Properties

Label 5824.2.a.ce.1.3
Level $5824$
Weight $2$
Character 5824.1
Self dual yes
Analytic conductor $46.505$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5824,2,Mod(1,5824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5824.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5824 = 2^{6} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5824.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,-2,0,4,0,13,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.5048741372\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.64268.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 6x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.19455\) of defining polynomial
Character \(\chi\) \(=\) 5824.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.19455 q^{3} +1.70715 q^{5} +1.00000 q^{7} +1.81604 q^{9} +4.56246 q^{11} +1.00000 q^{13} +3.74642 q^{15} +7.37850 q^{17} +6.46416 q^{19} +2.19455 q^{21} -5.90170 q^{23} -2.08565 q^{25} -2.59825 q^{27} -2.69655 q^{29} -0.523191 q^{31} +10.0125 q^{33} +1.70715 q^{35} -2.17336 q^{37} +2.19455 q^{39} -4.98735 q^{41} +2.32864 q^{43} +3.10025 q^{45} +12.3266 q^{47} +1.00000 q^{49} +16.1925 q^{51} +4.71774 q^{53} +7.78879 q^{55} +14.1859 q^{57} -13.7822 q^{59} +0.137574 q^{61} +1.81604 q^{63} +1.70715 q^{65} -7.96215 q^{67} -12.9516 q^{69} +13.8392 q^{71} +2.52319 q^{73} -4.57706 q^{75} +4.56246 q^{77} -4.85531 q^{79} -11.1501 q^{81} -7.51054 q^{83} +12.5962 q^{85} -5.91772 q^{87} -10.8321 q^{89} +1.00000 q^{91} -1.14817 q^{93} +11.0353 q^{95} +17.6693 q^{97} +8.28563 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 2 q^{5} + 4 q^{7} + 13 q^{9} - q^{11} + 4 q^{13} - 10 q^{15} + 16 q^{17} - 10 q^{19} + q^{21} - 7 q^{23} + 14 q^{25} + 13 q^{27} - 4 q^{29} + q^{31} - q^{33} - 2 q^{35} - 5 q^{37} + q^{39}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.19455 1.26702 0.633512 0.773733i \(-0.281613\pi\)
0.633512 + 0.773733i \(0.281613\pi\)
\(4\) 0 0
\(5\) 1.70715 0.763459 0.381730 0.924274i \(-0.375329\pi\)
0.381730 + 0.924274i \(0.375329\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.81604 0.605348
\(10\) 0 0
\(11\) 4.56246 1.37563 0.687817 0.725884i \(-0.258569\pi\)
0.687817 + 0.725884i \(0.258569\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 3.74642 0.967320
\(16\) 0 0
\(17\) 7.37850 1.78955 0.894775 0.446517i \(-0.147336\pi\)
0.894775 + 0.446517i \(0.147336\pi\)
\(18\) 0 0
\(19\) 6.46416 1.48298 0.741489 0.670964i \(-0.234120\pi\)
0.741489 + 0.670964i \(0.234120\pi\)
\(20\) 0 0
\(21\) 2.19455 0.478890
\(22\) 0 0
\(23\) −5.90170 −1.23059 −0.615294 0.788298i \(-0.710963\pi\)
−0.615294 + 0.788298i \(0.710963\pi\)
\(24\) 0 0
\(25\) −2.08565 −0.417130
\(26\) 0 0
\(27\) −2.59825 −0.500033
\(28\) 0 0
\(29\) −2.69655 −0.500737 −0.250369 0.968151i \(-0.580552\pi\)
−0.250369 + 0.968151i \(0.580552\pi\)
\(30\) 0 0
\(31\) −0.523191 −0.0939678 −0.0469839 0.998896i \(-0.514961\pi\)
−0.0469839 + 0.998896i \(0.514961\pi\)
\(32\) 0 0
\(33\) 10.0125 1.74296
\(34\) 0 0
\(35\) 1.70715 0.288560
\(36\) 0 0
\(37\) −2.17336 −0.357299 −0.178649 0.983913i \(-0.557173\pi\)
−0.178649 + 0.983913i \(0.557173\pi\)
\(38\) 0 0
\(39\) 2.19455 0.351409
\(40\) 0 0
\(41\) −4.98735 −0.778893 −0.389446 0.921049i \(-0.627334\pi\)
−0.389446 + 0.921049i \(0.627334\pi\)
\(42\) 0 0
\(43\) 2.32864 0.355115 0.177557 0.984110i \(-0.443180\pi\)
0.177557 + 0.984110i \(0.443180\pi\)
\(44\) 0 0
\(45\) 3.10025 0.462158
\(46\) 0 0
\(47\) 12.3266 1.79802 0.899008 0.437932i \(-0.144289\pi\)
0.899008 + 0.437932i \(0.144289\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 16.1925 2.26740
\(52\) 0 0
\(53\) 4.71774 0.648031 0.324016 0.946052i \(-0.394967\pi\)
0.324016 + 0.946052i \(0.394967\pi\)
\(54\) 0 0
\(55\) 7.78879 1.05024
\(56\) 0 0
\(57\) 14.1859 1.87897
\(58\) 0 0
\(59\) −13.7822 −1.79429 −0.897145 0.441736i \(-0.854363\pi\)
−0.897145 + 0.441736i \(0.854363\pi\)
\(60\) 0 0
\(61\) 0.137574 0.0176146 0.00880730 0.999961i \(-0.497197\pi\)
0.00880730 + 0.999961i \(0.497197\pi\)
\(62\) 0 0
\(63\) 1.81604 0.228800
\(64\) 0 0
\(65\) 1.70715 0.211745
\(66\) 0 0
\(67\) −7.96215 −0.972732 −0.486366 0.873755i \(-0.661678\pi\)
−0.486366 + 0.873755i \(0.661678\pi\)
