Properties

Label 5819.2.a.u.1.5
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.53611 q^{2} +1.73986 q^{3} +4.43185 q^{4} +3.67453 q^{5} -4.41248 q^{6} +2.39766 q^{7} -6.16743 q^{8} +0.0271203 q^{9} -9.31902 q^{10} +1.00000 q^{11} +7.71081 q^{12} +3.89159 q^{13} -6.08072 q^{14} +6.39318 q^{15} +6.77759 q^{16} +0.558480 q^{17} -0.0687801 q^{18} -4.09250 q^{19} +16.2850 q^{20} +4.17159 q^{21} -2.53611 q^{22} -10.7305 q^{24} +8.50221 q^{25} -9.86951 q^{26} -5.17240 q^{27} +10.6261 q^{28} -6.82401 q^{29} -16.2138 q^{30} +3.17186 q^{31} -4.85384 q^{32} +1.73986 q^{33} -1.41637 q^{34} +8.81027 q^{35} +0.120193 q^{36} +4.10077 q^{37} +10.3790 q^{38} +6.77084 q^{39} -22.6625 q^{40} -6.56786 q^{41} -10.5796 q^{42} +9.26524 q^{43} +4.43185 q^{44} +0.0996546 q^{45} +13.0742 q^{47} +11.7921 q^{48} -1.25124 q^{49} -21.5625 q^{50} +0.971679 q^{51} +17.2470 q^{52} +9.79621 q^{53} +13.1178 q^{54} +3.67453 q^{55} -14.7874 q^{56} -7.12039 q^{57} +17.3064 q^{58} -8.58826 q^{59} +28.3336 q^{60} -5.44499 q^{61} -8.04420 q^{62} +0.0650253 q^{63} -1.24532 q^{64} +14.2998 q^{65} -4.41248 q^{66} -6.06298 q^{67} +2.47510 q^{68} -22.3438 q^{70} +6.48568 q^{71} -0.167263 q^{72} +2.33785 q^{73} -10.4000 q^{74} +14.7927 q^{75} -18.1373 q^{76} +2.39766 q^{77} -17.1716 q^{78} -4.66919 q^{79} +24.9045 q^{80} -9.08063 q^{81} +16.6568 q^{82} -14.1649 q^{83} +18.4879 q^{84} +2.05216 q^{85} -23.4976 q^{86} -11.8728 q^{87} -6.16743 q^{88} +7.31586 q^{89} -0.252735 q^{90} +9.33070 q^{91} +5.51861 q^{93} -33.1575 q^{94} -15.0380 q^{95} -8.44500 q^{96} +12.9904 q^{97} +3.17329 q^{98} +0.0271203 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.53611 −1.79330 −0.896650 0.442740i \(-0.854006\pi\)
−0.896650 + 0.442740i \(0.854006\pi\)
\(3\) 1.73986 1.00451 0.502255 0.864720i \(-0.332504\pi\)
0.502255 + 0.864720i \(0.332504\pi\)
\(4\) 4.43185 2.21592
\(5\) 3.67453 1.64330 0.821651 0.569991i \(-0.193053\pi\)
0.821651 + 0.569991i \(0.193053\pi\)
\(6\) −4.41248 −1.80139
\(7\) 2.39766 0.906229 0.453114 0.891452i \(-0.350313\pi\)
0.453114 + 0.891452i \(0.350313\pi\)
\(8\) −6.16743 −2.18052
\(9\) 0.0271203 0.00904011
\(10\) −9.31902 −2.94693
\(11\) 1.00000 0.301511
\(12\) 7.71081 2.22592
\(13\) 3.89159 1.07933 0.539667 0.841879i \(-0.318550\pi\)
0.539667 + 0.841879i \(0.318550\pi\)
\(14\) −6.08072 −1.62514
\(15\) 6.39318 1.65071
\(16\) 6.77759 1.69440
\(17\) 0.558480 0.135451 0.0677257 0.997704i \(-0.478426\pi\)
0.0677257 + 0.997704i \(0.478426\pi\)
\(18\) −0.0687801 −0.0162116
\(19\) −4.09250 −0.938884 −0.469442 0.882963i \(-0.655545\pi\)
−0.469442 + 0.882963i \(0.655545\pi\)
\(20\) 16.2850 3.64143
\(21\) 4.17159 0.910316
\(22\) −2.53611 −0.540700
\(23\) 0 0
\(24\) −10.7305 −2.19035
\(25\) 8.50221 1.70044
\(26\) −9.86951 −1.93557
\(27\) −5.17240 −0.995429
\(28\) 10.6261 2.00813
\(29\) −6.82401 −1.26719 −0.633593 0.773666i \(-0.718421\pi\)
−0.633593 + 0.773666i \(0.718421\pi\)
\(30\) −16.2138 −2.96022
\(31\) 3.17186 0.569684 0.284842 0.958575i \(-0.408059\pi\)
0.284842 + 0.958575i \(0.408059\pi\)
\(32\) −4.85384 −0.858045
\(33\) 1.73986 0.302871
\(34\) −1.41637 −0.242905
\(35\) 8.81027 1.48921
\(36\) 0.120193 0.0200322
\(37\) 4.10077 0.674163 0.337081 0.941475i \(-0.390560\pi\)
0.337081 + 0.941475i \(0.390560\pi\)
\(38\) 10.3790 1.68370
\(39\) 6.77084 1.08420
\(40\) −22.6625 −3.58325
\(41\) −6.56786 −1.02573 −0.512864 0.858470i \(-0.671415\pi\)
−0.512864 + 0.858470i \(0.671415\pi\)
\(42\) −10.5796 −1.63247
\(43\) 9.26524 1.41294 0.706468 0.707745i \(-0.250288\pi\)
0.706468 + 0.707745i \(0.250288\pi\)
\(44\) 4.43185 0.668126
\(45\) 0.0996546 0.0148556
\(46\) 0 0
\(47\) 13.0742 1.90706 0.953532 0.301291i \(-0.0974175\pi\)
0.953532 + 0.301291i \(0.0974175\pi\)
\(48\) 11.7921 1.70204
\(49\) −1.25124 −0.178749
\(50\) −21.5625 −3.04940
\(51\) 0.971679 0.136062
\(52\) 17.2470 2.39172
\(53\) 9.79621 1.34561 0.672806 0.739819i \(-0.265089\pi\)
0.672806 + 0.739819i \(0.265089\pi\)
\(54\) 13.1178 1.78510
\(55\) 3.67453 0.495474
\(56\) −14.7874 −1.97605
\(57\) −7.12039 −0.943118
\(58\) 17.3064 2.27244
\(59\) −8.58826 −1.11810 −0.559048 0.829135i \(-0.688833\pi\)
−0.559048 + 0.829135i \(0.688833\pi\)
\(60\) 28.3336 3.65786
\(61\) −5.44499 −0.697160 −0.348580 0.937279i \(-0.613336\pi\)
−0.348580 + 0.937279i \(0.613336\pi\)
\(62\) −8.04420 −1.02161
\(63\) 0.0650253 0.00819241
\(64\) −1.24532 −0.155665
\(65\) 14.2998 1.77367
\(66\) −4.41248 −0.543139
\(67\) −6.06298 −0.740710 −0.370355 0.928890i \(-0.620764\pi\)
−0.370355 + 0.928890i \(0.620764\pi\)
\(68\) 2.47510 0.300150
\(69\) 0 0
\(70\) −22.3438 −2.67060
\(71\) 6.48568 0.769708 0.384854 0.922977i \(-0.374252\pi\)
0.384854 + 0.922977i \(0.374252\pi\)
\(72\) −0.167263 −0.0197121
\(73\) 2.33785 0.273625 0.136812 0.990597i \(-0.456314\pi\)
0.136812 + 0.990597i \(0.456314\pi\)
\(74\) −10.4000 −1.20898
\(75\) 14.7927 1.70811
\(76\) −18.1373 −2.08050
\(77\) 2.39766 0.273238
\(78\) −17.1716 −1.94430
