Properties

Label 5819.2.a.u.1.19
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.22583 q^{2} +1.22479 q^{3} -0.497336 q^{4} +2.74249 q^{5} -1.50139 q^{6} -4.85150 q^{7} +3.06131 q^{8} -1.49988 q^{9} -3.36183 q^{10} +1.00000 q^{11} -0.609133 q^{12} +5.50603 q^{13} +5.94713 q^{14} +3.35898 q^{15} -2.75798 q^{16} -2.68509 q^{17} +1.83861 q^{18} -6.28560 q^{19} -1.36394 q^{20} -5.94208 q^{21} -1.22583 q^{22} +3.74947 q^{24} +2.52126 q^{25} -6.74946 q^{26} -5.51142 q^{27} +2.41283 q^{28} -0.503263 q^{29} -4.11755 q^{30} +5.32627 q^{31} -2.74180 q^{32} +1.22479 q^{33} +3.29146 q^{34} -13.3052 q^{35} +0.745946 q^{36} -5.05352 q^{37} +7.70508 q^{38} +6.74374 q^{39} +8.39563 q^{40} +2.35569 q^{41} +7.28400 q^{42} -2.06045 q^{43} -0.497336 q^{44} -4.11342 q^{45} +9.96669 q^{47} -3.37796 q^{48} +16.5371 q^{49} -3.09064 q^{50} -3.28867 q^{51} -2.73835 q^{52} +10.3443 q^{53} +6.75608 q^{54} +2.74249 q^{55} -14.8520 q^{56} -7.69855 q^{57} +0.616915 q^{58} -0.292338 q^{59} -1.67054 q^{60} -4.55164 q^{61} -6.52912 q^{62} +7.27669 q^{63} +8.87696 q^{64} +15.1002 q^{65} -1.50139 q^{66} -0.220958 q^{67} +1.33539 q^{68} +16.3099 q^{70} -7.12567 q^{71} -4.59162 q^{72} +3.76611 q^{73} +6.19477 q^{74} +3.08802 q^{75} +3.12605 q^{76} -4.85150 q^{77} -8.26669 q^{78} +7.37456 q^{79} -7.56375 q^{80} -2.25070 q^{81} -2.88768 q^{82} +5.10176 q^{83} +2.95521 q^{84} -7.36383 q^{85} +2.52577 q^{86} -0.616392 q^{87} +3.06131 q^{88} +5.60679 q^{89} +5.04236 q^{90} -26.7125 q^{91} +6.52358 q^{93} -12.2175 q^{94} -17.2382 q^{95} -3.35814 q^{96} +3.89688 q^{97} -20.2717 q^{98} -1.49988 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22583 −0.866794 −0.433397 0.901203i \(-0.642685\pi\)
−0.433397 + 0.901203i \(0.642685\pi\)
\(3\) 1.22479 0.707134 0.353567 0.935409i \(-0.384969\pi\)
0.353567 + 0.935409i \(0.384969\pi\)
\(4\) −0.497336 −0.248668
\(5\) 2.74249 1.22648 0.613240 0.789897i \(-0.289866\pi\)
0.613240 + 0.789897i \(0.289866\pi\)
\(6\) −1.50139 −0.612940
\(7\) −4.85150 −1.83370 −0.916848 0.399237i \(-0.869275\pi\)
−0.916848 + 0.399237i \(0.869275\pi\)
\(8\) 3.06131 1.08234
\(9\) −1.49988 −0.499961
\(10\) −3.36183 −1.06311
\(11\) 1.00000 0.301511
\(12\) −0.609133 −0.175842
\(13\) 5.50603 1.52710 0.763548 0.645751i \(-0.223455\pi\)
0.763548 + 0.645751i \(0.223455\pi\)
\(14\) 5.94713 1.58944
\(15\) 3.35898 0.867285
\(16\) −2.75798 −0.689496
\(17\) −2.68509 −0.651229 −0.325615 0.945503i \(-0.605571\pi\)
−0.325615 + 0.945503i \(0.605571\pi\)
\(18\) 1.83861 0.433363
\(19\) −6.28560 −1.44201 −0.721007 0.692927i \(-0.756321\pi\)
−0.721007 + 0.692927i \(0.756321\pi\)
\(20\) −1.36394 −0.304986
\(21\) −5.94208 −1.29667
\(22\) −1.22583 −0.261348
\(23\) 0 0
\(24\) 3.74947 0.765358
\(25\) 2.52126 0.504252
\(26\) −6.74946 −1.32368
\(27\) −5.51142 −1.06067
\(28\) 2.41283 0.455982
\(29\) −0.503263 −0.0934535 −0.0467268 0.998908i \(-0.514879\pi\)
−0.0467268 + 0.998908i \(0.514879\pi\)
\(30\) −4.11755 −0.751758
\(31\) 5.32627 0.956627 0.478313 0.878189i \(-0.341248\pi\)
0.478313 + 0.878189i \(0.341248\pi\)
\(32\) −2.74180 −0.484687
\(33\) 1.22479 0.213209
\(34\) 3.29146 0.564482
\(35\) −13.3052 −2.24899
\(36\) 0.745946 0.124324
\(37\) −5.05352 −0.830794 −0.415397 0.909640i \(-0.636357\pi\)
−0.415397 + 0.909640i \(0.636357\pi\)
\(38\) 7.70508 1.24993
\(39\) 6.74374 1.07986
\(40\) 8.39563 1.32747
\(41\) 2.35569 0.367896 0.183948 0.982936i \(-0.441112\pi\)
0.183948 + 0.982936i \(0.441112\pi\)
\(42\) 7.28400 1.12394
\(43\) −2.06045 −0.314216 −0.157108 0.987581i \(-0.550217\pi\)
−0.157108 + 0.987581i \(0.550217\pi\)
\(44\) −0.497336 −0.0749762
\(45\) −4.11342 −0.613192
\(46\) 0 0
\(47\) 9.96669 1.45379 0.726895 0.686748i \(-0.240963\pi\)
0.726895 + 0.686748i \(0.240963\pi\)
\(48\) −3.37796 −0.487566
\(49\) 16.5371 2.36244
\(50\) −3.09064 −0.437082
\(51\) −3.28867 −0.460506
\(52\) −2.73835 −0.379740
\(53\) 10.3443 1.42090 0.710450 0.703748i \(-0.248492\pi\)
0.710450 + 0.703748i \(0.248492\pi\)
\(54\) 6.75608 0.919386
\(55\) 2.74249 0.369797
\(56\) −14.8520 −1.98468
\(57\) −7.69855 −1.01970
