Properties

Label 5819.2.a.u.1.7
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.29534 q^{2} -3.02840 q^{3} +3.26860 q^{4} +1.86081 q^{5} +6.95122 q^{6} -4.83491 q^{7} -2.91187 q^{8} +6.17120 q^{9} -4.27120 q^{10} +1.00000 q^{11} -9.89863 q^{12} -0.671797 q^{13} +11.0978 q^{14} -5.63528 q^{15} +0.146550 q^{16} -0.875601 q^{17} -14.1650 q^{18} -7.70453 q^{19} +6.08225 q^{20} +14.6420 q^{21} -2.29534 q^{22} +8.81832 q^{24} -1.53738 q^{25} +1.54201 q^{26} -9.60366 q^{27} -15.8034 q^{28} -1.40702 q^{29} +12.9349 q^{30} -3.64474 q^{31} +5.48737 q^{32} -3.02840 q^{33} +2.00980 q^{34} -8.99686 q^{35} +20.1712 q^{36} -4.24239 q^{37} +17.6845 q^{38} +2.03447 q^{39} -5.41845 q^{40} -3.16461 q^{41} -33.6085 q^{42} -10.8915 q^{43} +3.26860 q^{44} +11.4834 q^{45} -6.28698 q^{47} -0.443811 q^{48} +16.3764 q^{49} +3.52882 q^{50} +2.65167 q^{51} -2.19584 q^{52} -2.70334 q^{53} +22.0437 q^{54} +1.86081 q^{55} +14.0787 q^{56} +23.3324 q^{57} +3.22960 q^{58} +9.21157 q^{59} -18.4195 q^{60} -6.49923 q^{61} +8.36593 q^{62} -29.8372 q^{63} -12.8885 q^{64} -1.25009 q^{65} +6.95122 q^{66} -7.53522 q^{67} -2.86199 q^{68} +20.6509 q^{70} +8.65293 q^{71} -17.9698 q^{72} -5.71063 q^{73} +9.73775 q^{74} +4.65581 q^{75} -25.1830 q^{76} -4.83491 q^{77} -4.66981 q^{78} -1.14344 q^{79} +0.272701 q^{80} +10.5701 q^{81} +7.26386 q^{82} +4.29543 q^{83} +47.8590 q^{84} -1.62933 q^{85} +24.9997 q^{86} +4.26102 q^{87} -2.91187 q^{88} -4.97553 q^{89} -26.3584 q^{90} +3.24808 q^{91} +11.0377 q^{93} +14.4308 q^{94} -14.3367 q^{95} -16.6179 q^{96} -0.0547066 q^{97} -37.5894 q^{98} +6.17120 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.29534 −1.62305 −0.811526 0.584316i \(-0.801363\pi\)
−0.811526 + 0.584316i \(0.801363\pi\)
\(3\) −3.02840 −1.74845 −0.874224 0.485524i \(-0.838629\pi\)
−0.874224 + 0.485524i \(0.838629\pi\)
\(4\) 3.26860 1.63430
\(5\) 1.86081 0.832180 0.416090 0.909323i \(-0.363400\pi\)
0.416090 + 0.909323i \(0.363400\pi\)
\(6\) 6.95122 2.83782
\(7\) −4.83491 −1.82742 −0.913712 0.406361i \(-0.866797\pi\)
−0.913712 + 0.406361i \(0.866797\pi\)
\(8\) −2.91187 −1.02950
\(9\) 6.17120 2.05707
\(10\) −4.27120 −1.35067
\(11\) 1.00000 0.301511
\(12\) −9.89863 −2.85749
\(13\) −0.671797 −0.186323 −0.0931616 0.995651i \(-0.529697\pi\)
−0.0931616 + 0.995651i \(0.529697\pi\)
\(14\) 11.0978 2.96601
\(15\) −5.63528 −1.45502
\(16\) 0.146550 0.0366374
\(17\) −0.875601 −0.212364 −0.106182 0.994347i \(-0.533863\pi\)
−0.106182 + 0.994347i \(0.533863\pi\)
\(18\) −14.1650 −3.33873
\(19\) −7.70453 −1.76754 −0.883770 0.467921i \(-0.845003\pi\)
−0.883770 + 0.467921i \(0.845003\pi\)
\(20\) 6.08225 1.36003
\(21\) 14.6420 3.19516
\(22\) −2.29534 −0.489369
\(23\) 0 0
\(24\) 8.81832 1.80003
\(25\) −1.53738 −0.307477
\(26\) 1.54201 0.302412
\(27\) −9.60366 −1.84823
\(28\) −15.8034 −2.98656
\(29\) −1.40702 −0.261277 −0.130639 0.991430i \(-0.541703\pi\)
−0.130639 + 0.991430i \(0.541703\pi\)
\(30\) 12.9349 2.36158
\(31\) −3.64474 −0.654614 −0.327307 0.944918i \(-0.606141\pi\)
−0.327307 + 0.944918i \(0.606141\pi\)
\(32\) 5.48737 0.970039
\(33\) −3.02840 −0.527177
\(34\) 2.00980 0.344679
\(35\) −8.99686 −1.52075
\(36\) 20.1712 3.36187
\(37\) −4.24239 −0.697445 −0.348723 0.937226i \(-0.613384\pi\)
−0.348723 + 0.937226i \(0.613384\pi\)
\(38\) 17.6845 2.86881
\(39\) 2.03447 0.325776
\(40\) −5.41845 −0.856732
\(41\) −3.16461 −0.494229 −0.247114 0.968986i \(-0.579482\pi\)
−0.247114 + 0.968986i \(0.579482\pi\)
\(42\) −33.6085 −5.18591
\(43\) −10.8915 −1.66093 −0.830467 0.557067i \(-0.811927\pi\)
−0.830467 + 0.557067i \(0.811927\pi\)
\(44\) 3.26860 0.492760
\(45\) 11.4834 1.71185
\(46\) 0 0
\(47\) −6.28698 −0.917051 −0.458525 0.888681i \(-0.651622\pi\)
−0.458525 + 0.888681i \(0.651622\pi\)
\(48\) −0.443811 −0.0640586
\(49\) 16.3764 2.33948
\(50\) 3.52882 0.499051
\(51\) 2.65167 0.371308
\(52\) −2.19584 −0.304508
\(53\) −2.70334 −0.371332 −0.185666 0.982613i \(-0.559444\pi\)
−0.185666 + 0.982613i \(0.559444\pi\)
\(54\) 22.0437 2.99977
\(55\) 1.86081 0.250912
\(56\) 14.0787 1.88134
\(57\) 23.3324 3.09045
\(58\) 3.22960 0.424067
\(59\) 9.21157 1.19924 0.599622 0.800283i \(-0.295318\pi\)
0.599622 + 0.800283i \(0.295318\pi\)
\(60\) −18.4195 −2.37794
\(61\) −6.49923 −0.832141 −0.416070 0.909332i \(-0.636593\pi\)
−0.416070 + 0.909332i \(0.636593\pi\)
\(62\) 8.36593 1.06247
\(63\) −29.8372 −3.75914
\(64\) −12.8885 −1.61106
\(65\) −1.25009 −0.155054
\(66\) 6.95122 0.855635
\(67\) −7.53522 −0.920574 −0.460287 0.887770i \(-0.652253\pi\)
−0.460287 + 0.887770i \(0.652253\pi\)
\(68\) −2.86199 −0.347067
\(69\) 0 0
\(70\) 20.6509 2.46825
\(71\) 8.65293 1.02691 0.513457 0.858115i \(-0.328365\pi\)
0.513457 + 0.858115i \(0.328365\pi\)
\(72\) −17.9698 −2.11776
\(73\) −5.71063 −0.668379 −0.334189 0.942506i \(-0.608463\pi\)
−0.334189 + 0.942506i \(0.608463\pi\)
\(74\) 9.73775 1.13199
\(75\) 4.65581 0.537607
\(76\) −25.1830 −2.88869
\(77\) −4.83491 −0.550989
\(78\) −4.66981 −0.528752