\(79\) −4.66919 −0.525325 −0.262662 0.964888i \(-0.584601\pi\)
−0.262662 + 0.964888i \(0.584601\pi\)
\(80\) 24.9045 2.78441
\(81\) −9.08063 −1.00896
\(82\) 16.6568 1.83944
\(83\) −14.1649 −1.55480 −0.777399 0.629007i \(-0.783461\pi\)
−0.777399 + 0.629007i \(0.783461\pi\)
\(84\) 18.4879 2.01719
\(85\) 2.05216 0.222588
\(86\) −23.4976 −2.53382
\(87\) −11.8728 −1.27290
\(88\) −6.16743 −0.657451
\(89\) 7.31586 0.775480 0.387740 0.921769i \(-0.373256\pi\)
0.387740 + 0.921769i \(0.373256\pi\)
\(90\) −0.252735 −0.0266406
\(91\) 9.33070 0.978124
\(92\) 0 0
\(93\) 5.51861 0.572253
\(94\) −33.1575 −3.41994
\(95\) −15.0380 −1.54287
\(96\) −8.44500 −0.861915
\(97\) 12.9904 1.31897 0.659486 0.751717i \(-0.270774\pi\)
0.659486 + 0.751717i \(0.270774\pi\)
\(98\) 3.17329 0.320551
\(99\) 0.0271203 0.00272570
\(100\) 37.6805 3.76805
\(101\) −16.5275 −1.64455 −0.822276 0.569089i \(-0.807296\pi\)
−0.822276 + 0.569089i \(0.807296\pi\)
\(102\) −2.46428 −0.244000
\(103\) 12.9171 1.27276 0.636380 0.771376i \(-0.280431\pi\)
0.636380 + 0.771376i \(0.280431\pi\)
\(104\) −24.0012 −2.35351
\(105\) 15.3287 1.49592
\(106\) −24.8443 −2.41309
\(107\) 2.18792 0.211515 0.105757 0.994392i \(-0.466273\pi\)
0.105757 + 0.994392i \(0.466273\pi\)
\(108\) −22.9233 −2.20580
\(109\) 14.1516 1.35548 0.677738 0.735303i \(-0.262960\pi\)
0.677738 + 0.735303i \(0.262960\pi\)
\(110\) −9.31902 −0.888534
\(111\) 7.13478 0.677203
\(112\) 16.2503 1.53551
\(113\) 13.6362 1.28278 0.641392 0.767214i \(-0.278357\pi\)
0.641392 + 0.767214i \(0.278357\pi\)
\(114\) 18.0581 1.69129
\(115\) 0 0
\(116\) −30.2430 −2.80799
\(117\) 0.105541 0.00975730
\(118\) 21.7808 2.00508
\(119\) 1.33904 0.122750
\(120\) −39.4295 −3.59941
\(121\) 1.00000 0.0909091
\(122\) 13.8091 1.25022
\(123\) −11.4272 −1.03035
\(124\) 14.0572 1.26238
\(125\) 12.8690 1.15104
\(126\) −0.164911 −0.0146915
\(127\) 8.70630 0.772559 0.386280 0.922382i \(-0.373760\pi\)
0.386280 + 0.922382i \(0.373760\pi\)
\(128\) 12.8659 1.13720
\(129\) 16.1202 1.41931
\(130\) −36.2658 −3.18073
\(131\) 10.5888 0.925150 0.462575 0.886580i \(-0.346926\pi\)
0.462575 + 0.886580i \(0.346926\pi\)
\(132\) 7.71081 0.671140
\(133\) −9.81241 −0.850844
\(134\) 15.3764 1.32832
\(135\) −19.0062 −1.63579
\(136\) −3.44439 −0.295354
\(137\) 1.38414 0.118255 0.0591276 0.998250i \(-0.481168\pi\)
0.0591276 + 0.998250i \(0.481168\pi\)
\(138\) 0 0
\(139\) 21.5113 1.82456 0.912281 0.409565i \(-0.134319\pi\)
0.912281 + 0.409565i \(0.134319\pi\)
\(140\) 39.0458 3.29997
\(141\) 22.7473 1.91567
\(142\) −16.4484 −1.38032
\(143\) 3.89159 0.325431
\(144\) 0.183811 0.0153175
\(145\) −25.0750 −2.08237
\(146\) −5.92904 −0.490691
\(147\) −2.17699 −0.179555
\(148\) 18.1740 1.49389
\(149\) 5.33304 0.436900 0.218450 0.975848i \(-0.429900\pi\)
0.218450 + 0.975848i \(0.429900\pi\)
\(150\) −37.5158 −3.06315
\(151\) 10.4293 0.848723 0.424361 0.905493i \(-0.360499\pi\)
0.424361 + 0.905493i \(0.360499\pi\)
\(152\) 25.2402 2.04725
\(153\) 0.0151462 0.00122450
\(154\) −6.08072 −0.489998
\(155\) 11.6551 0.936162
\(156\) 30.0073 2.40251
\(157\) 10.2451 0.817644 0.408822 0.912614i \(-0.365940\pi\)
0.408822 + 0.912614i \(0.365940\pi\)
\(158\) 11.8416 0.942065
\(159\) 17.0441 1.35168
\(160\) −17.8356 −1.41003
\(161\) 0 0
\(162\) 23.0295 1.80937
\(163\) 0.121668 0.00952978 0.00476489 0.999989i \(-0.498483\pi\)
0.00476489 + 0.999989i \(0.498483\pi\)
\(164\) −29.1078 −2.27294
\(165\) 6.39318 0.497709
\(166\) 35.9237 2.78822
\(167\) −11.3523 −0.878468 −0.439234 0.898373i \(-0.644750\pi\)
−0.439234 + 0.898373i \(0.644750\pi\)
\(168\) −25.7280 −1.98496
\(169\) 2.14450 0.164962
\(170\) −5.20449 −0.399166
\(171\) −0.110990 −0.00848762
\(172\) 41.0621 3.13096
\(173\) 9.32445 0.708924 0.354462 0.935070i \(-0.384664\pi\)
0.354462 + 0.935070i \(0.384664\pi\)
\(174\) 30.1108 2.28269
\(175\) 20.3854 1.54099
\(176\) 6.77759 0.510880
\(177\) −14.9424 −1.12314
\(178\) −18.5538 −1.39067
\(179\) 16.7636 1.25297 0.626484 0.779435i \(-0.284494\pi\)
0.626484 + 0.779435i \(0.284494\pi\)
\(180\) 0.441654 0.0329190
\(181\) −17.6188 −1.30959 −0.654797 0.755805i \(-0.727246\pi\)
−0.654797 + 0.755805i \(0.727246\pi\)
\(182\) −23.6637 −1.75407
\(183\) −9.47353 −0.700304
\(184\) 0 0
\(185\) 15.0684 1.10785
\(186\) −13.9958 −1.02622
\(187\) 0.558480 0.0408401
\(188\) 57.9428 4.22591
\(189\) −12.4016 −0.902086
\(190\) 38.1381 2.76683
\(191\) −4.11143 −0.297493 −0.148746 0.988875i \(-0.547524\pi\)
−0.148746 + 0.988875i \(0.547524\pi\)
\(192\) −2.16669 −0.156367
\(193\) 11.5045 0.828109 0.414054 0.910252i \(-0.364112\pi\)
0.414054 + 0.910252i \(0.364112\pi\)
\(194\) −32.9450 −2.36531
\(195\) 24.8797 1.78167
\(196\) −5.54533 −0.396095
\(197\) 3.72222 0.265197 0.132599 0.991170i \(-0.457668\pi\)
0.132599 + 0.991170i \(0.457668\pi\)
\(198\) −0.0687801 −0.00488799
\(199\) 5.16905 0.366424 0.183212 0.983073i \(-0.441350\pi\)
0.183212 + 0.983073i \(0.441350\pi\)
\(200\) −52.4368 −3.70784
\(201\) −10.5487 −0.744051
\(202\) 41.9156 2.94917
\(203\) −16.3616 −1.14836
