Properties

Label 5824.2.a.cl.1.4
Level $5824$
Weight $2$
Character 5824.1
Self dual yes
Analytic conductor $46.505$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5824,2,Mod(1,5824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5824.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5824 = 2^{6} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5824.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,5,0,3,0,5,0,6,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.5048741372\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1025428.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 8x^{3} + 13x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2912)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.37452\) of defining polynomial
Character \(\chi\) \(=\) 5824.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37452 q^{3} +3.96568 q^{5} +1.00000 q^{7} +2.63834 q^{9} -1.90120 q^{11} +1.00000 q^{13} +9.41658 q^{15} -0.790495 q^{17} +6.58575 q^{19} +2.37452 q^{21} -2.28588 q^{23} +10.7266 q^{25} -0.858778 q^{27} -4.83083 q^{29} +5.20535 q^{31} -4.51442 q^{33} +3.96568 q^{35} -4.52126 q^{37} +2.37452 q^{39} +7.73678 q^{41} +4.64755 q^{43} +10.4628 q^{45} +2.38166 q^{47} +1.00000 q^{49} -1.87705 q^{51} -10.0328 q^{53} -7.53953 q^{55} +15.6380 q^{57} +2.77764 q^{59} -7.73678 q^{61} +2.63834 q^{63} +3.96568 q^{65} +9.94867 q^{67} -5.42787 q^{69} +9.41658 q^{71} -9.55571 q^{73} +25.4705 q^{75} -1.90120 q^{77} -7.41389 q^{79} -9.95419 q^{81} -2.41866 q^{83} -3.13485 q^{85} -11.4709 q^{87} +12.1585 q^{89} +1.00000 q^{91} +12.3602 q^{93} +26.1170 q^{95} -9.60401 q^{97} -5.01599 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} + 3 q^{5} + 5 q^{7} + 6 q^{9} + 5 q^{11} + 5 q^{13} + 4 q^{17} + 7 q^{19} + 5 q^{21} + 4 q^{23} + 2 q^{25} + 23 q^{27} - 3 q^{29} - 2 q^{31} + 17 q^{33} + 3 q^{35} + q^{37} + 5 q^{39} - 7 q^{41}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.37452 1.37093 0.685464 0.728106i \(-0.259599\pi\)
0.685464 + 0.728106i \(0.259599\pi\)
\(4\) 0 0
\(5\) 3.96568 1.77351 0.886753 0.462244i \(-0.152956\pi\)
0.886753 + 0.462244i \(0.152956\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 2.63834 0.879445
\(10\) 0 0
\(11\) −1.90120 −0.573232 −0.286616 0.958046i \(-0.592530\pi\)
−0.286616 + 0.958046i \(0.592530\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 9.41658 2.43135
\(16\) 0 0
\(17\) −0.790495 −0.191723 −0.0958616 0.995395i \(-0.530561\pi\)
−0.0958616 + 0.995395i \(0.530561\pi\)
\(18\) 0 0
\(19\) 6.58575 1.51087 0.755437 0.655221i \(-0.227425\pi\)
0.755437 + 0.655221i \(0.227425\pi\)
\(20\) 0 0
\(21\) 2.37452 0.518162
\(22\) 0 0
\(23\) −2.28588 −0.476640 −0.238320 0.971187i \(-0.576597\pi\)
−0.238320 + 0.971187i \(0.576597\pi\)
\(24\) 0 0
\(25\) 10.7266 2.14532
\(26\) 0 0
\(27\) −0.858778 −0.165272
\(28\) 0 0
\(29\) −4.83083 −0.897062 −0.448531 0.893767i \(-0.648053\pi\)
−0.448531 + 0.893767i \(0.648053\pi\)
\(30\) 0 0
\(31\) 5.20535 0.934908 0.467454 0.884017i \(-0.345171\pi\)
0.467454 + 0.884017i \(0.345171\pi\)
\(32\) 0 0
\(33\) −4.51442 −0.785860
\(34\) 0 0
\(35\) 3.96568 0.670322
\(36\) 0 0
\(37\) −4.52126 −0.743291 −0.371646 0.928375i \(-0.621206\pi\)
−0.371646 + 0.928375i \(0.621206\pi\)
\(38\) 0 0
\(39\) 2.37452 0.380227
\(40\) 0 0
\(41\) 7.73678 1.20828 0.604141 0.796877i \(-0.293516\pi\)
0.604141 + 0.796877i \(0.293516\pi\)
\(42\) 0 0
\(43\) 4.64755 0.708744 0.354372 0.935104i \(-0.384695\pi\)
0.354372 + 0.935104i \(0.384695\pi\)
\(44\) 0 0
\(45\) 10.4628 1.55970
\(46\) 0 0
\(47\) 2.38166 0.347400 0.173700 0.984799i \(-0.444428\pi\)
0.173700 + 0.984799i \(0.444428\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −1.87705 −0.262839
\(52\) 0 0
\(53\) −10.0328 −1.37812 −0.689059 0.724706i \(-0.741976\pi\)
−0.689059 + 0.724706i \(0.741976\pi\)
\(54\) 0 0
\(55\) −7.53953 −1.01663
\(56\) 0 0
\(57\) 15.6380 2.07130
\(58\) 0 0
\(59\) 2.77764 0.361618 0.180809 0.983518i \(-0.442128\pi\)
0.180809 + 0.983518i \(0.442128\pi\)
\(60\) 0 0
\(61\) −7.73678 −0.990593 −0.495297 0.868724i \(-0.664941\pi\)
−0.495297 + 0.868724i \(0.664941\pi\)
\(62\) 0 0
\(63\) 2.63834 0.332399
\(64\) 0 0
\(65\) 3.96568 0.491882
\(66\) 0 0
