Properties

Label 5819.2.a.u.1.4
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56762 q^{2} -1.86277 q^{3} +4.59270 q^{4} +2.06282 q^{5} +4.78289 q^{6} +4.15023 q^{7} -6.65707 q^{8} +0.469907 q^{9} -5.29655 q^{10} +1.00000 q^{11} -8.55513 q^{12} +6.78320 q^{13} -10.6562 q^{14} -3.84256 q^{15} +7.90746 q^{16} +6.01773 q^{17} -1.20655 q^{18} -0.387363 q^{19} +9.47392 q^{20} -7.73091 q^{21} -2.56762 q^{22} +12.4006 q^{24} -0.744761 q^{25} -17.4167 q^{26} +4.71298 q^{27} +19.0607 q^{28} -2.15648 q^{29} +9.86626 q^{30} +5.57670 q^{31} -6.98925 q^{32} -1.86277 q^{33} -15.4513 q^{34} +8.56119 q^{35} +2.15814 q^{36} -0.497911 q^{37} +0.994603 q^{38} -12.6355 q^{39} -13.7324 q^{40} +6.02933 q^{41} +19.8501 q^{42} +2.60332 q^{43} +4.59270 q^{44} +0.969335 q^{45} -11.6609 q^{47} -14.7298 q^{48} +10.2244 q^{49} +1.91227 q^{50} -11.2096 q^{51} +31.1532 q^{52} -5.78450 q^{53} -12.1012 q^{54} +2.06282 q^{55} -27.6283 q^{56} +0.721568 q^{57} +5.53702 q^{58} +0.0787985 q^{59} -17.6477 q^{60} +1.37371 q^{61} -14.3189 q^{62} +1.95022 q^{63} +2.13085 q^{64} +13.9925 q^{65} +4.78289 q^{66} +8.27533 q^{67} +27.6376 q^{68} -21.9819 q^{70} -5.73161 q^{71} -3.12820 q^{72} +5.77935 q^{73} +1.27845 q^{74} +1.38732 q^{75} -1.77904 q^{76} +4.15023 q^{77} +32.4433 q^{78} +1.22499 q^{79} +16.3117 q^{80} -10.1889 q^{81} -15.4810 q^{82} +11.5638 q^{83} -35.5057 q^{84} +12.4135 q^{85} -6.68434 q^{86} +4.01702 q^{87} -6.65707 q^{88} +12.4007 q^{89} -2.48889 q^{90} +28.1518 q^{91} -10.3881 q^{93} +29.9407 q^{94} -0.799062 q^{95} +13.0194 q^{96} +5.98575 q^{97} -26.2524 q^{98} +0.469907 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.56762 −1.81558 −0.907792 0.419420i \(-0.862233\pi\)
−0.907792 + 0.419420i \(0.862233\pi\)
\(3\) −1.86277 −1.07547 −0.537735 0.843114i \(-0.680720\pi\)
−0.537735 + 0.843114i \(0.680720\pi\)
\(4\) 4.59270 2.29635
\(5\) 2.06282 0.922523 0.461261 0.887264i \(-0.347397\pi\)
0.461261 + 0.887264i \(0.347397\pi\)
\(6\) 4.78289 1.95261
\(7\) 4.15023 1.56864 0.784319 0.620357i \(-0.213012\pi\)
0.784319 + 0.620357i \(0.213012\pi\)
\(8\) −6.65707 −2.35363
\(9\) 0.469907 0.156636
\(10\) −5.29655 −1.67492
\(11\) 1.00000 0.301511
\(12\) −8.55513 −2.46965
\(13\) 6.78320 1.88132 0.940660 0.339349i \(-0.110207\pi\)
0.940660 + 0.339349i \(0.110207\pi\)
\(14\) −10.6562 −2.84800
\(15\) −3.84256 −0.992145
\(16\) 7.90746 1.97686
\(17\) 6.01773 1.45951 0.729757 0.683706i \(-0.239633\pi\)
0.729757 + 0.683706i \(0.239633\pi\)
\(18\) −1.20655 −0.284385
\(19\) −0.387363 −0.0888672 −0.0444336 0.999012i \(-0.514148\pi\)
−0.0444336 + 0.999012i \(0.514148\pi\)
\(20\) 9.47392 2.11843
\(21\) −7.73091 −1.68702
\(22\) −2.56762 −0.547419
\(23\) 0 0
\(24\) 12.4006 2.53126
\(25\) −0.744761 −0.148952
\(26\) −17.4167 −3.41570
\(27\) 4.71298 0.907013
\(28\) 19.0607 3.60214
\(29\) −2.15648 −0.400448 −0.200224 0.979750i \(-0.564167\pi\)
−0.200224 + 0.979750i \(0.564167\pi\)
\(30\) 9.86626 1.80132
\(31\) 5.57670 1.00160 0.500802 0.865562i \(-0.333038\pi\)
0.500802 + 0.865562i \(0.333038\pi\)
\(32\) −6.98925 −1.23554
\(33\) −1.86277 −0.324266
\(34\) −15.4513 −2.64987
\(35\) 8.56119 1.44710
\(36\) 2.15814 0.359690
\(37\) −0.497911 −0.0818560 −0.0409280 0.999162i \(-0.513031\pi\)
−0.0409280 + 0.999162i \(0.513031\pi\)
\(38\) 0.994603 0.161346
\(39\) −12.6355 −2.02330
\(40\) −13.7324 −2.17128
\(41\) 6.02933 0.941623 0.470811 0.882234i \(-0.343961\pi\)
0.470811 + 0.882234i \(0.343961\pi\)
\(42\) 19.8501 3.06293
\(43\) 2.60332 0.397002 0.198501 0.980101i \(-0.436393\pi\)
0.198501 + 0.980101i \(0.436393\pi\)
\(44\) 4.59270 0.692375
\(45\) 0.969335 0.144500
\(46\) 0 0
\(47\) −11.6609 −1.70091 −0.850456 0.526046i \(-0.823674\pi\)
−0.850456 + 0.526046i \(0.823674\pi\)
\(48\) −14.7298 −2.12606
\(49\) 10.2244 1.46063
\(50\) 1.91227 0.270435
\(51\) −11.2096 −1.56966
\(52\) 31.1532 4.32017
\(53\) −5.78450 −0.794562 −0.397281 0.917697i \(-0.630046\pi\)
−0.397281 + 0.917697i \(0.630046\pi\)
\(54\) −12.1012 −1.64676
\(55\) 2.06282 0.278151
\(56\) −27.6283 −3.69199
\(57\) 0.721568 0.0955740
\(58\) 5.53702 0.727047
\(59\) 0.0787985 0.0102587 0.00512934 0.999987i \(-0.498367\pi\)
0.00512934 + 0.999987i \(0.498367\pi\)
\(60\) −17.6477 −2.27831
\(61\) 1.37371 0.175885 0.0879425 0.996126i \(-0.471971\pi\)
0.0879425 + 0.996126i \(0.471971\pi\)
\(62\) −14.3189 −1.81850
\(63\) 1.95022 0.245705
\(64\) 2.13085 0.266356
\(65\) 13.9925 1.73556
\(66\) 4.78289 0.588733
\(67\) 8.27533 1.01099 0.505496 0.862829i \(-0.331309\pi\)
0.505496 + 0.862829i \(0.331309\pi\)
\(68\) 27.6376 3.35155
\(69\) 0 0
\(70\) −21.9819 −2.62734
\(71\) −5.73161 −0.680216 −0.340108 0.940386i \(-0.610464\pi\)
−0.340108 + 0.940386i \(0.610464\pi\)
\(72\) −3.12820 −0.368662
\(73\) 5.77935 0.676422 0.338211 0.941070i \(-0.390178\pi\)
0.338211 + 0.941070i \(0.390178\pi\)
\(74\) 1.27845 0.148616
\(75\) 1.38732 0.160194
\(76\) −1.77904 −0.204070
\(77\) 4.15023 0.472962
\(78\) 32.4433 3.67348