\(204\) 4.30633 0.301504
\(205\) −24.1338 −1.68558
\(206\) −32.7592 −2.28244
\(207\) 0 0
\(208\) 26.3756 1.82882
\(209\) −4.09250 −0.283084
\(210\) −38.8751 −2.68264
\(211\) −1.25163 −0.0861654 −0.0430827 0.999072i \(-0.513718\pi\)
−0.0430827 + 0.999072i \(0.513718\pi\)
\(212\) 43.4153 2.98178
\(213\) 11.2842 0.773179
\(214\) −5.54882 −0.379309
\(215\) 34.0454 2.32188
\(216\) 31.9004 2.17055
\(217\) 7.60504 0.516264
\(218\) −35.8900 −2.43078
\(219\) 4.06754 0.274859
\(220\) 16.2850 1.09793
\(221\) 2.17338 0.146197
\(222\) −18.0946 −1.21443
\(223\) −2.47683 −0.165861 −0.0829305 0.996555i \(-0.526428\pi\)
−0.0829305 + 0.996555i \(0.526428\pi\)
\(224\) −11.6378 −0.777585
\(225\) 0.230583 0.0153722
\(226\) −34.5828 −2.30041
\(227\) −9.21172 −0.611403 −0.305702 0.952127i \(-0.598891\pi\)
−0.305702 + 0.952127i \(0.598891\pi\)
\(228\) −31.5565 −2.08988
\(229\) −18.6580 −1.23295 −0.616477 0.787373i \(-0.711441\pi\)
−0.616477 + 0.787373i \(0.711441\pi\)
\(230\) 0 0
\(231\) 4.17159 0.274471
\(232\) 42.0866 2.76312
\(233\) −0.0421319 −0.00276016 −0.00138008 0.999999i \(-0.500439\pi\)
−0.00138008 + 0.999999i \(0.500439\pi\)
\(234\) −0.267664 −0.0174978
\(235\) 48.0415 3.13388
\(236\) −38.0619 −2.47762
\(237\) −8.12375 −0.527694
\(238\) −3.39596 −0.220127
\(239\) −0.243749 −0.0157668 −0.00788341 0.999969i \(-0.502509\pi\)
−0.00788341 + 0.999969i \(0.502509\pi\)
\(240\) 43.3304 2.79696
\(241\) −20.9205 −1.34761 −0.673804 0.738911i \(-0.735341\pi\)
−0.673804 + 0.738911i \(0.735341\pi\)
\(242\) −2.53611 −0.163027
\(243\) −0.281834 −0.0180797
\(244\) −24.1314 −1.54485
\(245\) −4.59774 −0.293739
\(246\) 28.9806 1.84773
\(247\) −15.9263 −1.01337
\(248\) −19.5623 −1.24221
\(249\) −24.6450 −1.56181
\(250\) −32.6371 −2.06415
\(251\) −4.14161 −0.261416 −0.130708 0.991421i \(-0.541725\pi\)
−0.130708 + 0.991421i \(0.541725\pi\)
\(252\) 0.288182 0.0181538
\(253\) 0 0
\(254\) −22.0801 −1.38543
\(255\) 3.57047 0.223591
\(256\) −30.1388 −1.88367
\(257\) −2.99240 −0.186661 −0.0933304 0.995635i \(-0.529751\pi\)
−0.0933304 + 0.995635i \(0.529751\pi\)
\(258\) −40.8827 −2.54524
\(259\) 9.83224 0.610946
\(260\) 63.3746 3.93032
\(261\) −0.185069 −0.0114555
\(262\) −26.8544 −1.65907
\(263\) −16.8197 −1.03715 −0.518574 0.855033i \(-0.673537\pi\)
−0.518574 + 0.855033i \(0.673537\pi\)
\(264\) −10.7305 −0.660416
\(265\) 35.9965 2.21125
\(266\) 24.8853 1.52582
\(267\) 12.7286 0.778977
\(268\) −26.8702 −1.64136
\(269\) −4.93842 −0.301101 −0.150550 0.988602i \(-0.548105\pi\)
−0.150550 + 0.988602i \(0.548105\pi\)
\(270\) 48.2017 2.93346
\(271\) −2.81986 −0.171295 −0.0856473 0.996326i \(-0.527296\pi\)
−0.0856473 + 0.996326i \(0.527296\pi\)
\(272\) 3.78515 0.229508
\(273\) 16.2341 0.982535
\(274\) −3.51034 −0.212067
\(275\) 8.50221 0.512702
\(276\) 0 0
\(277\) 21.5605 1.29545 0.647724 0.761875i \(-0.275721\pi\)
0.647724 + 0.761875i \(0.275721\pi\)
\(278\) −54.5549 −3.27199
\(279\) 0.0860221 0.00515001
\(280\) −54.3368 −3.24724
\(281\) −23.0804 −1.37686 −0.688430 0.725302i \(-0.741700\pi\)
−0.688430 + 0.725302i \(0.741700\pi\)
\(282\) −57.6895 −3.43536
\(283\) −9.27050 −0.551074 −0.275537 0.961290i \(-0.588856\pi\)
−0.275537 + 0.961290i \(0.588856\pi\)
\(284\) 28.7435 1.70561
\(285\) −26.1641 −1.54983
\(286\) −9.86951 −0.583596
\(287\) −15.7475 −0.929544
\(288\) −0.131638 −0.00775682
\(289\) −16.6881 −0.981653
\(290\) 63.5931 3.73431
\(291\) 22.6015 1.32492
\(292\) 10.3610 0.606331
\(293\) 1.08449 0.0633565 0.0316783 0.999498i \(-0.489915\pi\)
0.0316783 + 0.999498i \(0.489915\pi\)
\(294\) 5.52109 0.321997
\(295\) −31.5578 −1.83737
\(296\) −25.2913 −1.47002
\(297\) −5.17240 −0.300133
\(298\) −13.5252 −0.783493
\(299\) 0 0
\(300\) 65.5589 3.78504
\(301\) 22.2149 1.28044
\(302\) −26.4498 −1.52201
\(303\) −28.7556 −1.65197
\(304\) −27.7373 −1.59084
\(305\) −20.0078 −1.14564
\(306\) −0.0384124 −0.00219589
\(307\) −24.9576 −1.42440 −0.712201 0.701975i \(-0.752302\pi\)
−0.712201 + 0.701975i \(0.752302\pi\)
\(308\) 10.6261 0.605475
\(309\) 22.4740 1.27850
\(310\) −29.5587 −1.67882
\(311\) 3.31914 0.188211 0.0941055 0.995562i \(-0.470001\pi\)
0.0941055 + 0.995562i \(0.470001\pi\)
\(312\) −41.7587 −2.36412
\(313\) 25.7907 1.45777 0.728887 0.684634i \(-0.240038\pi\)
0.728887 + 0.684634i \(0.240038\pi\)
\(314\) −25.9826 −1.46628
\(315\) 0.238938 0.0134626
\(316\) −20.6931 −1.16408
\(317\) 16.5791 0.931173 0.465587 0.885002i \(-0.345843\pi\)
0.465587 + 0.885002i \(0.345843\pi\)
\(318\) −43.2256 −2.42397
\(319\) −6.82401 −0.382071
\(320\) −4.57598 −0.255805
\(321\) 3.80669 0.212469
\(322\) 0 0
\(323\) −2.28558 −0.127173
\(324\) −40.2440 −2.23578
\(325\) 33.0871 1.83534
\(326\) −0.308563 −0.0170898
\(327\) 24.6218 1.36159
\(328\) 40.5069 2.23662
\(329\) 31.3474 1.72824
\(330\) −16.2138 −0.892541
\(331\) 23.8068 1.30854 0.654270 0.756261i \(-0.272976\pi\)
0.654270 + 0.756261i \(0.272976\pi\)
\(332\) −62.7767 −3.44532
\(333\) 0.111214 0.00609451
\(334\) 28.7907 1.57536