\(67\) 9.94867 1.21542 0.607712 0.794158i \(-0.292088\pi\)
0.607712 + 0.794158i \(0.292088\pi\)
\(68\) 0 0
\(69\) −5.42787 −0.653439
\(70\) 0 0
\(71\) 9.41658 1.11754 0.558771 0.829322i \(-0.311273\pi\)
0.558771 + 0.829322i \(0.311273\pi\)
\(72\) 0 0
\(73\) −9.55571 −1.11841 −0.559206 0.829029i \(-0.688894\pi\)
−0.559206 + 0.829029i \(0.688894\pi\)
\(74\) 0 0
\(75\) 25.4705 2.94108
\(76\) 0 0
\(77\) −1.90120 −0.216661
\(78\) 0 0
\(79\) −7.41389 −0.834128 −0.417064 0.908877i \(-0.636941\pi\)
−0.417064 + 0.908877i \(0.636941\pi\)
\(80\) 0 0
\(81\) −9.95419 −1.10602
\(82\) 0 0
\(83\) −2.41866 −0.265482 −0.132741 0.991151i \(-0.542378\pi\)
−0.132741 + 0.991151i \(0.542378\pi\)
\(84\) 0 0
\(85\) −3.13485 −0.340022
\(86\) 0 0
\(87\) −11.4709 −1.22981
\(88\) 0 0
\(89\) 12.1585 1.28880 0.644398 0.764690i \(-0.277108\pi\)
0.644398 + 0.764690i \(0.277108\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 12.3602 1.28169
\(94\) 0 0
\(95\) 26.1170 2.67954
\(96\) 0 0
\(97\) −9.60401 −0.975140 −0.487570 0.873084i \(-0.662117\pi\)
−0.487570 + 0.873084i \(0.662117\pi\)
\(98\) 0 0
\(99\) −5.01599 −0.504126
\(100\) 0 0
\(101\) 12.4145 1.23529 0.617645 0.786457i \(-0.288087\pi\)
0.617645 + 0.786457i \(0.288087\pi\)
\(102\) 0 0
\(103\) −15.2080 −1.49849 −0.749246 0.662292i \(-0.769584\pi\)
−0.749246 + 0.662292i \(0.769584\pi\)
\(104\) 0 0
\(105\) 9.41658 0.918964
\(106\) 0 0
\(107\) −3.37512 −0.326285 −0.163142 0.986603i \(-0.552163\pi\)
−0.163142 + 0.986603i \(0.552163\pi\)
\(108\) 0 0
\(109\) −8.37750 −0.802419 −0.401209 0.915986i \(-0.631410\pi\)
−0.401209 + 0.915986i \(0.631410\pi\)
\(110\) 0 0
\(111\) −10.7358 −1.01900
\(112\) 0 0
\(113\) 0.0930891 0.00875708 0.00437854 0.999990i \(-0.498606\pi\)
0.00437854 + 0.999990i \(0.498606\pi\)
\(114\) 0 0
\(115\) −9.06508 −0.845323
\(116\) 0 0
\(117\) 2.63834 0.243914
\(118\) 0 0
\(119\) −0.790495 −0.0724646
\(120\) 0 0
\(121\) −7.38546 −0.671405
\(122\) 0 0
\(123\) 18.3711 1.65647
\(124\) 0 0
\(125\) 22.7099 2.03124
\(126\) 0 0
\(127\) −11.4773 −1.01844 −0.509221 0.860636i \(-0.670066\pi\)
−0.509221 + 0.860636i \(0.670066\pi\)
\(128\) 0 0
\(129\) 11.0357 0.971638
\(130\) 0 0
\(131\) 18.9018 1.65146 0.825729 0.564067i \(-0.190764\pi\)
0.825729 + 0.564067i \(0.190764\pi\)
\(132\) 0 0
\(133\) 6.58575 0.571057
\(134\) 0 0
\(135\) −3.40564 −0.293111
\(136\) 0 0
\(137\) −1.83559 −0.156825 −0.0784123 0.996921i \(-0.524985\pi\)
−0.0784123 + 0.996921i \(0.524985\pi\)
\(138\) 0 0
\(139\) 17.8899 1.51740 0.758701 0.651439i \(-0.225835\pi\)
0.758701 + 0.651439i \(0.225835\pi\)
\(140\) 0 0
\(141\) 5.65529 0.476261
\(142\) 0 0
\(143\) −1.90120 −0.158986
\(144\) 0 0
\(145\) −19.1575 −1.59095
\(146\) 0 0
\(147\) 2.37452 0.195847
\(148\) 0 0
\(149\) 20.8751 1.71015 0.855077 0.518502i \(-0.173510\pi\)
0.855077 + 0.518502i \(0.173510\pi\)
\(150\) 0 0
\(151\) −0.0957723 −0.00779384 −0.00389692 0.999992i \(-0.501240\pi\)
−0.00389692 + 0.999992i \(0.501240\pi\)
\(152\) 0 0
\(153\) −2.08559 −0.168610
\(154\) 0 0
\(155\) 20.6427 1.65806
\(156\) 0 0
\(157\) −8.74868 −0.698220 −0.349110 0.937082i \(-0.613516\pi\)
−0.349110 + 0.937082i \(0.613516\pi\)
\(158\) 0 0
\(159\) −23.8232 −1.88930
\(160\) 0 0
\(161\) −2.28588 −0.180153
\(162\) 0 0
\(163\) 1.88186 0.147399 0.0736993 0.997281i \(-0.476519\pi\)
0.0736993 + 0.997281i \(0.476519\pi\)
\(164\) 0 0
\(165\) −17.9028 −1.39373
\(166\) 0 0
\(167\) −4.39005 −0.339713 −0.169856 0.985469i \(-0.554330\pi\)
−0.169856 + 0.985469i \(0.554330\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 17.3754 1.32873
\(172\) 0 0
\(173\) 16.5100 1.25523 0.627615 0.778524i \(-0.284031\pi\)
0.627615 + 0.778524i \(0.284031\pi\)
\(174\) 0 0
\(175\) 10.7266 0.810856
\(176\) 0 0
\(177\) 6.59556 0.495753
\(178\) 0 0
\(179\) −14.1116 −1.05475 −0.527375 0.849633i \(-0.676824\pi\)
−0.527375 + 0.849633i \(0.676824\pi\)
\(180\) 0 0
\(181\) −18.6222 −1.38418 −0.692089 0.721812i \(-0.743310\pi\)
−0.692089 + 0.721812i \(0.743310\pi\)
\(182\) 0 0
\(183\) −18.3711 −1.35803
\(184\) 0 0
\(185\) −17.9299 −1.31823
\(186\) 0 0
\(187\) 1.50289 0.109902
\(188\) 0 0
\(189\) −0.858778 −0.0624669
\(190\) 0 0
\(191\) 8.73886 0.632321 0.316161 0.948706i \(-0.397606\pi\)