\(68\) 0 0
\(69\) −12.9516 −1.55918
\(70\) 0 0
\(71\) 13.8392 1.64241 0.821204 0.570634i \(-0.193303\pi\)
0.821204 + 0.570634i \(0.193303\pi\)
\(72\) 0 0
\(73\) 2.52319 0.295317 0.147659 0.989038i \(-0.452826\pi\)
0.147659 + 0.989038i \(0.452826\pi\)
\(74\) 0 0
\(75\) −4.57706 −0.528514
\(76\) 0 0
\(77\) 4.56246 0.519941
\(78\) 0 0
\(79\) −4.85531 −0.546265 −0.273133 0.961976i \(-0.588060\pi\)
−0.273133 + 0.961976i \(0.588060\pi\)
\(80\) 0 0
\(81\) −11.1501 −1.23890
\(82\) 0 0
\(83\) −7.51054 −0.824389 −0.412194 0.911096i \(-0.635237\pi\)
−0.412194 + 0.911096i \(0.635237\pi\)
\(84\) 0 0
\(85\) 12.5962 1.36625
\(86\) 0 0
\(87\) −5.91772 −0.634446
\(88\) 0 0
\(89\) −10.8321 −1.14820 −0.574098 0.818786i \(-0.694647\pi\)
−0.574098 + 0.818786i \(0.694647\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) −1.14817 −0.119059
\(94\) 0 0
\(95\) 11.0353 1.13219
\(96\) 0 0
\(97\) 17.6693 1.79405 0.897023 0.441985i \(-0.145725\pi\)
0.897023 + 0.441985i \(0.145725\pi\)
\(98\) 0 0
\(99\) 8.28563 0.832737
\(100\) 0 0
\(101\) −18.1692 −1.80791 −0.903954 0.427631i \(-0.859348\pi\)
−0.903954 + 0.427631i \(0.859348\pi\)
\(102\) 0 0
\(103\) −15.1461 −1.49239 −0.746195 0.665727i \(-0.768121\pi\)
−0.746195 + 0.665727i \(0.768121\pi\)
\(104\) 0 0
\(105\) 3.74642 0.365613
\(106\) 0 0
\(107\) 0.657284 0.0635420 0.0317710 0.999495i \(-0.489885\pi\)
0.0317710 + 0.999495i \(0.489885\pi\)
\(108\) 0 0
\(109\) −7.76760 −0.744001 −0.372001 0.928232i \(-0.621328\pi\)
−0.372001 + 0.928232i \(0.621328\pi\)
\(110\) 0 0
\(111\) −4.76955 −0.452706
\(112\) 0 0
\(113\) 4.87650 0.458743 0.229371 0.973339i \(-0.426333\pi\)
0.229371 + 0.973339i \(0.426333\pi\)
\(114\) 0 0
\(115\) −10.0751 −0.939504
\(116\) 0 0
\(117\) 1.81604 0.167893
\(118\) 0 0
\(119\) 7.37850 0.676386
\(120\) 0 0
\(121\) 9.81604 0.892368
\(122\) 0 0
\(123\) −10.9450 −0.986875
\(124\) 0 0
\(125\) −12.0962 −1.08192
\(126\) 0 0
\(127\) −11.6446 −1.03329 −0.516647 0.856199i \(-0.672820\pi\)
−0.516647 + 0.856199i \(0.672820\pi\)
\(128\) 0 0
\(129\) 5.11032 0.449938
\(130\) 0 0
\(131\) −15.4928 −1.35362 −0.676808 0.736160i \(-0.736637\pi\)
−0.676808 + 0.736160i \(0.736637\pi\)
\(132\) 0 0
\(133\) 6.46416 0.560513
\(134\) 0 0
\(135\) −4.43559 −0.381755
\(136\) 0 0
\(137\) 5.16071 0.440909 0.220455 0.975397i \(-0.429246\pi\)
0.220455 + 0.975397i \(0.429246\pi\)
\(138\) 0 0
\(139\) −9.76760 −0.828477 −0.414239 0.910168i \(-0.635952\pi\)
−0.414239 + 0.910168i \(0.635952\pi\)
\(140\) 0 0
\(141\) 27.0513 2.27813
\(142\) 0 0
\(143\) 4.56246 0.381532
\(144\) 0 0
\(145\) −4.60341 −0.382293
\(146\) 0 0
\(147\) 2.19455 0.181003
\(148\) 0 0
\(149\) −8.38704 −0.687093 −0.343546 0.939136i \(-0.611628\pi\)
−0.343546 + 0.939136i \(0.611628\pi\)
\(150\) 0 0
\(151\) 12.5246 1.01924 0.509619 0.860400i \(-0.329786\pi\)
0.509619 + 0.860400i \(0.329786\pi\)
\(152\) 0 0
\(153\) 13.3997 1.08330
\(154\) 0 0
\(155\) −0.893163 −0.0717406
\(156\) 0 0
\(157\) 5.19856 0.414890 0.207445 0.978247i \(-0.433485\pi\)
0.207445 + 0.978247i \(0.433485\pi\)
\(158\) 0 0
\(159\) 10.3533 0.821071
\(160\) 0 0
\(161\) −5.90170 −0.465119
\(162\) 0 0
\(163\) 16.8498 1.31978 0.659888 0.751364i \(-0.270604\pi\)
0.659888 + 0.751364i \(0.270604\pi\)
\(164\) 0 0
\(165\) 17.0929 1.33068
\(166\) 0 0
\(167\) 22.1960 1.71758 0.858788 0.512331i \(-0.171218\pi\)
0.858788 + 0.512331i \(0.171218\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 11.7392 0.897718
\(172\) 0 0
\(173\) 6.98941 0.531395 0.265697 0.964056i \(-0.414398\pi\)
0.265697 + 0.964056i \(0.414398\pi\)
\(174\) 0 0
\(175\) −2.08565 −0.157660
\(176\) 0 0
\(177\) −30.2457 −2.27341
\(178\) 0 0
\(179\) 14.2106 1.06215 0.531074 0.847325i \(-0.321789\pi\)
0.531074 + 0.847325i \(0.321789\pi\)
\(180\) 0 0
\(181\) 18.9516 1.40866 0.704329 0.709874i \(-0.251248\pi\)
0.704329 + 0.709874i \(0.251248\pi\)
\(182\) 0 0
\(183\) 0.301914 0.0223181
\(184\) 0 0
\(185\) −3.71025 −0.272783
\(186\) 0 0
\(187\) 33.6641 2.46177
\(188\) 0 0
\(189\) −2.59825 −0.188995
\(190\) 0 0
\(191\) −3.34272 −0.241870 −0.120935 0.992660i \(-0.538589\pi\)
−0.120935 + 0.992660i \(0.538589\pi\)
\(192\) 0 0
\(193\) 3.12492 0.224937 0.112468 0.993655i \(-0.464124\pi\)