\(58\) 0.616915 0.0810050
\(59\) −0.292338 −0.0380591 −0.0190296 0.999819i \(-0.506058\pi\)
−0.0190296 + 0.999819i \(0.506058\pi\)
\(60\) −1.67054 −0.215666
\(61\) −4.55164 −0.582777 −0.291389 0.956605i \(-0.594117\pi\)
−0.291389 + 0.956605i \(0.594117\pi\)
\(62\) −6.52912 −0.829199
\(63\) 7.27669 0.916777
\(64\) 8.87696 1.10962
\(65\) 15.1002 1.87295
\(66\) −1.50139 −0.184808
\(67\) −0.220958 −0.0269944 −0.0134972 0.999909i \(-0.504296\pi\)
−0.0134972 + 0.999909i \(0.504296\pi\)
\(68\) 1.33539 0.161940
\(69\) 0 0
\(70\) 16.3099 1.94941
\(71\) −7.12567 −0.845662 −0.422831 0.906209i \(-0.638964\pi\)
−0.422831 + 0.906209i \(0.638964\pi\)
\(72\) −4.59162 −0.541127
\(73\) 3.76611 0.440790 0.220395 0.975411i \(-0.429265\pi\)
0.220395 + 0.975411i \(0.429265\pi\)
\(74\) 6.19477 0.720127
\(75\) 3.08802 0.356574
\(76\) 3.12605 0.358583
\(77\) −4.85150 −0.552880
\(78\) −8.26669 −0.936018
\(79\) 7.37456 0.829703 0.414852 0.909889i \(-0.363833\pi\)
0.414852 + 0.909889i \(0.363833\pi\)
\(80\) −7.56375 −0.845653
\(81\) −2.25070 −0.250077
\(82\) −2.88768 −0.318890
\(83\) 5.10176 0.559990 0.279995 0.960001i \(-0.409667\pi\)
0.279995 + 0.960001i \(0.409667\pi\)
\(84\) 2.95521 0.322440
\(85\) −7.36383 −0.798719
\(86\) 2.52577 0.272361
\(87\) −0.616392 −0.0660842
\(88\) 3.06131 0.326337
\(89\) 5.60679 0.594319 0.297159 0.954828i \(-0.403961\pi\)
0.297159 + 0.954828i \(0.403961\pi\)
\(90\) 5.04236 0.531511
\(91\) −26.7125 −2.80023
\(92\) 0 0
\(93\) 6.52358 0.676464
\(94\) −12.2175 −1.26014
\(95\) −17.2382 −1.76860
\(96\) −3.35814 −0.342739
\(97\) 3.89688 0.395668 0.197834 0.980236i \(-0.436609\pi\)
0.197834 + 0.980236i \(0.436609\pi\)
\(98\) −20.2717 −2.04775
\(99\) −1.49988 −0.150744
\(100\) −1.25391 −0.125391
\(101\) 12.5987 1.25362 0.626809 0.779173i \(-0.284361\pi\)
0.626809 + 0.779173i \(0.284361\pi\)
\(102\) 4.03136 0.399164
\(103\) 10.3957 1.02432 0.512160 0.858890i \(-0.328846\pi\)
0.512160 + 0.858890i \(0.328846\pi\)
\(104\) 16.8557 1.65283
\(105\) −16.2961 −1.59034
\(106\) −12.6804 −1.23163
\(107\) 2.79737 0.270432 0.135216 0.990816i \(-0.456827\pi\)
0.135216 + 0.990816i \(0.456827\pi\)
\(108\) 2.74103 0.263756
\(109\) −8.59809 −0.823548 −0.411774 0.911286i \(-0.635091\pi\)
−0.411774 + 0.911286i \(0.635091\pi\)
\(110\) −3.36183 −0.320538
\(111\) −6.18951 −0.587483
\(112\) 13.3804 1.26433
\(113\) 1.25808 0.118350 0.0591750 0.998248i \(-0.481153\pi\)
0.0591750 + 0.998248i \(0.481153\pi\)
\(114\) 9.43713 0.883868
\(115\) 0 0
\(116\) 0.250291 0.0232389
\(117\) −8.25840 −0.763489
\(118\) 0.358357 0.0329894
\(119\) 13.0267 1.19416
\(120\) 10.2829 0.938696
\(121\) 1.00000 0.0909091
\(122\) 5.57954 0.505148
\(123\) 2.88523 0.260152
\(124\) −2.64895 −0.237883
\(125\) −6.79793 −0.608025
\(126\) −8.92000 −0.794657
\(127\) −16.4988 −1.46403 −0.732016 0.681287i \(-0.761421\pi\)
−0.732016 + 0.681287i \(0.761421\pi\)
\(128\) −5.39805 −0.477125
\(129\) −2.52363 −0.222193
\(130\) −18.5103 −1.62346
\(131\) 9.72892 0.850020 0.425010 0.905189i \(-0.360271\pi\)
0.425010 + 0.905189i \(0.360271\pi\)
\(132\) −0.609133 −0.0530183
\(133\) 30.4946 2.64422
\(134\) 0.270858 0.0233986
\(135\) −15.1150 −1.30089
\(136\) −8.21989 −0.704850
\(137\) 6.06805 0.518429 0.259214 0.965820i \(-0.416536\pi\)
0.259214 + 0.965820i \(0.416536\pi\)
\(138\) 0 0
\(139\) −16.5533 −1.40403 −0.702014 0.712163i \(-0.747716\pi\)
−0.702014 + 0.712163i \(0.747716\pi\)
\(140\) 6.61716 0.559252
\(141\) 12.2071 1.02802
\(142\) 8.73488 0.733014
\(143\) 5.50603 0.460437
\(144\) 4.13666 0.344721
\(145\) −1.38019 −0.114619
\(146\) −4.61662 −0.382074
\(147\) 20.2545 1.67056
\(148\) 2.51330 0.206592
\(149\) 11.8268 0.968889 0.484445 0.874822i \(-0.339022\pi\)
0.484445 + 0.874822i \(0.339022\pi\)
\(150\) −3.78539 −0.309076
\(151\) −18.0414 −1.46819 −0.734094 0.679047i \(-0.762393\pi\)
−0.734094 + 0.679047i \(0.762393\pi\)
\(152\) −19.2422 −1.56075
\(153\) 4.02732 0.325589
\(154\) 5.94713 0.479233
\(155\) 14.6073 1.17328
\(156\) −3.35390 −0.268527
\(157\) −7.13305 −0.569279 −0.284639 0.958635i \(-0.591874\pi\)
−0.284639 + 0.958635i \(0.591874\pi\)