0.316161 + 0.948706i \(0.397606\pi\)
\(192\) 0 0
\(193\) 22.2572 1.60211 0.801055 0.598591i \(-0.204273\pi\)
0.801055 + 0.598591i \(0.204273\pi\)
\(194\) 0 0
\(195\) 9.41658 0.674335
\(196\) 0 0
\(197\) −17.4950 −1.24647 −0.623235 0.782035i \(-0.714182\pi\)
−0.623235 + 0.782035i \(0.714182\pi\)
\(198\) 0 0
\(199\) 17.0519 1.20878 0.604388 0.796690i \(-0.293418\pi\)
0.604388 + 0.796690i \(0.293418\pi\)
\(200\) 0 0
\(201\) 23.6233 1.66626
\(202\) 0 0
\(203\) −4.83083 −0.339058
\(204\) 0 0
\(205\) 30.6816 2.14290
\(206\) 0 0
\(207\) −6.03093 −0.419179
\(208\) 0 0
\(209\) −12.5208 −0.866081
\(210\) 0 0
\(211\) 19.2736 1.32685 0.663426 0.748242i \(-0.269102\pi\)
0.663426 + 0.748242i \(0.269102\pi\)
\(212\) 0 0
\(213\) 22.3598 1.53207
\(214\) 0 0
\(215\) 18.4307 1.25696
\(216\) 0 0
\(217\) 5.20535 0.353362
\(218\) 0 0
\(219\) −22.6902 −1.53326
\(220\) 0 0
\(221\) −0.790495 −0.0531745
\(222\) 0 0
\(223\) −14.9712 −1.00255 −0.501273 0.865289i \(-0.667135\pi\)
−0.501273 + 0.865289i \(0.667135\pi\)
\(224\) 0 0
\(225\) 28.3004 1.88669
\(226\) 0 0
\(227\) −25.2115 −1.67334 −0.836672 0.547704i \(-0.815502\pi\)
−0.836672 + 0.547704i \(0.815502\pi\)
\(228\) 0 0
\(229\) 20.4488 1.35130 0.675648 0.737225i \(-0.263864\pi\)
0.675648 + 0.737225i \(0.263864\pi\)
\(230\) 0 0
\(231\) −4.51442 −0.297027
\(232\) 0 0
\(233\) −10.8339 −0.709750 −0.354875 0.934914i \(-0.615477\pi\)
−0.354875 + 0.934914i \(0.615477\pi\)
\(234\) 0 0
\(235\) 9.44488 0.616116
\(236\) 0 0
\(237\) −17.6044 −1.14353
\(238\) 0 0
\(239\) −23.9563 −1.54961 −0.774804 0.632202i \(-0.782151\pi\)
−0.774804 + 0.632202i \(0.782151\pi\)
\(240\) 0 0
\(241\) −18.9415 −1.22013 −0.610064 0.792352i \(-0.708856\pi\)
−0.610064 + 0.792352i \(0.708856\pi\)
\(242\) 0 0
\(243\) −21.0601 −1.35100
\(244\) 0 0
\(245\) 3.96568 0.253358
\(246\) 0 0
\(247\) 6.58575 0.419041
\(248\) 0 0
\(249\) −5.74315 −0.363958
\(250\) 0 0
\(251\) −23.6184 −1.49078 −0.745389 0.666630i \(-0.767736\pi\)
−0.745389 + 0.666630i \(0.767736\pi\)
\(252\) 0 0
\(253\) 4.34591 0.273225
\(254\) 0 0
\(255\) −7.44376 −0.466146
\(256\) 0 0
\(257\) 11.8696 0.740403 0.370201 0.928952i \(-0.379289\pi\)
0.370201 + 0.928952i \(0.379289\pi\)
\(258\) 0 0
\(259\) −4.52126 −0.280938
\(260\) 0 0
\(261\) −12.7453 −0.788917
\(262\) 0 0
\(263\) −4.39404 −0.270948 −0.135474 0.990781i \(-0.543256\pi\)
−0.135474 + 0.990781i \(0.543256\pi\)
\(264\) 0 0
\(265\) −39.7870 −2.44410
\(266\) 0 0
\(267\) 28.8705 1.76685
\(268\) 0 0
\(269\) −16.3848 −0.998999 −0.499500 0.866314i \(-0.666483\pi\)
−0.499500 + 0.866314i \(0.666483\pi\)
\(270\) 0 0
\(271\) 22.7377 1.38122 0.690608 0.723229i \(-0.257343\pi\)
0.690608 + 0.723229i \(0.257343\pi\)
\(272\) 0 0
\(273\) 2.37452 0.143712
\(274\) 0 0
\(275\) −20.3934 −1.22977
\(276\) 0 0
\(277\) −16.9124 −1.01617 −0.508085 0.861307i \(-0.669646\pi\)
−0.508085 + 0.861307i \(0.669646\pi\)
\(278\) 0 0
\(279\) 13.7335 0.822200
\(280\) 0 0
\(281\) −10.9725 −0.654562 −0.327281 0.944927i \(-0.606132\pi\)
−0.327281 + 0.944927i \(0.606132\pi\)
\(282\) 0 0
\(283\) −8.23740 −0.489662 −0.244831 0.969566i \(-0.578733\pi\)
−0.244831 + 0.969566i \(0.578733\pi\)
\(284\) 0 0
\(285\) 62.0152 3.67346
\(286\) 0 0
\(287\) 7.73678 0.456688
\(288\) 0 0
\(289\) −16.3751 −0.963242
\(290\) 0 0
\(291\) −22.8049 −1.33685
\(292\) 0 0
\(293\) −18.3459 −1.07178 −0.535888 0.844289i \(-0.680023\pi\)
−0.535888 + 0.844289i \(0.680023\pi\)
\(294\) 0 0
\(295\) 11.0152 0.641332
\(296\) 0 0
\(297\) 1.63271 0.0947392
\(298\) 0 0
\(299\) −2.28588 −0.132196
\(300\) 0 0
\(301\) 4.64755 0.267880
\(302\) 0 0
\(303\) 29.4785 1.69349
\(304\) 0 0
\(305\) −30.6816 −1.75682
\(306\) 0 0
\(307\) 9.81762 0.560321 0.280161 0.959953i \(-0.409612\pi\)
0.280161 + 0.959953i \(0.409612\pi\)
\(308\) 0 0
\(309\) −36.1117 −2.05433
\(310\) 0 0
\(311\) 6.62691 0.375778 0.187889 0.982190i \(-0.439836\pi\)
0.187889 + 0.982190i \(0.439836\pi\)
\(312\) 0 0
\(313\) −19.4947 −1.10190 −0.550952 0.834537i \(-0.685735\pi\)
−0.550952 + 0.834537i \(0.685735\pi\)
\(314\) 0 0
\(315\) 10.4628 0.589512
\(316\) 0 0
\(317\) 5.36607 0.301389 0.150694 0.988580i \(-0.451849\pi\)
0.150694 + 0.988580i \(0.451849\pi\)
\(318\) 0 0