0.112468 + 0.993655i \(0.464124\pi\)
\(194\) 0 0
\(195\) 3.74642 0.268286
\(196\) 0 0
\(197\) 23.7867 1.69473 0.847367 0.531008i \(-0.178186\pi\)
0.847367 + 0.531008i \(0.178186\pi\)
\(198\) 0 0
\(199\) −1.57511 −0.111657 −0.0558284 0.998440i \(-0.517780\pi\)
−0.0558284 + 0.998440i \(0.517780\pi\)
\(200\) 0 0
\(201\) −17.4733 −1.23247
\(202\) 0 0
\(203\) −2.69655 −0.189261
\(204\) 0 0
\(205\) −8.51413 −0.594653
\(206\) 0 0
\(207\) −10.7177 −0.744934
\(208\) 0 0
\(209\) 29.4925 2.04004
\(210\) 0 0
\(211\) −13.5463 −0.932567 −0.466284 0.884635i \(-0.654407\pi\)
−0.466284 + 0.884635i \(0.654407\pi\)
\(212\) 0 0
\(213\) 30.3708 2.08097
\(214\) 0 0
\(215\) 3.97533 0.271115
\(216\) 0 0
\(217\) −0.523191 −0.0355165
\(218\) 0 0
\(219\) 5.53726 0.374174
\(220\) 0 0
\(221\) 7.37850 0.496332
\(222\) 0 0
\(223\) −9.56957 −0.640826 −0.320413 0.947278i \(-0.603822\pi\)
−0.320413 + 0.947278i \(0.603822\pi\)
\(224\) 0 0
\(225\) −3.78763 −0.252509
\(226\) 0 0
\(227\) −12.7066 −0.843368 −0.421684 0.906743i \(-0.638561\pi\)
−0.421684 + 0.906743i \(0.638561\pi\)
\(228\) 0 0
\(229\) 2.97480 0.196581 0.0982903 0.995158i \(-0.468663\pi\)
0.0982903 + 0.995158i \(0.468663\pi\)
\(230\) 0 0
\(231\) 10.0125 0.658777
\(232\) 0 0
\(233\) −9.06899 −0.594129 −0.297065 0.954857i \(-0.596008\pi\)
−0.297065 + 0.954857i \(0.596008\pi\)
\(234\) 0 0
\(235\) 21.0433 1.37271
\(236\) 0 0
\(237\) −10.6552 −0.692131
\(238\) 0 0
\(239\) −12.3891 −0.801384 −0.400692 0.916213i \(-0.631230\pi\)
−0.400692 + 0.916213i \(0.631230\pi\)
\(240\) 0 0
\(241\) −22.9530 −1.47853 −0.739266 0.673414i \(-0.764827\pi\)
−0.739266 + 0.673414i \(0.764827\pi\)
\(242\) 0 0
\(243\) −16.6747 −1.06968
\(244\) 0 0
\(245\) 1.70715 0.109066
\(246\) 0 0
\(247\) 6.46416 0.411304
\(248\) 0 0
\(249\) −16.4822 −1.04452
\(250\) 0 0
\(251\) −7.16935 −0.452526 −0.226263 0.974066i \(-0.572651\pi\)
−0.226263 + 0.974066i \(0.572651\pi\)
\(252\) 0 0
\(253\) −26.9263 −1.69284
\(254\) 0 0
\(255\) 27.6429 1.73107
\(256\) 0 0
\(257\) −0.813983 −0.0507749 −0.0253874 0.999678i \(-0.508082\pi\)
−0.0253874 + 0.999678i \(0.508082\pi\)
\(258\) 0 0
\(259\) −2.17336 −0.135046
\(260\) 0 0
\(261\) −4.89706 −0.303120
\(262\) 0 0
\(263\) −22.0140 −1.35744 −0.678720 0.734398i \(-0.737465\pi\)
−0.678720 + 0.734398i \(0.737465\pi\)
\(264\) 0 0
\(265\) 8.05387 0.494745
\(266\) 0 0
\(267\) −23.7715 −1.45479
\(268\) 0 0
\(269\) 6.77367 0.412998 0.206499 0.978447i \(-0.433793\pi\)
0.206499 + 0.978447i \(0.433793\pi\)
\(270\) 0 0
\(271\) 15.3341 0.931479 0.465739 0.884922i \(-0.345788\pi\)
0.465739 + 0.884922i \(0.345788\pi\)
\(272\) 0 0
\(273\) 2.19455 0.132820
\(274\) 0 0
\(275\) −9.51570 −0.573818
\(276\) 0 0
\(277\) 20.6712 1.24201 0.621007 0.783805i \(-0.286724\pi\)
0.621007 + 0.783805i \(0.286724\pi\)
\(278\) 0 0
\(279\) −0.950137 −0.0568832
\(280\) 0 0
\(281\) 28.8925 1.72358 0.861792 0.507262i \(-0.169342\pi\)
0.861792 + 0.507262i \(0.169342\pi\)
\(282\) 0 0
\(283\) −6.98735 −0.415355 −0.207677 0.978197i \(-0.566590\pi\)
−0.207677 + 0.978197i \(0.566590\pi\)
\(284\) 0 0
\(285\) 24.2174 1.43452
\(286\) 0 0
\(287\) −4.98735 −0.294394
\(288\) 0 0
\(289\) 37.4423 2.20249
\(290\) 0 0
\(291\) 38.7761 2.27310
\(292\) 0 0
\(293\) 1.94613 0.113694 0.0568470 0.998383i \(-0.481895\pi\)
0.0568470 + 0.998383i \(0.481895\pi\)
\(294\) 0 0
\(295\) −23.5282 −1.36987
\(296\) 0 0
\(297\) −11.8544 −0.687862
\(298\) 0 0
\(299\) −5.90170 −0.341304
\(300\) 0 0
\(301\) 2.32864 0.134221
\(302\) 0 0
\(303\) −39.8733 −2.29066
\(304\) 0 0
\(305\) 0.234860 0.0134480
\(306\) 0 0
\(307\) −4.24636 −0.242353 −0.121176 0.992631i \(-0.538667\pi\)
−0.121176 + 0.992631i \(0.538667\pi\)
\(308\) 0 0
\(309\) −33.2389 −1.89089
\(310\) 0 0
\(311\) −4.20709 −0.238562 −0.119281 0.992861i \(-0.538059\pi\)
−0.119281 + 0.992861i \(0.538059\pi\)
\(312\) 0 0
\(313\) −5.08913 −0.287655 −0.143827 0.989603i \(-0.545941\pi\)
−0.143827 + 0.989603i \(0.545941\pi\)
\(314\) 0 0
\(315\) 3.10025 0.174679
\(316\) 0 0
\(317\) −9.29790 −0.522222 −0.261111 0.965309i \(-0.584089\pi\)
−0.261111 + 0.965309i \(0.584089\pi\)
\(318\) 0 0
\(319\) −12.3029 −0.688831
\(320\) 0 0
\(321\) 1.44244 0.0805092
\(322\) 0 0
\(323\) 47.6958 2.65387
\(324\) 0 0
\(325\) −2.08565 −0.115691