\(79\) 1.22499 0.137822 0.0689108 0.997623i \(-0.478048\pi\)
0.0689108 + 0.997623i \(0.478048\pi\)
\(80\) 16.3117 1.82370
\(81\) −10.1889 −1.13210
\(82\) −15.4810 −1.70960
\(83\) 11.5638 1.26930 0.634648 0.772801i \(-0.281145\pi\)
0.634648 + 0.772801i \(0.281145\pi\)
\(84\) −35.5057 −3.87399
\(85\) 12.4135 1.34644
\(86\) −6.68434 −0.720791
\(87\) 4.01702 0.430670
\(88\) −6.65707 −0.709646
\(89\) 12.4007 1.31447 0.657237 0.753684i \(-0.271725\pi\)
0.657237 + 0.753684i \(0.271725\pi\)
\(90\) −2.48889 −0.262352
\(91\) 28.1518 2.95111
\(92\) 0 0
\(93\) −10.3881 −1.07720
\(94\) 29.9407 3.08815
\(95\) −0.799062 −0.0819820
\(96\) 13.0194 1.32878
\(97\) 5.98575 0.607761 0.303881 0.952710i \(-0.401718\pi\)
0.303881 + 0.952710i \(0.401718\pi\)
\(98\) −26.2524 −2.65189
\(99\) 0.469907 0.0472274
\(100\) −3.42046 −0.342046
\(101\) 3.76839 0.374969 0.187484 0.982268i \(-0.439967\pi\)
0.187484 + 0.982268i \(0.439967\pi\)
\(102\) 28.7822 2.84986
\(103\) 2.18621 0.215414 0.107707 0.994183i \(-0.465649\pi\)
0.107707 + 0.994183i \(0.465649\pi\)
\(104\) −45.1562 −4.42793
\(105\) −15.9475 −1.55632
\(106\) 14.8524 1.44259
\(107\) 8.60392 0.831772 0.415886 0.909417i \(-0.363472\pi\)
0.415886 + 0.909417i \(0.363472\pi\)
\(108\) 21.6453 2.08282
\(109\) −6.33957 −0.607221 −0.303611 0.952796i \(-0.598192\pi\)
−0.303611 + 0.952796i \(0.598192\pi\)
\(110\) −5.29655 −0.505007
\(111\) 0.927492 0.0880337
\(112\) 32.8178 3.10099
\(113\) 4.22845 0.397780 0.198890 0.980022i \(-0.436266\pi\)
0.198890 + 0.980022i \(0.436266\pi\)
\(114\) −1.85272 −0.173523
\(115\) 0 0
\(116\) −9.90404 −0.919567
\(117\) 3.18747 0.294682
\(118\) −0.202325 −0.0186255
\(119\) 24.9750 2.28945
\(120\) 25.5802 2.33514
\(121\) 1.00000 0.0909091
\(122\) −3.52716 −0.319334
\(123\) −11.2312 −1.01269
\(124\) 25.6121 2.30003
\(125\) −11.8504 −1.05993
\(126\) −5.00744 −0.446098
\(127\) 0.00579766 0.000514459 0 0.000257230 1.00000i \(-0.499918\pi\)
0.000257230 1.00000i \(0.499918\pi\)
\(128\) 8.50728 0.751944
\(129\) −4.84938 −0.426964
\(130\) −35.9276 −3.15106
\(131\) −1.96462 −0.171650 −0.0858250 0.996310i \(-0.527353\pi\)
−0.0858250 + 0.996310i \(0.527353\pi\)
\(132\) −8.55513 −0.744628
\(133\) −1.60765 −0.139401
\(134\) −21.2479 −1.83554
\(135\) 9.72204 0.836740
\(136\) −40.0605 −3.43516
\(137\) −7.94836 −0.679075 −0.339537 0.940593i \(-0.610270\pi\)
−0.339537 + 0.940593i \(0.610270\pi\)
\(138\) 0 0
\(139\) −9.04226 −0.766954 −0.383477 0.923550i \(-0.625274\pi\)
−0.383477 + 0.923550i \(0.625274\pi\)
\(140\) 39.3189 3.32305
\(141\) 21.7215 1.82928
\(142\) 14.7166 1.23499
\(143\) 6.78320 0.567240
\(144\) 3.71577 0.309648
\(145\) −4.44843 −0.369422
\(146\) −14.8392 −1.22810
\(147\) −19.0457 −1.57086
\(148\) −2.28675 −0.187970
\(149\) 5.94347 0.486908 0.243454 0.969912i \(-0.421720\pi\)
0.243454 + 0.969912i \(0.421720\pi\)
\(150\) −3.56211 −0.290845
\(151\) 12.8807 1.04821 0.524107 0.851653i \(-0.324399\pi\)
0.524107 + 0.851653i \(0.324399\pi\)
\(152\) 2.57870 0.209160
\(153\) 2.82778 0.228612
\(154\) −10.6562 −0.858703
\(155\) 11.5037 0.924003
\(156\) −58.0311 −4.64621
\(157\) 22.4478 1.79153 0.895763 0.444531i \(-0.146630\pi\)
0.895763 + 0.444531i \(0.146630\pi\)
\(158\) −3.14530 −0.250227
\(159\) 10.7752 0.854528
\(160\) −14.4176 −1.13981
\(161\) 0 0
\(162\) 26.1613 2.05543
\(163\) −19.4165 −1.52082 −0.760408 0.649445i \(-0.775001\pi\)
−0.760408 + 0.649445i \(0.775001\pi\)
\(164\) 27.6909 2.16229
\(165\) −3.84256 −0.299143
\(166\) −29.6916 −2.30452
\(167\) −2.97517 −0.230225 −0.115113 0.993352i \(-0.536723\pi\)
−0.115113 + 0.993352i \(0.536723\pi\)
\(168\) 51.4652 3.97063
\(169\) 33.0118 2.53937
\(170\) −31.8733 −2.44457
\(171\) −0.182025 −0.0139198
\(172\) 11.9562 0.911655
\(173\) −19.0196 −1.44604 −0.723018 0.690829i \(-0.757246\pi\)
−0.723018 + 0.690829i \(0.757246\pi\)
\(174\) −10.3142 −0.781917
\(175\) −3.09093 −0.233652
\(176\) 7.90746 0.596047
\(177\) −0.146783 −0.0110329
\(178\) −31.8404 −2.38654
\(179\) −1.46061 −0.109171 −0.0545855 0.998509i \(-0.517384\pi\)
−0.0545855 + 0.998509i \(0.517384\pi\)
\(180\) 4.45186 0.331822
\(181\) 20.6644 1.53598 0.767988 0.640465i \(-0.221258\pi\)
0.767988 + 0.640465i \(0.221258\pi\)
\(182\) −72.2833 −5.35800
\(183\) −2.55890 −0.189159
\(184\) 0 0
\(185\) −1.02710 −0.0755140
\(186\) 26.6727 1.95574
\(187\) 6.01773 0.440060
\(188\) −53.5548 −3.90589
\(189\) 19.5599 1.42278
\(190\) 2.05169 0.148845
\(191\) −21.8392 −1.58023 −0.790113 0.612961i \(-0.789978\pi\)
−0.790113 + 0.612961i \(0.789978\pi\)
\(192\) −3.96928 −0.286458
\(193\) 3.54506 0.255179 0.127589 0.991827i \(-0.459276\pi\)
0.127589 + 0.991827i \(0.459276\pi\)
\(194\) −15.3692 −1.10344
\(195\) −26.0649 −1.86654
\(196\) 46.9575 3.35411
\(197\) −22.5614 −1.60743 −0.803716 0.595013i \(-0.797147\pi\)
−0.803716 + 0.595013i \(0.797147\pi\)
\(198\) −1.20655 −0.0857454
\(199\) 1.91593 0.135817 0.0679085 0.997692i \(-0.478367\pi\)
0.0679085 + 0.997692i \(0.478367\pi\)
\(200\) 4.95793 0.350578
\(201\) −15.4150 −1.08729