\(335\) −22.2786 −1.21721
\(336\) 28.2733 1.54244
\(337\) 5.18758 0.282585 0.141293 0.989968i \(-0.454874\pi\)
0.141293 + 0.989968i \(0.454874\pi\)
\(338\) −5.43870 −0.295826
\(339\) 23.7251 1.28857
\(340\) 9.09484 0.493237
\(341\) 3.17186 0.171766
\(342\) 0.281483 0.0152208
\(343\) −19.7836 −1.06822
\(344\) −57.1427 −3.08093
\(345\) 0 0
\(346\) −23.6478 −1.27131
\(347\) −14.3575 −0.770750 −0.385375 0.922760i \(-0.625928\pi\)
−0.385375 + 0.922760i \(0.625928\pi\)
\(348\) −52.6186 −2.82065
\(349\) 8.96546 0.479910 0.239955 0.970784i \(-0.422867\pi\)
0.239955 + 0.970784i \(0.422867\pi\)
\(350\) −51.6995 −2.76346
\(351\) −20.1289 −1.07440
\(352\) −4.85384 −0.258710
\(353\) −33.2473 −1.76958 −0.884788 0.465995i \(-0.845697\pi\)
−0.884788 + 0.465995i \(0.845697\pi\)
\(354\) 37.8955 2.01412
\(355\) 23.8318 1.26486
\(356\) 32.4228 1.71840
\(357\) 2.32975 0.123304
\(358\) −42.5142 −2.24695
\(359\) −31.5362 −1.66442 −0.832209 0.554462i \(-0.812924\pi\)
−0.832209 + 0.554462i \(0.812924\pi\)
\(360\) −0.614613 −0.0323930
\(361\) −2.25144 −0.118497
\(362\) 44.6832 2.34849
\(363\) 1.73986 0.0913191
\(364\) 41.3523 2.16745
\(365\) 8.59051 0.449648
\(366\) 24.0259 1.25585
\(367\) −0.720702 −0.0376203 −0.0188102 0.999823i \(-0.505988\pi\)
−0.0188102 + 0.999823i \(0.505988\pi\)
\(368\) 0 0
\(369\) −0.178123 −0.00927270
\(370\) −38.2152 −1.98671
\(371\) 23.4879 1.21943
\(372\) 24.4576 1.26807
\(373\) −2.49679 −0.129279 −0.0646395 0.997909i \(-0.520590\pi\)
−0.0646395 + 0.997909i \(0.520590\pi\)
\(374\) −1.41637 −0.0732386
\(375\) 22.3903 1.15623
\(376\) −80.6341 −4.15839
\(377\) −26.5563 −1.36772
\(378\) 31.4519 1.61771
\(379\) 1.20543 0.0619186 0.0309593 0.999521i \(-0.490144\pi\)
0.0309593 + 0.999521i \(0.490144\pi\)
\(380\) −66.6463 −3.41888
\(381\) 15.1478 0.776043
\(382\) 10.4270 0.533494
\(383\) −32.4156 −1.65636 −0.828181 0.560461i \(-0.810624\pi\)
−0.828181 + 0.560461i \(0.810624\pi\)
\(384\) 22.3850 1.14233
\(385\) 8.81027 0.449013
\(386\) −29.1765 −1.48505
\(387\) 0.251276 0.0127731
\(388\) 57.5714 2.92274
\(389\) −3.67627 −0.186394 −0.0931971 0.995648i \(-0.529709\pi\)
−0.0931971 + 0.995648i \(0.529709\pi\)
\(390\) −63.0976 −3.19507
\(391\) 0 0
\(392\) 7.71697 0.389766
\(393\) 18.4231 0.929322
\(394\) −9.43995 −0.475578
\(395\) −17.1571 −0.863267
\(396\) 0.120193 0.00603994
\(397\) −17.4558 −0.876080 −0.438040 0.898956i \(-0.644327\pi\)
−0.438040 + 0.898956i \(0.644327\pi\)
\(398\) −13.1093 −0.657109
\(399\) −17.0722 −0.854681
\(400\) 57.6245 2.88122
\(401\) 4.63145 0.231284 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(402\) 26.7528 1.33431
\(403\) 12.3436 0.614879
\(404\) −73.2476 −3.64420
\(405\) −33.3671 −1.65802
\(406\) 41.4949 2.05936
\(407\) 4.10077 0.203268
\(408\) −5.99277 −0.296686
\(409\) 19.8437 0.981209 0.490605 0.871382i \(-0.336776\pi\)
0.490605 + 0.871382i \(0.336776\pi\)
\(410\) 61.2061 3.02275
\(411\) 2.40822 0.118789
\(412\) 57.2467 2.82034
\(413\) −20.5917 −1.01325
\(414\) 0 0
\(415\) −52.0494 −2.55500
\(416\) −18.8892 −0.926117
\(417\) 37.4266 1.83279
\(418\) 10.3790 0.507655
\(419\) −22.7150 −1.10970 −0.554851 0.831950i \(-0.687225\pi\)
−0.554851 + 0.831950i \(0.687225\pi\)
\(420\) 67.9343 3.31485
\(421\) −12.1962 −0.594408 −0.297204 0.954814i \(-0.596054\pi\)
−0.297204 + 0.954814i \(0.596054\pi\)
\(422\) 3.17426 0.154520
\(423\) 0.354576 0.0172401
\(424\) −60.4175 −2.93413
\(425\) 4.74832 0.230327
\(426\) −28.6179 −1.38654
\(427\) −13.0552 −0.631786
\(428\) 9.69655 0.468701
\(429\) 6.77084 0.326899
\(430\) −86.3429 −4.16383
\(431\) −15.0196 −0.723467 −0.361733 0.932282i \(-0.617815\pi\)
−0.361733 + 0.932282i \(0.617815\pi\)
\(432\) −35.0564 −1.68665
\(433\) 5.68852 0.273373 0.136687 0.990614i \(-0.456355\pi\)
0.136687 + 0.990614i \(0.456355\pi\)
\(434\) −19.2872 −0.925816
\(435\) −43.6271 −2.09176
\(436\) 62.7177 3.00363
\(437\) 0 0
\(438\) −10.3157 −0.492904
\(439\) 3.08851 0.147407 0.0737033 0.997280i \(-0.476518\pi\)
0.0737033 + 0.997280i \(0.476518\pi\)
\(440\) −22.6625 −1.08039
\(441\) −0.0339342 −0.00161591
\(442\) −5.51193 −0.262176
\(443\) −4.73687 −0.225056 −0.112528 0.993649i \(-0.535895\pi\)
−0.112528 + 0.993649i \(0.535895\pi\)
\(444\) 31.6203 1.50063
\(445\) 26.8824 1.27435
\(446\) 6.28151 0.297438
\(447\) 9.27876 0.438870
\(448\) −2.98585 −0.141068
\(449\) 24.3107 1.14729 0.573646 0.819104i \(-0.305529\pi\)
0.573646 + 0.819104i \(0.305529\pi\)
\(450\) −0.584783 −0.0275669
\(451\) −6.56786 −0.309269
\(452\) 60.4335 2.84255
\(453\) 18.1455 0.852550
\(454\) 23.3619 1.09643
\(455\) 34.2860 1.60735
\(456\) 43.9145 2.05649
\(457\) −5.50157 −0.257352 −0.128676 0.991687i \(-0.541073\pi\)
−0.128676 + 0.991687i \(0.541073\pi\)
\(458\) 47.3187 2.21106
\(459\) −2.88868 −0.134832
\(460\) 0 0
\(461\) 31.8427 1.48306 0.741532 0.670917i \(-0.234099\pi\)
0.741532 + 0.670917i \(0.234099\pi\)
\(462\) −10.5796 −0.492208
\(463\) 7.34088 0.341160 0.170580 0.985344i \(-0.445436\pi\)
0.170580 + 0.985344i \(0.445436\pi\)