\(326\) 0 0
\(327\) −17.0464 −0.942667
\(328\) 0 0
\(329\) 12.3266 0.679586
\(330\) 0 0
\(331\) −23.5981 −1.29707 −0.648535 0.761184i \(-0.724618\pi\)
−0.648535 + 0.761184i \(0.724618\pi\)
\(332\) 0 0
\(333\) −3.94692 −0.216290
\(334\) 0 0
\(335\) −13.5926 −0.742641
\(336\) 0 0
\(337\) 4.87650 0.265640 0.132820 0.991140i \(-0.457597\pi\)
0.132820 + 0.991140i \(0.457597\pi\)
\(338\) 0 0
\(339\) 10.7017 0.581237
\(340\) 0 0
\(341\) −2.38704 −0.129265
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −22.1102 −1.19037
\(346\) 0 0
\(347\) −33.1208 −1.77802 −0.889009 0.457890i \(-0.848605\pi\)
−0.889009 + 0.457890i \(0.848605\pi\)
\(348\) 0 0
\(349\) −0.589188 −0.0315385 −0.0157693 0.999876i \(-0.505020\pi\)
−0.0157693 + 0.999876i \(0.505020\pi\)
\(350\) 0 0
\(351\) −2.59825 −0.138684
\(352\) 0 0
\(353\) −3.08707 −0.164308 −0.0821541 0.996620i \(-0.526180\pi\)
−0.0821541 + 0.996620i \(0.526180\pi\)
\(354\) 0 0
\(355\) 23.6255 1.25391
\(356\) 0 0
\(357\) 16.1925 0.856997
\(358\) 0 0
\(359\) −18.5750 −0.980351 −0.490176 0.871624i \(-0.663067\pi\)
−0.490176 + 0.871624i \(0.663067\pi\)
\(360\) 0 0
\(361\) 22.7853 1.19923
\(362\) 0 0
\(363\) 21.5418 1.13065
\(364\) 0 0
\(365\) 4.30746 0.225463
\(366\) 0 0
\(367\) 25.3744 1.32453 0.662266 0.749269i \(-0.269595\pi\)
0.662266 + 0.749269i \(0.269595\pi\)
\(368\) 0 0
\(369\) −9.05724 −0.471501
\(370\) 0 0
\(371\) 4.71774 0.244933
\(372\) 0 0
\(373\) 18.5392 0.959924 0.479962 0.877289i \(-0.340650\pi\)
0.479962 + 0.877289i \(0.340650\pi\)
\(374\) 0 0
\(375\) −26.5458 −1.37082
\(376\) 0 0
\(377\) −2.69655 −0.138880
\(378\) 0 0
\(379\) 1.76064 0.0904380 0.0452190 0.998977i \(-0.485601\pi\)
0.0452190 + 0.998977i \(0.485601\pi\)
\(380\) 0 0
\(381\) −25.5547 −1.30921
\(382\) 0 0
\(383\) −4.50136 −0.230009 −0.115004 0.993365i \(-0.536688\pi\)
−0.115004 + 0.993365i \(0.536688\pi\)
\(384\) 0 0
\(385\) 7.78879 0.396953
\(386\) 0 0
\(387\) 4.22892 0.214968
\(388\) 0 0
\(389\) 27.9817 1.41873 0.709363 0.704843i \(-0.248983\pi\)
0.709363 + 0.704843i \(0.248983\pi\)
\(390\) 0 0
\(391\) −43.5457 −2.20220
\(392\) 0 0
\(393\) −33.9998 −1.71506
\(394\) 0 0
\(395\) −8.28873 −0.417051
\(396\) 0 0
\(397\) −3.64979 −0.183178 −0.0915889 0.995797i \(-0.529195\pi\)
−0.0915889 + 0.995797i \(0.529195\pi\)
\(398\) 0 0
\(399\) 14.1859 0.710184
\(400\) 0 0
\(401\) 19.3174 0.964665 0.482333 0.875988i \(-0.339790\pi\)
0.482333 + 0.875988i \(0.339790\pi\)
\(402\) 0 0
\(403\) −0.523191 −0.0260620
\(404\) 0 0
\(405\) −19.0349 −0.945851
\(406\) 0 0
\(407\) −9.91588 −0.491512
\(408\) 0 0
\(409\) 8.73234 0.431787 0.215893 0.976417i \(-0.430734\pi\)
0.215893 + 0.976417i \(0.430734\pi\)
\(410\) 0 0
\(411\) 11.3254 0.558642
\(412\) 0 0
\(413\) −13.7822 −0.678178
\(414\) 0 0
\(415\) −12.8216 −0.629387
\(416\) 0 0
\(417\) −21.4355 −1.04970
\(418\) 0 0
\(419\) −9.92636 −0.484935 −0.242467 0.970160i \(-0.577957\pi\)
−0.242467 + 0.970160i \(0.577957\pi\)
\(420\) 0 0
\(421\) −12.4697 −0.607736 −0.303868 0.952714i \(-0.598278\pi\)
−0.303868 + 0.952714i \(0.598278\pi\)
\(422\) 0 0
\(423\) 22.3856 1.08843
\(424\) 0 0
\(425\) −15.3890 −0.746475
\(426\) 0 0
\(427\) 0.137574 0.00665769
\(428\) 0 0
\(429\) 10.0125 0.483410
\(430\) 0 0
\(431\) 0.154238 0.00742937 0.00371469 0.999993i \(-0.498818\pi\)
0.00371469 + 0.999993i \(0.498818\pi\)
\(432\) 0 0
\(433\) 33.6853 1.61881 0.809407 0.587249i \(-0.199789\pi\)
0.809407 + 0.587249i \(0.199789\pi\)
\(434\) 0 0
\(435\) −10.1024 −0.484374
\(436\) 0 0
\(437\) −38.1495 −1.82494
\(438\) 0 0
\(439\) 14.5604 0.694930 0.347465 0.937693i \(-0.387043\pi\)
0.347465 + 0.937693i \(0.387043\pi\)
\(440\) 0 0
\(441\) 1.81604 0.0864783
\(442\) 0 0
\(443\) −9.82147 −0.466632 −0.233316 0.972401i \(-0.574958\pi\)
−0.233316 + 0.972401i \(0.574958\pi\)
\(444\) 0 0
\(445\) −18.4919 −0.876601
\(446\) 0 0
\(447\) −18.4058 −0.870563
\(448\) 0 0
\(449\) 37.6137 1.77510 0.887551 0.460709i \(-0.152405\pi\)
0.887551 + 0.460709i \(0.152405\pi\)
\(450\) 0 0
\(451\) −22.7546 −1.07147
\(452\) 0 0
\(453\) 27.4859 1.29140
\(454\) 0 0
\(455\) 1.70715 0.0800323
\(456\) 0 0
\(457\) 22.0821 1.03296 0.516478 0.856301i \(-0.327243\pi\)
0.516478 + 0.856301i \(0.327243\pi\)
\(458\) 0 0