\(158\) −9.03997 −0.719182
\(159\) 12.6696 1.00477
\(160\) −7.51937 −0.594458
\(161\) 0 0
\(162\) 2.75898 0.216766
\(163\) −7.26193 −0.568798 −0.284399 0.958706i \(-0.591794\pi\)
−0.284399 + 0.958706i \(0.591794\pi\)
\(164\) −1.17157 −0.0914841
\(165\) 3.35898 0.261496
\(166\) −6.25389 −0.485396
\(167\) 17.0812 1.32178 0.660890 0.750483i \(-0.270179\pi\)
0.660890 + 0.750483i \(0.270179\pi\)
\(168\) −18.1906 −1.40343
\(169\) 17.3163 1.33202
\(170\) 9.02681 0.692325
\(171\) 9.42766 0.720952
\(172\) 1.02474 0.0781356
\(173\) −16.4010 −1.24694 −0.623472 0.781846i \(-0.714278\pi\)
−0.623472 + 0.781846i \(0.714278\pi\)
\(174\) 0.755593 0.0572814
\(175\) −12.2319 −0.924644
\(176\) −2.75798 −0.207891
\(177\) −0.358053 −0.0269129
\(178\) −6.87298 −0.515152
\(179\) 23.5901 1.76321 0.881604 0.471990i \(-0.156464\pi\)
0.881604 + 0.471990i \(0.156464\pi\)
\(180\) 2.04575 0.152481
\(181\) 0.576953 0.0428845 0.0214423 0.999770i \(-0.493174\pi\)
0.0214423 + 0.999770i \(0.493174\pi\)
\(182\) 32.7450 2.42722
\(183\) −5.57481 −0.412102
\(184\) 0 0
\(185\) −13.8592 −1.01895
\(186\) −7.99681 −0.586355
\(187\) −2.68509 −0.196353
\(188\) −4.95679 −0.361511
\(189\) 26.7387 1.94495
\(190\) 21.1311 1.53301
\(191\) 15.7389 1.13882 0.569412 0.822052i \(-0.307171\pi\)
0.569412 + 0.822052i \(0.307171\pi\)
\(192\) 10.8724 0.784650
\(193\) 15.3177 1.10259 0.551295 0.834310i \(-0.314134\pi\)
0.551295 + 0.834310i \(0.314134\pi\)
\(194\) −4.77692 −0.342963
\(195\) 18.4946 1.32443
\(196\) −8.22449 −0.587463
\(197\) 11.3268 0.807004 0.403502 0.914979i \(-0.367793\pi\)
0.403502 + 0.914979i \(0.367793\pi\)
\(198\) 1.83861 0.130664
\(199\) −22.8191 −1.61761 −0.808803 0.588080i \(-0.799884\pi\)
−0.808803 + 0.588080i \(0.799884\pi\)
\(200\) 7.71837 0.545771
\(201\) −0.270628 −0.0190886
\(202\) −15.4439 −1.08663
\(203\) 2.44158 0.171365
\(204\) 1.63558 0.114513
\(205\) 6.46045 0.451217
\(206\) −12.7434 −0.887874
\(207\) 0 0
\(208\) −15.1855 −1.05293
\(209\) −6.28560 −0.434784
\(210\) 19.9763 1.37850
\(211\) 14.5989 1.00503 0.502515 0.864569i \(-0.332408\pi\)
0.502515 + 0.864569i \(0.332408\pi\)
\(212\) −5.14460 −0.353332
\(213\) −8.72747 −0.597996
\(214\) −3.42910 −0.234409
\(215\) −5.65078 −0.385380
\(216\) −16.8722 −1.14801
\(217\) −25.8404 −1.75416
\(218\) 10.5398 0.713846
\(219\) 4.61271 0.311698
\(220\) −1.36394 −0.0919568
\(221\) −14.7842 −0.994490
\(222\) 7.58730 0.509226
\(223\) 14.6609 0.981765 0.490883 0.871226i \(-0.336674\pi\)
0.490883 + 0.871226i \(0.336674\pi\)
\(224\) 13.3019 0.888768
\(225\) −3.78160 −0.252106
\(226\) −1.54219 −0.102585
\(227\) 24.7916 1.64548 0.822738 0.568420i \(-0.192445\pi\)
0.822738 + 0.568420i \(0.192445\pi\)
\(228\) 3.82877 0.253566
\(229\) 15.6701 1.03551 0.517756 0.855528i \(-0.326767\pi\)
0.517756 + 0.855528i \(0.326767\pi\)
\(230\) 0 0
\(231\) −5.94208 −0.390960
\(232\) −1.54064 −0.101148
\(233\) 19.2594 1.26173 0.630864 0.775893i \(-0.282701\pi\)
0.630864 + 0.775893i \(0.282701\pi\)
\(234\) 10.1234 0.661788
\(235\) 27.3336 1.78304
\(236\) 0.145390 0.00946409
\(237\) 9.03231 0.586711
\(238\) −15.9686 −1.03509
\(239\) 3.57053 0.230958 0.115479 0.993310i \(-0.463160\pi\)
0.115479 + 0.993310i \(0.463160\pi\)
\(240\) −9.26402 −0.597990
\(241\) 28.2414 1.81919 0.909595 0.415496i \(-0.136392\pi\)
0.909595 + 0.415496i \(0.136392\pi\)
\(242\) −1.22583 −0.0787995
\(243\) 13.7776 0.883836
\(244\) 2.26369 0.144918
\(245\) 45.3528 2.89748
\(246\) −3.53680 −0.225498
\(247\) −34.6087 −2.20210
\(248\) 16.3054 1.03539
\(249\) 6.24859 0.395988
\(250\) 8.33311 0.527032
\(251\) 21.6182 1.36453 0.682265 0.731105i \(-0.260995\pi\)
0.682265 + 0.731105i \(0.260995\pi\)
\(252\) −3.61896 −0.227973
\(253\) 0 0
\(254\) 20.2248 1.26901
\(255\) −9.01916 −0.564802
\(256\) −11.1368 −0.696051
\(257\) 17.0070 1.06087 0.530434 0.847726i \(-0.322029\pi\)
0.530434 + 0.847726i \(0.322029\pi\)
\(258\) 3.09355 0.192596
\(259\) 24.5172 1.52342
\(260\) −7.50989 −0.465743
\(261\) 0.754835 0.0467231
\(262\) −11.9260 −0.736792
\(263\) −12.8899 −0.794828 −0.397414 0.917640i \(-0.630092\pi\)