\(202\) −9.67581 −0.680788
\(203\) −8.94987 −0.628158
\(204\) −51.4825 −3.60449
\(205\) 12.4374 0.868668
\(206\) −5.61338 −0.391103
\(207\) 0 0
\(208\) 53.6379 3.71912
\(209\) −0.387363 −0.0267945
\(210\) 40.9472 2.82563
\(211\) 6.45913 0.444665 0.222332 0.974971i \(-0.428633\pi\)
0.222332 + 0.974971i \(0.428633\pi\)
\(212\) −26.5664 −1.82459
\(213\) 10.6767 0.731552
\(214\) −22.0916 −1.51015
\(215\) 5.37018 0.366244
\(216\) −31.3746 −2.13477
\(217\) 23.1446 1.57116
\(218\) 16.2776 1.10246
\(219\) −10.7656 −0.727471
\(220\) 9.47392 0.638731
\(221\) 40.8195 2.74582
\(222\) −2.38145 −0.159833
\(223\) −17.4228 −1.16672 −0.583360 0.812214i \(-0.698262\pi\)
−0.583360 + 0.812214i \(0.698262\pi\)
\(224\) −29.0070 −1.93811
\(225\) −0.349969 −0.0233312
\(226\) −10.8571 −0.722202
\(227\) −18.5779 −1.23306 −0.616531 0.787331i \(-0.711462\pi\)
−0.616531 + 0.787331i \(0.711462\pi\)
\(228\) 3.31394 0.219471
\(229\) 2.94024 0.194297 0.0971484 0.995270i \(-0.469028\pi\)
0.0971484 + 0.995270i \(0.469028\pi\)
\(230\) 0 0
\(231\) −7.73091 −0.508657
\(232\) 14.3558 0.942505
\(233\) −5.55070 −0.363638 −0.181819 0.983332i \(-0.558199\pi\)
−0.181819 + 0.983332i \(0.558199\pi\)
\(234\) −8.18423 −0.535020
\(235\) −24.0543 −1.56913
\(236\) 0.361897 0.0235575
\(237\) −2.28186 −0.148223
\(238\) −64.1263 −4.15669
\(239\) −9.69764 −0.627288 −0.313644 0.949541i \(-0.601550\pi\)
−0.313644 + 0.949541i \(0.601550\pi\)
\(240\) −30.3849 −1.96134
\(241\) −6.09670 −0.392723 −0.196361 0.980532i \(-0.562913\pi\)
−0.196361 + 0.980532i \(0.562913\pi\)
\(242\) −2.56762 −0.165053
\(243\) 4.84065 0.310528
\(244\) 6.30901 0.403893
\(245\) 21.0911 1.34746
\(246\) 28.8376 1.83862
\(247\) −2.62756 −0.167188
\(248\) −37.1245 −2.35741
\(249\) −21.5408 −1.36509
\(250\) 30.4274 1.92440
\(251\) −14.2801 −0.901349 −0.450675 0.892688i \(-0.648816\pi\)
−0.450675 + 0.892688i \(0.648816\pi\)
\(252\) 8.95677 0.564224
\(253\) 0 0
\(254\) −0.0148862 −0.000934044 0
\(255\) −23.1235 −1.44805
\(256\) −26.1052 −1.63157
\(257\) −22.8786 −1.42713 −0.713565 0.700589i \(-0.752921\pi\)
−0.713565 + 0.700589i \(0.752921\pi\)
\(258\) 12.4514 0.775189
\(259\) −2.06644 −0.128402
\(260\) 64.2635 3.98545
\(261\) −1.01334 −0.0627244
\(262\) 5.04441 0.311645
\(263\) 18.8419 1.16184 0.580919 0.813961i \(-0.302693\pi\)
0.580919 + 0.813961i \(0.302693\pi\)
\(264\) 12.4006 0.763203
\(265\) −11.9324 −0.733001
\(266\) 4.12783 0.253094
\(267\) −23.0997 −1.41368
\(268\) 38.0061 2.32159
\(269\) 15.5010 0.945113 0.472556 0.881300i \(-0.343331\pi\)
0.472556 + 0.881300i \(0.343331\pi\)
\(270\) −24.9625 −1.51917
\(271\) −11.5914 −0.704127 −0.352063 0.935976i \(-0.614520\pi\)
−0.352063 + 0.935976i \(0.614520\pi\)
\(272\) 47.5850 2.88526
\(273\) −52.4403 −3.17383
\(274\) 20.4084 1.23292
\(275\) −0.744761 −0.0449108
\(276\) 0 0
\(277\) −11.1964 −0.672728 −0.336364 0.941732i \(-0.609197\pi\)
−0.336364 + 0.941732i \(0.609197\pi\)
\(278\) 23.2171 1.39247
\(279\) 2.62053 0.156887
\(280\) −56.9924 −3.40595
\(281\) −10.7042 −0.638559 −0.319279 0.947661i \(-0.603441\pi\)
−0.319279 + 0.947661i \(0.603441\pi\)
\(282\) −55.7727 −3.32121
\(283\) −18.5884 −1.10497 −0.552484 0.833524i \(-0.686320\pi\)
−0.552484 + 0.833524i \(0.686320\pi\)
\(284\) −26.3235 −1.56201
\(285\) 1.48847 0.0881692
\(286\) −17.4167 −1.02987
\(287\) 25.0231 1.47707
\(288\) −3.28430 −0.193529
\(289\) 19.2131 1.13018
\(290\) 11.4219 0.670717
\(291\) −11.1501 −0.653629
\(292\) 26.5428 1.55330
\(293\) 14.0388 0.820155 0.410077 0.912051i \(-0.365502\pi\)
0.410077 + 0.912051i \(0.365502\pi\)
\(294\) 48.9021 2.85203
\(295\) 0.162547 0.00946387
\(296\) 3.31462 0.192659
\(297\) 4.71298 0.273475
\(298\) −15.2606 −0.884023
\(299\) 0 0
\(300\) 6.37153 0.367860
\(301\) 10.8044 0.622753
\(302\) −33.0727 −1.90312
\(303\) −7.01964 −0.403268
\(304\) −3.06306 −0.175678
\(305\) 2.83371 0.162258
\(306\) −7.26067 −0.415065
\(307\) −33.1886 −1.89417 −0.947086 0.320979i \(-0.895988\pi\)
−0.947086 + 0.320979i \(0.895988\pi\)
\(308\) 19.0607 1.08609
\(309\) −4.07241 −0.231671
\(310\) −29.5373 −1.67761
\(311\) −30.0708 −1.70516 −0.852578 0.522600i \(-0.824962\pi\)
−0.852578 + 0.522600i \(0.824962\pi\)
\(312\) 84.1156 4.76211
\(313\) −29.4359 −1.66382 −0.831908 0.554913i \(-0.812752\pi\)
−0.831908 + 0.554913i \(0.812752\pi\)
\(314\) −57.6374 −3.25267
\(315\) 4.02296 0.226668
\(316\) 5.62598 0.316486
\(317\) −10.1262 −0.568742 −0.284371 0.958714i \(-0.591785\pi\)
−0.284371 + 0.958714i \(0.591785\pi\)
\(318\) −27.6666 −1.55147
\(319\) −2.15648 −0.120740
\(320\) 4.39556 0.245719
\(321\) −16.0271 −0.894546
\(322\) 0 0
\(323\) −2.33105 −0.129703
\(324\) −46.7946 −2.59970
\(325\) −5.05186 −0.280227
\(326\) 49.8542 2.76117
\(327\) 11.8092 0.653048
\(328\) −40.1376 −2.21623
\(329\) −48.3953 −2.66812
\(330\) 9.86626 0.543120
\(331\) −5.11497 −0.281144 −0.140572 0.990070i \(-0.544894\pi\)
−0.140572 + 0.990070i \(0.544894\pi\)
\(332\) 53.1092 2.91475
\(333\) −0.233972 −0.0128216