\(459\) −19.1712 −0.894835
\(460\) 0 0
\(461\) 40.2881 1.87640 0.938202 0.346089i \(-0.112490\pi\)
0.938202 + 0.346089i \(0.112490\pi\)
\(462\) 0 0
\(463\) 9.60432 0.446351 0.223175 0.974778i \(-0.428358\pi\)
0.223175 + 0.974778i \(0.428358\pi\)
\(464\) 0 0
\(465\) −1.96009 −0.0908970
\(466\) 0 0
\(467\) 19.0822 0.883018 0.441509 0.897257i \(-0.354443\pi\)
0.441509 + 0.897257i \(0.354443\pi\)
\(468\) 0 0
\(469\) −7.96215 −0.367658
\(470\) 0 0
\(471\) 11.4085 0.525675
\(472\) 0 0
\(473\) 10.6243 0.488508
\(474\) 0 0
\(475\) −13.4820 −0.618595
\(476\) 0 0
\(477\) 8.56762 0.392285
\(478\) 0 0
\(479\) −0.825105 −0.0377000 −0.0188500 0.999822i \(-0.506000\pi\)
−0.0188500 + 0.999822i \(0.506000\pi\)
\(480\) 0 0
\(481\) −2.17336 −0.0990968
\(482\) 0 0
\(483\) −12.9516 −0.589316
\(484\) 0 0
\(485\) 30.1641 1.36968
\(486\) 0 0
\(487\) −41.3466 −1.87359 −0.936797 0.349874i \(-0.886225\pi\)
−0.936797 + 0.349874i \(0.886225\pi\)
\(488\) 0 0
\(489\) 36.9776 1.67219
\(490\) 0 0
\(491\) −40.9283 −1.84707 −0.923534 0.383516i \(-0.874713\pi\)
−0.923534 + 0.383516i \(0.874713\pi\)
\(492\) 0 0
\(493\) −19.8965 −0.896095
\(494\) 0 0
\(495\) 14.1448 0.635761
\(496\) 0 0
\(497\) 13.8392 0.620772
\(498\) 0 0
\(499\) 12.8306 0.574379 0.287189 0.957874i \(-0.407279\pi\)
0.287189 + 0.957874i \(0.407279\pi\)
\(500\) 0 0
\(501\) 48.7101 2.17621
\(502\) 0 0
\(503\) 17.3931 0.775520 0.387760 0.921760i \(-0.373249\pi\)
0.387760 + 0.921760i \(0.373249\pi\)
\(504\) 0 0
\(505\) −31.0176 −1.38026
\(506\) 0 0
\(507\) 2.19455 0.0974633
\(508\) 0 0
\(509\) −7.19608 −0.318961 −0.159480 0.987201i \(-0.550982\pi\)
−0.159480 + 0.987201i \(0.550982\pi\)
\(510\) 0 0
\(511\) 2.52319 0.111619
\(512\) 0 0
\(513\) −16.7955 −0.741539
\(514\) 0 0
\(515\) −25.8566 −1.13938
\(516\) 0 0
\(517\) 56.2395 2.47341
\(518\) 0 0
\(519\) 15.3386 0.673290
\(520\) 0 0
\(521\) −24.9495 −1.09306 −0.546529 0.837440i \(-0.684051\pi\)
−0.546529 + 0.837440i \(0.684051\pi\)
\(522\) 0 0
\(523\) 25.5901 1.11898 0.559489 0.828838i \(-0.310997\pi\)
0.559489 + 0.828838i \(0.310997\pi\)
\(524\) 0 0
\(525\) −4.57706 −0.199759
\(526\) 0 0
\(527\) −3.86036 −0.168160
\(528\) 0 0
\(529\) 11.8300 0.514348
\(530\) 0 0
\(531\) −25.0291 −1.08617
\(532\) 0 0
\(533\) −4.98735 −0.216026
\(534\) 0 0
\(535\) 1.12208 0.0485117
\(536\) 0 0
\(537\) 31.1858 1.34577
\(538\) 0 0
\(539\) 4.56246 0.196519
\(540\) 0 0
\(541\) −25.5457 −1.09829 −0.549147 0.835726i \(-0.685047\pi\)
−0.549147 + 0.835726i \(0.685047\pi\)
\(542\) 0 0
\(543\) 41.5901 1.78480
\(544\) 0 0
\(545\) −13.2604 −0.568015
\(546\) 0 0
\(547\) 21.3567 0.913146 0.456573 0.889686i \(-0.349077\pi\)
0.456573 + 0.889686i \(0.349077\pi\)
\(548\) 0 0
\(549\) 0.249841 0.0106630
\(550\) 0 0
\(551\) −17.4309 −0.742583
\(552\) 0 0
\(553\) −4.85531 −0.206469
\(554\) 0 0
\(555\) −8.14232 −0.345622
\(556\) 0 0
\(557\) 0.651705 0.0276136 0.0138068 0.999905i \(-0.495605\pi\)
0.0138068 + 0.999905i \(0.495605\pi\)
\(558\) 0 0
\(559\) 2.32864 0.0984911
\(560\) 0 0
\(561\) 73.8776 3.11911
\(562\) 0 0
\(563\) 12.5479 0.528829 0.264415 0.964409i \(-0.414821\pi\)
0.264415 + 0.964409i \(0.414821\pi\)
\(564\) 0 0
\(565\) 8.32490 0.350231
\(566\) 0 0
\(567\) −11.1501 −0.468261
\(568\) 0 0
\(569\) 20.0983 0.842565 0.421282 0.906930i \(-0.361580\pi\)
0.421282 + 0.906930i \(0.361580\pi\)
\(570\) 0 0
\(571\) −14.2953 −0.598240 −0.299120 0.954215i \(-0.596693\pi\)
−0.299120 + 0.954215i \(0.596693\pi\)
\(572\) 0 0
\(573\) −7.33575 −0.306456
\(574\) 0 0
\(575\) 12.3089 0.513316
\(576\) 0 0
\(577\) −1.26418 −0.0526284 −0.0263142 0.999654i \(-0.508377\pi\)
−0.0263142 + 0.999654i \(0.508377\pi\)
\(578\) 0 0
\(579\) 6.85779 0.285000
\(580\) 0 0
\(581\) −7.51054 −0.311590
\(582\) 0 0
\(583\) 21.5245 0.891454
\(584\) 0 0
\(585\) 3.10025 0.128180
\(586\) 0 0
\(587\) −28.8210 −1.18957 −0.594785 0.803885i \(-0.702763\pi\)
−0.594785 + 0.803885i \(0.702763\pi\)
\(588\) 0 0
\(589\) −3.38199 −0.139352
\(590\) 0 0
\(591\) 52.2011 2.14727
\(592\) 0 0
\(593\) −19.7534 −0.811176 −0.405588 0.914056i \(-0.632933\pi\)
−0.405588 + 0.914056i \(0.632933\pi\)
\(594\) 0 0
\(595\) 12.5962 0.516393
\(596\) 0 0
\(597\) −3.45666 −0.141472
\(598\) 0 0
\(599\) 14.1727 0.579082 0.289541 0.957166i \(-0.406497\pi\)