−0.397414 + 0.917640i \(0.630092\pi\)
\(264\) 3.74947 0.230764
\(265\) 28.3692 1.74270
\(266\) −37.3812 −2.29199
\(267\) 6.86716 0.420263
\(268\) 0.109891 0.00671264
\(269\) 10.4587 0.637678 0.318839 0.947809i \(-0.396707\pi\)
0.318839 + 0.947809i \(0.396707\pi\)
\(270\) 18.5285 1.12761
\(271\) −29.2318 −1.77571 −0.887853 0.460127i \(-0.847804\pi\)
−0.887853 + 0.460127i \(0.847804\pi\)
\(272\) 7.40543 0.449020
\(273\) −32.7173 −1.98014
\(274\) −7.43841 −0.449371
\(275\) 2.52126 0.152038
\(276\) 0 0
\(277\) 15.6529 0.940491 0.470245 0.882536i \(-0.344165\pi\)
0.470245 + 0.882536i \(0.344165\pi\)
\(278\) 20.2915 1.21700
\(279\) −7.98879 −0.478276
\(280\) −40.7314 −2.43417
\(281\) −27.3884 −1.63386 −0.816928 0.576739i \(-0.804325\pi\)
−0.816928 + 0.576739i \(0.804325\pi\)
\(282\) −14.9639 −0.891086
\(283\) −20.9439 −1.24499 −0.622493 0.782625i \(-0.713880\pi\)
−0.622493 + 0.782625i \(0.713880\pi\)
\(284\) 3.54385 0.210289
\(285\) −21.1132 −1.25064
\(286\) −6.74946 −0.399104
\(287\) −11.4286 −0.674610
\(288\) 4.11239 0.242325
\(289\) −9.79031 −0.575901
\(290\) 1.69189 0.0993509
\(291\) 4.77287 0.279791
\(292\) −1.87302 −0.109610
\(293\) −0.274026 −0.0160088 −0.00800438 0.999968i \(-0.502548\pi\)
−0.00800438 + 0.999968i \(0.502548\pi\)
\(294\) −24.8286 −1.44803
\(295\) −0.801734 −0.0466787
\(296\) −15.4704 −0.899200
\(297\) −5.51142 −0.319805
\(298\) −14.4977 −0.839827
\(299\) 0 0
\(300\) −1.53578 −0.0886685
\(301\) 9.99630 0.576177
\(302\) 22.1157 1.27262
\(303\) 15.4308 0.886476
\(304\) 17.3356 0.994264
\(305\) −12.4828 −0.714765
\(306\) −4.93682 −0.282219
\(307\) −13.2780 −0.757814 −0.378907 0.925435i \(-0.623700\pi\)
−0.378907 + 0.925435i \(0.623700\pi\)
\(308\) 2.41283 0.137484
\(309\) 12.7326 0.724331
\(310\) −17.9060 −1.01700
\(311\) 5.26741 0.298688 0.149344 0.988785i \(-0.452284\pi\)
0.149344 + 0.988785i \(0.452284\pi\)
\(312\) 20.6447 1.16878
\(313\) −26.1680 −1.47910 −0.739550 0.673101i \(-0.764962\pi\)
−0.739550 + 0.673101i \(0.764962\pi\)
\(314\) 8.74391 0.493448
\(315\) 19.9563 1.12441
\(316\) −3.66764 −0.206321
\(317\) −0.790561 −0.0444023 −0.0222012 0.999754i \(-0.507067\pi\)
−0.0222012 + 0.999754i \(0.507067\pi\)
\(318\) −15.5308 −0.870926
\(319\) −0.503263 −0.0281773
\(320\) 24.3450 1.36093
\(321\) 3.42620 0.191232
\(322\) 0 0
\(323\) 16.8774 0.939082
\(324\) 1.11935 0.0621863
\(325\) 13.8821 0.770041
\(326\) 8.90190 0.493031
\(327\) −10.5309 −0.582359
\(328\) 7.21150 0.398188
\(329\) −48.3534 −2.66581
\(330\) −4.11755 −0.226664
\(331\) 18.6500 1.02510 0.512548 0.858659i \(-0.328702\pi\)
0.512548 + 0.858659i \(0.328702\pi\)
\(332\) −2.53729 −0.139252
\(333\) 7.57969 0.415365
\(334\) −20.9386 −1.14571
\(335\) −0.605977 −0.0331080
\(336\) 16.3882 0.894048
\(337\) −9.14249 −0.498023 −0.249011 0.968501i \(-0.580106\pi\)
−0.249011 + 0.968501i \(0.580106\pi\)
\(338\) −21.2269 −1.15459
\(339\) 1.54088 0.0836893
\(340\) 3.66230 0.198616
\(341\) 5.32627 0.288434
\(342\) −11.5567 −0.624917
\(343\) −46.2692 −2.49830
\(344\) −6.30770 −0.340088
\(345\) 0 0
\(346\) 20.1048 1.08084
\(347\) 13.2995 0.713953 0.356976 0.934113i \(-0.383808\pi\)
0.356976 + 0.934113i \(0.383808\pi\)
\(348\) 0.306554 0.0164330
\(349\) 17.4492 0.934037 0.467018 0.884248i \(-0.345328\pi\)
0.467018 + 0.884248i \(0.345328\pi\)
\(350\) 14.9942 0.801476
\(351\) −30.3460 −1.61975
\(352\) −2.74180 −0.146139
\(353\) −0.698808 −0.0371938 −0.0185969 0.999827i \(-0.505920\pi\)
−0.0185969 + 0.999827i \(0.505920\pi\)
\(354\) 0.438913 0.0233279
\(355\) −19.5421 −1.03719
\(356\) −2.78846 −0.147788
\(357\) 15.9550 0.844429
\(358\) −28.9175 −1.52834
\(359\) −11.0123 −0.581209 −0.290604 0.956843i \(-0.593856\pi\)
−0.290604 + 0.956843i \(0.593856\pi\)
\(360\) −12.5925 −0.663681
\(361\) 20.5087 1.07941
\(362\) −0.707247 −0.0371721
\(363\) 1.22479 0.0642849
\(364\) 13.2851 0.696328
\(365\) 10.3285 0.540620
\(366\) 6.83378 0.357207
\(367\) 1.46121 0.0762744 0.0381372 0.999273i \(-0.487858\pi\)
0.0381372 + 0.999273i \(0.487858\pi\)
\(368\) 0 0
\(369\) −3.53326 −0.183934
\(370\) 16.9891 0.883221
\(371\) −50.1854 −2.60550