\(334\) 7.63911 0.417994
\(335\) 17.0705 0.932663
\(336\) −61.1319 −3.33502
\(337\) 11.7630 0.640774 0.320387 0.947287i \(-0.396187\pi\)
0.320387 + 0.947287i \(0.396187\pi\)
\(338\) −84.7619 −4.61044
\(339\) −7.87663 −0.427800
\(340\) 57.0115 3.09188
\(341\) 5.57670 0.301995
\(342\) 0.467371 0.0252725
\(343\) 13.3820 0.722558
\(344\) −17.3305 −0.934396
\(345\) 0 0
\(346\) 48.8353 2.62540
\(347\) 18.3528 0.985232 0.492616 0.870247i \(-0.336041\pi\)
0.492616 + 0.870247i \(0.336041\pi\)
\(348\) 18.4489 0.988967
\(349\) 13.8377 0.740717 0.370358 0.928889i \(-0.379235\pi\)
0.370358 + 0.928889i \(0.379235\pi\)
\(350\) 7.93634 0.424215
\(351\) 31.9691 1.70638
\(352\) −6.98925 −0.372528
\(353\) 2.57511 0.137059 0.0685297 0.997649i \(-0.478169\pi\)
0.0685297 + 0.997649i \(0.478169\pi\)
\(354\) 0.376884 0.0200312
\(355\) −11.8233 −0.627515
\(356\) 56.9527 3.01849
\(357\) −46.5226 −2.46224
\(358\) 3.75030 0.198209
\(359\) 4.17268 0.220226 0.110113 0.993919i \(-0.464879\pi\)
0.110113 + 0.993919i \(0.464879\pi\)
\(360\) −6.45293 −0.340099
\(361\) −18.8499 −0.992103
\(362\) −53.0585 −2.78869
\(363\) −1.86277 −0.0977700
\(364\) 129.293 6.77678
\(365\) 11.9218 0.624014
\(366\) 6.57028 0.343434
\(367\) 28.8419 1.50553 0.752767 0.658287i \(-0.228719\pi\)
0.752767 + 0.658287i \(0.228719\pi\)
\(368\) 0 0
\(369\) 2.83322 0.147492
\(370\) 2.63721 0.137102
\(371\) −24.0070 −1.24638
\(372\) −47.7094 −2.47362
\(373\) −9.13105 −0.472788 −0.236394 0.971657i \(-0.575966\pi\)
−0.236394 + 0.971657i \(0.575966\pi\)
\(374\) −15.4513 −0.798967
\(375\) 22.0746 1.13993
\(376\) 77.6272 4.00332
\(377\) −14.6278 −0.753371
\(378\) −50.2226 −2.58317
\(379\) 21.5169 1.10525 0.552625 0.833430i \(-0.313626\pi\)
0.552625 + 0.833430i \(0.313626\pi\)
\(380\) −3.66985 −0.188259
\(381\) −0.0107997 −0.000553286 0
\(382\) 56.0748 2.86904
\(383\) 3.97421 0.203073 0.101536 0.994832i \(-0.467624\pi\)
0.101536 + 0.994832i \(0.467624\pi\)
\(384\) −15.8471 −0.808694
\(385\) 8.56119 0.436318
\(386\) −9.10238 −0.463299
\(387\) 1.22332 0.0621847
\(388\) 27.4907 1.39563
\(389\) 4.71656 0.239139 0.119569 0.992826i \(-0.461849\pi\)
0.119569 + 0.992826i \(0.461849\pi\)
\(390\) 66.9248 3.38887
\(391\) 0 0
\(392\) −68.0645 −3.43777
\(393\) 3.65964 0.184604
\(394\) 57.9292 2.91843
\(395\) 2.52693 0.127144
\(396\) 2.15814 0.108451
\(397\) −0.622192 −0.0312269 −0.0156135 0.999878i \(-0.504970\pi\)
−0.0156135 + 0.999878i \(0.504970\pi\)
\(398\) −4.91940 −0.246587
\(399\) 2.99467 0.149921
\(400\) −5.88917 −0.294458
\(401\) 25.9004 1.29341 0.646703 0.762742i \(-0.276147\pi\)
0.646703 + 0.762742i \(0.276147\pi\)
\(402\) 39.5800 1.97407
\(403\) 37.8279 1.88434
\(404\) 17.3071 0.861059
\(405\) −21.0179 −1.04439
\(406\) 22.9799 1.14047
\(407\) −0.497911 −0.0246805
\(408\) 74.6234 3.69441
\(409\) 24.9272 1.23257 0.616286 0.787523i \(-0.288637\pi\)
0.616286 + 0.787523i \(0.288637\pi\)
\(410\) −31.9347 −1.57714
\(411\) 14.8060 0.730324
\(412\) 10.0406 0.494666
\(413\) 0.327032 0.0160922
\(414\) 0 0
\(415\) 23.8542 1.17095
\(416\) −47.4095 −2.32444
\(417\) 16.8436 0.824837
\(418\) 0.994603 0.0486476
\(419\) 8.12831 0.397094 0.198547 0.980091i \(-0.436378\pi\)
0.198547 + 0.980091i \(0.436378\pi\)
\(420\) −73.2420 −3.57385
\(421\) 7.83432 0.381821 0.190911 0.981607i \(-0.438856\pi\)
0.190911 + 0.981607i \(0.438856\pi\)
\(422\) −16.5846 −0.807326
\(423\) −5.47953 −0.266424
\(424\) 38.5078 1.87010
\(425\) −4.48177 −0.217398
\(426\) −27.4136 −1.32820
\(427\) 5.70119 0.275900
\(428\) 39.5152 1.91004
\(429\) −12.6355 −0.610049
\(430\) −13.7886 −0.664946
\(431\) 10.1312 0.488000 0.244000 0.969775i \(-0.421540\pi\)
0.244000 + 0.969775i \(0.421540\pi\)
\(432\) 37.2677 1.79304
\(433\) −32.5790 −1.56565 −0.782823 0.622244i \(-0.786221\pi\)
−0.782823 + 0.622244i \(0.786221\pi\)
\(434\) −59.4266 −2.85257
\(435\) 8.28640 0.397302
\(436\) −29.1157 −1.39439
\(437\) 0 0
\(438\) 27.6420 1.32079
\(439\) −37.0097 −1.76638 −0.883189 0.469017i \(-0.844608\pi\)
−0.883189 + 0.469017i \(0.844608\pi\)
\(440\) −13.7324 −0.654664
\(441\) 4.80452 0.228786
\(442\) −104.809 −4.98526
\(443\) −37.6868 −1.79056 −0.895278 0.445509i \(-0.853023\pi\)
−0.895278 + 0.445509i \(0.853023\pi\)
\(444\) 4.25969 0.202156
\(445\) 25.5805 1.21263
\(446\) 44.7353 2.11828
\(447\) −11.0713 −0.523655
\(448\) 8.84351 0.417816
\(449\) 27.5213 1.29881 0.649406 0.760442i \(-0.275018\pi\)
0.649406 + 0.760442i \(0.275018\pi\)
\(450\) 0.898588 0.0423598
\(451\) 6.02933 0.283910
\(452\) 19.4200 0.913440
\(453\) −23.9937 −1.12732
\(454\) 47.7012 2.23873
\(455\) 58.0722 2.72247
\(456\) −4.80353 −0.224946
\(457\) −35.5934 −1.66499 −0.832495 0.554033i \(-0.813088\pi\)
−0.832495 + 0.554033i \(0.813088\pi\)
\(458\) −7.54944 −0.352762
\(459\) 28.3614 1.32380
\(460\) 0 0
\(461\) −8.98085 −0.418280 −0.209140 0.977886i \(-0.567066\pi\)
−0.209140 + 0.977886i \(0.567066\pi\)
\(462\) 19.8501 0.923510
\(463\) 12.8747 0.598340 0.299170 0.954200i \(-0.403290\pi\)