0.289541 + 0.957166i \(0.406497\pi\)
\(600\) 0 0
\(601\) −36.2922 −1.48039 −0.740195 0.672392i \(-0.765267\pi\)
−0.740195 + 0.672392i \(0.765267\pi\)
\(602\) 0 0
\(603\) −14.4596 −0.588841
\(604\) 0 0
\(605\) 16.7574 0.681286
\(606\) 0 0
\(607\) −41.5780 −1.68760 −0.843799 0.536660i \(-0.819686\pi\)
−0.843799 + 0.536660i \(0.819686\pi\)
\(608\) 0 0
\(609\) −5.91772 −0.239798
\(610\) 0 0
\(611\) 12.3266 0.498680
\(612\) 0 0
\(613\) 3.98334 0.160885 0.0804427 0.996759i \(-0.474367\pi\)
0.0804427 + 0.996759i \(0.474367\pi\)
\(614\) 0 0
\(615\) −18.6847 −0.753439
\(616\) 0 0
\(617\) −33.5644 −1.35125 −0.675626 0.737244i \(-0.736127\pi\)
−0.675626 + 0.737244i \(0.736127\pi\)
\(618\) 0 0
\(619\) 6.75289 0.271421 0.135711 0.990749i \(-0.456668\pi\)
0.135711 + 0.990749i \(0.456668\pi\)
\(620\) 0 0
\(621\) 15.3341 0.615335
\(622\) 0 0
\(623\) −10.8321 −0.433978
\(624\) 0 0
\(625\) −10.2218 −0.408872
\(626\) 0 0
\(627\) 64.7226 2.58477
\(628\) 0 0
\(629\) −16.0362 −0.639404
\(630\) 0 0
\(631\) −6.05323 −0.240975 −0.120488 0.992715i \(-0.538446\pi\)
−0.120488 + 0.992715i \(0.538446\pi\)
\(632\) 0 0
\(633\) −29.7281 −1.18158
\(634\) 0 0
\(635\) −19.8791 −0.788878
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) 25.1326 0.994229
\(640\) 0 0
\(641\) 34.1807 1.35006 0.675029 0.737791i \(-0.264131\pi\)
0.675029 + 0.737791i \(0.264131\pi\)
\(642\) 0 0
\(643\) −37.1500 −1.46505 −0.732527 0.680738i \(-0.761659\pi\)
−0.732527 + 0.680738i \(0.761659\pi\)
\(644\) 0 0
\(645\) 8.72406 0.343510
\(646\) 0 0
\(647\) 11.7172 0.460651 0.230326 0.973114i \(-0.426021\pi\)
0.230326 + 0.973114i \(0.426021\pi\)
\(648\) 0 0
\(649\) −62.8808 −2.46829
\(650\) 0 0
\(651\) −1.14817 −0.0450002
\(652\) 0 0
\(653\) −28.7529 −1.12519 −0.562594 0.826734i \(-0.690196\pi\)
−0.562594 + 0.826734i \(0.690196\pi\)
\(654\) 0 0
\(655\) −26.4485 −1.03343
\(656\) 0 0
\(657\) 4.58223 0.178770
\(658\) 0 0
\(659\) −25.2740 −0.984536 −0.492268 0.870444i \(-0.663832\pi\)
−0.492268 + 0.870444i \(0.663832\pi\)
\(660\) 0 0
\(661\) −32.8491 −1.27768 −0.638842 0.769338i \(-0.720586\pi\)
−0.638842 + 0.769338i \(0.720586\pi\)
\(662\) 0 0
\(663\) 16.1925 0.628864
\(664\) 0 0
\(665\) 11.0353 0.427929
\(666\) 0 0
\(667\) 15.9142 0.616202
\(668\) 0 0
\(669\) −21.0009 −0.811941
\(670\) 0 0
\(671\) 0.627678 0.0242312
\(672\) 0 0
\(673\) 47.5870 1.83434 0.917172 0.398491i \(-0.130466\pi\)
0.917172 + 0.398491i \(0.130466\pi\)
\(674\) 0 0
\(675\) 5.41904 0.208579
\(676\) 0 0
\(677\) −33.5481 −1.28936 −0.644680 0.764453i \(-0.723009\pi\)
−0.644680 + 0.764453i \(0.723009\pi\)
\(678\) 0 0
\(679\) 17.6693 0.678085
\(680\) 0 0
\(681\) −27.8853 −1.06857
\(682\) 0 0
\(683\) −29.7908 −1.13992 −0.569958 0.821674i \(-0.693040\pi\)
−0.569958 + 0.821674i \(0.693040\pi\)
\(684\) 0 0
\(685\) 8.81009 0.336616
\(686\) 0 0
\(687\) 6.52835 0.249072
\(688\) 0 0
\(689\) 4.71774 0.179732
\(690\) 0 0
\(691\) −15.1959 −0.578078 −0.289039 0.957317i \(-0.593336\pi\)
−0.289039 + 0.957317i \(0.593336\pi\)
\(692\) 0 0
\(693\) 8.28563 0.314745
\(694\) 0 0
\(695\) −16.6747 −0.632508
\(696\) 0 0
\(697\) −36.7992 −1.39387
\(698\) 0 0
\(699\) −19.9023 −0.752775
\(700\) 0 0
\(701\) 28.2106 1.06550 0.532749 0.846273i \(-0.321159\pi\)
0.532749 + 0.846273i \(0.321159\pi\)
\(702\) 0 0
\(703\) −14.0490 −0.529866
\(704\) 0 0
\(705\) 46.1805 1.73926
\(706\) 0 0
\(707\) −18.1692 −0.683325
\(708\) 0 0
\(709\) −21.8546 −0.820765 −0.410383 0.911913i \(-0.634605\pi\)
−0.410383 + 0.911913i \(0.634605\pi\)
\(710\) 0 0
\(711\) −8.81746 −0.330681
\(712\) 0 0
\(713\) 3.08771 0.115636
\(714\) 0 0
\(715\) 7.78879 0.291284
\(716\) 0 0
\(717\) −27.1885 −1.01537
\(718\) 0 0
\(719\) 45.2563 1.68778 0.843888 0.536520i \(-0.180261\pi\)
0.843888 + 0.536520i \(0.180261\pi\)
\(720\) 0 0
\(721\) −15.1461 −0.564070
\(722\) 0 0
\(723\) −50.3714 −1.87333
\(724\) 0 0
\(725\) 5.62407 0.208873
\(726\) 0 0
\(727\) −44.8818 −1.66457 −0.832287 0.554345i \(-0.812969\pi\)
−0.832287 + 0.554345i \(0.812969\pi\)
\(728\) 0 0
\(729\) −3.14315 −0.116413
\(730\) 0 0
\(731\) 17.1819 0.635495
\(732\) 0 0
\(733\) −42.0205 −1.55206 −0.776032 0.630693i \(-0.782771\pi\)
−0.776032 + 0.630693i \(0.782771\pi\)