\(372\) −3.24441 −0.168215
\(373\) 10.9330 0.566090 0.283045 0.959107i \(-0.408655\pi\)
0.283045 + 0.959107i \(0.408655\pi\)
\(374\) 3.29146 0.170198
\(375\) −8.32605 −0.429955
\(376\) 30.5112 1.57349
\(377\) −2.77098 −0.142713
\(378\) −32.7771 −1.68587
\(379\) −22.4098 −1.15111 −0.575557 0.817762i \(-0.695215\pi\)
−0.575557 + 0.817762i \(0.695215\pi\)
\(380\) 8.57318 0.439795
\(381\) −20.2076 −1.03527
\(382\) −19.2932 −0.987126
\(383\) 0.797627 0.0407568 0.0203784 0.999792i \(-0.493513\pi\)
0.0203784 + 0.999792i \(0.493513\pi\)
\(384\) −6.61149 −0.337391
\(385\) −13.3052 −0.678096
\(386\) −18.7769 −0.955719
\(387\) 3.09044 0.157096
\(388\) −1.93806 −0.0983900
\(389\) 8.54383 0.433189 0.216595 0.976262i \(-0.430505\pi\)
0.216595 + 0.976262i \(0.430505\pi\)
\(390\) −22.6713 −1.14801
\(391\) 0 0
\(392\) 50.6252 2.55696
\(393\) 11.9159 0.601078
\(394\) −13.8848 −0.699507
\(395\) 20.2247 1.01761
\(396\) 0.745946 0.0374852
\(397\) −8.07631 −0.405338 −0.202669 0.979247i \(-0.564962\pi\)
−0.202669 + 0.979247i \(0.564962\pi\)
\(398\) 27.9724 1.40213
\(399\) 37.3495 1.86982
\(400\) −6.95359 −0.347680
\(401\) 22.8958 1.14336 0.571681 0.820476i \(-0.306292\pi\)
0.571681 + 0.820476i \(0.306292\pi\)
\(402\) 0.331745 0.0165459
\(403\) 29.3266 1.46086
\(404\) −6.26579 −0.311735
\(405\) −6.17252 −0.306715
\(406\) −2.99297 −0.148538
\(407\) −5.05352 −0.250494
\(408\) −10.0677 −0.498424
\(409\) 22.0923 1.09239 0.546196 0.837657i \(-0.316075\pi\)
0.546196 + 0.837657i \(0.316075\pi\)
\(410\) −7.91943 −0.391113
\(411\) 7.43210 0.366599
\(412\) −5.17016 −0.254715
\(413\) 1.41828 0.0697889
\(414\) 0 0
\(415\) 13.9915 0.686817
\(416\) −15.0964 −0.740164
\(417\) −20.2743 −0.992837
\(418\) 7.70508 0.376868
\(419\) −24.8080 −1.21195 −0.605975 0.795483i \(-0.707217\pi\)
−0.605975 + 0.795483i \(0.707217\pi\)
\(420\) 8.10464 0.395466
\(421\) −12.2191 −0.595523 −0.297761 0.954640i \(-0.596240\pi\)
−0.297761 + 0.954640i \(0.596240\pi\)
\(422\) −17.8958 −0.871153
\(423\) −14.9489 −0.726839
\(424\) 31.6672 1.53789
\(425\) −6.76980 −0.328383
\(426\) 10.6984 0.518340
\(427\) 22.0823 1.06864
\(428\) −1.39123 −0.0672478
\(429\) 6.74374 0.325591
\(430\) 6.92691 0.334045
\(431\) −2.21514 −0.106700 −0.0533498 0.998576i \(-0.516990\pi\)
−0.0533498 + 0.998576i \(0.516990\pi\)
\(432\) 15.2004 0.731331
\(433\) 30.3761 1.45978 0.729891 0.683563i \(-0.239571\pi\)
0.729891 + 0.683563i \(0.239571\pi\)
\(434\) 31.6760 1.52050
\(435\) −1.69045 −0.0810509
\(436\) 4.27614 0.204790
\(437\) 0 0
\(438\) −5.65440 −0.270178
\(439\) −27.7272 −1.32335 −0.661673 0.749793i \(-0.730153\pi\)
−0.661673 + 0.749793i \(0.730153\pi\)
\(440\) 8.39563 0.400246
\(441\) −24.8037 −1.18113
\(442\) 18.1229 0.862018
\(443\) 14.1677 0.673128 0.336564 0.941661i \(-0.390735\pi\)
0.336564 + 0.941661i \(0.390735\pi\)
\(444\) 3.07827 0.146088
\(445\) 15.3766 0.728920
\(446\) −17.9718 −0.850988
\(447\) 14.4854 0.685135
\(448\) −43.0666 −2.03471
\(449\) 25.3779 1.19766 0.598828 0.800878i \(-0.295633\pi\)
0.598828 + 0.800878i \(0.295633\pi\)
\(450\) 4.63560 0.218524
\(451\) 2.35569 0.110925
\(452\) −0.625687 −0.0294299
\(453\) −22.0970 −1.03821
\(454\) −30.3903 −1.42629
\(455\) −73.2588 −3.43443
\(456\) −23.5677 −1.10366
\(457\) −2.25390 −0.105433 −0.0527166 0.998610i \(-0.516788\pi\)
−0.0527166 + 0.998610i \(0.516788\pi\)
\(458\) −19.2090 −0.897576
\(459\) 14.7986 0.690742
\(460\) 0 0
\(461\) 13.1499 0.612452 0.306226 0.951959i \(-0.400934\pi\)
0.306226 + 0.951959i \(0.400934\pi\)
\(462\) 7.28400 0.338882
\(463\) 35.5605 1.65264 0.826319 0.563202i \(-0.190431\pi\)
0.826319 + 0.563202i \(0.190431\pi\)
\(464\) 1.38799 0.0644358
\(465\) 17.8909 0.829669
\(466\) −23.6088 −1.09366
\(467\) 10.1296 0.468744 0.234372 0.972147i \(-0.424697\pi\)
0.234372 + 0.972147i \(0.424697\pi\)
\(468\) 4.10720 0.189855
\(469\) 1.07198 0.0494995
\(470\) −33.5063 −1.54553
\(471\) −8.73650 −0.402557
\(472\) −0.894938 −0.0411928
\(473\) −2.06045 −0.0947398
\(474\) −11.0721 −0.508558
\(475\) −15.8476 −0.727138
\(476\) −6.47865 −0.296948
\(477\) −15.5153 −0.710395