0.299170 + 0.954200i \(0.403290\pi\)
\(464\) −17.0523 −0.791631
\(465\) −21.4288 −0.993738
\(466\) 14.2521 0.660216
\(467\) 12.5074 0.578775 0.289387 0.957212i \(-0.406548\pi\)
0.289387 + 0.957212i \(0.406548\pi\)
\(468\) 14.6391 0.676692
\(469\) 34.3445 1.58588
\(470\) 61.7624 2.84889
\(471\) −41.8150 −1.92673
\(472\) −0.524567 −0.0241451
\(473\) 2.60332 0.119701
\(474\) 5.85897 0.269111
\(475\) 0.288493 0.0132370
\(476\) 114.702 5.25738
\(477\) −2.71818 −0.124457
\(478\) 24.8999 1.13890
\(479\) −38.7395 −1.77005 −0.885026 0.465542i \(-0.845859\pi\)
−0.885026 + 0.465542i \(0.845859\pi\)
\(480\) 26.8566 1.22583
\(481\) −3.37743 −0.153997
\(482\) 15.6540 0.713022
\(483\) 0 0
\(484\) 4.59270 0.208759
\(485\) 12.3476 0.560673
\(486\) −12.4290 −0.563789
\(487\) 22.8787 1.03673 0.518366 0.855159i \(-0.326540\pi\)
0.518366 + 0.855159i \(0.326540\pi\)
\(488\) −9.14485 −0.413968
\(489\) 36.1684 1.63559
\(490\) −54.1541 −2.44643
\(491\) 11.1112 0.501440 0.250720 0.968060i \(-0.419333\pi\)
0.250720 + 0.968060i \(0.419333\pi\)
\(492\) −51.5817 −2.32548
\(493\) −12.9771 −0.584459
\(494\) 6.74659 0.303544
\(495\) 0.969335 0.0435684
\(496\) 44.0975 1.98004
\(497\) −23.7875 −1.06701
\(498\) 55.3086 2.47844
\(499\) 33.4000 1.49519 0.747594 0.664156i \(-0.231209\pi\)
0.747594 + 0.664156i \(0.231209\pi\)
\(500\) −54.4254 −2.43398
\(501\) 5.54205 0.247600
\(502\) 36.6658 1.63648
\(503\) −17.7350 −0.790764 −0.395382 0.918517i \(-0.629388\pi\)
−0.395382 + 0.918517i \(0.629388\pi\)
\(504\) −12.9828 −0.578298
\(505\) 7.77352 0.345917
\(506\) 0 0
\(507\) −61.4933 −2.73101
\(508\) 0.0266269 0.00118138
\(509\) 12.4946 0.553816 0.276908 0.960897i \(-0.410690\pi\)
0.276908 + 0.960897i \(0.410690\pi\)
\(510\) 59.3725 2.62906
\(511\) 23.9856 1.06106
\(512\) 50.0138 2.21032
\(513\) −1.82563 −0.0806037
\(514\) 58.7437 2.59107
\(515\) 4.50977 0.198724
\(516\) −22.2717 −0.980458
\(517\) −11.6609 −0.512845
\(518\) 5.30585 0.233126
\(519\) 35.4292 1.55517
\(520\) −93.1493 −4.08487
\(521\) 3.11513 0.136476 0.0682382 0.997669i \(-0.478262\pi\)
0.0682382 + 0.997669i \(0.478262\pi\)
\(522\) 2.60189 0.113882
\(523\) 2.12799 0.0930505 0.0465252 0.998917i \(-0.485185\pi\)
0.0465252 + 0.998917i \(0.485185\pi\)
\(524\) −9.02292 −0.394168
\(525\) 5.75769 0.251286
\(526\) −48.3788 −2.10942
\(527\) 33.5591 1.46186
\(528\) −14.7298 −0.641031
\(529\) 0 0
\(530\) 30.6379 1.33083
\(531\) 0.0370280 0.00160688
\(532\) −7.38343 −0.320112
\(533\) 40.8981 1.77149
\(534\) 59.3113 2.56665
\(535\) 17.7484 0.767328
\(536\) −55.0894 −2.37950
\(537\) 2.72078 0.117410
\(538\) −39.8007 −1.71593
\(539\) 10.2244 0.440396
\(540\) 44.6504 1.92145
\(541\) 17.7330 0.762401 0.381201 0.924492i \(-0.375511\pi\)
0.381201 + 0.924492i \(0.375511\pi\)
\(542\) 29.7623 1.27840
\(543\) −38.4931 −1.65190
\(544\) −42.0594 −1.80328
\(545\) −13.0774 −0.560175
\(546\) 134.647 5.76236
\(547\) −20.0968 −0.859279 −0.429639 0.903001i \(-0.641359\pi\)
−0.429639 + 0.903001i \(0.641359\pi\)
\(548\) −36.5044 −1.55939
\(549\) 0.645514 0.0275499
\(550\) 1.91227 0.0815393
\(551\) 0.835340 0.0355867
\(552\) 0 0
\(553\) 5.08397 0.216192
\(554\) 28.7482 1.22139
\(555\) 1.91325 0.0812130
\(556\) −41.5283 −1.76119
\(557\) 0.640386 0.0271340 0.0135670 0.999908i \(-0.495681\pi\)
0.0135670 + 0.999908i \(0.495681\pi\)
\(558\) −6.72854 −0.284842
\(559\) 17.6588 0.746889
\(560\) 67.6972 2.86073
\(561\) −11.2096 −0.473272
\(562\) 27.4843 1.15936
\(563\) −38.3904 −1.61796 −0.808981 0.587835i \(-0.799981\pi\)
−0.808981 + 0.587835i \(0.799981\pi\)
\(564\) 99.7603 4.20066
\(565\) 8.72255 0.366961
\(566\) 47.7281 2.00616
\(567\) −42.2863 −1.77586
\(568\) 38.1557 1.60098
\(569\) 9.31893 0.390670 0.195335 0.980737i \(-0.437421\pi\)
0.195335 + 0.980737i \(0.437421\pi\)
\(570\) −3.82182 −0.160079
\(571\) 12.3062 0.514999 0.257499 0.966278i \(-0.417101\pi\)
0.257499 + 0.966278i \(0.417101\pi\)
\(572\) 31.1532 1.30258
\(573\) 40.6813 1.69949
\(574\) −64.2499 −2.68174
\(575\) 0 0
\(576\) 1.00130 0.0417209
\(577\) −10.5450 −0.438993 −0.219497 0.975613i \(-0.570441\pi\)
−0.219497 + 0.975613i \(0.570441\pi\)
\(578\) −49.3320 −2.05194
\(579\) −6.60362 −0.274437
\(580\) −20.4303 −0.848322
\(581\) 47.9926 1.99107
\(582\) 28.6292 1.18672
\(583\) −5.78450 −0.239570
\(584\) −38.4735 −1.59205
\(585\) 6.57519 0.271851
\(586\) −36.0463 −1.48906
\(587\) 9.83741 0.406033 0.203017 0.979175i \(-0.434925\pi\)
0.203017 + 0.979175i \(0.434925\pi\)
\(588\) −87.4710 −3.60724
\(589\) −2.16021 −0.0890098
\(590\) −0.417360 −0.0171825
\(591\) 42.0267 1.72875
\(592\) −3.93721 −0.161818
\(593\) 21.6558 0.889296 0.444648 0.895705i \(-0.353329\pi\)
0.444648 + 0.895705i \(0.353329\pi\)
\(594\) −12.1012 −0.496516
\(595\) 51.5189 2.11207
\(596\) 27.2965 1.11811
\(597\) −3.56894 −0.146067
\(598\) 0 0
\(599\) 7.51262 0.306957 0.153479 0.988152i \(-0.450952\pi\)
0.153479 + 0.988152i \(0.450952\pi\)
\(600\) −9.23547 −0.377036
\(601\) 35.6521 1.45428 0.727140 0.686489i \(-0.240849\pi\)