\(734\) 0 0
\(735\) 3.74642 0.138189
\(736\) 0 0
\(737\) −36.3270 −1.33812
\(738\) 0 0
\(739\) 29.2958 1.07767 0.538833 0.842413i \(-0.318866\pi\)
0.538833 + 0.842413i \(0.318866\pi\)
\(740\) 0 0
\(741\) 14.1859 0.521132
\(742\) 0 0
\(743\) −35.1128 −1.28816 −0.644081 0.764957i \(-0.722760\pi\)
−0.644081 + 0.764957i \(0.722760\pi\)
\(744\) 0 0
\(745\) −14.3179 −0.524567
\(746\) 0 0
\(747\) −13.6395 −0.499042
\(748\) 0 0
\(749\) 0.657284 0.0240166
\(750\) 0 0
\(751\) 17.8128 0.649999 0.325000 0.945714i \(-0.394636\pi\)
0.325000 + 0.945714i \(0.394636\pi\)
\(752\) 0 0
\(753\) −15.7335 −0.573360
\(754\) 0 0
\(755\) 21.3813 0.778147
\(756\) 0 0
\(757\) 25.8850 0.940807 0.470404 0.882451i \(-0.344108\pi\)
0.470404 + 0.882451i \(0.344108\pi\)
\(758\) 0 0
\(759\) −59.0910 −2.14487
\(760\) 0 0
\(761\) 27.3306 0.990733 0.495367 0.868684i \(-0.335034\pi\)
0.495367 + 0.868684i \(0.335034\pi\)
\(762\) 0 0
\(763\) −7.76760 −0.281206
\(764\) 0 0
\(765\) 22.8752 0.827056
\(766\) 0 0
\(767\) −13.7822 −0.497647
\(768\) 0 0
\(769\) −25.5192 −0.920245 −0.460123 0.887855i \(-0.652195\pi\)
−0.460123 + 0.887855i \(0.652195\pi\)
\(770\) 0 0
\(771\) −1.78633 −0.0643330
\(772\) 0 0
\(773\) 3.62797 0.130489 0.0652444 0.997869i \(-0.479217\pi\)
0.0652444 + 0.997869i \(0.479217\pi\)
\(774\) 0 0
\(775\) 1.09119 0.0391968
\(776\) 0 0
\(777\) −4.76955 −0.171107
\(778\) 0 0
\(779\) −32.2390 −1.15508
\(780\) 0 0
\(781\) 63.1407 2.25935
\(782\) 0 0
\(783\) 7.00632 0.250385
\(784\) 0 0
\(785\) 8.87470 0.316752
\(786\) 0 0
\(787\) 13.3886 0.477251 0.238625 0.971112i \(-0.423303\pi\)
0.238625 + 0.971112i \(0.423303\pi\)
\(788\) 0 0
\(789\) −48.3107 −1.71991
\(790\) 0 0
\(791\) 4.87650 0.173388
\(792\) 0 0
\(793\) 0.137574 0.00488541
\(794\) 0 0
\(795\) 17.6746 0.626854
\(796\) 0 0
\(797\) 5.95519 0.210944 0.105472 0.994422i \(-0.466365\pi\)
0.105472 + 0.994422i \(0.466365\pi\)
\(798\) 0 0
\(799\) 90.9517 3.21764
\(800\) 0 0
\(801\) −19.6715 −0.695059
\(802\) 0 0
\(803\) 11.5120 0.406248
\(804\) 0 0
\(805\) −10.0751 −0.355099
\(806\) 0 0
\(807\) 14.8652 0.523278
\(808\) 0 0
\(809\) 39.3205 1.38244 0.691218 0.722647i \(-0.257075\pi\)
0.691218 + 0.722647i \(0.257075\pi\)
\(810\) 0 0
\(811\) −40.9353 −1.43743 −0.718716 0.695304i \(-0.755270\pi\)
−0.718716 + 0.695304i \(0.755270\pi\)
\(812\) 0 0
\(813\) 33.6514 1.18021
\(814\) 0 0
\(815\) 28.7650 1.00759
\(816\) 0 0
\(817\) 15.0527 0.526627
\(818\) 0 0
\(819\) 1.81604 0.0634577
\(820\) 0 0
\(821\) −12.7994 −0.446701 −0.223351 0.974738i \(-0.571700\pi\)
−0.223351 + 0.974738i \(0.571700\pi\)
\(822\) 0 0
\(823\) 2.76153 0.0962609 0.0481305 0.998841i \(-0.484674\pi\)
0.0481305 + 0.998841i \(0.484674\pi\)
\(824\) 0 0
\(825\) −20.8827 −0.727041
\(826\) 0 0
\(827\) 7.37813 0.256563 0.128281 0.991738i \(-0.459054\pi\)
0.128281 + 0.991738i \(0.459054\pi\)
\(828\) 0 0
\(829\) −39.5245 −1.37274 −0.686371 0.727251i \(-0.740797\pi\)
−0.686371 + 0.727251i \(0.740797\pi\)
\(830\) 0 0
\(831\) 45.3641 1.57366
\(832\) 0 0
\(833\) 7.37850 0.255650
\(834\) 0 0
\(835\) 37.8918 1.31130
\(836\) 0 0
\(837\) 1.35938 0.0469870
\(838\) 0 0
\(839\) 13.5123 0.466498 0.233249 0.972417i \(-0.425064\pi\)
0.233249 + 0.972417i \(0.425064\pi\)
\(840\) 0 0
\(841\) −21.7286 −0.749262
\(842\) 0 0
\(843\) 63.4060 2.18382
\(844\) 0 0
\(845\) 1.70715 0.0587276
\(846\) 0 0
\(847\) 9.81604 0.337283
\(848\) 0 0
\(849\) −15.3341 −0.526264
\(850\) 0 0
\(851\) 12.8265 0.439688
\(852\) 0 0
\(853\) −6.40680 −0.219365 −0.109682 0.993967i \(-0.534983\pi\)
−0.109682 + 0.993967i \(0.534983\pi\)
\(854\) 0 0
\(855\) 20.0405 0.685371
\(856\) 0 0
\(857\) 27.5856 0.942306 0.471153 0.882052i \(-0.343838\pi\)
0.471153 + 0.882052i \(0.343838\pi\)
\(858\) 0 0
\(859\) 26.9943 0.921034 0.460517 0.887651i \(-0.347664\pi\)
0.460517 + 0.887651i \(0.347664\pi\)
\(860\) 0 0
\(861\) −10.9450 −0.373004
\(862\) 0 0
\(863\) −29.1208 −0.991284 −0.495642 0.868527i \(-0.665067\pi\)
−0.495642 + 0.868527i \(0.665067\pi\)
\(864\) 0 0
\(865\) 11.9319 0.405698
\(866\) 0 0
\(867\) 82.1690 2.79061
\(868\) 0 0
\(869\) −22.1522 −0.751461
\(870\) 0 0
\(871\) −7.96215 −0.269787
\(872\) 0 0
\(873\) 32.0882 1.08602
\(874\) 0 0
\(875\) −12.0962 −0.408928
\(876\) 0 0