\(478\) −4.37687 −0.200193
\(479\) −18.5593 −0.847997 −0.423999 0.905663i \(-0.639374\pi\)
−0.423999 + 0.905663i \(0.639374\pi\)
\(480\) −9.20967 −0.420362
\(481\) −27.8248 −1.26870
\(482\) −34.6192 −1.57686
\(483\) 0 0
\(484\) −0.497336 −0.0226062
\(485\) 10.6872 0.485279
\(486\) −16.8891 −0.766103
\(487\) −18.5791 −0.841901 −0.420951 0.907084i \(-0.638303\pi\)
−0.420951 + 0.907084i \(0.638303\pi\)
\(488\) −13.9340 −0.630762
\(489\) −8.89435 −0.402216
\(490\) −55.5949 −2.51152
\(491\) −7.68850 −0.346977 −0.173489 0.984836i \(-0.555504\pi\)
−0.173489 + 0.984836i \(0.555504\pi\)
\(492\) −1.43493 −0.0646915
\(493\) 1.35130 0.0608597
\(494\) 42.4244 1.90876
\(495\) −4.11342 −0.184884
\(496\) −14.6898 −0.659591
\(497\) 34.5702 1.55069
\(498\) −7.65972 −0.343240
\(499\) −18.1503 −0.812517 −0.406259 0.913758i \(-0.633167\pi\)
−0.406259 + 0.913758i \(0.633167\pi\)
\(500\) 3.38085 0.151196
\(501\) 20.9209 0.934676
\(502\) −26.5003 −1.18277
\(503\) 17.3514 0.773661 0.386831 0.922151i \(-0.373570\pi\)
0.386831 + 0.922151i \(0.373570\pi\)
\(504\) 22.2762 0.992263
\(505\) 34.5518 1.53754
\(506\) 0 0
\(507\) 21.2089 0.941920
\(508\) 8.20545 0.364058
\(509\) −3.41316 −0.151286 −0.0756428 0.997135i \(-0.524101\pi\)
−0.0756428 + 0.997135i \(0.524101\pi\)
\(510\) 11.0560 0.489567
\(511\) −18.2713 −0.808275
\(512\) 24.4480 1.08046
\(513\) 34.6426 1.52951
\(514\) −20.8477 −0.919554
\(515\) 28.5101 1.25631
\(516\) 1.25509 0.0552523
\(517\) 9.96669 0.438334
\(518\) −30.0539 −1.32049
\(519\) −20.0878 −0.881756
\(520\) 46.2265 2.02717
\(521\) 15.2088 0.666311 0.333156 0.942872i \(-0.391887\pi\)
0.333156 + 0.942872i \(0.391887\pi\)
\(522\) −0.925301 −0.0404993
\(523\) 16.2411 0.710173 0.355086 0.934834i \(-0.384451\pi\)
0.355086 + 0.934834i \(0.384451\pi\)
\(524\) −4.83854 −0.211373
\(525\) −14.9815 −0.653848
\(526\) 15.8009 0.688952
\(527\) −14.3015 −0.622983
\(528\) −3.37796 −0.147007
\(529\) 0 0
\(530\) −34.7758 −1.51057
\(531\) 0.438473 0.0190281
\(532\) −15.1661 −0.657532
\(533\) 12.9705 0.561813
\(534\) −8.41798 −0.364282
\(535\) 7.67176 0.331679
\(536\) −0.676423 −0.0292170
\(537\) 28.8930 1.24682
\(538\) −12.8206 −0.552736
\(539\) 16.5371 0.712302
\(540\) 7.51725 0.323491
\(541\) −5.10124 −0.219320 −0.109660 0.993969i \(-0.534976\pi\)
−0.109660 + 0.993969i \(0.534976\pi\)
\(542\) 35.8333 1.53917
\(543\) 0.706647 0.0303251
\(544\) 7.36198 0.315642
\(545\) −23.5802 −1.01006
\(546\) 40.1059 1.71637
\(547\) 23.2215 0.992878 0.496439 0.868072i \(-0.334641\pi\)
0.496439 + 0.868072i \(0.334641\pi\)
\(548\) −3.01786 −0.128917
\(549\) 6.82693 0.291366
\(550\) −3.09064 −0.131785
\(551\) 3.16331 0.134761
\(552\) 0 0
\(553\) −35.7777 −1.52142
\(554\) −19.1878 −0.815212
\(555\) −16.9747 −0.720535
\(556\) 8.23253 0.349137
\(557\) −10.7761 −0.456599 −0.228299 0.973591i \(-0.573317\pi\)
−0.228299 + 0.973591i \(0.573317\pi\)
\(558\) 9.79292 0.414567
\(559\) −11.3449 −0.479839
\(560\) 36.6955 1.55067
\(561\) −3.28867 −0.138848
\(562\) 33.5736 1.41622
\(563\) −25.5390 −1.07634 −0.538171 0.842836i \(-0.680884\pi\)
−0.538171 + 0.842836i \(0.680884\pi\)
\(564\) −6.07104 −0.255637
\(565\) 3.45027 0.145154
\(566\) 25.6737 1.07915
\(567\) 10.9193 0.458566
\(568\) −21.8139 −0.915292
\(569\) 20.1579 0.845063 0.422531 0.906348i \(-0.361142\pi\)
0.422531 + 0.906348i \(0.361142\pi\)
\(570\) 25.8812 1.08405
\(571\) 32.9131 1.37737 0.688685 0.725060i \(-0.258188\pi\)
0.688685 + 0.725060i \(0.258188\pi\)
\(572\) −2.73835 −0.114496
\(573\) 19.2768 0.805301
\(574\) 14.0096 0.584748
\(575\) 0 0
\(576\) −13.3144 −0.554767
\(577\) 40.8072 1.69883 0.849413 0.527729i \(-0.176956\pi\)
0.849413 + 0.527729i \(0.176956\pi\)
\(578\) 12.0013 0.499187
\(579\) 18.7610 0.779679
\(580\) 0.686420 0.0285020
\(581\) −24.7512 −1.02685
\(582\) −5.85073 −0.242521
\(583\) 10.3443 0.428417
\(584\) 11.5293 0.477084
\(585\) −22.6486 −0.936404
\(586\) 0.335909 0.0138763
\(587\) −11.9665 −0.493912 −0.246956 0.969027i \(-0.579430\pi\)
−0.246956 + 0.969027i \(0.579430\pi\)
\(588\) −10.0733 −0.415415
\(589\) −33.4788 −1.37947