\(464\) −46.2503 −2.14712
\(465\) 20.2783 0.940384
\(466\) 0.106851 0.00494979
\(467\) −11.5380 −0.533916 −0.266958 0.963708i \(-0.586018\pi\)
−0.266958 + 0.963708i \(0.586018\pi\)
\(468\) 0.467743 0.0216214
\(469\) −14.5369 −0.671253
\(470\) −121.839 −5.61999
\(471\) 17.8250 0.821332
\(472\) 52.9675 2.43803
\(473\) 9.26524 0.426016
\(474\) 20.6027 0.946314
\(475\) −34.7953 −1.59652
\(476\) 5.93444 0.272005
\(477\) 0.265677 0.0121645
\(478\) 0.618175 0.0282746
\(479\) −9.59664 −0.438482 −0.219241 0.975671i \(-0.570358\pi\)
−0.219241 + 0.975671i \(0.570358\pi\)
\(480\) −31.0315 −1.41639
\(481\) 15.9585 0.727647
\(482\) 53.0566 2.41666
\(483\) 0 0
\(484\) 4.43185 0.201448
\(485\) 47.7336 2.16747
\(486\) 0.714762 0.0324223
\(487\) 17.3524 0.786313 0.393157 0.919472i \(-0.371383\pi\)
0.393157 + 0.919472i \(0.371383\pi\)
\(488\) 33.5816 1.52017
\(489\) 0.211686 0.00957276
\(490\) 11.6604 0.526762
\(491\) −20.1424 −0.909012 −0.454506 0.890744i \(-0.650184\pi\)
−0.454506 + 0.890744i \(0.650184\pi\)
\(492\) −50.6435 −2.28319
\(493\) −3.81107 −0.171642
\(494\) 40.3910 1.81728
\(495\) 0.0996546 0.00447914
\(496\) 21.4976 0.965271
\(497\) 15.5504 0.697532
\(498\) 62.5023 2.80079
\(499\) −8.96128 −0.401162 −0.200581 0.979677i \(-0.564283\pi\)
−0.200581 + 0.979677i \(0.564283\pi\)
\(500\) 57.0334 2.55061
\(501\) −19.7515 −0.882430
\(502\) 10.5036 0.468797
\(503\) −18.7542 −0.836210 −0.418105 0.908399i \(-0.637306\pi\)
−0.418105 + 0.908399i \(0.637306\pi\)
\(504\) −0.401039 −0.0178637
\(505\) −60.7310 −2.70250
\(506\) 0 0
\(507\) 3.73114 0.165706
\(508\) 38.5850 1.71193
\(509\) −25.6921 −1.13878 −0.569392 0.822066i \(-0.692821\pi\)
−0.569392 + 0.822066i \(0.692821\pi\)
\(510\) −9.05510 −0.400966
\(511\) 5.60536 0.247966
\(512\) 50.7034 2.24079
\(513\) 21.1680 0.934592
\(514\) 7.58905 0.334739
\(515\) 47.4643 2.09153
\(516\) 71.4424 3.14508
\(517\) 13.0742 0.575002
\(518\) −24.9356 −1.09561
\(519\) 16.2232 0.712122
\(520\) −88.1931 −3.86752
\(521\) 19.1296 0.838082 0.419041 0.907967i \(-0.362366\pi\)
0.419041 + 0.907967i \(0.362366\pi\)
\(522\) 0.469356 0.0205432
\(523\) −6.95089 −0.303941 −0.151971 0.988385i \(-0.548562\pi\)
−0.151971 + 0.988385i \(0.548562\pi\)
\(524\) 46.9281 2.05006
\(525\) 35.4677 1.54794
\(526\) 42.6567 1.85992
\(527\) 1.77142 0.0771645
\(528\) 11.7921 0.513184
\(529\) 0 0
\(530\) −91.2911 −3.96543
\(531\) −0.232916 −0.0101077
\(532\) −43.4871 −1.88541
\(533\) −25.5595 −1.10710
\(534\) −32.2811 −1.39694
\(535\) 8.03960 0.347582
\(536\) 37.3930 1.61513
\(537\) 29.1663 1.25862
\(538\) 12.5244 0.539964
\(539\) −1.25124 −0.0538949
\(540\) −84.2325 −3.62479
\(541\) −20.5351 −0.882872 −0.441436 0.897293i \(-0.645531\pi\)
−0.441436 + 0.897293i \(0.645531\pi\)
\(542\) 7.15148 0.307182
\(543\) −30.6543 −1.31550
\(544\) −2.71077 −0.116223
\(545\) 52.0005 2.22746
\(546\) −41.1716 −1.76198
\(547\) 3.15578 0.134931 0.0674657 0.997722i \(-0.478509\pi\)
0.0674657 + 0.997722i \(0.478509\pi\)
\(548\) 6.13431 0.262045
\(549\) −0.147670 −0.00630240
\(550\) −21.5625 −0.919429
\(551\) 27.9272 1.18974
\(552\) 0 0
\(553\) −11.1951 −0.476065
\(554\) −54.6799 −2.32313
\(555\) 26.2170 1.11285
\(556\) 95.3347 4.04309
\(557\) −13.4861 −0.571425 −0.285712 0.958315i \(-0.592230\pi\)
−0.285712 + 0.958315i \(0.592230\pi\)
\(558\) −0.218161 −0.00923551
\(559\) 36.0565 1.52503
\(560\) 59.7124 2.52331
\(561\) 0.971679 0.0410243
\(562\) 58.5344 2.46912
\(563\) 8.09071 0.340983 0.170491 0.985359i \(-0.445464\pi\)
0.170491 + 0.985359i \(0.445464\pi\)
\(564\) 100.812 4.24497
\(565\) 50.1066 2.10800
\(566\) 23.5110 0.988241
\(567\) −21.7722 −0.914347
\(568\) −40.0000 −1.67836
\(569\) 7.18366 0.301155 0.150577 0.988598i \(-0.451887\pi\)
0.150577 + 0.988598i \(0.451887\pi\)
\(570\) 66.3550 2.77931
\(571\) −22.2721 −0.932059 −0.466030 0.884769i \(-0.654316\pi\)
−0.466030 + 0.884769i \(0.654316\pi\)
\(572\) 17.2470 0.721132
\(573\) −7.15333 −0.298834
\(574\) 39.9373 1.66695
\(575\) 0 0
\(576\) −0.0337736 −0.00140723
\(577\) −21.5325 −0.896409 −0.448204 0.893931i \(-0.647936\pi\)
−0.448204 + 0.893931i \(0.647936\pi\)
\(578\) 42.3228 1.76040
\(579\) 20.0162 0.831843
\(580\) −111.129 −4.61437
\(581\) −33.9625 −1.40900
\(582\) −57.3198 −2.37598
\(583\) 9.79621 0.405718
\(584\) −14.4185 −0.596643
\(585\) 0.387815 0.0160342
\(586\) −2.75038 −0.113617
\(587\) −33.5783 −1.38593 −0.692963 0.720973i \(-0.743695\pi\)
−0.692963 + 0.720973i \(0.743695\pi\)
\(588\) −9.64811 −0.397881
\(589\) −12.9809 −0.534867
\(590\) 80.0341 3.29495
\(591\) 6.47615 0.266393
\(592\) 27.7934 1.14230
\(593\) 33.9610 1.39461 0.697306 0.716774i \(-0.254382\pi\)
0.697306 + 0.716774i \(0.254382\pi\)
\(594\) 13.1178 0.538229
\(595\) 4.92036 0.201715
\(596\) 23.6352 0.968137
\(597\) 8.99344 0.368077
\(598\) 0 0
\(599\) −48.6293 −1.98694 −0.993469 0.114098i \(-0.963602\pi\)
−0.993469 + 0.114098i \(0.963602\pi\)
\(600\) −91.2328 −3.72456
\(601\) −14.3657 −0.585991 −0.292995 0.956114i \(-0.594652\pi\)