0.727140 + 0.686489i \(0.240849\pi\)
\(602\) −27.7416 −1.13066
\(603\) 3.88864 0.158358
\(604\) 59.1570 2.40706
\(605\) 2.06282 0.0838657
\(606\) 18.0238 0.732167
\(607\) 29.8716 1.21245 0.606225 0.795293i \(-0.292683\pi\)
0.606225 + 0.795293i \(0.292683\pi\)
\(608\) 2.70738 0.109799
\(609\) 16.6715 0.675565
\(610\) −7.27591 −0.294593
\(611\) −79.0980 −3.19996
\(612\) 12.9871 0.524973
\(613\) −30.1249 −1.21673 −0.608366 0.793657i \(-0.708175\pi\)
−0.608366 + 0.793657i \(0.708175\pi\)
\(614\) 85.2158 3.43903
\(615\) −23.1681 −0.934226
\(616\) −27.6283 −1.11318
\(617\) −10.8409 −0.436439 −0.218220 0.975900i \(-0.570025\pi\)
−0.218220 + 0.975900i \(0.570025\pi\)
\(618\) 10.4564 0.420619
\(619\) −15.6049 −0.627213 −0.313606 0.949553i \(-0.601537\pi\)
−0.313606 + 0.949553i \(0.601537\pi\)
\(620\) 52.8332 2.12183
\(621\) 0 0
\(622\) 77.2104 3.09585
\(623\) 51.4658 2.06194
\(624\) −99.9149 −3.99980
\(625\) −20.7215 −0.828861
\(626\) 75.5804 3.02080
\(627\) 0.721568 0.0288167
\(628\) 103.096 4.11397
\(629\) −2.99629 −0.119470
\(630\) −10.3295 −0.411535
\(631\) −17.3015 −0.688762 −0.344381 0.938830i \(-0.611911\pi\)
−0.344381 + 0.938830i \(0.611911\pi\)
\(632\) −8.15481 −0.324381
\(633\) −12.0319 −0.478224
\(634\) 26.0002 1.03260
\(635\) 0.0119595 0.000474600 0
\(636\) 49.4871 1.96229
\(637\) 69.3541 2.74791
\(638\) 5.53702 0.219213
\(639\) −2.69332 −0.106546
\(640\) 17.5490 0.693686
\(641\) 26.5099 1.04708 0.523539 0.852001i \(-0.324611\pi\)
0.523539 + 0.852001i \(0.324611\pi\)
\(642\) 41.1516 1.62412
\(643\) −9.94102 −0.392035 −0.196018 0.980600i \(-0.562801\pi\)
−0.196018 + 0.980600i \(0.562801\pi\)
\(644\) 0 0
\(645\) −10.0034 −0.393884
\(646\) 5.98526 0.235487
\(647\) 4.15705 0.163431 0.0817153 0.996656i \(-0.473960\pi\)
0.0817153 + 0.996656i \(0.473960\pi\)
\(648\) 67.8283 2.66455
\(649\) 0.0787985 0.00309311
\(650\) 12.9713 0.508776
\(651\) −43.1130 −1.68973
\(652\) −89.1740 −3.49232
\(653\) −18.1110 −0.708737 −0.354369 0.935106i \(-0.615304\pi\)
−0.354369 + 0.935106i \(0.615304\pi\)
\(654\) −30.3215 −1.18566
\(655\) −4.05267 −0.158351
\(656\) 47.6766 1.86146
\(657\) 2.71576 0.105952
\(658\) 124.261 4.84419
\(659\) −18.6817 −0.727737 −0.363869 0.931450i \(-0.618544\pi\)
−0.363869 + 0.931450i \(0.618544\pi\)
\(660\) −17.6477 −0.686936
\(661\) 26.2985 1.02289 0.511446 0.859316i \(-0.329110\pi\)
0.511446 + 0.859316i \(0.329110\pi\)
\(662\) 13.1333 0.510441
\(663\) −76.0372 −2.95304
\(664\) −76.9813 −2.98745
\(665\) −3.31629 −0.128600
\(666\) 0.600752 0.0232787
\(667\) 0 0
\(668\) −13.6640 −0.528677
\(669\) 32.4547 1.25477
\(670\) −43.8307 −1.69333
\(671\) 1.37371 0.0530313
\(672\) 54.0333 2.08438
\(673\) 14.9810 0.577475 0.288738 0.957408i \(-0.406764\pi\)
0.288738 + 0.957408i \(0.406764\pi\)
\(674\) −30.2031 −1.16338
\(675\) −3.51004 −0.135102
\(676\) 151.613 5.83127
\(677\) −36.7407 −1.41206 −0.706029 0.708182i \(-0.749515\pi\)
−0.706029 + 0.708182i \(0.749515\pi\)
\(678\) 20.2242 0.776707
\(679\) 24.8422 0.953358
\(680\) −82.6376 −3.16901
\(681\) 34.6064 1.32612
\(682\) −14.3189 −0.548298
\(683\) −13.4535 −0.514784 −0.257392 0.966307i \(-0.582863\pi\)
−0.257392 + 0.966307i \(0.582863\pi\)
\(684\) −0.835984 −0.0319647
\(685\) −16.3961 −0.626462
\(686\) −34.3599 −1.31187
\(687\) −5.47699 −0.208960
\(688\) 20.5856 0.784820
\(689\) −39.2374 −1.49483
\(690\) 0 0
\(691\) 25.0061 0.951276 0.475638 0.879641i \(-0.342217\pi\)
0.475638 + 0.879641i \(0.342217\pi\)
\(692\) −87.3514 −3.32060
\(693\) 1.95022 0.0740828
\(694\) −47.1232 −1.78877
\(695\) −18.6526 −0.707533
\(696\) −26.7416 −1.01364
\(697\) 36.2829 1.37431
\(698\) −35.5301 −1.34483
\(699\) 10.3397 0.391082
\(700\) −14.1957 −0.536547
\(701\) 6.21329 0.234673 0.117336 0.993092i \(-0.462564\pi\)
0.117336 + 0.993092i \(0.462564\pi\)
\(702\) −82.0846 −3.09808
\(703\) 0.192872 0.00727431
\(704\) 2.13085 0.0803094
\(705\) 44.8076 1.68755
\(706\) −6.61192 −0.248843
\(707\) 15.6397 0.588191
\(708\) −0.674131 −0.0253354
\(709\) −27.2196 −1.02225 −0.511126 0.859506i \(-0.670771\pi\)
−0.511126 + 0.859506i \(0.670771\pi\)
\(710\) 30.3578 1.13931
\(711\) 0.575629 0.0215878
\(712\) −82.5525 −3.09378
\(713\) 0 0
\(714\) 119.453 4.47040
\(715\) 13.9925 0.523291
\(716\) −6.70813 −0.250695
\(717\) 18.0645 0.674630
\(718\) −10.7139 −0.399838
\(719\) −43.7502 −1.63161 −0.815804 0.578329i \(-0.803705\pi\)
−0.815804 + 0.578329i \(0.803705\pi\)
\(720\) 7.66498 0.285657
\(721\) 9.07329 0.337907
\(722\) 48.3996 1.80125
\(723\) 11.3567 0.422362
\(724\) 94.9054 3.52713
\(725\) 1.60606 0.0596476
\(726\) 4.78289 0.177510
\(727\) 28.3391 1.05104 0.525519 0.850782i \(-0.323871\pi\)
0.525519 + 0.850782i \(0.323871\pi\)
\(728\) −187.409 −6.94582
\(729\) 21.5497 0.798138
\(730\) −30.6106 −1.13295
\(731\) 15.6661 0.579431
\(732\) −11.7522 −0.434375
\(733\) 24.4551 0.903271 0.451635 0.892203i \(-0.350841\pi\)
0.451635 + 0.892203i \(0.350841\pi\)
\(734\) −74.0551 −2.73342
\(735\) −39.2879 −1.44915