\(590\) 0.982791 0.0404608
\(591\) 13.8730 0.570660
\(592\) 13.9375 0.572829
\(593\) −23.5359 −0.966506 −0.483253 0.875481i \(-0.660545\pi\)
−0.483253 + 0.875481i \(0.660545\pi\)
\(594\) 6.75608 0.277205
\(595\) 35.7256 1.46461
\(596\) −5.88190 −0.240932
\(597\) −27.9487 −1.14386
\(598\) 0 0
\(599\) 15.3469 0.627055 0.313528 0.949579i \(-0.398489\pi\)
0.313528 + 0.949579i \(0.398489\pi\)
\(600\) 9.45339 0.385933
\(601\) 2.71278 0.110656 0.0553282 0.998468i \(-0.482379\pi\)
0.0553282 + 0.998468i \(0.482379\pi\)
\(602\) −12.2538 −0.499427
\(603\) 0.331412 0.0134961
\(604\) 8.97264 0.365092
\(605\) 2.74249 0.111498
\(606\) −18.9156 −0.768392
\(607\) 16.2692 0.660348 0.330174 0.943920i \(-0.392893\pi\)
0.330174 + 0.943920i \(0.392893\pi\)
\(608\) 17.2339 0.698926
\(609\) 2.99043 0.121178
\(610\) 15.3018 0.619554
\(611\) 54.8768 2.22008
\(612\) −2.00293 −0.0809637
\(613\) 18.2272 0.736188 0.368094 0.929789i \(-0.380011\pi\)
0.368094 + 0.929789i \(0.380011\pi\)
\(614\) 16.2766 0.656869
\(615\) 7.91271 0.319071
\(616\) −14.8520 −0.598403
\(617\) 30.9061 1.24423 0.622116 0.782925i \(-0.286273\pi\)
0.622116 + 0.782925i \(0.286273\pi\)
\(618\) −15.6080 −0.627846
\(619\) 13.1094 0.526912 0.263456 0.964671i \(-0.415138\pi\)
0.263456 + 0.964671i \(0.415138\pi\)
\(620\) −7.26472 −0.291758
\(621\) 0 0
\(622\) −6.45696 −0.258901
\(623\) −27.2014 −1.08980
\(624\) −18.5991 −0.744561
\(625\) −31.2495 −1.24998
\(626\) 32.0775 1.28208
\(627\) −7.69855 −0.307450
\(628\) 3.54752 0.141561
\(629\) 13.5691 0.541037
\(630\) −24.4630 −0.974630
\(631\) 24.3573 0.969651 0.484825 0.874611i \(-0.338883\pi\)
0.484825 + 0.874611i \(0.338883\pi\)
\(632\) 22.5759 0.898019
\(633\) 17.8806 0.710691
\(634\) 0.969095 0.0384877
\(635\) −45.2478 −1.79561
\(636\) −6.30106 −0.249853
\(637\) 91.0536 3.60767
\(638\) 0.616915 0.0244239
\(639\) 10.6877 0.422798
\(640\) −14.8041 −0.585184
\(641\) 8.66234 0.342142 0.171071 0.985259i \(-0.445277\pi\)
0.171071 + 0.985259i \(0.445277\pi\)
\(642\) −4.19994 −0.165758
\(643\) −10.5195 −0.414849 −0.207425 0.978251i \(-0.566508\pi\)
−0.207425 + 0.978251i \(0.566508\pi\)
\(644\) 0 0
\(645\) −6.92103 −0.272515
\(646\) −20.6888 −0.813991
\(647\) 42.6761 1.67777 0.838886 0.544307i \(-0.183207\pi\)
0.838886 + 0.544307i \(0.183207\pi\)
\(648\) −6.89009 −0.270668
\(649\) −0.292338 −0.0114753
\(650\) −17.0171 −0.667467
\(651\) −31.6492 −1.24043
\(652\) 3.61162 0.141442
\(653\) −11.8041 −0.461931 −0.230966 0.972962i \(-0.574188\pi\)
−0.230966 + 0.972962i \(0.574188\pi\)
\(654\) 12.9091 0.504785
\(655\) 26.6815 1.04253
\(656\) −6.49695 −0.253663
\(657\) −5.64873 −0.220378
\(658\) 59.2731 2.31071
\(659\) −33.6054 −1.30908 −0.654539 0.756028i \(-0.727137\pi\)
−0.654539 + 0.756028i \(0.727137\pi\)
\(660\) −1.67054 −0.0650258
\(661\) 43.5782 1.69500 0.847498 0.530798i \(-0.178108\pi\)
0.847498 + 0.530798i \(0.178108\pi\)
\(662\) −22.8617 −0.888546
\(663\) −18.1075 −0.703238
\(664\) 15.6181 0.606099
\(665\) 83.6311 3.24308
\(666\) −9.29143 −0.360036
\(667\) 0 0
\(668\) −8.49508 −0.328684
\(669\) 17.9565 0.694240
\(670\) 0.742825 0.0286978
\(671\) −4.55164 −0.175714
\(672\) 16.2920 0.628478
\(673\) −34.8229 −1.34232 −0.671162 0.741310i \(-0.734205\pi\)
−0.671162 + 0.741310i \(0.734205\pi\)
\(674\) 11.2072 0.431683
\(675\) −13.8957 −0.534847
\(676\) −8.61203 −0.331232
\(677\) 29.8777 1.14829 0.574146 0.818753i \(-0.305334\pi\)
0.574146 + 0.818753i \(0.305334\pi\)
\(678\) −1.88886 −0.0725414
\(679\) −18.9057 −0.725535
\(680\) −22.5430 −0.864484
\(681\) 30.3646 1.16357
\(682\) −6.52912 −0.250013
\(683\) 41.7687 1.59823 0.799117 0.601176i \(-0.205301\pi\)
0.799117 + 0.601176i \(0.205301\pi\)
\(684\) −4.68872 −0.179278
\(685\) 16.6416 0.635842
\(686\) 56.7182 2.16551
\(687\) 19.1927 0.732246
\(688\) 5.68270 0.216651
\(689\) 56.9560 2.16985
\(690\) 0 0
\(691\) −1.56844 −0.0596662 −0.0298331 0.999555i \(-0.509498\pi\)
−0.0298331 + 0.999555i \(0.509498\pi\)
\(692\) 8.15680 0.310075
\(693\) 7.27669 0.276419
\(694\) −16.3029 −0.618850
\(695\) −45.3972 −1.72201
\(696\) −1.88697 −0.0715254