\(79\) −1.14344 −0.128647 −0.0643236 0.997929i \(-0.520489\pi\)
−0.0643236 + 0.997929i \(0.520489\pi\)
\(80\) 0.272701 0.0304889
\(81\) 10.5701 1.17446
\(82\) 7.26386 0.802159
\(83\) 4.29543 0.471485 0.235742 0.971816i \(-0.424248\pi\)
0.235742 + 0.971816i \(0.424248\pi\)
\(84\) 47.8590 5.22184
\(85\) −1.62933 −0.176725
\(86\) 24.9997 2.69578
\(87\) 4.26102 0.456829
\(88\) −2.91187 −0.310407
\(89\) −4.97553 −0.527405 −0.263702 0.964604i \(-0.584944\pi\)
−0.263702 + 0.964604i \(0.584944\pi\)
\(90\) −26.3584 −2.77842
\(91\) 3.24808 0.340491
\(92\) 0 0
\(93\) 11.0377 1.14456
\(94\) 14.4308 1.48842
\(95\) −14.3367 −1.47091
\(96\) −16.6179 −1.69606
\(97\) −0.0547066 −0.00555462 −0.00277731 0.999996i \(-0.500884\pi\)
−0.00277731 + 0.999996i \(0.500884\pi\)
\(98\) −37.5894 −3.79710
\(99\) 6.17120 0.620229
\(100\) −5.02509 −0.502509
\(101\) 10.1948 1.01442 0.507211 0.861822i \(-0.330676\pi\)
0.507211 + 0.861822i \(0.330676\pi\)
\(102\) −6.08649 −0.602652
\(103\) −17.3880 −1.71329 −0.856644 0.515908i \(-0.827455\pi\)
−0.856644 + 0.515908i \(0.827455\pi\)
\(104\) 1.95619 0.191820
\(105\) 27.2461 2.65894
\(106\) 6.20509 0.602692
\(107\) −3.71713 −0.359349 −0.179674 0.983726i \(-0.557504\pi\)
−0.179674 + 0.983726i \(0.557504\pi\)
\(108\) −31.3905 −3.02056
\(109\) −8.17987 −0.783490 −0.391745 0.920074i \(-0.628128\pi\)
−0.391745 + 0.920074i \(0.628128\pi\)
\(110\) −4.27120 −0.407243
\(111\) 12.8477 1.21945
\(112\) −0.708555 −0.0669522
\(113\) 6.43887 0.605718 0.302859 0.953035i \(-0.402059\pi\)
0.302859 + 0.953035i \(0.402059\pi\)
\(114\) −53.5558 −5.01596
\(115\) 0 0
\(116\) −4.59899 −0.427005
\(117\) −4.14580 −0.383279
\(118\) −21.1437 −1.94644
\(119\) 4.23345 0.388080
\(120\) 16.4092 1.49795
\(121\) 1.00000 0.0909091
\(122\) 14.9180 1.35061
\(123\) 9.58369 0.864132
\(124\) −11.9132 −1.06984
\(125\) −12.1648 −1.08806
\(126\) 68.4866 6.10128
\(127\) −15.4542 −1.37134 −0.685669 0.727914i \(-0.740490\pi\)
−0.685669 + 0.727914i \(0.740490\pi\)
\(128\) 18.6088 1.64480
\(129\) 32.9837 2.90406
\(130\) 2.86938 0.251661
\(131\) 17.5047 1.52940 0.764698 0.644389i \(-0.222888\pi\)
0.764698 + 0.644389i \(0.222888\pi\)
\(132\) −9.89863 −0.861565
\(133\) 37.2507 3.23005
\(134\) 17.2959 1.49414
\(135\) −17.8706 −1.53806
\(136\) 2.54964 0.218630
\(137\) 3.32728 0.284269 0.142135 0.989847i \(-0.454603\pi\)
0.142135 + 0.989847i \(0.454603\pi\)
\(138\) 0 0
\(139\) −4.20453 −0.356624 −0.178312 0.983974i \(-0.557064\pi\)
−0.178312 + 0.983974i \(0.557064\pi\)
\(140\) −29.4071 −2.48536
\(141\) 19.0395 1.60341
\(142\) −19.8614 −1.66674
\(143\) −0.671797 −0.0561785
\(144\) 0.904388 0.0753657
\(145\) −2.61820 −0.217430
\(146\) 13.1079 1.08481
\(147\) −49.5942 −4.09046
\(148\) −13.8667 −1.13984
\(149\) 4.39091 0.359718 0.179859 0.983692i \(-0.442436\pi\)
0.179859 + 0.983692i \(0.442436\pi\)
\(150\) −10.6867 −0.872564
\(151\) 0.473668 0.0385465 0.0192733 0.999814i \(-0.493865\pi\)
0.0192733 + 0.999814i \(0.493865\pi\)
\(152\) 22.4346 1.81969
\(153\) −5.40351 −0.436848
\(154\) 11.0978 0.894285
\(155\) −6.78217 −0.544757
\(156\) 6.64987 0.532416
\(157\) 19.1308 1.52681 0.763403 0.645923i \(-0.223527\pi\)
0.763403 + 0.645923i \(0.223527\pi\)
\(158\) 2.62459 0.208801
\(159\) 8.18679 0.649255
\(160\) 10.2110 0.807247
\(161\) 0 0
\(162\) −24.2621 −1.90621
\(163\) −1.24590 −0.0975864 −0.0487932 0.998809i \(-0.515538\pi\)
−0.0487932 + 0.998809i \(0.515538\pi\)
\(164\) −10.3438 −0.807718
\(165\) −5.63528 −0.438706
\(166\) −9.85949 −0.765245
\(167\) −4.94076 −0.382327 −0.191164 0.981558i \(-0.561226\pi\)
−0.191164 + 0.981558i \(0.561226\pi\)
\(168\) −42.6358 −3.28942
\(169\) −12.5487 −0.965284
\(170\) 3.73987 0.286835
\(171\) −47.5462 −3.63595
\(172\) −35.5999 −2.71447
\(173\) −18.9345 −1.43956 −0.719780 0.694202i \(-0.755757\pi\)
−0.719780 + 0.694202i \(0.755757\pi\)
\(174\) −9.78050 −0.741458
\(175\) 7.43311 0.561890
\(176\) 0.146550 0.0110466
\(177\) −27.8963 −2.09682
\(178\) 11.4205 0.856006
\(179\) −11.8023 −0.882145 −0.441072 0.897472i \(-0.645402\pi\)
−0.441072 + 0.897472i \(0.645402\pi\)
\(180\) 37.5348 2.79768
\(181\) −5.50887 −0.409471 −0.204736 0.978817i \(-0.565633\pi\)
−0.204736 + 0.978817i \(0.565633\pi\)
\(182\) −7.45546 −0.552636
\(183\) 19.6823 1.45495
\(184\) 0 0
\(185\) −7.89429 −0.580400
\(186\) −25.3354 −1.85768
\(187\) −0.875601 −0.0640303
\(188\) −20.5496 −1.49874
\(189\) 46.4329 3.37749
\(190\) 32.9076 2.38737
\(191\) −7.93312 −0.574020 −0.287010 0.957928i \(-0.592661\pi\)
−0.287010 + 0.957928i \(0.592661\pi\)
\(192\) 39.0315 2.81686
\(193\) 4.98694 0.358968 0.179484 0.983761i \(-0.442557\pi\)
0.179484 + 0.983761i \(0.442557\pi\)
\(194\) 0.125570 0.00901543
\(195\) 3.78577 0.271104
\(196\) 53.5278 3.82342
\(197\) −22.8065 −1.62490 −0.812448 0.583034i \(-0.801865\pi\)
−0.812448 + 0.583034i \(0.801865\pi\)
\(198\) −14.1650 −1.00666
\(199\) −0.478830 −0.0339434 −0.0169717 0.999856i \(-0.505403\pi\)
−0.0169717 + 0.999856i \(0.505403\pi\)
\(200\) 4.47667 0.316548