−0.292995 + 0.956114i \(0.594652\pi\)
\(602\) −56.3393 −2.29622
\(603\) −0.164430 −0.00669611
\(604\) 46.2210 1.88071
\(605\) 3.67453 0.149391
\(606\) 72.9274 2.96248
\(607\) −9.69370 −0.393455 −0.196728 0.980458i \(-0.563031\pi\)
−0.196728 + 0.980458i \(0.563031\pi\)
\(608\) 19.8643 0.805605
\(609\) −28.4670 −1.15354
\(610\) 50.7420 2.05448
\(611\) 50.8794 2.05836
\(612\) 0.0671256 0.00271339
\(613\) 0.659730 0.0266462 0.0133231 0.999911i \(-0.495759\pi\)
0.0133231 + 0.999911i \(0.495759\pi\)
\(614\) 63.2951 2.55438
\(615\) −41.9896 −1.69318
\(616\) −14.7874 −0.595801
\(617\) −48.2586 −1.94282 −0.971409 0.237413i \(-0.923700\pi\)
−0.971409 + 0.237413i \(0.923700\pi\)
\(618\) −56.9965 −2.29273
\(619\) −31.8073 −1.27844 −0.639222 0.769022i \(-0.720743\pi\)
−0.639222 + 0.769022i \(0.720743\pi\)
\(620\) 51.6538 2.07447
\(621\) 0 0
\(622\) −8.41769 −0.337519
\(623\) 17.5409 0.702762
\(624\) 45.8900 1.83707
\(625\) 4.77648 0.191059
\(626\) −65.4080 −2.61423
\(627\) −7.12039 −0.284361
\(628\) 45.4045 1.81184
\(629\) 2.29020 0.0913163
\(630\) −0.605972 −0.0241425
\(631\) −33.1624 −1.32017 −0.660087 0.751189i \(-0.729481\pi\)
−0.660087 + 0.751189i \(0.729481\pi\)
\(632\) 28.7969 1.14548
\(633\) −2.17766 −0.0865540
\(634\) −42.0463 −1.66987
\(635\) 31.9916 1.26955
\(636\) 75.5367 2.99522
\(637\) −4.86934 −0.192930
\(638\) 17.3064 0.685168
\(639\) 0.175894 0.00695825
\(640\) 47.2764 1.86876
\(641\) −45.9455 −1.81474 −0.907369 0.420335i \(-0.861912\pi\)
−0.907369 + 0.420335i \(0.861912\pi\)
\(642\) −9.65417 −0.381020
\(643\) 38.9242 1.53502 0.767511 0.641036i \(-0.221495\pi\)
0.767511 + 0.641036i \(0.221495\pi\)
\(644\) 0 0
\(645\) 59.2344 2.33235
\(646\) 5.79648 0.228060
\(647\) −28.7663 −1.13092 −0.565460 0.824776i \(-0.691301\pi\)
−0.565460 + 0.824776i \(0.691301\pi\)
\(648\) 56.0042 2.20005
\(649\) −8.58826 −0.337119
\(650\) −83.9126 −3.29132
\(651\) 13.2317 0.518592
\(652\) 0.539215 0.0211173
\(653\) 5.55935 0.217554 0.108777 0.994066i \(-0.465307\pi\)
0.108777 + 0.994066i \(0.465307\pi\)
\(654\) −62.4436 −2.44174
\(655\) 38.9090 1.52030
\(656\) −44.5143 −1.73799
\(657\) 0.0634033 0.00247360
\(658\) −79.5004 −3.09925
\(659\) −6.77816 −0.264040 −0.132020 0.991247i \(-0.542146\pi\)
−0.132020 + 0.991247i \(0.542146\pi\)
\(660\) 28.3336 1.10288
\(661\) −15.5799 −0.605989 −0.302994 0.952992i \(-0.597986\pi\)
−0.302994 + 0.952992i \(0.597986\pi\)
\(662\) −60.3766 −2.34660
\(663\) 3.78138 0.146857
\(664\) 87.3610 3.39027
\(665\) −36.0560 −1.39819
\(666\) −0.282052 −0.0109293
\(667\) 0 0
\(668\) −50.3117 −1.94662
\(669\) −4.30935 −0.166609
\(670\) 56.5010 2.18282
\(671\) −5.44499 −0.210202
\(672\) −20.2482 −0.781092
\(673\) 28.1133 1.08369 0.541844 0.840479i \(-0.317726\pi\)
0.541844 + 0.840479i \(0.317726\pi\)
\(674\) −13.1563 −0.506760
\(675\) −43.9768 −1.69267
\(676\) 9.50412 0.365543
\(677\) −10.5970 −0.407275 −0.203637 0.979046i \(-0.565276\pi\)
−0.203637 + 0.979046i \(0.565276\pi\)
\(678\) −60.1693 −2.31079
\(679\) 31.1465 1.19529
\(680\) −12.6565 −0.485356
\(681\) −16.0271 −0.614161
\(682\) −8.04420 −0.308028
\(683\) 3.87202 0.148159 0.0740793 0.997252i \(-0.476398\pi\)
0.0740793 + 0.997252i \(0.476398\pi\)
\(684\) −0.491891 −0.0188079
\(685\) 5.08608 0.194329
\(686\) 50.1735 1.91563
\(687\) −32.4623 −1.23851
\(688\) 62.7960 2.39407
\(689\) 38.1229 1.45237
\(690\) 0 0
\(691\) −4.59634 −0.174853 −0.0874264 0.996171i \(-0.527864\pi\)
−0.0874264 + 0.996171i \(0.527864\pi\)
\(692\) 41.3245 1.57092
\(693\) 0.0650253 0.00247011
\(694\) 36.4121 1.38219
\(695\) 79.0439 2.99831
\(696\) 73.2249 2.77558
\(697\) −3.66802 −0.138936
\(698\) −22.7374 −0.860623
\(699\) −0.0733038 −0.00277260
\(700\) 90.3449 3.41472
\(701\) −16.8335 −0.635794 −0.317897 0.948125i \(-0.602977\pi\)
−0.317897 + 0.948125i \(0.602977\pi\)
\(702\) 51.0490 1.92672
\(703\) −16.7824 −0.632961
\(704\) −1.24532 −0.0469349
\(705\) 83.5856 3.14802
\(706\) 84.3188 3.17338
\(707\) −39.6274 −1.49034
\(708\) −66.2224 −2.48879
\(709\) −5.12826 −0.192596 −0.0962979 0.995353i \(-0.530700\pi\)
−0.0962979 + 0.995353i \(0.530700\pi\)
\(710\) −60.4401 −2.26828
\(711\) −0.126630 −0.00474900
\(712\) −45.1201 −1.69095
\(713\) 0 0
\(714\) −5.90850 −0.221120
\(715\) 14.2998 0.534782
\(716\) 74.2936 2.77648
\(717\) −0.424090 −0.0158379
\(718\) 79.9793 2.98480
\(719\) 18.4479 0.687991 0.343996 0.938971i \(-0.388219\pi\)
0.343996 + 0.938971i \(0.388219\pi\)
\(720\) 0.675418 0.0251713
\(721\) 30.9708 1.15341
\(722\) 5.70991 0.212501
\(723\) −36.3988 −1.35368
\(724\) −78.0838 −2.90196
\(725\) −58.0191 −2.15478
\(726\) −4.41248 −0.163763
\(727\) 7.40243 0.274541 0.137270 0.990534i \(-0.456167\pi\)
0.137270 + 0.990534i \(0.456167\pi\)
\(728\) −57.5465 −2.13282
\(729\) 26.7515 0.990797
\(730\) −21.7865 −0.806353
\(731\) 5.17445 0.191384
\(732\) −41.9853 −1.55182
\(733\) 21.4571 0.792537 0.396269 0.918135i \(-0.370305\pi\)
0.396269 + 0.918135i \(0.370305\pi\)
\(734\) 1.82778 0.0674646
