i −1.57737 0.986667i
\(876\) 0 0
\(877\) 17128.9i 0.659521i −0.944065 0.329761i \(-0.893032\pi\)
0.944065 0.329761i \(-0.106968\pi\)
\(878\) 2707.68i 0.104077i
\(879\) 0 0
\(880\) 1645.59 + 1414.21i 0.0630373 + 0.0541738i
\(881\) 21401.5 0.818428 0.409214 0.912438i \(-0.365803\pi\)
0.409214 + 0.912438i \(0.365803\pi\)
\(882\) 0 0
\(883\) 4340.60i 0.165428i −0.996573 0.0827139i \(-0.973641\pi\)
0.996573 0.0827139i \(-0.0263588\pi\)
\(884\) 5510.45 0.209657
\(885\) 0 0
\(886\) 5312.15 0.201428
\(887\) 26728.7i 1.01180i −0.862593 0.505898i \(-0.831161\pi\)
0.862593 0.505898i \(-0.168839\pi\)
\(888\) 0 0
\(889\) −61475.6 −2.31926
\(890\) 13652.4 15886.1i 0.514191 0.598319i
\(891\) 0 0
\(892\) 34613.9i 1.29928i
\(893\) 3026.65i 0.113419i
\(894\) 0 0
\(895\) −21104.5 18137.0i −0.788206 0.677378i
\(896\) 49222.4 1.83527
\(897\) 0 0
\(898\) 7106.01i 0.264065i
\(899\) 48922.7 1.81497
\(900\) 0 0
\(901\) 28661.2 1.05976
\(902\) 732.980i 0.0270572i
\(903\) 0 0
\(904\) 2508.44 0.0922893
\(905\) −33861.5 29100.3i −1.24375 1.06887i
\(906\) 0 0
\(907\) 38923.7i 1.42496i −0.701692 0.712480i \(-0.747572\pi\)
0.701692 0.712480i \(-0.252428\pi\)
\(908\) 2691.70i 0.0983781i
\(909\) 0 0
\(910\) −4242.17 + 4936.24i −0.154535 + 0.179818i
\(911\) 6424.23 0.233638 0.116819 0.993153i \(-0.462730\pi\)
0.116819 + 0.993153i \(0.462730\pi\)
\(912\) 0 0
\(913\) 7454.20i 0.270206i
\(914\) 7153.78 0.258891
\(915\) 0 0
\(916\) 25606.1 0.923633
\(917\) 24507.0i 0.882543i
\(918\) 0 0
\(919\) −46325.0 −1.66281 −0.831404 0.555669i \(-0.812462\pi\)
−0.831404 + 0.555669i \(0.812462\pi\)
\(920\) −26049.4 22386.7i −0.933505 0.802248i
\(921\) 0 0
\(922\) 13402.7i 0.478736i
\(923\) 2885.15i 0.102888i
\(924\) 0 0
\(925\) 39071.6 5943.17i 1.38883 0.211254i
\(926\) 8471.84 0.300650
\(927\) 0 0
\(928\) 38813.0i 1.37295i
\(929\) 23921.0 0.844803 0.422401 0.906409i \(-0.361187\pi\)
0.422401 + 0.906409i \(0.361187\pi\)
\(930\) 0 0
\(931\) −53748.1 −1.89208
\(932\) 28164.1i 0.989856i
\(933\) 0 0
\(934\) 8469.35 0.296708
\(935\) −3609.10 + 4199.59i −0.126236 + 0.146889i
\(936\) 0 0
\(937\) 45609.5i 1.59018i −0.606492 0.795090i \(-0.707424\pi\)
0.606492 0.795090i \(-0.292576\pi\)
\(938\) 24129.5i 0.839934i
\(939\) 0 0
\(940\) −2186.59 + 2544.35i −0.0758711 + 0.0882845i
\(941\) 30390.8 1.05283 0.526414 0.850228i \(-0.323536\pi\)
0.526414 + 0.850228i \(0.323536\pi\)
\(942\) 0 0
\(943\) 12634.0i 0.436287i