\(201\) 22.8197 1.60957
\(202\) −23.4006 −1.64646
\(203\) 6.80282 0.477464
\(204\) 8.66725 0.606829
\(205\) −5.88873 −0.411287
\(206\) 39.9114 2.78076
\(207\) 0 0
\(208\) −0.0984518 −0.00682640
\(209\) −7.70453 −0.532933
\(210\) −62.5391 −4.31561
\(211\) −10.8655 −0.748013 −0.374006 0.927426i \(-0.622016\pi\)
−0.374006 + 0.927426i \(0.622016\pi\)
\(212\) −8.83614 −0.606868
\(213\) −26.2045 −1.79550
\(214\) 8.53209 0.583242
\(215\) −20.2670 −1.38220
\(216\) 27.9647 1.90275
\(217\) 17.6220 1.19626
\(218\) 18.7756 1.27164
\(219\) 17.2941 1.16862
\(220\) 6.08225 0.410065
\(221\) 0.588227 0.0395684
\(222\) −29.4898 −1.97923
\(223\) −6.16572 −0.412887 −0.206443 0.978459i \(-0.566189\pi\)
−0.206443 + 0.978459i \(0.566189\pi\)
\(224\) −26.5309 −1.77267
\(225\) −9.48750 −0.632500
\(226\) −14.7794 −0.983112
\(227\) −17.0330 −1.13052 −0.565259 0.824914i \(-0.691224\pi\)
−0.565259 + 0.824914i \(0.691224\pi\)
\(228\) 76.2643 5.05072
\(229\) −6.20190 −0.409833 −0.204917 0.978779i \(-0.565692\pi\)
−0.204917 + 0.978779i \(0.565692\pi\)
\(230\) 0 0
\(231\) 14.6420 0.963376
\(232\) 4.09707 0.268986
\(233\) −17.1995 −1.12678 −0.563388 0.826193i \(-0.690502\pi\)
−0.563388 + 0.826193i \(0.690502\pi\)
\(234\) 9.51603 0.622082
\(235\) −11.6989 −0.763151
\(236\) 30.1089 1.95993
\(237\) 3.46279 0.224933
\(238\) −9.71723 −0.629874
\(239\) −10.5745 −0.684007 −0.342004 0.939699i \(-0.611106\pi\)
−0.342004 + 0.939699i \(0.611106\pi\)
\(240\) −0.825849 −0.0533083
\(241\) −19.5194 −1.25736 −0.628678 0.777666i \(-0.716403\pi\)
−0.628678 + 0.777666i \(0.716403\pi\)
\(242\) −2.29534 −0.147550
\(243\) −3.19955 −0.205251
\(244\) −21.2434 −1.35997
\(245\) 30.4733 1.94687
\(246\) −21.9979 −1.40253
\(247\) 5.17588 0.329334
\(248\) 10.6130 0.673928
\(249\) −13.0083 −0.824366
\(250\) 27.9225 1.76597
\(251\) −27.4068 −1.72990 −0.864950 0.501858i \(-0.832650\pi\)
−0.864950 + 0.501858i \(0.832650\pi\)
\(252\) −97.5259 −6.14356
\(253\) 0 0
\(254\) 35.4727 2.22575
\(255\) 4.93426 0.308995
\(256\) −16.9365 −1.05853
\(257\) −0.455059 −0.0283858 −0.0141929 0.999899i \(-0.504518\pi\)
−0.0141929 + 0.999899i \(0.504518\pi\)
\(258\) −75.7090 −4.71344
\(259\) 20.5116 1.27453
\(260\) −4.08604 −0.253405
\(261\) −8.68301 −0.537465
\(262\) −40.1794 −2.48229
\(263\) −6.12697 −0.377805 −0.188902 0.981996i \(-0.560493\pi\)
−0.188902 + 0.981996i \(0.560493\pi\)
\(264\) 8.81832 0.542730
\(265\) −5.03040 −0.309015
\(266\) −85.5032 −5.24254
\(267\) 15.0679 0.922139
\(268\) −24.6296 −1.50449
\(269\) 26.1172 1.59239 0.796195 0.605039i \(-0.206843\pi\)
0.796195 + 0.605039i \(0.206843\pi\)
\(270\) 41.0192 2.49635
\(271\) −27.6809 −1.68150 −0.840748 0.541426i \(-0.817885\pi\)
−0.840748 + 0.541426i \(0.817885\pi\)
\(272\) −0.128319 −0.00778049
\(273\) −9.83649 −0.595331
\(274\) −7.63726 −0.461384
\(275\) −1.53738 −0.0927077
\(276\) 0 0
\(277\) −23.3693 −1.40412 −0.702062 0.712116i \(-0.747737\pi\)
−0.702062 + 0.712116i \(0.747737\pi\)
\(278\) 9.65085 0.578819
\(279\) −22.4924 −1.34659
\(280\) 26.1977 1.56561
\(281\) −16.0124 −0.955221 −0.477611 0.878572i \(-0.658497\pi\)
−0.477611 + 0.878572i \(0.658497\pi\)
\(282\) −43.7022 −2.60243
\(283\) −25.7375 −1.52993 −0.764967 0.644069i \(-0.777245\pi\)
−0.764967 + 0.644069i \(0.777245\pi\)
\(284\) 28.2830 1.67829
\(285\) 43.4172 2.57181
\(286\) 1.54201 0.0911807
\(287\) 15.3006 0.903166
\(288\) 33.8636 1.99543
\(289\) −16.2333 −0.954901
\(290\) 6.00967 0.352900
\(291\) 0.165673 0.00971195
\(292\) −18.6658 −1.09233
\(293\) 15.6646 0.915137 0.457569 0.889174i \(-0.348720\pi\)
0.457569 + 0.889174i \(0.348720\pi\)
\(294\) 113.836 6.63903
\(295\) 17.1410 0.997987
\(296\) 12.3533 0.718022
\(297\) −9.60366 −0.557261
\(298\) −10.0787 −0.583841
\(299\) 0 0
\(300\) 15.2180 0.878611
\(301\) 52.6593 3.03523
\(302\) −1.08723 −0.0625630
\(303\) −30.8740 −1.77366
\(304\) −1.12910 −0.0647582
\(305\) −12.0938 −0.692491
\(306\) 12.4029 0.709027
\(307\) 24.9438 1.42362 0.711810 0.702372i \(-0.247876\pi\)
0.711810 + 0.702372i \(0.247876\pi\)
\(308\) −15.8034 −0.900482
\(309\) 52.6577 2.99559
\(310\) 15.5674 0.884169
\(311\) 1.60505 0.0910143 0.0455072 0.998964i \(-0.485510\pi\)
0.0455072 + 0.998964i \(0.485510\pi\)
\(312\) −5.92412 −0.335387
\(313\) 13.4008 0.757455 0.378728 0.925508i \(-0.376362\pi\)
0.378728 + 0.925508i \(0.376362\pi\)
\(314\) −43.9118 −2.47809
\(315\) −55.5214 −3.12828
\(316\) −3.73745 −0.210248
\(317\) 32.2996 1.81413 0.907064 0.420992i \(-0.138318\pi\)
0.907064 + 0.420992i \(0.138318\pi\)
\(318\) −18.7915 −1.05377
\(319\) −1.40702 −0.0787780
\(320\) −23.9830 −1.34069
\(321\) 11.2570 0.628302
\(322\) 0 0
\(323\) 6.74609 0.375363
\(324\) 34.5495 1.91942
\(325\) 1.03281 0.0572900
\(326\) 2.85977 0.158388
\(327\) 24.7719 1.36989
\(328\) 9.21494 0.508810
\(329\) 30.3970 1.67584
\(330\) 12.9349 0.712043
\(331\) 1.07418 0.0590422 0.0295211 0.999564i \(-0.490602\pi\)
0.0295211 + 0.999564i \(0.490602\pi\)
\(332\) 14.0401 0.770548