\(735\) −7.99944 −0.295064
\(736\) 0 0
\(737\) −6.06298 −0.223333
\(738\) 0.451739 0.0166287
\(739\) 36.6430 1.34793 0.673967 0.738762i \(-0.264589\pi\)
0.673967 + 0.738762i \(0.264589\pi\)
\(740\) 66.7810 2.45492
\(741\) −27.7097 −1.01794
\(742\) −59.5680 −2.18681
\(743\) 10.5207 0.385968 0.192984 0.981202i \(-0.438183\pi\)
0.192984 + 0.981202i \(0.438183\pi\)
\(744\) −34.0357 −1.24781
\(745\) 19.5965 0.717958
\(746\) 6.33214 0.231836
\(747\) −0.384157 −0.0140556
\(748\) 2.47510 0.0904986
\(749\) 5.24589 0.191681
\(750\) −56.7841 −2.07346
\(751\) 12.4571 0.454568 0.227284 0.973829i \(-0.427016\pi\)
0.227284 + 0.973829i \(0.427016\pi\)
\(752\) 88.6114 3.23133
\(753\) −7.20582 −0.262595
\(754\) 67.3496 2.45273
\(755\) 38.3227 1.39471
\(756\) −54.9622 −1.99896
\(757\) −26.7123 −0.970875 −0.485437 0.874271i \(-0.661340\pi\)
−0.485437 + 0.874271i \(0.661340\pi\)
\(758\) −3.05709 −0.111039
\(759\) 0 0
\(760\) 92.7461 3.36425
\(761\) −36.6373 −1.32810 −0.664050 0.747688i \(-0.731164\pi\)
−0.664050 + 0.747688i \(0.731164\pi\)
\(762\) −38.4164 −1.39168
\(763\) 33.9307 1.22837
\(764\) −18.2212 −0.659222
\(765\) 0.0556552 0.00201222
\(766\) 82.2096 2.97035
\(767\) −33.4220 −1.20680
\(768\) −52.4373 −1.89217
\(769\) 42.9581 1.54911 0.774555 0.632507i \(-0.217974\pi\)
0.774555 + 0.632507i \(0.217974\pi\)
\(770\) −22.3438 −0.805215
\(771\) −5.20636 −0.187503
\(772\) 50.9860 1.83503
\(773\) 13.5566 0.487597 0.243798 0.969826i \(-0.421607\pi\)
0.243798 + 0.969826i \(0.421607\pi\)
\(774\) −0.637264 −0.0229060
\(775\) 26.9679 0.968714
\(776\) −80.1173 −2.87604
\(777\) 17.1067 0.613701
\(778\) 9.32342 0.334261
\(779\) 26.8790 0.963039
\(780\) 110.263 3.94805
\(781\) 6.48568 0.232076
\(782\) 0 0
\(783\) 35.2965 1.26139
\(784\) −8.48042 −0.302872
\(785\) 37.6458 1.34364
\(786\) −46.7230 −1.66655
\(787\) 20.9843 0.748011 0.374005 0.927427i \(-0.377984\pi\)
0.374005 + 0.927427i \(0.377984\pi\)
\(788\) 16.4963 0.587657
\(789\) −29.2640 −1.04183
\(790\) 43.5123 1.54810
\(791\) 32.6949 1.16250
\(792\) −0.167263 −0.00594343
\(793\) −21.1897 −0.752468
\(794\) 44.2697 1.57107
\(795\) 62.6290 2.22122
\(796\) 22.9085 0.811969
\(797\) −28.0624 −0.994020 −0.497010 0.867745i \(-0.665569\pi\)
−0.497010 + 0.867745i \(0.665569\pi\)
\(798\) 43.2971 1.53270
\(799\) 7.30167 0.258315
\(800\) −41.2683 −1.45906
\(801\) 0.198409 0.00701042
\(802\) −11.7459 −0.414761
\(803\) 2.33785 0.0825009
\(804\) −46.7504 −1.64876
\(805\) 0 0
\(806\) −31.3047 −1.10266
\(807\) −8.59217 −0.302459
\(808\) 101.933 3.58597
\(809\) −53.8989 −1.89498 −0.947492 0.319780i \(-0.896391\pi\)
−0.947492 + 0.319780i \(0.896391\pi\)
\(810\) 84.6225 2.97333
\(811\) 24.3372 0.854594 0.427297 0.904111i \(-0.359466\pi\)
0.427297 + 0.904111i \(0.359466\pi\)
\(812\) −72.5122 −2.54468
\(813\) −4.90617 −0.172067
\(814\) −10.4000 −0.364520
\(815\) 0.447074 0.0156603
\(816\) 6.58564 0.230544
\(817\) −37.9180 −1.32658
\(818\) −50.3259 −1.75960
\(819\) 0.253052 0.00884235
\(820\) −106.958 −3.73512
\(821\) 19.9197 0.695201 0.347601 0.937643i \(-0.386997\pi\)
0.347601 + 0.937643i \(0.386997\pi\)
\(822\) −6.10750 −0.213024
\(823\) −5.24102 −0.182690 −0.0913451 0.995819i \(-0.529117\pi\)
−0.0913451 + 0.995819i \(0.529117\pi\)
\(824\) −79.6654 −2.77528
\(825\) 14.7927 0.515015
\(826\) 52.2228 1.81706
\(827\) −12.4250 −0.432061 −0.216030 0.976387i \(-0.569311\pi\)
−0.216030 + 0.976387i \(0.569311\pi\)
\(828\) 0 0
\(829\) 21.9923 0.763825 0.381913 0.924198i \(-0.375266\pi\)
0.381913 + 0.924198i \(0.375266\pi\)
\(830\) 132.003 4.58189
\(831\) 37.5124 1.30129
\(832\) −4.84629 −0.168015
\(833\) −0.698796 −0.0242118
\(834\) −94.9181 −3.28674
\(835\) −41.7145 −1.44359
\(836\) −18.1373 −0.627293
\(837\) −16.4062 −0.567080
\(838\) 57.6078 1.99003
\(839\) −39.8548 −1.37594 −0.687970 0.725739i \(-0.741498\pi\)
−0.687970 + 0.725739i \(0.741498\pi\)
\(840\) −94.5385 −3.26189
\(841\) 17.5671 0.605761
\(842\) 30.9310 1.06595
\(843\) −40.1567 −1.38307
\(844\) −5.54701 −0.190936
\(845\) 7.88006 0.271082
\(846\) −0.899244 −0.0309166
\(847\) 2.39766 0.0823844
\(848\) 66.3947 2.28000
\(849\) −16.1294 −0.553559
\(850\) −12.0422 −0.413046
\(851\) 0 0
\(852\) 50.0098 1.71331
\(853\) 44.1121 1.51037 0.755185 0.655512i \(-0.227547\pi\)
0.755185 + 0.655512i \(0.227547\pi\)
\(854\) 33.1095 1.13298
\(855\) −0.407837 −0.0139477
\(856\) −13.4939 −0.461211
\(857\) 17.0132 0.581159 0.290580 0.956851i \(-0.406152\pi\)
0.290580 + 0.956851i \(0.406152\pi\)
\(858\) −17.1716 −0.586228
\(859\) −3.29151 −0.112305 −0.0561525 0.998422i \(-0.517883\pi\)
−0.0561525 + 0.998422i \(0.517883\pi\)
\(860\) 150.884 5.14511
\(861\) −27.3984 −0.933736
\(862\) 38.0912 1.29739
\(863\) −14.7933 −0.503570 −0.251785 0.967783i \(-0.581018\pi\)
−0.251785 + 0.967783i \(0.581018\pi\)
\(864\) 25.1060 0.854123
\(865\) 34.2630 1.16498
\(866\) −14.4267 −0.490240
\(867\) −29.0350 −0.986080
\(868\) 33.7044 1.14400
\(869\) −4.66919 −0.158391
\(870\) 110.643 3.75115