\(736\) 0 0
\(737\) 8.27533 0.304826
\(738\) −7.27465 −0.267784
\(739\) −39.6213 −1.45749 −0.728747 0.684783i \(-0.759897\pi\)
−0.728747 + 0.684783i \(0.759897\pi\)
\(740\) −4.71716 −0.173406
\(741\) 4.89454 0.179805
\(742\) 61.6409 2.26291
\(743\) −9.79560 −0.359366 −0.179683 0.983725i \(-0.557507\pi\)
−0.179683 + 0.983725i \(0.557507\pi\)
\(744\) 69.1543 2.53532
\(745\) 12.2603 0.449184
\(746\) 23.4451 0.858386
\(747\) 5.43393 0.198817
\(748\) 27.6376 1.01053
\(749\) 35.7082 1.30475
\(750\) −56.6793 −2.06963
\(751\) 9.44609 0.344693 0.172346 0.985036i \(-0.444865\pi\)
0.172346 + 0.985036i \(0.444865\pi\)
\(752\) −92.2079 −3.36247
\(753\) 26.6004 0.969374
\(754\) 37.5587 1.36781
\(755\) 26.5705 0.967000
\(756\) 89.8328 3.26719
\(757\) −21.7912 −0.792014 −0.396007 0.918247i \(-0.629604\pi\)
−0.396007 + 0.918247i \(0.629604\pi\)
\(758\) −55.2474 −2.00668
\(759\) 0 0
\(760\) 5.31941 0.192955
\(761\) −7.66206 −0.277749 −0.138875 0.990310i \(-0.544349\pi\)
−0.138875 + 0.990310i \(0.544349\pi\)
\(762\) 0.0277296 0.00100454
\(763\) −26.3107 −0.952511
\(764\) −100.301 −3.62875
\(765\) 5.83320 0.210900
\(766\) −10.2043 −0.368695
\(767\) 0.534506 0.0192999
\(768\) 48.6279 1.75471
\(769\) −49.3907 −1.78107 −0.890537 0.454911i \(-0.849671\pi\)
−0.890537 + 0.454911i \(0.849671\pi\)
\(770\) −21.9819 −0.792173
\(771\) 42.6176 1.53483
\(772\) 16.2814 0.585979
\(773\) −43.5127 −1.56504 −0.782521 0.622624i \(-0.786067\pi\)
−0.782521 + 0.622624i \(0.786067\pi\)
\(774\) −3.14102 −0.112902
\(775\) −4.15331 −0.149191
\(776\) −39.8476 −1.43044
\(777\) 3.84930 0.138093
\(778\) −12.1103 −0.434177
\(779\) −2.33554 −0.0836794
\(780\) −119.708 −4.28623
\(781\) −5.73161 −0.205093
\(782\) 0 0
\(783\) −10.1634 −0.363211
\(784\) 80.8490 2.88746
\(785\) 46.3058 1.65272
\(786\) −9.39658 −0.335165
\(787\) −14.6738 −0.523064 −0.261532 0.965195i \(-0.584228\pi\)
−0.261532 + 0.965195i \(0.584228\pi\)
\(788\) −103.618 −3.69122
\(789\) −35.0980 −1.24952
\(790\) −6.48820 −0.230840
\(791\) 17.5490 0.623972
\(792\) −3.12820 −0.111156
\(793\) 9.31812 0.330896
\(794\) 1.59755 0.0566951
\(795\) 22.2273 0.788321
\(796\) 8.79930 0.311883
\(797\) 45.1987 1.60102 0.800510 0.599319i \(-0.204562\pi\)
0.800510 + 0.599319i \(0.204562\pi\)
\(798\) −7.68919 −0.272194
\(799\) −70.1720 −2.48251
\(800\) 5.20532 0.184036
\(801\) 5.82719 0.205894
\(802\) −66.5026 −2.34829
\(803\) 5.77935 0.203949
\(804\) −70.7965 −2.49680
\(805\) 0 0
\(806\) −97.1278 −3.42118
\(807\) −28.8748 −1.01644
\(808\) −25.0864 −0.882537
\(809\) 32.5409 1.14408 0.572038 0.820227i \(-0.306153\pi\)
0.572038 + 0.820227i \(0.306153\pi\)
\(810\) 53.9661 1.89618
\(811\) −50.4931 −1.77305 −0.886526 0.462680i \(-0.846888\pi\)
−0.886526 + 0.462680i \(0.846888\pi\)
\(812\) −41.1040 −1.44247
\(813\) 21.5921 0.757267
\(814\) 1.27845 0.0448096
\(815\) −40.0528 −1.40299
\(816\) −88.6398 −3.10301
\(817\) −1.00843 −0.0352805
\(818\) −64.0037 −2.23784
\(819\) 13.2287 0.462250
\(820\) 57.1213 1.99476
\(821\) −19.9307 −0.695586 −0.347793 0.937571i \(-0.613069\pi\)
−0.347793 + 0.937571i \(0.613069\pi\)
\(822\) −38.0162 −1.32597
\(823\) −20.2426 −0.705614 −0.352807 0.935696i \(-0.614773\pi\)
−0.352807 + 0.935696i \(0.614773\pi\)
\(824\) −14.5538 −0.507005
\(825\) 1.38732 0.0483002
\(826\) −0.839694 −0.0292167
\(827\) 27.0085 0.939176 0.469588 0.882886i \(-0.344402\pi\)
0.469588 + 0.882886i \(0.344402\pi\)
\(828\) 0 0
\(829\) −46.9795 −1.63167 −0.815833 0.578288i \(-0.803721\pi\)
−0.815833 + 0.578288i \(0.803721\pi\)
\(830\) −61.2485 −2.12597
\(831\) 20.8564 0.723499
\(832\) 14.4540 0.501101
\(833\) 61.5277 2.13181
\(834\) −43.2481 −1.49756
\(835\) −6.13724 −0.212388
\(836\) −1.77904 −0.0615294
\(837\) 26.2829 0.908469
\(838\) −20.8704 −0.720958
\(839\) 21.9464 0.757674 0.378837 0.925463i \(-0.376324\pi\)
0.378837 + 0.925463i \(0.376324\pi\)
\(840\) 106.164 3.66299
\(841\) −24.3496 −0.839642
\(842\) −20.1156 −0.693229
\(843\) 19.9394 0.686751
\(844\) 29.6648 1.02110
\(845\) 68.0975 2.34262
\(846\) 14.0694 0.483715
\(847\) 4.15023 0.142604
\(848\) −45.7407 −1.57074
\(849\) 34.6259 1.18836
\(850\) 11.5075 0.394704
\(851\) 0 0
\(852\) 49.0346 1.67990
\(853\) −12.3162 −0.421699 −0.210849 0.977519i \(-0.567623\pi\)
−0.210849 + 0.977519i \(0.567623\pi\)
\(854\) −14.6385 −0.500920
\(855\) −0.375485 −0.0128413
\(856\) −57.2769 −1.95768
\(857\) 12.3110 0.420536 0.210268 0.977644i \(-0.432566\pi\)
0.210268 + 0.977644i \(0.432566\pi\)
\(858\) 32.4433 1.10760
\(859\) −9.05383 −0.308913 −0.154456 0.988000i \(-0.549363\pi\)
−0.154456 + 0.988000i \(0.549363\pi\)
\(860\) 24.6636 0.841023
\(861\) −46.6122 −1.58854
\(862\) −26.0130 −0.886006
\(863\) 3.37903 0.115024 0.0575118 0.998345i \(-0.481683\pi\)
0.0575118 + 0.998345i \(0.481683\pi\)
\(864\) −32.9402 −1.12065
\(865\) −39.2342 −1.33400
\(866\) 83.6506 2.84256
\(867\) −35.7896 −1.21548
\(868\) 106.296 3.60792
\(869\) 1.22499 0.0415548
\(870\) −21.2764 −0.721336