\(944\) −21542.3 −0.742735
\(945\) 0 0
\(946\) 2567.92 0.0882561
\(947\) 40335.6i 1.38409i −0.721855 0.692044i \(-0.756710\pi\)
0.721855 0.692044i \(-0.243290\pi\)
\(948\) 0 0
\(949\) −1895.88 −0.0648501
\(950\) −10223.5 + 1555.09i −0.349151 + 0.0531093i
\(951\) 0 0
\(952\) 43043.2i 1.46538i
\(953\) 37307.9i 1.26812i 0.773282 + 0.634062i \(0.218614\pi\)
−0.773282 + 0.634062i \(0.781386\pi\)
\(954\) 0 0
\(955\) −8272.19 7109.06i −0.280295 0.240884i
\(956\) 6641.83 0.224699
\(957\) 0 0
\(958\) 11408.9i 0.384764i
\(959\) −31238.1 −1.05186
\(960\) 0 0
\(961\) 23410.6 0.785827
\(962\) 5341.55i 0.179021i
\(963\) 0 0
\(964\) 27545.0 0.920295
\(965\) −4937.08 + 5744.84i −0.164694 + 0.191640i
\(966\) 0 0
\(967\) 16551.2i 0.550415i −0.961385 0.275208i \(-0.911253\pi\)
0.961385 0.275208i \(-0.0887466\pi\)
\(968\) 23743.3i 0.788366i
\(969\) 0 0
\(970\) −11027.4 9476.89i −0.365020 0.313695i
\(971\) −11812.2 −0.390394 −0.195197 0.980764i \(-0.562535\pi\)
−0.195197 + 0.980764i \(0.562535\pi\)
\(972\) 0 0
\(973\) 46241.8i 1.52358i
\(974\) 20477.2 0.673647
\(975\) 0 0
\(976\) 3357.29 0.110107
\(977\) 4881.53i 0.159851i 0.996801 + 0.0799253i \(0.0254682\pi\)
−0.996801 + 0.0799253i \(0.974532\pi\)
\(978\) 0 0
\(979\) −10630.6 −0.347043
\(980\) 45183.1 + 38830.1i 1.47278 + 1.26569i
\(981\) 0 0
\(982\) 6054.76i 0.196757i
\(983\) 49666.3i 1.61150i 0.592253 + 0.805752i \(0.298239\pi\)
−0.592253 + 0.805752i \(0.701761\pi\)
\(984\) 0 0
\(985\) 447.871 521.148i 0.0144877 0.0168580i
\(986\) 18513.8 0.597970
\(987\) 0 0
\(988\) 5222.71i 0.168175i
\(989\) 44261.9 1.42310
\(990\) 0 0
\(991\) 39146.6 1.25483 0.627413 0.778686i \(-0.284114\pi\)
0.627413 + 0.778686i \(0.284114\pi\)
\(992\) 42207.7i 1.35090i
\(993\) 0 0
\(994\) 9938.41 0.317130
\(995\) −30141.8 25903.6i −0.960360 0.825326i
\(996\) 0 0
\(997\) 19628.2i 0.623503i 0.950164 + 0.311751i \(0.100916\pi\)
−0.950164 + 0.311751i \(0.899084\pi\)
\(998\) 26816.6i 0.850565i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.4.c.e.469.13 22
3.2 odd 2 195.4.c.c.79.10 22
5.4 even 2 inner 585.4.c.e.469.10 22
15.2 even 4 975.4.a.bb.1.7 11
15.8 even 4 975.4.a.bc.1.5 11
15.14 odd 2 195.4.c.c.79.13 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.4.c.c.79.10 22 3.2 odd 2
195.4.c.c.79.13 yes 22 15.14 odd 2
585.4.c.e.469.10 22 5.4 even 2 inner
585.4.c.e.469.13 22 1.1 even 1 trivial
975.4.a.bb.1.7 11 15.2 even 4
975.4.a.bc.1.5 11 15.8 even 4