\(319\) 9.18435 0.514225
\(320\) 0 0
\(321\) −8.01428 −0.447313
\(322\) 0 0
\(323\) −5.20600 −0.289670
\(324\) 0 0
\(325\) 10.7266 0.595005
\(326\) 0 0
\(327\) −19.8925 −1.10006
\(328\) 0 0
\(329\) 2.38166 0.131305
\(330\) 0 0
\(331\) −13.9398 −0.766198 −0.383099 0.923707i \(-0.625143\pi\)
−0.383099 + 0.923707i \(0.625143\pi\)
\(332\) 0 0
\(333\) −11.9286 −0.653684
\(334\) 0 0
\(335\) 39.4532 2.15556
\(336\) 0 0
\(337\) −31.7343 −1.72868 −0.864339 0.502910i \(-0.832263\pi\)
−0.864339 + 0.502910i \(0.832263\pi\)
\(338\) 0 0
\(339\) 0.221042 0.0120053
\(340\) 0 0
\(341\) −9.89638 −0.535919
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −21.5252 −1.15888
\(346\) 0 0
\(347\) 34.2464 1.83844 0.919221 0.393741i \(-0.128819\pi\)
0.919221 + 0.393741i \(0.128819\pi\)
\(348\) 0 0
\(349\) −23.5784 −1.26212 −0.631061 0.775733i \(-0.717380\pi\)
−0.631061 + 0.775733i \(0.717380\pi\)
\(350\) 0 0
\(351\) −0.858778 −0.0458382
\(352\) 0 0
\(353\) −21.2783 −1.13253 −0.566266 0.824223i \(-0.691612\pi\)
−0.566266 + 0.824223i \(0.691612\pi\)
\(354\) 0 0
\(355\) 37.3431 1.98197
\(356\) 0 0
\(357\) −1.87705 −0.0993438
\(358\) 0 0
\(359\) −5.17067 −0.272897 −0.136449 0.990647i \(-0.543569\pi\)
−0.136449 + 0.990647i \(0.543569\pi\)
\(360\) 0 0
\(361\) 24.3721 1.28274
\(362\) 0 0
\(363\) −17.5369 −0.920448
\(364\) 0 0
\(365\) −37.8949 −1.98351
\(366\) 0 0
\(367\) −31.3473 −1.63632 −0.818158 0.574994i \(-0.805004\pi\)
−0.818158 + 0.574994i \(0.805004\pi\)
\(368\) 0 0
\(369\) 20.4122 1.06262
\(370\) 0 0
\(371\) −10.0328 −0.520879
\(372\) 0 0
\(373\) −11.6509 −0.603260 −0.301630 0.953425i \(-0.597531\pi\)
−0.301630 + 0.953425i \(0.597531\pi\)
\(374\) 0 0
\(375\) 53.9251 2.78468
\(376\) 0 0
\(377\) −4.83083 −0.248800
\(378\) 0 0
\(379\) 35.6833 1.83293 0.916465 0.400116i \(-0.131030\pi\)
0.916465 + 0.400116i \(0.131030\pi\)
\(380\) 0 0
\(381\) −27.2530 −1.39621
\(382\) 0 0
\(383\) −10.3909 −0.530949 −0.265474 0.964118i \(-0.585529\pi\)
−0.265474 + 0.964118i \(0.585529\pi\)
\(384\) 0 0
\(385\) −7.53953 −0.384250
\(386\) 0 0
\(387\) 12.2618 0.623302
\(388\) 0 0
\(389\) 24.9453 1.26478 0.632388 0.774652i \(-0.282075\pi\)
0.632388 + 0.774652i \(0.282075\pi\)
\(390\) 0 0
\(391\) 1.80698 0.0913829
\(392\) 0 0
\(393\) 44.8827 2.26403
\(394\) 0 0
\(395\) −29.4011 −1.47933
\(396\) 0 0
\(397\) −7.27215 −0.364979 −0.182489 0.983208i \(-0.558416\pi\)
−0.182489 + 0.983208i \(0.558416\pi\)
\(398\) 0 0
\(399\) 15.6380 0.782878
\(400\) 0 0
\(401\) 10.8834 0.543490 0.271745 0.962369i \(-0.412399\pi\)
0.271745 + 0.962369i \(0.412399\pi\)
\(402\) 0 0
\(403\) 5.20535 0.259297
\(404\) 0 0
\(405\) −39.4751 −1.96153
\(406\) 0 0
\(407\) 8.59581 0.426078
\(408\) 0 0
\(409\) 8.93010 0.441565 0.220783 0.975323i \(-0.429139\pi\)
0.220783 + 0.975323i \(0.429139\pi\)
\(410\) 0 0
\(411\) −4.35863 −0.214995
\(412\) 0 0
\(413\) 2.77764 0.136679
\(414\) 0 0
\(415\) −9.59163 −0.470835
\(416\) 0 0
\(417\) 42.4799 2.08025
\(418\) 0 0
\(419\) 16.6842 0.815077 0.407538 0.913188i \(-0.366387\pi\)
0.407538 + 0.913188i \(0.366387\pi\)
\(420\) 0 0
\(421\) −4.61025 −0.224690 −0.112345 0.993669i \(-0.535836\pi\)
−0.112345 + 0.993669i \(0.535836\pi\)
\(422\) 0 0
\(423\) 6.28361 0.305520
\(424\) 0 0
\(425\) −8.47933 −0.411308
\(426\) 0 0
\(427\) −7.73678 −0.374409
\(428\) 0 0
\(429\) −4.51442 −0.217958
\(430\) 0 0
\(431\) 27.8637 1.34215 0.671073 0.741392i \(-0.265834\pi\)
0.671073 + 0.741392i \(0.265834\pi\)
\(432\) 0 0
\(433\) −24.7976 −1.19170 −0.595848 0.803097i \(-0.703184\pi\)
−0.595848 + 0.803097i \(0.703184\pi\)
\(434\) 0 0
\(435\) −45.4899 −2.18107
\(436\) 0 0
\(437\) −15.0543 −0.720143
\(438\) 0 0
\(439\) 8.53846 0.407519 0.203759 0.979021i \(-0.434684\pi\)
0.203759 + 0.979021i \(0.434684\pi\)
\(440\) 0 0
\(441\) 2.63834 0.125635
\(442\) 0 0
\(443\) 31.8091 1.51130 0.755649 0.654977i \(-0.227322\pi\)
0.755649 + 0.654977i \(0.227322\pi\)
\(444\) 0 0
\(445\) 48.2166 2.28569
\(446\) 0 0
\(447\) 49.5683 2.34450
\(448\) 0 0
\(449\) 20.5752 0.971005 0.485502 0.874235i \(-0.338637\pi\)
0.485502 + 0.874235i \(0.338637\pi\)
\(450\) 0 0
\(451\) −14.7091 −0.692626
\(452\) 0 0
\(453\) −0.227413 −0.0106848
\(454\) 0 0
\(455\) 3.96568 0.185914
\(456\) 0 0