\(333\) −26.1807 −1.43469
\(334\) 11.3407 0.620537
\(335\) −14.0216 −0.766083
\(336\) 2.14579 0.117062
\(337\) −2.35061 −0.128046 −0.0640229 0.997948i \(-0.520393\pi\)
−0.0640229 + 0.997948i \(0.520393\pi\)
\(338\) 28.8035 1.56671
\(339\) −19.4995 −1.05907
\(340\) −5.32562 −0.288822
\(341\) −3.64474 −0.197374
\(342\) 109.135 5.90134
\(343\) −45.3339 −2.44780
\(344\) 31.7146 1.70994
\(345\) 0 0
\(346\) 43.4611 2.33648
\(347\) −19.0048 −1.02023 −0.510115 0.860106i \(-0.670397\pi\)
−0.510115 + 0.860106i \(0.670397\pi\)
\(348\) 13.9276 0.746596
\(349\) 13.7070 0.733717 0.366859 0.930277i \(-0.380433\pi\)
0.366859 + 0.930277i \(0.380433\pi\)
\(350\) −17.0615 −0.911978
\(351\) 6.45172 0.344367
\(352\) 5.48737 0.292478
\(353\) −16.9871 −0.904134 −0.452067 0.891984i \(-0.649313\pi\)
−0.452067 + 0.891984i \(0.649313\pi\)
\(354\) 64.0316 3.40324
\(355\) 16.1015 0.854577
\(356\) −16.2630 −0.861938
\(357\) −12.8206 −0.678537
\(358\) 27.0903 1.43177
\(359\) 21.4127 1.13012 0.565059 0.825051i \(-0.308853\pi\)
0.565059 + 0.825051i \(0.308853\pi\)
\(360\) −33.4383 −1.76235
\(361\) 40.3598 2.12420
\(362\) 12.6447 0.664593
\(363\) −3.02840 −0.158950
\(364\) 10.6167 0.556465
\(365\) −10.6264 −0.556211
\(366\) −45.1775 −2.36147
\(367\) 6.38742 0.333421 0.166710 0.986006i \(-0.446686\pi\)
0.166710 + 0.986006i \(0.446686\pi\)
\(368\) 0 0
\(369\) −19.5294 −1.01666
\(370\) 18.1201 0.942020
\(371\) 13.0704 0.678582
\(372\) 36.0779 1.87055
\(373\) 23.9688 1.24106 0.620529 0.784184i \(-0.286918\pi\)
0.620529 + 0.784184i \(0.286918\pi\)
\(374\) 2.00980 0.103925
\(375\) 36.8400 1.90241
\(376\) 18.3069 0.944107
\(377\) 0.945233 0.0486820
\(378\) −106.579 −5.48185
\(379\) −3.87842 −0.199221 −0.0996105 0.995027i \(-0.531760\pi\)
−0.0996105 + 0.995027i \(0.531760\pi\)
\(380\) −46.8609 −2.40391
\(381\) 46.8014 2.39771
\(382\) 18.2092 0.931665
\(383\) 20.8605 1.06592 0.532962 0.846139i \(-0.321079\pi\)
0.532962 + 0.846139i \(0.321079\pi\)
\(384\) −56.3548 −2.87584
\(385\) −8.99686 −0.458522
\(386\) −11.4467 −0.582624
\(387\) −67.2135 −3.41665
\(388\) −0.178814 −0.00907791
\(389\) −19.5845 −0.992974 −0.496487 0.868044i \(-0.665377\pi\)
−0.496487 + 0.868044i \(0.665377\pi\)
\(390\) −8.68963 −0.440017
\(391\) 0 0
\(392\) −47.6859 −2.40850
\(393\) −53.0113 −2.67407
\(394\) 52.3487 2.63729
\(395\) −2.12773 −0.107058
\(396\) 20.1712 1.01364
\(397\) 17.7687 0.891786 0.445893 0.895086i \(-0.352886\pi\)
0.445893 + 0.895086i \(0.352886\pi\)
\(398\) 1.09908 0.0550919
\(399\) −112.810 −5.64757
\(400\) −0.225303 −0.0112652
\(401\) −6.40641 −0.319921 −0.159960 0.987123i \(-0.551137\pi\)
−0.159960 + 0.987123i \(0.551137\pi\)
\(402\) −52.3790 −2.61242
\(403\) 2.44853 0.121970
\(404\) 33.3228 1.65787
\(405\) 19.6690 0.977360
\(406\) −15.6148 −0.774950
\(407\) −4.24239 −0.210288
\(408\) −7.72133 −0.382263
\(409\) 17.6565 0.873056 0.436528 0.899691i \(-0.356208\pi\)
0.436528 + 0.899691i \(0.356208\pi\)
\(410\) 13.5167 0.667541
\(411\) −10.0763 −0.497029
\(412\) −56.8343 −2.80003
\(413\) −44.5371 −2.19153
\(414\) 0 0
\(415\) 7.99299 0.392360
\(416\) −3.68640 −0.180741
\(417\) 12.7330 0.623538
\(418\) 17.6845 0.864979
\(419\) 15.5272 0.758551 0.379276 0.925284i \(-0.376173\pi\)
0.379276 + 0.925284i \(0.376173\pi\)
\(420\) 89.0565 4.34551
\(421\) −22.0707 −1.07566 −0.537830 0.843053i \(-0.680756\pi\)
−0.537830 + 0.843053i \(0.680756\pi\)
\(422\) 24.9401 1.21406
\(423\) −38.7982 −1.88643
\(424\) 7.87178 0.382288
\(425\) 1.34613 0.0652971
\(426\) 60.1484 2.91420
\(427\) 31.4232 1.52067
\(428\) −12.1498 −0.587284
\(429\) 2.03447 0.0982252
\(430\) 46.5197 2.24338
\(431\) −22.0505 −1.06213 −0.531067 0.847330i \(-0.678209\pi\)
−0.531067 + 0.847330i \(0.678209\pi\)
\(432\) −1.40741 −0.0677143
\(433\) −11.6288 −0.558842 −0.279421 0.960169i \(-0.590143\pi\)
−0.279421 + 0.960169i \(0.590143\pi\)
\(434\) −40.4485 −1.94159
\(435\) 7.92895 0.380164
\(436\) −26.7367 −1.28046
\(437\) 0 0
\(438\) −39.6958 −1.89674
\(439\) 6.18385 0.295139 0.147570 0.989052i \(-0.452855\pi\)
0.147570 + 0.989052i \(0.452855\pi\)
\(440\) −5.41845 −0.258314
\(441\) 101.062 4.81247
\(442\) −1.35018 −0.0642216
\(443\) 5.59713 0.265928 0.132964 0.991121i \(-0.457551\pi\)
0.132964 + 0.991121i \(0.457551\pi\)
\(444\) 41.9939 1.99294
\(445\) −9.25852 −0.438896
\(446\) 14.1524 0.670137
\(447\) −13.2974 −0.628947
\(448\) 62.3147 2.94409
\(449\) 4.14649 0.195685 0.0978426 0.995202i \(-0.468806\pi\)
0.0978426 + 0.995202i \(0.468806\pi\)
\(450\) 21.7771 1.02658
\(451\) −3.16461 −0.149016
\(452\) 21.0461 0.989925
\(453\) −1.43445 −0.0673965
\(454\) 39.0965 1.83489
\(455\) 6.04407 0.283350
\(456\) −67.9410 −3.18163
\(457\) 30.2338 1.41428 0.707140 0.707074i \(-0.249985\pi\)
0.707140 + 0.707074i \(0.249985\pi\)
\(458\) 14.2355 0.665181
\(459\) 8.40898 0.392497
\(460\) 0 0
\(461\) −23.3135 −1.08582 −0.542910 0.839791i \(-0.682677\pi\)
−0.542910 + 0.839791i \(0.682677\pi\)
\(462\) −33.6085 −1.56361
\(463\) 8.81820 0.409817 0.204908 0.978781i \(-0.434310\pi\)