\(871\) −23.5946 −0.799474
\(872\) −87.2790 −2.95564
\(873\) 0.352303 0.0119237
\(874\) 0 0
\(875\) 30.8554 1.04310
\(876\) 18.0267 0.609066
\(877\) 19.2347 0.649509 0.324754 0.945798i \(-0.394718\pi\)
0.324754 + 0.945798i \(0.394718\pi\)
\(878\) −7.83280 −0.264344
\(879\) 1.88686 0.0636423
\(880\) 24.9045 0.839530
\(881\) 54.5257 1.83702 0.918510 0.395399i \(-0.129394\pi\)
0.918510 + 0.395399i \(0.129394\pi\)
\(882\) 0.0860608 0.00289782
\(883\) 31.1937 1.04975 0.524875 0.851179i \(-0.324112\pi\)
0.524875 + 0.851179i \(0.324112\pi\)
\(884\) 9.63209 0.323962
\(885\) −54.9063 −1.84565
\(886\) 12.0132 0.403592
\(887\) −5.63009 −0.189040 −0.0945199 0.995523i \(-0.530132\pi\)
−0.0945199 + 0.995523i \(0.530132\pi\)
\(888\) −44.0033 −1.47665
\(889\) 20.8747 0.700115
\(890\) −68.1767 −2.28529
\(891\) −9.08063 −0.304212
\(892\) −10.9769 −0.367535
\(893\) −53.5061 −1.79051
\(894\) −23.5319 −0.787026
\(895\) 61.5983 2.05900
\(896\) 30.8481 1.03056
\(897\) 0 0
\(898\) −61.6545 −2.05744
\(899\) −21.6448 −0.721895
\(900\) 1.02191 0.0340636
\(901\) 5.47099 0.182265
\(902\) 16.6568 0.554611
\(903\) 38.6508 1.28622
\(904\) −84.1002 −2.79713
\(905\) −64.7408 −2.15206
\(906\) −46.0190 −1.52888
\(907\) 5.85106 0.194281 0.0971406 0.995271i \(-0.469030\pi\)
0.0971406 + 0.995271i \(0.469030\pi\)
\(908\) −40.8250 −1.35482
\(909\) −0.448233 −0.0148669
\(910\) −86.9530 −2.88247
\(911\) 6.27524 0.207908 0.103954 0.994582i \(-0.466851\pi\)
0.103954 + 0.994582i \(0.466851\pi\)
\(912\) −48.2590 −1.59802
\(913\) −14.1649 −0.468789
\(914\) 13.9526 0.461510
\(915\) −34.8108 −1.15081
\(916\) −82.6894 −2.73213
\(917\) 25.3884 0.838397
\(918\) 7.32602 0.241795
\(919\) −27.0874 −0.893531 −0.446765 0.894651i \(-0.647424\pi\)
−0.446765 + 0.894651i \(0.647424\pi\)
\(920\) 0 0
\(921\) −43.4227 −1.43083
\(922\) −80.7567 −2.65958
\(923\) 25.2396 0.830772
\(924\) 18.4879 0.608206
\(925\) 34.8656 1.14637
\(926\) −18.6173 −0.611802
\(927\) 0.350316 0.0115059
\(928\) 33.1226 1.08730
\(929\) 5.45463 0.178960 0.0894802 0.995989i \(-0.471479\pi\)
0.0894802 + 0.995989i \(0.471479\pi\)
\(930\) −51.4280 −1.68639
\(931\) 5.12072 0.167825
\(932\) −0.186722 −0.00611630
\(933\) 5.77484 0.189060
\(934\) 29.2617 0.957471
\(935\) 2.05216 0.0671127
\(936\) −0.650919 −0.0212760
\(937\) 12.1415 0.396647 0.198324 0.980137i \(-0.436450\pi\)
0.198324 + 0.980137i \(0.436450\pi\)
\(938\) 36.8672 1.20376
\(939\) 44.8722 1.46435
\(940\) 212.913 6.94445
\(941\) 3.53600 0.115270 0.0576352 0.998338i \(-0.481644\pi\)
0.0576352 + 0.998338i \(0.481644\pi\)
\(942\) −45.2061 −1.47289
\(943\) 0 0
\(944\) −58.2077 −1.89450
\(945\) −45.5703 −1.48240
\(946\) −23.4976 −0.763974
\(947\) 49.8400 1.61958 0.809791 0.586718i \(-0.199580\pi\)
0.809791 + 0.586718i \(0.199580\pi\)
\(948\) −36.0032 −1.16933
\(949\) 9.09796 0.295332
\(950\) 88.2446 2.86303
\(951\) 28.8453 0.935373
\(952\) −8.25847 −0.267658
\(953\) 33.8454 1.09636 0.548181 0.836360i \(-0.315321\pi\)
0.548181 + 0.836360i \(0.315321\pi\)
\(954\) −0.673785 −0.0218146
\(955\) −15.1076 −0.488871
\(956\) −1.08026 −0.0349381
\(957\) −11.8728 −0.383794
\(958\) 24.3381 0.786329
\(959\) 3.31870 0.107166
\(960\) −7.96158 −0.256959
\(961\) −20.9393 −0.675460
\(962\) −40.4726 −1.30489
\(963\) 0.0593373 0.00191212
\(964\) −92.7165 −2.98620
\(965\) 42.2735 1.36083
\(966\) 0 0
\(967\) −32.0898 −1.03194 −0.515970 0.856607i \(-0.672568\pi\)
−0.515970 + 0.856607i \(0.672568\pi\)
\(968\) −6.16743 −0.198229
\(969\) −3.97660 −0.127747
\(970\) −121.058 −3.88692
\(971\) −9.81772 −0.315066 −0.157533 0.987514i \(-0.550354\pi\)
−0.157533 + 0.987514i \(0.550354\pi\)
\(972\) −1.24905 −0.0400632
\(973\) 51.5766 1.65347
\(974\) −44.0076 −1.41010
\(975\) 57.5671 1.84362
\(976\) −36.9039 −1.18127
\(977\) 47.5399 1.52094 0.760468 0.649375i \(-0.224970\pi\)
0.760468 + 0.649375i \(0.224970\pi\)
\(978\) −0.536858 −0.0171668
\(979\) 7.31586 0.233816
\(980\) −20.3765 −0.650903
\(981\) 0.383796 0.0122537
\(982\) 51.0832 1.63013
\(983\) −59.3006 −1.89140 −0.945698 0.325045i \(-0.894620\pi\)
−0.945698 + 0.325045i \(0.894620\pi\)
\(984\) 70.4764 2.24670
\(985\) 13.6774 0.435799
\(986\) 9.66530 0.307806
\(987\) 54.5401 1.73603
\(988\) −70.5832 −2.24555
\(989\) 0 0
\(990\) −0.252735 −0.00803245
\(991\) 18.9246 0.601161 0.300580 0.953757i \(-0.402820\pi\)
0.300580 + 0.953757i \(0.402820\pi\)
\(992\) −15.3957 −0.488814
\(993\) 41.4205 1.31444
\(994\) −39.4376 −1.25088
\(995\) 18.9939 0.602146
\(996\) −109.223 −3.46085
\(997\) 22.0326 0.697778 0.348889 0.937164i \(-0.386559\pi\)
0.348889 + 0.937164i \(0.386559\pi\)
\(998\) 22.7268 0.719403
\(999\) −21.2108 −0.671081
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.5 60
23.4 even 11 253.2.i.b.177.12 120
23.6 even 11 253.2.i.b.243.12 yes 120
23.22 odd 2 5819.2.a.t.1.5 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.177.12 120 23.4 even 11
253.2.i.b.243.12 yes 120 23.6 even 11
5819.2.a.t.1.5 60 23.22 odd 2
5819.2.a.u.1.5 60 1.1 even 1 trivial