\(457\) −11.8398 −0.553840 −0.276920 0.960893i \(-0.589314\pi\)
−0.276920 + 0.960893i \(0.589314\pi\)
\(458\) 0 0
\(459\) 0.678860 0.0316865
\(460\) 0 0
\(461\) 6.18393 0.288014 0.144007 0.989577i \(-0.454001\pi\)
0.144007 + 0.989577i \(0.454001\pi\)
\(462\) 0 0
\(463\) 4.12908 0.191895 0.0959473 0.995386i \(-0.469412\pi\)
0.0959473 + 0.995386i \(0.469412\pi\)
\(464\) 0 0
\(465\) 49.0165 2.27309
\(466\) 0 0
\(467\) −30.6662 −1.41906 −0.709531 0.704675i \(-0.751093\pi\)
−0.709531 + 0.704675i \(0.751093\pi\)
\(468\) 0 0
\(469\) 9.94867 0.459387
\(470\) 0 0
\(471\) −20.7739 −0.957210
\(472\) 0 0
\(473\) −8.83590 −0.406275
\(474\) 0 0
\(475\) 70.6428 3.24131
\(476\) 0 0
\(477\) −26.4700 −1.21198
\(478\) 0 0
\(479\) 1.38445 0.0632571 0.0316285 0.999500i \(-0.489931\pi\)
0.0316285 + 0.999500i \(0.489931\pi\)
\(480\) 0 0
\(481\) −4.52126 −0.206152
\(482\) 0 0
\(483\) −5.42787 −0.246977
\(484\) 0 0
\(485\) −38.0864 −1.72942
\(486\) 0 0
\(487\) −12.2846 −0.556668 −0.278334 0.960484i \(-0.589782\pi\)
−0.278334 + 0.960484i \(0.589782\pi\)
\(488\) 0 0
\(489\) 4.46851 0.202073
\(490\) 0 0
\(491\) 19.8910 0.897668 0.448834 0.893615i \(-0.351840\pi\)
0.448834 + 0.893615i \(0.351840\pi\)
\(492\) 0 0
\(493\) 3.81875 0.171988
\(494\) 0 0
\(495\) −19.8918 −0.894071
\(496\) 0 0
\(497\) 9.41658 0.422391
\(498\) 0 0
\(499\) 25.4751 1.14042 0.570210 0.821499i \(-0.306862\pi\)
0.570210 + 0.821499i \(0.306862\pi\)
\(500\) 0 0
\(501\) −10.4243 −0.465722
\(502\) 0 0
\(503\) −38.5306 −1.71800 −0.858998 0.511979i \(-0.828912\pi\)
−0.858998 + 0.511979i \(0.828912\pi\)
\(504\) 0 0
\(505\) 49.2319 2.19079
\(506\) 0 0
\(507\) 2.37452 0.105456
\(508\) 0 0
\(509\) 15.1099 0.669734 0.334867 0.942265i \(-0.391309\pi\)
0.334867 + 0.942265i \(0.391309\pi\)
\(510\) 0 0
\(511\) −9.55571 −0.422720
\(512\) 0 0
\(513\) −5.65570 −0.249705
\(514\) 0 0
\(515\) −60.3102 −2.65758
\(516\) 0 0
\(517\) −4.52799 −0.199141
\(518\) 0 0
\(519\) 39.2032 1.72083
\(520\) 0 0
\(521\) 0.999094 0.0437711 0.0218856 0.999760i \(-0.493033\pi\)
0.0218856 + 0.999760i \(0.493033\pi\)
\(522\) 0 0
\(523\) −10.8117 −0.472762 −0.236381 0.971660i \(-0.575961\pi\)
−0.236381 + 0.971660i \(0.575961\pi\)
\(524\) 0 0
\(525\) 25.4705 1.11163
\(526\) 0 0
\(527\) −4.11480 −0.179244
\(528\) 0 0
\(529\) −17.7747 −0.772815
\(530\) 0 0
\(531\) 7.32835 0.318023
\(532\) 0 0
\(533\) 7.73678 0.335117
\(534\) 0 0
\(535\) −13.3846 −0.578668
\(536\) 0 0
\(537\) −33.5082 −1.44599
\(538\) 0 0
\(539\) −1.90120 −0.0818903
\(540\) 0 0
\(541\) −30.2777 −1.30174 −0.650870 0.759189i \(-0.725596\pi\)
−0.650870 + 0.759189i \(0.725596\pi\)
\(542\) 0 0
\(543\) −44.2188 −1.89761
\(544\) 0 0
\(545\) −33.2225 −1.42309
\(546\) 0 0
\(547\) 1.73334 0.0741123 0.0370562 0.999313i \(-0.488202\pi\)
0.0370562 + 0.999313i \(0.488202\pi\)
\(548\) 0 0
\(549\) −20.4122 −0.871173
\(550\) 0 0
\(551\) −31.8146 −1.35535
\(552\) 0 0
\(553\) −7.41389 −0.315271
\(554\) 0 0
\(555\) −42.5748 −1.80720
\(556\) 0 0
\(557\) 22.4334 0.950532 0.475266 0.879842i \(-0.342352\pi\)
0.475266 + 0.879842i \(0.342352\pi\)
\(558\) 0 0
\(559\) 4.64755 0.196570
\(560\) 0 0
\(561\) 3.56863 0.150668
\(562\) 0 0
\(563\) −8.72756 −0.367823 −0.183911 0.982943i \(-0.558876\pi\)
−0.183911 + 0.982943i \(0.558876\pi\)
\(564\) 0 0
\(565\) 0.369161 0.0155307
\(566\) 0 0
\(567\) −9.95419 −0.418037
\(568\) 0 0
\(569\) 34.4553 1.44444 0.722221 0.691662i \(-0.243121\pi\)
0.722221 + 0.691662i \(0.243121\pi\)
\(570\) 0 0
\(571\) 36.3358 1.52061 0.760303 0.649569i \(-0.225050\pi\)
0.760303 + 0.649569i \(0.225050\pi\)
\(572\) 0 0
\(573\) 20.7506 0.866868
\(574\) 0 0
\(575\) −24.5198 −1.02255
\(576\) 0 0
\(577\) −6.35988 −0.264765 −0.132383 0.991199i \(-0.542263\pi\)
−0.132383 + 0.991199i \(0.542263\pi\)
\(578\) 0 0
\(579\) 52.8502 2.19638
\(580\) 0 0
\(581\) −2.41866 −0.100343
\(582\) 0 0
\(583\) 19.0744 0.789981
\(584\) 0 0
\(585\) 10.4628 0.432583
\(586\) 0 0
\(587\) 26.1171 1.07797 0.538984 0.842316i \(-0.318809\pi\)
0.538984 + 0.842316i \(0.318809\pi\)
\(588\) 0 0
\(589\) 34.2811 1.41253
\(590\) 0 0
\(591\) −41.5423 −1.70882
\(592\) 0 0
\(593\) −16.9390 −0.695600 −0.347800 0.937569i \(-0.613071\pi\)
−0.347800 + 0.937569i \(0.613071\pi\)