\(877\) −12.3126 −0.415768 −0.207884 0.978154i \(-0.566658\pi\)
−0.207884 + 0.978154i \(0.566658\pi\)
\(878\) 0 0
\(879\) 4.27087 0.144053
\(880\) 0 0
\(881\) 7.93644 0.267386 0.133693 0.991023i \(-0.457316\pi\)
0.133693 + 0.991023i \(0.457316\pi\)
\(882\) 0 0
\(883\) −18.1672 −0.611374 −0.305687 0.952132i \(-0.598886\pi\)
−0.305687 + 0.952132i \(0.598886\pi\)
\(884\) 0 0
\(885\) −51.6339 −1.73565
\(886\) 0 0
\(887\) 7.17531 0.240923 0.120462 0.992718i \(-0.461563\pi\)
0.120462 + 0.992718i \(0.461563\pi\)
\(888\) 0 0
\(889\) −11.6446 −0.390548
\(890\) 0 0
\(891\) −50.8720 −1.70427
\(892\) 0 0
\(893\) 79.6809 2.66642
\(894\) 0 0
\(895\) 24.2595 0.810907
\(896\) 0 0
\(897\) −12.9516 −0.432440
\(898\) 0 0
\(899\) 1.41081 0.0470532
\(900\) 0 0
\(901\) 34.8099 1.15968
\(902\) 0 0
\(903\) 5.11032 0.170061
\(904\) 0 0
\(905\) 32.3531 1.07545
\(906\) 0 0
\(907\) 48.8890 1.62333 0.811667 0.584120i \(-0.198560\pi\)
0.811667 + 0.584120i \(0.198560\pi\)
\(908\) 0 0
\(909\) −32.9961 −1.09441
\(910\) 0 0
\(911\) 42.2780 1.40073 0.700367 0.713783i \(-0.253020\pi\)
0.700367 + 0.713783i \(0.253020\pi\)
\(912\) 0 0
\(913\) −34.2665 −1.13406
\(914\) 0 0
\(915\) 0.515411 0.0170390
\(916\) 0 0
\(917\) −15.4928 −0.511618
\(918\) 0 0
\(919\) −24.7334 −0.815879 −0.407940 0.913009i \(-0.633753\pi\)
−0.407940 + 0.913009i \(0.633753\pi\)
\(920\) 0 0
\(921\) −9.31884 −0.307066
\(922\) 0 0
\(923\) 13.8392 0.455522
\(924\) 0 0
\(925\) 4.53288 0.149040
\(926\) 0 0
\(927\) −27.5060 −0.903416
\(928\) 0 0
\(929\) −17.1260 −0.561885 −0.280942 0.959725i \(-0.590647\pi\)
−0.280942 + 0.959725i \(0.590647\pi\)
\(930\) 0 0
\(931\) 6.46416 0.211854
\(932\) 0 0
\(933\) −9.23266 −0.302264
\(934\) 0 0
\(935\) 57.4696 1.87946
\(936\) 0 0
\(937\) −17.8221 −0.582223 −0.291112 0.956689i \(-0.594025\pi\)
−0.291112 + 0.956689i \(0.594025\pi\)
\(938\) 0 0
\(939\) −11.1683 −0.364465
\(940\) 0 0
\(941\) 32.2675 1.05189 0.525946 0.850518i \(-0.323711\pi\)
0.525946 + 0.850518i \(0.323711\pi\)
\(942\) 0 0
\(943\) 29.4338 0.958496
\(944\) 0 0
\(945\) −4.43559 −0.144290
\(946\) 0 0
\(947\) −19.4143 −0.630880 −0.315440 0.948946i \(-0.602152\pi\)
−0.315440 + 0.948946i \(0.602152\pi\)
\(948\) 0 0
\(949\) 2.52319 0.0819062
\(950\) 0 0
\(951\) −20.4047 −0.661668
\(952\) 0 0
\(953\) 30.0644 0.973880 0.486940 0.873435i \(-0.338113\pi\)
0.486940 + 0.873435i \(0.338113\pi\)
\(954\) 0 0
\(955\) −5.70651 −0.184658
\(956\) 0 0
\(957\) −26.9994 −0.872765
\(958\) 0 0
\(959\) 5.16071 0.166648
\(960\) 0 0
\(961\) −30.7263 −0.991170
\(962\) 0 0
\(963\) 1.19366 0.0384650
\(964\) 0 0
\(965\) 5.33470 0.171730
\(966\) 0 0
\(967\) −20.4288 −0.656945 −0.328473 0.944513i \(-0.606534\pi\)
−0.328473 + 0.944513i \(0.606534\pi\)
\(968\) 0 0
\(969\) 104.671 3.36251
\(970\) 0 0
\(971\) 47.3661 1.52005 0.760026 0.649893i \(-0.225186\pi\)
0.760026 + 0.649893i \(0.225186\pi\)
\(972\) 0 0
\(973\) −9.76760 −0.313135
\(974\) 0 0
\(975\) −4.57706 −0.146583
\(976\) 0 0
\(977\) −31.8816 −1.01998 −0.509991 0.860180i \(-0.670351\pi\)
−0.509991 + 0.860180i \(0.670351\pi\)
\(978\) 0 0
\(979\) −49.4209 −1.57950
\(980\) 0 0
\(981\) −14.1063 −0.450380
\(982\) 0 0
\(983\) −55.3529 −1.76548 −0.882742 0.469858i \(-0.844305\pi\)
−0.882742 + 0.469858i \(0.844305\pi\)
\(984\) 0 0
\(985\) 40.6074 1.29386
\(986\) 0 0
\(987\) 27.0513 0.861052
\(988\) 0 0
\(989\) −13.7429 −0.437000
\(990\) 0 0
\(991\) −19.9622 −0.634119 −0.317059 0.948406i \(-0.602695\pi\)
−0.317059 + 0.948406i \(0.602695\pi\)
\(992\) 0 0
\(993\) −51.7873 −1.64342
\(994\) 0 0
\(995\) −2.68895 −0.0852455
\(996\) 0 0
\(997\) −54.7905 −1.73523 −0.867616 0.497234i \(-0.834349\pi\)
−0.867616 + 0.497234i \(0.834349\pi\)
\(998\) 0 0
\(999\) 5.64694 0.178661
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5824.2.a.ce.1.3 4
4.3 odd 2 5824.2.a.cb.1.2 4
8.3 odd 2 728.2.a.i.1.3 4
8.5 even 2 1456.2.a.v.1.2 4
24.11 even 2 6552.2.a.br.1.3 4
56.27 even 2 5096.2.a.s.1.2 4
104.51 odd 2 9464.2.a.z.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.a.i.1.3 4 8.3 odd 2
1456.2.a.v.1.2 4 8.5 even 2
5096.2.a.s.1.2 4 56.27 even 2
5824.2.a.cb.1.2 4 4.3 odd 2
5824.2.a.ce.1.3 4 1.1 even 1 trivial
6552.2.a.br.1.3 4 24.11 even 2
9464.2.a.z.1.3 4 104.51 odd 2