0.204908 + 0.978781i \(0.434310\pi\)
\(464\) −0.206199 −0.00957253
\(465\) 20.5391 0.952479
\(466\) 39.4787 1.82882
\(467\) 25.1224 1.16253 0.581264 0.813715i \(-0.302559\pi\)
0.581264 + 0.813715i \(0.302559\pi\)
\(468\) −13.5510 −0.626393
\(469\) 36.4321 1.68228
\(470\) 26.8530 1.23863
\(471\) −57.9357 −2.66954
\(472\) −26.8229 −1.23463
\(473\) −10.8915 −0.500791
\(474\) −7.94830 −0.365078
\(475\) 11.8448 0.543477
\(476\) 13.8375 0.634239
\(477\) −16.6828 −0.763855
\(478\) 24.2721 1.11018
\(479\) −12.4863 −0.570514 −0.285257 0.958451i \(-0.592079\pi\)
−0.285257 + 0.958451i \(0.592079\pi\)
\(480\) −30.9228 −1.41143
\(481\) 2.85003 0.129950
\(482\) 44.8037 2.04075
\(483\) 0 0
\(484\) 3.26860 0.148573
\(485\) −0.101799 −0.00462244
\(486\) 7.34407 0.333134
\(487\) 17.4876 0.792437 0.396218 0.918156i \(-0.370322\pi\)
0.396218 + 0.918156i \(0.370322\pi\)
\(488\) 18.9249 0.856691
\(489\) 3.77308 0.170625
\(490\) −69.9468 −3.15987
\(491\) −12.4301 −0.560963 −0.280482 0.959859i \(-0.590494\pi\)
−0.280482 + 0.959859i \(0.590494\pi\)
\(492\) 31.3253 1.41225
\(493\) 1.23199 0.0554860
\(494\) −11.8804 −0.534526
\(495\) 11.4834 0.516142
\(496\) −0.534136 −0.0239834
\(497\) −41.8361 −1.87661
\(498\) 29.8585 1.33799
\(499\) −41.0461 −1.83747 −0.918737 0.394869i \(-0.870790\pi\)
−0.918737 + 0.394869i \(0.870790\pi\)
\(500\) −39.7620 −1.77821
\(501\) 14.9626 0.668479
\(502\) 62.9079 2.80772
\(503\) 25.1877 1.12306 0.561531 0.827456i \(-0.310213\pi\)
0.561531 + 0.827456i \(0.310213\pi\)
\(504\) 86.8822 3.87004
\(505\) 18.9706 0.844182
\(506\) 0 0
\(507\) 38.0024 1.68775
\(508\) −50.5136 −2.24118
\(509\) 17.2888 0.766314 0.383157 0.923683i \(-0.374837\pi\)
0.383157 + 0.923683i \(0.374837\pi\)
\(510\) −11.3258 −0.501515
\(511\) 27.6104 1.22141
\(512\) 1.65764 0.0732581
\(513\) 73.9917 3.26681
\(514\) 1.04452 0.0460716
\(515\) −32.3557 −1.42576
\(516\) 107.811 4.74610
\(517\) −6.28698 −0.276501
\(518\) −47.0812 −2.06863
\(519\) 57.3411 2.51700
\(520\) 3.64010 0.159629
\(521\) −7.83905 −0.343435 −0.171718 0.985146i \(-0.554932\pi\)
−0.171718 + 0.985146i \(0.554932\pi\)
\(522\) 19.9305 0.872334
\(523\) −16.4195 −0.717976 −0.358988 0.933342i \(-0.616878\pi\)
−0.358988 + 0.933342i \(0.616878\pi\)
\(524\) 57.2160 2.49949
\(525\) −22.5104 −0.982436
\(526\) 14.0635 0.613197
\(527\) 3.19134 0.139017
\(528\) −0.443811 −0.0193144
\(529\) 0 0
\(530\) 11.5465 0.501548
\(531\) 56.8464 2.46693
\(532\) 121.758 5.27887
\(533\) 2.12597 0.0920862
\(534\) −34.5860 −1.49668
\(535\) −6.91688 −0.299043
\(536\) 21.9416 0.947734
\(537\) 35.7421 1.54238
\(538\) −59.9478 −2.58453
\(539\) 16.3764 0.705380
\(540\) −58.4119 −2.51365
\(541\) 20.2280 0.869671 0.434835 0.900510i \(-0.356807\pi\)
0.434835 + 0.900510i \(0.356807\pi\)
\(542\) 63.5372 2.72916
\(543\) 16.6831 0.715938
\(544\) −4.80474 −0.206002
\(545\) −15.2212 −0.652004
\(546\) 22.5781 0.966254
\(547\) −23.7276 −1.01452 −0.507259 0.861793i \(-0.669341\pi\)
−0.507259 + 0.861793i \(0.669341\pi\)
\(548\) 10.8756 0.464581
\(549\) −40.1080 −1.71177
\(550\) 3.52882 0.150469
\(551\) 10.8404 0.461818
\(552\) 0 0
\(553\) 5.52843 0.235093
\(554\) 53.6405 2.27897
\(555\) 23.9071 1.01480
\(556\) −13.7429 −0.582830
\(557\) −11.3993 −0.483005 −0.241503 0.970400i \(-0.577640\pi\)
−0.241503 + 0.970400i \(0.577640\pi\)
\(558\) 51.6278 2.18558
\(559\) 7.31687 0.309470
\(560\) −1.31849 −0.0557163
\(561\) 2.65167 0.111954
\(562\) 36.7540 1.55037
\(563\) 22.3009 0.939870 0.469935 0.882701i \(-0.344277\pi\)
0.469935 + 0.882701i \(0.344277\pi\)
\(564\) 62.2325 2.62046
\(565\) 11.9815 0.504066
\(566\) 59.0763 2.48316
\(567\) −51.1056 −2.14623
\(568\) −25.1962 −1.05721
\(569\) 9.08903 0.381032 0.190516 0.981684i \(-0.438984\pi\)
0.190516 + 0.981684i \(0.438984\pi\)
\(570\) −99.6573 −4.17418
\(571\) 32.2137 1.34810 0.674050 0.738686i \(-0.264553\pi\)
0.674050 + 0.738686i \(0.264553\pi\)
\(572\) −2.19584 −0.0918126
\(573\) 24.0246 1.00364
\(574\) −35.1201 −1.46589
\(575\) 0 0
\(576\) −79.5375 −3.31406
\(577\) −19.1592 −0.797610 −0.398805 0.917036i \(-0.630575\pi\)
−0.398805 + 0.917036i \(0.630575\pi\)
\(578\) 37.2610 1.54986
\(579\) −15.1024 −0.627636
\(580\) −8.55785 −0.355345
\(581\) −20.7680 −0.861603
\(582\) −0.380277 −0.0157630
\(583\) −2.70334 −0.111961
\(584\) 16.6286 0.688098
\(585\) −7.71454 −0.318957
\(586\) −35.9557 −1.48532
\(587\) −42.7664 −1.76516 −0.882580 0.470162i \(-0.844195\pi\)
−0.882580 + 0.470162i \(0.844195\pi\)
\(588\) −162.104 −6.68504
\(589\) 28.0810 1.15706
\(590\) −39.3445 −1.61979
\(591\) 69.0672 2.84104
\(592\) −0.621722 −0.0255526
\(593\) 7.28055 0.298976 0.149488 0.988764i \(-0.452237\pi\)
0.149488 + 0.988764i \(0.452237\pi\)
\(594\) 22.0437 0.904464
\(595\) 7.87766 0.322952
\(596\) 14.3521 0.587887
\(597\) 1.45009 0.0593482
\(598\) 0 0
\(599\) 7.67861 0.313740 0.156870 0.987619i \(-0.449860\pi\)
0.156870 + 0.987619i \(0.449860\pi\)
\(600\) −13.5571 −0.553468