\(871\) 56.1332 1.90200
\(872\) 42.2030 1.42917
\(873\) 2.81275 0.0951971
\(874\) 0 0
\(875\) −49.1820 −1.66265
\(876\) −49.4431 −1.67053
\(877\) 53.9276 1.82101 0.910504 0.413501i \(-0.135694\pi\)
0.910504 + 0.413501i \(0.135694\pi\)
\(878\) 95.0271 3.20701
\(879\) −26.1510 −0.882052
\(880\) 16.3117 0.549867
\(881\) 34.5622 1.16443 0.582215 0.813035i \(-0.302186\pi\)
0.582215 + 0.813035i \(0.302186\pi\)
\(882\) −12.3362 −0.415381
\(883\) 19.5480 0.657844 0.328922 0.944357i \(-0.393315\pi\)
0.328922 + 0.944357i \(0.393315\pi\)
\(884\) 187.471 6.30535
\(885\) −0.302788 −0.0101781
\(886\) 96.7656 3.25090
\(887\) 12.2485 0.411264 0.205632 0.978629i \(-0.434075\pi\)
0.205632 + 0.978629i \(0.434075\pi\)
\(888\) −6.17438 −0.207199
\(889\) 0.0240616 0.000807001 0
\(890\) −65.6811 −2.20164
\(891\) −10.1889 −0.341341
\(892\) −80.0178 −2.67919
\(893\) 4.51699 0.151155
\(894\) 28.4270 0.950740
\(895\) −3.01298 −0.100713
\(896\) 35.3071 1.17953
\(897\) 0 0
\(898\) −70.6644 −2.35810
\(899\) −12.0260 −0.401091
\(900\) −1.60730 −0.0535766
\(901\) −34.8096 −1.15968
\(902\) −15.4810 −0.515462
\(903\) −20.1260 −0.669752
\(904\) −28.1491 −0.936225
\(905\) 42.6271 1.41697
\(906\) 61.6068 2.04675
\(907\) 55.9809 1.85881 0.929407 0.369057i \(-0.120319\pi\)
0.929407 + 0.369057i \(0.120319\pi\)
\(908\) −85.3228 −2.83154
\(909\) 1.77079 0.0587335
\(910\) −149.108 −4.94287
\(911\) −13.8998 −0.460522 −0.230261 0.973129i \(-0.573958\pi\)
−0.230261 + 0.973129i \(0.573958\pi\)
\(912\) 5.70577 0.188937
\(913\) 11.5638 0.382707
\(914\) 91.3905 3.02293
\(915\) −5.27855 −0.174503
\(916\) 13.5036 0.446173
\(917\) −8.15363 −0.269257
\(918\) −72.8215 −2.40347
\(919\) 29.8027 0.983101 0.491551 0.870849i \(-0.336430\pi\)
0.491551 + 0.870849i \(0.336430\pi\)
\(920\) 0 0
\(921\) 61.8227 2.03713
\(922\) 23.0595 0.759423
\(923\) −38.8786 −1.27971
\(924\) −35.5057 −1.16805
\(925\) 0.370824 0.0121926
\(926\) −33.0575 −1.08634
\(927\) 1.02732 0.0337416
\(928\) 15.0722 0.494768
\(929\) −5.80521 −0.190463 −0.0952315 0.995455i \(-0.530359\pi\)
−0.0952315 + 0.995455i \(0.530359\pi\)
\(930\) 55.0212 1.80421
\(931\) −3.96055 −0.129802
\(932\) −25.4927 −0.835040
\(933\) 56.0149 1.83384
\(934\) −32.1144 −1.05081
\(935\) 12.4135 0.405965
\(936\) −21.2192 −0.693572
\(937\) −6.35465 −0.207598 −0.103799 0.994598i \(-0.533100\pi\)
−0.103799 + 0.994598i \(0.533100\pi\)
\(938\) −88.1838 −2.87930
\(939\) 54.8323 1.78939
\(940\) −110.474 −3.60327
\(941\) −6.07766 −0.198126 −0.0990630 0.995081i \(-0.531585\pi\)
−0.0990630 + 0.995081i \(0.531585\pi\)
\(942\) 107.365 3.49815
\(943\) 0 0
\(944\) 0.623096 0.0202800
\(945\) 40.3487 1.31254
\(946\) −6.68434 −0.217327
\(947\) 38.4954 1.25093 0.625467 0.780251i \(-0.284909\pi\)
0.625467 + 0.780251i \(0.284909\pi\)
\(948\) −10.4799 −0.340372
\(949\) 39.2025 1.27257
\(950\) −0.740742 −0.0240328
\(951\) 18.8627 0.611665
\(952\) −166.260 −5.38852
\(953\) −14.6604 −0.474896 −0.237448 0.971400i \(-0.576311\pi\)
−0.237448 + 0.971400i \(0.576311\pi\)
\(954\) 6.97926 0.225962
\(955\) −45.0503 −1.45779
\(956\) −44.5383 −1.44047
\(957\) 4.01702 0.129852
\(958\) 99.4684 3.21368
\(959\) −32.9875 −1.06522
\(960\) −8.18792 −0.264264
\(961\) 0.0995872 0.00321249
\(962\) 8.67196 0.279595
\(963\) 4.04304 0.130285
\(964\) −28.0003 −0.901828
\(965\) 7.31283 0.235408
\(966\) 0 0
\(967\) −23.7829 −0.764805 −0.382403 0.923996i \(-0.624903\pi\)
−0.382403 + 0.923996i \(0.624903\pi\)
\(968\) −6.65707 −0.213966
\(969\) 4.34220 0.139492
\(970\) −31.7039 −1.01795
\(971\) 20.6653 0.663181 0.331591 0.943423i \(-0.392415\pi\)
0.331591 + 0.943423i \(0.392415\pi\)
\(972\) 22.2316 0.713079
\(973\) −37.5274 −1.20307
\(974\) −58.7439 −1.88228
\(975\) 9.41045 0.301376
\(976\) 10.8625 0.347701
\(977\) −24.8167 −0.793956 −0.396978 0.917828i \(-0.629941\pi\)
−0.396978 + 0.917828i \(0.629941\pi\)
\(978\) −92.8669 −2.96956
\(979\) 12.4007 0.396329
\(980\) 96.8651 3.09424
\(981\) −2.97901 −0.0951125
\(982\) −28.5293 −0.910406
\(983\) −9.12258 −0.290965 −0.145482 0.989361i \(-0.546473\pi\)
−0.145482 + 0.989361i \(0.546473\pi\)
\(984\) 74.7671 2.38349
\(985\) −46.5402 −1.48289
\(986\) 33.3203 1.06114
\(987\) 90.1492 2.86948
\(988\) −12.0676 −0.383921
\(989\) 0 0
\(990\) −2.48889 −0.0791021
\(991\) −51.5648 −1.63801 −0.819004 0.573787i \(-0.805474\pi\)
−0.819004 + 0.573787i \(0.805474\pi\)
\(992\) −38.9769 −1.23752
\(993\) 9.52801 0.302362
\(994\) 61.0773 1.93725
\(995\) 3.95223 0.125294
\(996\) −98.9302 −3.13472
\(997\) 31.6978 1.00388 0.501940 0.864903i \(-0.332620\pi\)
0.501940 + 0.864903i \(0.332620\pi\)
\(998\) −85.7586 −2.71464
\(999\) −2.34664 −0.0742445
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.4 60
23.9 even 11 253.2.i.b.12.1 120
23.18 even 11 253.2.i.b.232.1 yes 120
23.22 odd 2 5819.2.a.t.1.4 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.12.1 120 23.9 even 11
253.2.i.b.232.1 yes 120 23.18 even 11
5819.2.a.t.1.4 60 23.22 odd 2
5819.2.a.u.1.4 60 1.1 even 1 trivial