\(594\) 0 0
\(595\) −3.13485 −0.128516
\(596\) 0 0
\(597\) 40.4900 1.65715
\(598\) 0 0
\(599\) 30.0609 1.22825 0.614127 0.789207i \(-0.289508\pi\)
0.614127 + 0.789207i \(0.289508\pi\)
\(600\) 0 0
\(601\) 17.9141 0.730733 0.365366 0.930864i \(-0.380944\pi\)
0.365366 + 0.930864i \(0.380944\pi\)
\(602\) 0 0
\(603\) 26.2479 1.06890
\(604\) 0 0
\(605\) −29.2883 −1.19074
\(606\) 0 0
\(607\) −43.5432 −1.76737 −0.883683 0.468086i \(-0.844944\pi\)
−0.883683 + 0.468086i \(0.844944\pi\)
\(608\) 0 0
\(609\) −11.4709 −0.464824
\(610\) 0 0
\(611\) 2.38166 0.0963515
\(612\) 0 0
\(613\) 7.90262 0.319184 0.159592 0.987183i \(-0.448982\pi\)
0.159592 + 0.987183i \(0.448982\pi\)
\(614\) 0 0
\(615\) 72.8540 2.93776
\(616\) 0 0
\(617\) 24.0162 0.966856 0.483428 0.875384i \(-0.339392\pi\)
0.483428 + 0.875384i \(0.339392\pi\)
\(618\) 0 0
\(619\) −39.0428 −1.56926 −0.784631 0.619963i \(-0.787148\pi\)
−0.784631 + 0.619963i \(0.787148\pi\)
\(620\) 0 0
\(621\) 1.96307 0.0787752
\(622\) 0 0
\(623\) 12.1585 0.487119
\(624\) 0 0
\(625\) 36.4271 1.45709
\(626\) 0 0
\(627\) −29.7309 −1.18734
\(628\) 0 0
\(629\) 3.57404 0.142506
\(630\) 0 0
\(631\) 41.9395 1.66958 0.834792 0.550566i \(-0.185588\pi\)
0.834792 + 0.550566i \(0.185588\pi\)
\(632\) 0 0
\(633\) 45.7656 1.81902
\(634\) 0 0
\(635\) −45.5151 −1.80621
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) 24.8441 0.982817
\(640\) 0 0
\(641\) −47.6545 −1.88224 −0.941121 0.338071i \(-0.890226\pi\)
−0.941121 + 0.338071i \(0.890226\pi\)
\(642\) 0 0
\(643\) 39.2730 1.54878 0.774388 0.632711i \(-0.218058\pi\)
0.774388 + 0.632711i \(0.218058\pi\)
\(644\) 0 0
\(645\) 43.7640 1.72321
\(646\) 0 0
\(647\) 33.6183 1.32167 0.660836 0.750531i \(-0.270202\pi\)
0.660836 + 0.750531i \(0.270202\pi\)
\(648\) 0 0
\(649\) −5.28084 −0.207291
\(650\) 0 0
\(651\) 12.3602 0.484434
\(652\) 0 0
\(653\) 9.52793 0.372857 0.186428 0.982469i \(-0.440309\pi\)
0.186428 + 0.982469i \(0.440309\pi\)
\(654\) 0 0
\(655\) 74.9585 2.92887
\(656\) 0 0
\(657\) −25.2112 −0.983582
\(658\) 0 0
\(659\) −49.0365 −1.91019 −0.955096 0.296296i \(-0.904248\pi\)
−0.955096 + 0.296296i \(0.904248\pi\)
\(660\) 0 0
\(661\) −29.7000 −1.15520 −0.577599 0.816321i \(-0.696010\pi\)
−0.577599 + 0.816321i \(0.696010\pi\)
\(662\) 0 0
\(663\) −1.87705 −0.0728984
\(664\) 0 0
\(665\) 26.1170 1.01277
\(666\) 0 0
\(667\) 11.0427 0.427576
\(668\) 0 0
\(669\) −35.5494 −1.37442
\(670\) 0 0
\(671\) 14.7091 0.567840
\(672\) 0 0
\(673\) 2.94599 0.113560 0.0567798 0.998387i \(-0.481917\pi\)
0.0567798 + 0.998387i \(0.481917\pi\)
\(674\) 0 0
\(675\) −9.21178 −0.354562
\(676\) 0 0
\(677\) 32.7963 1.26046 0.630231 0.776407i \(-0.282960\pi\)
0.630231 + 0.776407i \(0.282960\pi\)
\(678\) 0 0
\(679\) −9.60401 −0.368568
\(680\) 0 0
\(681\) −59.8651 −2.29404
\(682\) 0 0
\(683\) 30.3772 1.16235 0.581175 0.813778i \(-0.302593\pi\)
0.581175 + 0.813778i \(0.302593\pi\)
\(684\) 0 0
\(685\) −7.27934 −0.278129
\(686\) 0 0
\(687\) 48.5561 1.85253
\(688\) 0 0
\(689\) −10.0328 −0.382221
\(690\) 0 0
\(691\) 6.83537 0.260030 0.130015 0.991512i \(-0.458498\pi\)
0.130015 + 0.991512i \(0.458498\pi\)
\(692\) 0 0
\(693\) −5.01599 −0.190542
\(694\) 0 0
\(695\) 70.9456 2.69112
\(696\) 0 0
\(697\) −6.11589 −0.231656
\(698\) 0 0
\(699\) −25.7252 −0.973016
\(700\) 0 0
\(701\) −34.2701 −1.29436 −0.647182 0.762335i \(-0.724053\pi\)
−0.647182 + 0.762335i \(0.724053\pi\)
\(702\) 0 0
\(703\) −29.7759 −1.12302
\(704\) 0 0
\(705\) 22.4270 0.844652
\(706\) 0 0
\(707\) 12.4145 0.466895
\(708\) 0 0
\(709\) 13.7877 0.517808 0.258904 0.965903i \(-0.416639\pi\)
0.258904 + 0.965903i \(0.416639\pi\)
\(710\) 0 0
\(711\) −19.5603 −0.733570
\(712\) 0 0
\(713\) −11.8988 −0.445614
\(714\) 0 0
\(715\) −7.53953 −0.281962
\(716\) 0 0
\(717\) −56.8848 −2.12440
\(718\) 0 0
\(719\) −14.5153 −0.541331 −0.270665 0.962674i \(-0.587244\pi\)
−0.270665 + 0.962674i \(0.587244\pi\)
\(720\) 0 0
\(721\) −15.2080 −0.566377
\(722\) 0 0
\(723\) −44.9769 −1.67271
\(724\) 0 0
\(725\) −51.8184 −1.92449
\(726\) 0 0
\(727\) −13.8926 −0.515247 −0.257623 0.966245i \(-0.582939\pi\)
−0.257623 + 0.966245i \(0.582939\pi\)
\(728\) 0 0
\(729\) −20.1449 −0.746109
\(730\) 0 0
\(731\) −3.67386 −0.135883