\(601\) 0.795081 0.0324320 0.0162160 0.999869i \(-0.494838\pi\)
0.0162160 + 0.999869i \(0.494838\pi\)
\(602\) −120.871 −4.92634
\(603\) −46.5014 −1.89368
\(604\) 1.54823 0.0629966
\(605\) 1.86081 0.0756527
\(606\) 70.8664 2.87875
\(607\) 26.1590 1.06176 0.530881 0.847447i \(-0.321861\pi\)
0.530881 + 0.847447i \(0.321861\pi\)
\(608\) −42.2776 −1.71458
\(609\) −20.6017 −0.834821
\(610\) 27.7595 1.12395
\(611\) 4.22358 0.170868
\(612\) −17.6619 −0.713941
\(613\) −1.74845 −0.0706194 −0.0353097 0.999376i \(-0.511242\pi\)
−0.0353097 + 0.999376i \(0.511242\pi\)
\(614\) −57.2546 −2.31061
\(615\) 17.8334 0.719114
\(616\) 14.0787 0.567245
\(617\) −21.0955 −0.849271 −0.424636 0.905364i \(-0.639598\pi\)
−0.424636 + 0.905364i \(0.639598\pi\)
\(618\) −120.868 −4.86201
\(619\) 36.9587 1.48550 0.742748 0.669571i \(-0.233522\pi\)
0.742748 + 0.669571i \(0.233522\pi\)
\(620\) −22.1682 −0.890297
\(621\) 0 0
\(622\) −3.68415 −0.147721
\(623\) 24.0562 0.963793
\(624\) 0.298151 0.0119356
\(625\) −14.9495 −0.597982
\(626\) −30.7593 −1.22939
\(627\) 23.3324 0.931806
\(628\) 62.5310 2.49526
\(629\) 3.71464 0.148113
\(630\) 127.441 5.07736
\(631\) 22.8809 0.910875 0.455437 0.890268i \(-0.349483\pi\)
0.455437 + 0.890268i \(0.349483\pi\)
\(632\) 3.32956 0.132443
\(633\) 32.9051 1.30786
\(634\) −74.1388 −2.94443
\(635\) −28.7573 −1.14120
\(636\) 26.7593 1.06108
\(637\) −11.0016 −0.435900
\(638\) 3.22960 0.127861
\(639\) 53.3990 2.11243
\(640\) 34.6274 1.36877
\(641\) 14.6863 0.580075 0.290037 0.957015i \(-0.406332\pi\)
0.290037 + 0.957015i \(0.406332\pi\)
\(642\) −25.8386 −1.01977
\(643\) −25.5413 −1.00725 −0.503624 0.863923i \(-0.668000\pi\)
−0.503624 + 0.863923i \(0.668000\pi\)
\(644\) 0 0
\(645\) 61.3765 2.41670
\(646\) −15.4846 −0.609233
\(647\) 12.8250 0.504203 0.252102 0.967701i \(-0.418878\pi\)
0.252102 + 0.967701i \(0.418878\pi\)
\(648\) −30.7789 −1.20911
\(649\) 9.21157 0.361586
\(650\) −2.37065 −0.0929847
\(651\) −53.3664 −2.09159
\(652\) −4.07235 −0.159486
\(653\) 2.52854 0.0989494 0.0494747 0.998775i \(-0.484245\pi\)
0.0494747 + 0.998775i \(0.484245\pi\)
\(654\) −56.8600 −2.22340
\(655\) 32.5730 1.27273
\(656\) −0.463772 −0.0181073
\(657\) −35.2414 −1.37490
\(658\) −69.7716 −2.71998
\(659\) 18.9446 0.737975 0.368988 0.929434i \(-0.379704\pi\)
0.368988 + 0.929434i \(0.379704\pi\)
\(660\) −18.4195 −0.716977
\(661\) 16.8011 0.653487 0.326744 0.945113i \(-0.394049\pi\)
0.326744 + 0.945113i \(0.394049\pi\)
\(662\) −2.46561 −0.0958285
\(663\) −1.78138 −0.0691833
\(664\) −12.5078 −0.485395
\(665\) 69.3165 2.68798
\(666\) 60.0936 2.32858
\(667\) 0 0
\(668\) −16.1494 −0.624838
\(669\) 18.6723 0.721911
\(670\) 32.1844 1.24339
\(671\) −6.49923 −0.250900
\(672\) 80.3463 3.09942
\(673\) 10.4735 0.403725 0.201863 0.979414i \(-0.435301\pi\)
0.201863 + 0.979414i \(0.435301\pi\)
\(674\) 5.39545 0.207825
\(675\) 14.7645 0.568286
\(676\) −41.0167 −1.57756
\(677\) −2.61344 −0.100443 −0.0502213 0.998738i \(-0.515993\pi\)
−0.0502213 + 0.998738i \(0.515993\pi\)
\(678\) 44.7580 1.71892
\(679\) 0.264502 0.0101506
\(680\) 4.74440 0.181939
\(681\) 51.5826 1.97665
\(682\) 8.36593 0.320348
\(683\) 25.1735 0.963236 0.481618 0.876381i \(-0.340049\pi\)
0.481618 + 0.876381i \(0.340049\pi\)
\(684\) −155.410 −5.94223
\(685\) 6.19145 0.236563
\(686\) 104.057 3.97291
\(687\) 18.7818 0.716572
\(688\) −1.59614 −0.0608524
\(689\) 1.81610 0.0691878
\(690\) 0 0
\(691\) −25.6904 −0.977309 −0.488654 0.872477i \(-0.662512\pi\)
−0.488654 + 0.872477i \(0.662512\pi\)
\(692\) −61.8892 −2.35267
\(693\) −29.8372 −1.13342
\(694\) 43.6225 1.65589
\(695\) −7.82384 −0.296775
\(696\) −12.4076 −0.470307
\(697\) 2.77093 0.104957
\(698\) −31.4622 −1.19086
\(699\) 52.0869 1.97011
\(700\) 24.2959 0.918298
\(701\) −35.8879 −1.35547 −0.677734 0.735307i \(-0.737038\pi\)
−0.677734 + 0.735307i \(0.737038\pi\)
\(702\) −14.8089 −0.558926
\(703\) 32.6857 1.23276
\(704\) −12.8885 −0.485753
\(705\) 35.4289 1.33433
\(706\) 38.9913 1.46746
\(707\) −49.2911 −1.85378
\(708\) −91.1819 −3.42683
\(709\) −33.5227 −1.25897 −0.629486 0.777012i \(-0.716734\pi\)
−0.629486 + 0.777012i \(0.716734\pi\)
\(710\) −36.9584 −1.38702
\(711\) −7.05640 −0.264636
\(712\) 14.4881 0.542965
\(713\) 0 0
\(714\) 29.4276 1.10130
\(715\) −1.25009 −0.0467506
\(716\) −38.5770 −1.44169
\(717\) 32.0238 1.19595
\(718\) −49.1494 −1.83424
\(719\) 45.7326 1.70554 0.852770 0.522287i \(-0.174921\pi\)
0.852770 + 0.522287i \(0.174921\pi\)
\(720\) 1.68290 0.0627178
\(721\) 84.0693 3.13090
\(722\) −92.6395 −3.44769
\(723\) 59.1125 2.19842
\(724\) −18.0063 −0.669199
\(725\) 2.16313 0.0803366
\(726\) 6.95122 0.257984
\(727\) −24.4311 −0.906101 −0.453051 0.891485i \(-0.649664\pi\)
−0.453051 + 0.891485i \(0.649664\pi\)
\(728\) −9.45801 −0.350537
\(729\) −22.0208 −0.815587
\(730\) 24.3912 0.902760
\(731\) 9.53659 0.352723
\(732\) 64.3334 2.37783
\(733\) 9.69778 0.358196 0.179098 0.983831i \(-0.442682\pi\)
0.179098 + 0.983831i \(0.442682\pi\)
\(734\) −14.6613 −0.541160
\(735\) −92.2854 −3.40400
\(736\) 0 0
\(737\) −7.53522 −0.277563
\(738\) 44.8267 1.65009
\(739\) 32.3210 1.18895 0.594474 0.804115i \(-0.297360\pi\)
0.594474 + 0.804115i \(0.297360\pi\)
\(740\) −25.8033 −0.948548
\(741\) −15.6746 −0.575822
\(742\) −30.0011 −1.10137
\(743\) 12.8639 0.471930 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(744\) −32.1405 −1.17833
\(745\) 8.17066 0.299350
\(746\) −55.0166 −2.01430
\(747\) 26.5080 0.969876
\(748\) −2.86199 −0.104645
\(749\) 17.9720 0.656683
\(750\) −84.5604 −3.08771
\(751\) −22.4842 −0.820461 −0.410230 0.911982i \(-0.634552\pi\)
−0.410230 + 0.911982i \(0.634552\pi\)
\(752\) −0.921356 −0.0335984
\(753\) 82.9986 3.02464
\(754\) −2.16963 −0.0790134
\(755\) 0.881406 0.0320776
\(756\) 151.770 5.51984
\(757\) −16.2586 −0.590930 −0.295465 0.955354i \(-0.595475\pi\)
−0.295465 + 0.955354i \(0.595475\pi\)
\(758\) 8.90230 0.323346
\(759\) 0 0
\(760\) 41.7466 1.51431
\(761\) −24.5165 −0.888722 −0.444361 0.895848i \(-0.646569\pi\)
−0.444361 + 0.895848i \(0.646569\pi\)
\(762\) −107.425 −3.89161
\(763\) 39.5490 1.43177
\(764\) −25.9302 −0.938121
\(765\) −10.0549 −0.363536
\(766\) −47.8821 −1.73005
\(767\) −6.18831 −0.223447
\(768\) 51.2906 1.85079
\(769\) 32.8639 1.18510 0.592552 0.805532i \(-0.298121\pi\)
0.592552 + 0.805532i \(0.298121\pi\)
\(770\) 20.6509 0.744206
\(771\) 1.37810 0.0496311
\(772\) 16.3003 0.586661
\(773\) −38.9309 −1.40025 −0.700123 0.714022i \(-0.746872\pi\)
−0.700123 + 0.714022i \(0.746872\pi\)
\(774\) 154.278 5.54541
\(775\) 5.60336 0.201279
\(776\) 0.159299 0.00571849
\(777\) −62.1173 −2.22845
\(778\) 44.9532 1.61165
\(779\) 24.3818 0.873569
\(780\) 12.3742 0.443066
\(781\) 8.65293 0.309626
\(782\) 0 0
\(783\) 13.5126 0.482899
\(784\) 2.39995 0.0857126
\(785\) 35.5988 1.27058
\(786\) 121.679 4.34015
\(787\) 14.1003 0.502622 0.251311 0.967906i \(-0.419138\pi\)
0.251311 + 0.967906i \(0.419138\pi\)
\(788\) −74.5453 −2.65557
\(789\) 18.5549 0.660572
\(790\) 4.88386 0.173760
\(791\) −31.1314 −1.10690
\(792\) −17.9698 −0.638528
\(793\) 4.36616 0.155047
\(794\) −40.7853 −1.44742
\(795\) 15.2341 0.540297
\(796\) −1.56510 −0.0554737
\(797\) 11.8651 0.420283 0.210141 0.977671i \(-0.432608\pi\)
0.210141 + 0.977671i \(0.432608\pi\)
\(798\) 258.938 9.16630
\(799\) 5.50489 0.194749
\(800\) −8.43618 −0.298264
\(801\) −30.7050 −1.08491
\(802\) 14.7049 0.519249
\(803\) −5.71063 −0.201524
\(804\) 74.5884 2.63053
\(805\) 0 0
\(806\) −5.62021 −0.197963
\(807\) −79.0932 −2.78421
\(808\) −29.6860 −1.04435
\(809\) 20.8928 0.734553 0.367276 0.930112i \(-0.380290\pi\)
0.367276 + 0.930112i \(0.380290\pi\)
\(810\) −45.1471 −1.58631
\(811\) −2.34337 −0.0822869 −0.0411434 0.999153i \(-0.513100\pi\)
−0.0411434 + 0.999153i \(0.513100\pi\)
\(812\) 22.2357 0.780320
\(813\) 83.8289 2.94001
\(814\) 9.73775 0.341308
\(815\) −2.31838 −0.0812095
\(816\) 0.388602 0.0136038
\(817\) 83.9137 2.93577
\(818\) −40.5276 −1.41702
\(819\) 20.0446 0.700414
\(820\) −19.2479 −0.672167
\(821\) −9.00362 −0.314229 −0.157114 0.987580i \(-0.550219\pi\)
−0.157114 + 0.987580i \(0.550219\pi\)
\(822\) 23.1287 0.806705
\(823\) 22.2583 0.775874 0.387937 0.921686i \(-0.373188\pi\)
0.387937 + 0.921686i \(0.373188\pi\)
\(824\) 50.6316 1.76383
\(825\) 4.65581 0.162094
\(826\) 102.228 3.55697
\(827\) 11.9922 0.417010 0.208505 0.978021i \(-0.433140\pi\)
0.208505 + 0.978021i \(0.433140\pi\)
\(828\) 0 0
\(829\) −38.5858 −1.34014 −0.670069 0.742299i \(-0.733736\pi\)
−0.670069 + 0.742299i \(0.733736\pi\)
\(830\) −18.3466 −0.636822
\(831\) 70.7715 2.45504
\(832\) 8.65846 0.300178
\(833\) −14.3392 −0.496823
\(834\) −29.2266 −1.01203
\(835\) −9.19381 −0.318165
\(836\) −25.1830 −0.870973
\(837\) 35.0028 1.20988
\(838\) −35.6402 −1.23117
\(839\) 15.6697 0.540979 0.270489 0.962723i \(-0.412814\pi\)
0.270489 + 0.962723i \(0.412814\pi\)
\(840\) −79.3371 −2.73739
\(841\) −27.0203 −0.931734
\(842\) 50.6598 1.74585
\(843\) 48.4920 1.67015
\(844\) −35.5150 −1.22248
\(845\) −23.3507 −0.803290
\(846\) 89.0553 3.06178
\(847\) −4.83491 −0.166130
\(848\) −0.396174 −0.0136047
\(849\) 77.9434 2.67501
\(850\) −3.08984 −0.105981
\(851\) 0 0
\(852\) −85.6521 −2.93439
\(853\) 14.6906 0.502995 0.251497 0.967858i \(-0.419077\pi\)
0.251497 + 0.967858i \(0.419077\pi\)
\(854\) −72.1270 −2.46814
\(855\) −88.4745 −3.02576
\(856\) 10.8238 0.369951
\(857\) 45.0625 1.53931 0.769653 0.638462i \(-0.220429\pi\)
0.769653 + 0.638462i \(0.220429\pi\)
\(858\) −4.66981 −0.159425
\(859\) 53.4365 1.82323 0.911615 0.411044i \(-0.134836\pi\)
0.911615 + 0.411044i \(0.134836\pi\)
\(860\) −66.2447 −2.25892
\(861\) −46.3363 −1.57914
\(862\) 50.6135 1.72390
\(863\) −48.7362 −1.65900 −0.829500 0.558506i \(-0.811375\pi\)
−0.829500 + 0.558506i \(0.811375\pi\)
\(864\) −52.6988 −1.79285
\(865\) −35.2335 −1.19797
\(866\) 26.6920 0.907031
\(867\) 49.1610 1.66959
\(868\) 57.5993 1.95505
\(869\) −1.14344 −0.0387886
\(870\) −18.1997 −0.617027
\(871\) 5.06214 0.171524
\(872\) 23.8188 0.806605