\(732\) 0 0
\(733\) −25.6742 −0.948299 −0.474149 0.880444i \(-0.657244\pi\)
−0.474149 + 0.880444i \(0.657244\pi\)
\(734\) 0 0
\(735\) 9.41658 0.347336
\(736\) 0 0
\(737\) −18.9144 −0.696719
\(738\) 0 0
\(739\) 27.1160 0.997477 0.498738 0.866753i \(-0.333797\pi\)
0.498738 + 0.866753i \(0.333797\pi\)
\(740\) 0 0
\(741\) 15.6380 0.574475
\(742\) 0 0
\(743\) 21.8443 0.801389 0.400694 0.916212i \(-0.368769\pi\)
0.400694 + 0.916212i \(0.368769\pi\)
\(744\) 0 0
\(745\) 82.7839 3.03297
\(746\) 0 0
\(747\) −6.38124 −0.233477
\(748\) 0 0
\(749\) −3.37512 −0.123324
\(750\) 0 0
\(751\) −45.6037 −1.66410 −0.832051 0.554699i \(-0.812833\pi\)
−0.832051 + 0.554699i \(0.812833\pi\)
\(752\) 0 0
\(753\) −56.0822 −2.04375
\(754\) 0 0
\(755\) −0.379802 −0.0138224
\(756\) 0 0
\(757\) −17.0427 −0.619428 −0.309714 0.950830i \(-0.600233\pi\)
−0.309714 + 0.950830i \(0.600233\pi\)
\(758\) 0 0
\(759\) 10.3194 0.374572
\(760\) 0 0
\(761\) 18.3994 0.666977 0.333489 0.942754i \(-0.391774\pi\)
0.333489 + 0.942754i \(0.391774\pi\)
\(762\) 0 0
\(763\) −8.37750 −0.303286
\(764\) 0 0
\(765\) −8.27079 −0.299031
\(766\) 0 0
\(767\) 2.77764 0.100295
\(768\) 0 0
\(769\) −20.0522 −0.723102 −0.361551 0.932352i \(-0.617753\pi\)
−0.361551 + 0.932352i \(0.617753\pi\)
\(770\) 0 0
\(771\) 28.1845 1.01504
\(772\) 0 0
\(773\) 47.0932 1.69383 0.846913 0.531732i \(-0.178459\pi\)
0.846913 + 0.531732i \(0.178459\pi\)
\(774\) 0 0
\(775\) 55.8357 2.00568
\(776\) 0 0
\(777\) −10.7358 −0.385146
\(778\) 0 0
\(779\) 50.9525 1.82556
\(780\) 0 0
\(781\) −17.9028 −0.640611
\(782\) 0 0
\(783\) 4.14861 0.148259
\(784\) 0 0
\(785\) −34.6944 −1.23830
\(786\) 0 0
\(787\) −19.4363 −0.692831 −0.346415 0.938081i \(-0.612601\pi\)
−0.346415 + 0.938081i \(0.612601\pi\)
\(788\) 0 0
\(789\) −10.4337 −0.371451
\(790\) 0 0
\(791\) 0.0930891 0.00330987
\(792\) 0 0
\(793\) −7.73678 −0.274741
\(794\) 0 0
\(795\) −94.4751 −3.35069
\(796\) 0 0
\(797\) 15.0716 0.533864 0.266932 0.963715i \(-0.413990\pi\)
0.266932 + 0.963715i \(0.413990\pi\)
\(798\) 0 0
\(799\) −1.88269 −0.0666047
\(800\) 0 0
\(801\) 32.0781 1.13343
\(802\) 0 0
\(803\) 18.1673 0.641109
\(804\) 0 0
\(805\) −9.06508 −0.319502
\(806\) 0 0
\(807\) −38.9060 −1.36956
\(808\) 0 0
\(809\) 4.09322 0.143910 0.0719550 0.997408i \(-0.477076\pi\)
0.0719550 + 0.997408i \(0.477076\pi\)
\(810\) 0 0
\(811\) −40.9519 −1.43802 −0.719008 0.695002i \(-0.755403\pi\)
−0.719008 + 0.695002i \(0.755403\pi\)
\(812\) 0 0
\(813\) 53.9910 1.89355
\(814\) 0 0
\(815\) 7.46285 0.261412
\(816\) 0 0
\(817\) 30.6076 1.07082
\(818\) 0 0
\(819\) 2.63834 0.0921909
\(820\) 0 0
\(821\) −22.3599 −0.780365 −0.390183 0.920737i \(-0.627588\pi\)
−0.390183 + 0.920737i \(0.627588\pi\)
\(822\) 0 0
\(823\) 1.95660 0.0682026 0.0341013 0.999418i \(-0.489143\pi\)
0.0341013 + 0.999418i \(0.489143\pi\)
\(824\) 0 0
\(825\) −48.4245 −1.68592
\(826\) 0 0
\(827\) −19.2020 −0.667718 −0.333859 0.942623i \(-0.608351\pi\)
−0.333859 + 0.942623i \(0.608351\pi\)
\(828\) 0 0
\(829\) 35.8253 1.24426 0.622132 0.782912i \(-0.286267\pi\)
0.622132 + 0.782912i \(0.286267\pi\)
\(830\) 0 0
\(831\) −40.1589 −1.39310
\(832\) 0 0
\(833\) −0.790495 −0.0273890
\(834\) 0 0
\(835\) −17.4095 −0.602482
\(836\) 0 0
\(837\) −4.47024 −0.154514
\(838\) 0 0
\(839\) −15.6024 −0.538653 −0.269327 0.963049i \(-0.586801\pi\)
−0.269327 + 0.963049i \(0.586801\pi\)
\(840\) 0 0
\(841\) −5.66310 −0.195279
\(842\) 0 0
\(843\) −26.0543 −0.897358
\(844\) 0 0
\(845\) 3.96568 0.136424
\(846\) 0 0
\(847\) −7.38546 −0.253767
\(848\) 0 0
\(849\) −19.5598 −0.671292
\(850\) 0 0
\(851\) 10.3351 0.354282
\(852\) 0 0
\(853\) 26.1752 0.896222 0.448111 0.893978i \(-0.352097\pi\)
0.448111 + 0.893978i \(0.352097\pi\)
\(854\) 0 0
\(855\) 68.9053 2.35651
\(856\) 0 0
\(857\) 41.9691 1.43364 0.716818 0.697260i \(-0.245598\pi\)
0.716818 + 0.697260i \(0.245598\pi\)
\(858\) 0 0
\(859\) −36.9085 −1.25930 −0.629651 0.776878i \(-0.716802\pi\)
−0.629651 + 0.776878i \(0.716802\pi\)
\(860\) 0 0
\(861\) 18.3711 0.626086
\(862\) 0 0
\(863\) −45.7213 −1.55637 −0.778185 0.628035i \(-0.783859\pi\)
−0.778185 + 0.628035i \(0.783859\pi\)
\(864\) 0 0
\(865\) 65.4732 2.22616
\(866\) 0 0
\(867\) −38.8830 −1.32054
\(868\) 0 0
\(869\) 14.0953 0.478149
\(870\) 0 0
\(871\) 9.94867 0.337098
\(872\) 0 0
\(873\) −25.3386 −0.857582
\(874\) 0 0
\(875\) 22.7099 0.767735
\(876\) 0 0
\(877\) −7.23508 −0.244311 −0.122156 0.992511i \(-0.538981\pi\)
−0.122156 + 0.992511i \(0.538981\pi\)
\(878\) 0 0
\(879\) −43.5626 −1.46933
\(880\) 0 0
\(881\) 15.7086 0.529238 0.264619 0.964353i \(-0.414754\pi\)
0.264619 + 0.964353i \(0.414754\pi\)
\(882\) 0 0
\(883\) 1.79507 0.0604088 0.0302044 0.999544i \(-0.490384\pi\)
0.0302044 + 0.999544i \(0.490384\pi\)
\(884\) 0 0
\(885\) 26.1559 0.879220
\(886\) 0 0
\(887\) 32.1949 1.08100 0.540499 0.841345i \(-0.318235\pi\)
0.540499 + 0.841345i \(0.318235\pi\)
\(888\) 0 0
\(889\) −11.4773 −0.384935
\(890\) 0 0
\(891\) 18.9249 0.634007
\(892\) 0 0
\(893\) 15.6850 0.524878
\(894\) 0 0
\(895\) −55.9621 −1.87061
\(896\) 0 0
\(897\) −5.42787 −0.181231
\(898\) 0 0
\(899\) −25.1461 −0.838671
\(900\) 0 0
\(901\) 7.93092 0.264217
\(902\) 0 0
\(903\) 11.0357 0.367245
\(904\) 0 0
\(905\) −73.8497 −2.45485
\(906\) 0 0
\(907\) 7.19237 0.238819 0.119409 0.992845i \(-0.461900\pi\)
0.119409 + 0.992845i \(0.461900\pi\)
\(908\) 0 0
\(909\) 32.7536 1.08637
\(910\) 0 0
\(911\) −32.2856 −1.06967 −0.534835 0.844956i \(-0.679626\pi\)
−0.534835 + 0.844956i \(0.679626\pi\)
\(912\) 0 0
\(913\) 4.59835 0.152183
\(914\) 0 0
\(915\) −72.8540 −2.40848
\(916\) 0 0
\(917\) 18.9018 0.624192
\(918\) 0 0
\(919\) 53.3704 1.76053 0.880263 0.474486i \(-0.157366\pi\)
0.880263 + 0.474486i \(0.157366\pi\)
\(920\) 0 0
\(921\) 23.3121 0.768160
\(922\) 0 0
\(923\) 9.41658 0.309950
\(924\) 0 0
\(925\) −48.4978 −1.59460
\(926\) 0 0
\(927\) −40.1239 −1.31784
\(928\) 0 0
\(929\) −14.4388 −0.473720 −0.236860 0.971544i \(-0.576118\pi\)
−0.236860 + 0.971544i \(0.576118\pi\)
\(930\) 0 0
\(931\) 6.58575 0.215839
\(932\) 0 0
\(933\) 15.7357 0.515164
\(934\) 0 0
\(935\) 5.95996 0.194912
\(936\) 0 0
\(937\) 25.4009 0.829812 0.414906 0.909864i \(-0.363814\pi\)
0.414906 + 0.909864i \(0.363814\pi\)
\(938\) 0 0
\(939\) −46.2905 −1.51063
\(940\) 0 0
\(941\) −24.2366 −0.790090 −0.395045 0.918662i \(-0.629271\pi\)
−0.395045 + 0.918662i \(0.629271\pi\)
\(942\) 0 0
\(943\) −17.6854 −0.575915
\(944\) 0 0
\(945\) −3.40564 −0.110785
\(946\) 0 0
\(947\) −7.62584 −0.247807 −0.123903 0.992294i \(-0.539541\pi\)
−0.123903 + 0.992294i \(0.539541\pi\)
\(948\) 0 0
\(949\) −9.55571 −0.310192
\(950\) 0 0
\(951\) 12.7418 0.413182
\(952\) 0 0
\(953\) 41.6062 1.34776 0.673878 0.738843i \(-0.264627\pi\)
0.673878 + 0.738843i \(0.264627\pi\)
\(954\) 0 0
\(955\) 34.6555 1.12143
\(956\) 0 0
\(957\) 21.8084 0.704966
\(958\) 0 0
\(959\) −1.83559 −0.0592742
\(960\) 0 0
\(961\) −3.90437 −0.125947
\(962\) 0 0
\(963\) −8.90469 −0.286950
\(964\) 0 0
\(965\) 88.2650 2.84135
\(966\) 0 0
\(967\) 38.7669 1.24666 0.623329 0.781959i \(-0.285780\pi\)
0.623329 + 0.781959i \(0.285780\pi\)
\(968\) 0 0
\(969\) −12.3617 −0.397117
\(970\) 0 0
\(971\) −19.4635 −0.624615 −0.312307 0.949981i \(-0.601102\pi\)
−0.312307 + 0.949981i \(0.601102\pi\)
\(972\) 0 0
\(973\) 17.8899 0.573524
\(974\) 0 0
\(975\) 25.4705 0.815710
\(976\) 0 0
\(977\) −41.5896 −1.33057 −0.665284 0.746590i \(-0.731690\pi\)
−0.665284 + 0.746590i \(0.731690\pi\)
\(978\) 0 0
\(979\) −23.1156 −0.738779
\(980\) 0 0
\(981\) −22.1027 −0.705683
\(982\) 0 0
\(983\) −50.2222 −1.60184 −0.800920 0.598772i \(-0.795656\pi\)
−0.800920 + 0.598772i \(0.795656\pi\)
\(984\) 0 0
\(985\) −69.3797 −2.21062
\(986\) 0 0
\(987\) 5.65529 0.180010
\(988\) 0 0
\(989\) −10.6238 −0.337816
\(990\) 0 0
\(991\) −32.8893 −1.04476 −0.522382 0.852712i \(-0.674956\pi\)
−0.522382 + 0.852712i \(0.674956\pi\)
\(992\) 0 0
\(993\) −33.1002 −1.05040
\(994\) 0 0
\(995\) 67.6223 2.14377
\(996\) 0 0
\(997\) 59.9060 1.89724 0.948620 0.316417i \(-0.102480\pi\)
0.948620 + 0.316417i \(0.102480\pi\)
\(998\) 0 0
\(999\) 3.88276 0.122845
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5824.2.a.cl.1.4 5
4.3 odd 2 5824.2.a.ci.1.2 5
8.3 odd 2 2912.2.a.t.1.4 yes 5
8.5 even 2 2912.2.a.q.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.a.q.1.2 5 8.5 even 2
2912.2.a.t.1.4 yes 5 8.3 odd 2
5824.2.a.ci.1.2 5 4.3 odd 2
5824.2.a.cl.1.4 5 1.1 even 1 trivial