\(873\) −0.337606 −0.0114262
\(874\) 0 0
\(875\) 58.8159 1.98834
\(876\) 56.5274 1.90988
\(877\) −27.8376 −0.940011 −0.470005 0.882664i \(-0.655748\pi\)
−0.470005 + 0.882664i \(0.655748\pi\)
\(878\) −14.1941 −0.479026
\(879\) −47.4387 −1.60007
\(880\) 0.272701 0.00919276
\(881\) −11.0905 −0.373649 −0.186825 0.982393i \(-0.559820\pi\)
−0.186825 + 0.982393i \(0.559820\pi\)
\(882\) −231.972 −7.81089
\(883\) −26.0935 −0.878118 −0.439059 0.898458i \(-0.644688\pi\)
−0.439059 + 0.898458i \(0.644688\pi\)
\(884\) 1.92268 0.0646667
\(885\) −51.9098 −1.74493
\(886\) −12.8473 −0.431615
\(887\) 7.90798 0.265524 0.132762 0.991148i \(-0.457615\pi\)
0.132762 + 0.991148i \(0.457615\pi\)
\(888\) −37.4108 −1.25542
\(889\) 74.7196 2.50602
\(890\) 21.2515 0.712351
\(891\) 10.5701 0.354112
\(892\) −20.1533 −0.674781
\(893\) 48.4382 1.62092
\(894\) 30.5222 1.02081
\(895\) −21.9618 −0.734103
\(896\) −89.9718 −3.00575
\(897\) 0 0
\(898\) −9.51763 −0.317607
\(899\) 5.12822 0.171036
\(900\) −31.0108 −1.03369
\(901\) 2.36705 0.0788578
\(902\) 7.26386 0.241860
\(903\) −159.473 −5.30694
\(904\) −18.7492 −0.623588
\(905\) −10.2510 −0.340754
\(906\) 3.29257 0.109388
\(907\) −19.1968 −0.637420 −0.318710 0.947852i \(-0.603250\pi\)
−0.318710 + 0.947852i \(0.603250\pi\)
\(908\) −55.6740 −1.84761
\(909\) 62.9143 2.08674
\(910\) −13.8732 −0.459892
\(911\) 12.9473 0.428963 0.214482 0.976728i \(-0.431194\pi\)
0.214482 + 0.976728i \(0.431194\pi\)
\(912\) 3.41936 0.113226
\(913\) 4.29543 0.142158
\(914\) −69.3971 −2.29545
\(915\) 36.6249 1.21078
\(916\) −20.2715 −0.669791
\(917\) −84.6338 −2.79486
\(918\) −19.3015 −0.637044
\(919\) −12.3388 −0.407019 −0.203509 0.979073i \(-0.565235\pi\)
−0.203509 + 0.979073i \(0.565235\pi\)
\(920\) 0 0
\(921\) −75.5399 −2.48912
\(922\) 53.5126 1.76234
\(923\) −5.81302 −0.191338
\(924\) 47.8590 1.57445
\(925\) 6.52218 0.214448
\(926\) −20.2408 −0.665154
\(927\) −107.305 −3.52435
\(928\) −7.72084 −0.253449
\(929\) 42.4304 1.39210 0.696048 0.717995i \(-0.254940\pi\)
0.696048 + 0.717995i \(0.254940\pi\)
\(930\) −47.1443 −1.54592
\(931\) −126.172 −4.13513
\(932\) −56.2182 −1.84149
\(933\) −4.86075 −0.159134
\(934\) −57.6646 −1.88684
\(935\) −1.62933 −0.0532847
\(936\) 12.0720 0.394587
\(937\) −8.80913 −0.287782 −0.143891 0.989594i \(-0.545961\pi\)
−0.143891 + 0.989594i \(0.545961\pi\)
\(938\) −83.6243 −2.73043
\(939\) −40.5828 −1.32437
\(940\) −38.2390 −1.24722
\(941\) −52.6368 −1.71591 −0.857956 0.513723i \(-0.828266\pi\)
−0.857956 + 0.513723i \(0.828266\pi\)
\(942\) 132.982 4.33280
\(943\) 0 0
\(944\) 1.34995 0.0439372
\(945\) 86.4028 2.81068
\(946\) 24.9997 0.812810
\(947\) −4.96505 −0.161342 −0.0806712 0.996741i \(-0.525706\pi\)
−0.0806712 + 0.996741i \(0.525706\pi\)
\(948\) 11.3185 0.367608
\(949\) 3.83639 0.124534
\(950\) −27.1879 −0.882092
\(951\) −97.8162 −3.17191
\(952\) −12.3273 −0.399530
\(953\) −28.7734 −0.932062 −0.466031 0.884768i \(-0.654316\pi\)
−0.466031 + 0.884768i \(0.654316\pi\)
\(954\) 38.2929 1.23978
\(955\) −14.7620 −0.477688
\(956\) −34.5638 −1.11787
\(957\) 4.26102 0.137739
\(958\) 28.6603 0.925974
\(959\) −16.0871 −0.519480
\(960\) 72.6302 2.34413
\(961\) −17.7159 −0.571480
\(962\) −6.54180 −0.210916
\(963\) −22.9392 −0.739204
\(964\) −63.8011 −2.05490
\(965\) 9.27975 0.298726
\(966\) 0 0
\(967\) −17.9251 −0.576432 −0.288216 0.957565i \(-0.593062\pi\)
−0.288216 + 0.957565i \(0.593062\pi\)
\(968\) −2.91187 −0.0935912
\(969\) −20.4299 −0.656302
\(970\) 0.233663 0.00750246
\(971\) 58.9528 1.89188 0.945942 0.324335i \(-0.105140\pi\)
0.945942 + 0.324335i \(0.105140\pi\)
\(972\) −10.4581 −0.335442
\(973\) 20.3285 0.651703
\(974\) −40.1399 −1.28617
\(975\) −3.12776 −0.100169
\(976\) −0.952460 −0.0304875
\(977\) 15.0718 0.482190 0.241095 0.970501i \(-0.422493\pi\)
0.241095 + 0.970501i \(0.422493\pi\)
\(978\) −8.66052 −0.276933
\(979\) −4.97553 −0.159019
\(980\) 99.6052 3.18177
\(981\) −50.4796 −1.61169
\(982\) 28.5314 0.910473
\(983\) 3.17567 0.101288 0.0506440 0.998717i \(-0.483873\pi\)
0.0506440 + 0.998717i \(0.483873\pi\)
\(984\) −27.9065 −0.889627
\(985\) −42.4386 −1.35221
\(986\) −2.82784 −0.0900567
\(987\) −92.0543 −2.93012
\(988\) 16.9179 0.538230
\(989\) 0 0
\(990\) −26.3584 −0.837726
\(991\) −3.26920 −0.103850 −0.0519248 0.998651i \(-0.516536\pi\)
−0.0519248 + 0.998651i \(0.516536\pi\)
\(992\) −20.0000 −0.635001
\(993\) −3.25304 −0.103232
\(994\) 96.0283 3.04583
\(995\) −0.891012 −0.0282470
\(996\) −42.5189 −1.34726
\(997\) 10.3816 0.328788 0.164394 0.986395i \(-0.447433\pi\)
0.164394 + 0.986395i \(0.447433\pi\)
\(998\) 94.2148 2.98232
\(999\) 40.7425 1.28904
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.7 60
23.4 even 11 253.2.i.b.177.11 120
23.6 even 11 253.2.i.b.243.11 yes 120
23.22 odd 2 5819.2.a.t.1.7 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.177.11 120 23.4 even 11
253.2.i.b.243.11 yes 120 23.6 even 11
5819.2.a.t.1.7 60 23.22 odd 2
5819.2.a.u.1.7 60 1.1 even 1 trivial