\(697\) −6.32522 −0.239585
\(698\) −21.3898 −0.809617
\(699\) 23.5888 0.892211
\(700\) 6.08336 0.229930
\(701\) −15.0180 −0.567223 −0.283611 0.958939i \(-0.591533\pi\)
−0.283611 + 0.958939i \(0.591533\pi\)
\(702\) 37.1991 1.40399
\(703\) 31.7644 1.19802
\(704\) 8.87696 0.334563
\(705\) 33.4779 1.26085
\(706\) 0.856622 0.0322394
\(707\) −61.1226 −2.29875
\(708\) 0.178073 0.00669238
\(709\) 36.4179 1.36770 0.683851 0.729622i \(-0.260304\pi\)
0.683851 + 0.729622i \(0.260304\pi\)
\(710\) 23.9553 0.899027
\(711\) −11.0610 −0.414819
\(712\) 17.1642 0.643254
\(713\) 0 0
\(714\) −19.5582 −0.731946
\(715\) 15.1002 0.564716
\(716\) −11.7322 −0.438453
\(717\) 4.37316 0.163319
\(718\) 13.4993 0.503788
\(719\) −10.1992 −0.380366 −0.190183 0.981749i \(-0.560908\pi\)
−0.190183 + 0.981749i \(0.560908\pi\)
\(720\) 11.3447 0.422794
\(721\) −50.4348 −1.87829
\(722\) −25.1402 −0.935623
\(723\) 34.5899 1.28641
\(724\) −0.286939 −0.0106640
\(725\) −1.26886 −0.0471241
\(726\) −1.50139 −0.0557218
\(727\) 29.9989 1.11260 0.556299 0.830982i \(-0.312221\pi\)
0.556299 + 0.830982i \(0.312221\pi\)
\(728\) −81.7753 −3.03080
\(729\) 23.6268 0.875068
\(730\) −12.6611 −0.468606
\(731\) 5.53250 0.204627
\(732\) 2.77255 0.102477
\(733\) −25.8879 −0.956193 −0.478097 0.878307i \(-0.658673\pi\)
−0.478097 + 0.878307i \(0.658673\pi\)
\(734\) −1.79119 −0.0661142
\(735\) 55.5478 2.04891
\(736\) 0 0
\(737\) −0.220958 −0.00813911
\(738\) 4.33118 0.159433
\(739\) −13.3464 −0.490956 −0.245478 0.969402i \(-0.578945\pi\)
−0.245478 + 0.969402i \(0.578945\pi\)
\(740\) 6.89270 0.253381
\(741\) −42.3884 −1.55718
\(742\) 61.5189 2.25843
\(743\) 32.1285 1.17868 0.589340 0.807885i \(-0.299388\pi\)
0.589340 + 0.807885i \(0.299388\pi\)
\(744\) 19.9707 0.732162
\(745\) 32.4349 1.18832
\(746\) −13.4020 −0.490684
\(747\) −7.65204 −0.279974
\(748\) 1.33539 0.0488267
\(749\) −13.5714 −0.495890
\(750\) 10.2063 0.372683
\(751\) −44.0901 −1.60887 −0.804436 0.594040i \(-0.797532\pi\)
−0.804436 + 0.594040i \(0.797532\pi\)
\(752\) −27.4880 −1.00238
\(753\) 26.4778 0.964905
\(754\) 3.39675 0.123702
\(755\) −49.4784 −1.80070
\(756\) −13.2981 −0.483648
\(757\) −24.8318 −0.902526 −0.451263 0.892391i \(-0.649026\pi\)
−0.451263 + 0.892391i \(0.649026\pi\)
\(758\) 27.4706 0.997779
\(759\) 0 0
\(760\) −52.7715 −1.91422
\(761\) 5.41517 0.196300 0.0981498 0.995172i \(-0.468708\pi\)
0.0981498 + 0.995172i \(0.468708\pi\)
\(762\) 24.7711 0.897364
\(763\) 41.7137 1.51014
\(764\) −7.82750 −0.283189
\(765\) 11.0449 0.399329
\(766\) −0.977757 −0.0353278
\(767\) −1.60962 −0.0581200
\(768\) −13.6403 −0.492201
\(769\) −39.6677 −1.43045 −0.715227 0.698892i \(-0.753677\pi\)
−0.715227 + 0.698892i \(0.753677\pi\)
\(770\) 16.3099 0.587770
\(771\) 20.8300 0.750176
\(772\) −7.61803 −0.274179
\(773\) 13.4717 0.484545 0.242272 0.970208i \(-0.422107\pi\)
0.242272 + 0.970208i \(0.422107\pi\)
\(774\) −3.78836 −0.136170
\(775\) 13.4289 0.482381
\(776\) 11.9296 0.428247
\(777\) 30.0284 1.07726
\(778\) −10.4733 −0.375486
\(779\) −14.8069 −0.530512
\(780\) −9.19805 −0.329343
\(781\) −7.12567 −0.254977
\(782\) 0 0
\(783\) 2.77369 0.0991237
\(784\) −45.6090 −1.62889
\(785\) −19.5623 −0.698209
\(786\) −14.6069 −0.521011
\(787\) 10.5427 0.375805 0.187903 0.982188i \(-0.439831\pi\)
0.187903 + 0.982188i \(0.439831\pi\)
\(788\) −5.63325 −0.200676
\(789\) −15.7875 −0.562050
\(790\) −24.7921 −0.882062
\(791\) −6.10357 −0.217018
\(792\) −4.59162 −0.163156
\(793\) −25.0614 −0.889957
\(794\) 9.90020 0.351345
\(795\) 34.7463 1.23233
\(796\) 11.3488 0.402247
\(797\) −33.0552 −1.17088 −0.585438 0.810718i \(-0.699077\pi\)
−0.585438 + 0.810718i \(0.699077\pi\)
\(798\) −45.7843 −1.62074
\(799\) −26.7614 −0.946751
\(800\) −6.91280 −0.244404
\(801\) −8.40954 −0.297136
\(802\) −28.0664 −0.991059
\(803\) 3.76611 0.132903
\(804\) 0.134593 0.00474673
\(805\) 0 0
\(806\) −35.9495 −1.26627
\(807\) 12.8097 0.450924
\(808\) 38.5686 1.35684
\(809\) 23.8452 0.838354 0.419177 0.907905i \(-0.362319\pi\)
0.419177 + 0.907905i \(0.362319\pi\)
\(810\) 7.56647 0.265859
\(811\) −13.7991 −0.484550 −0.242275 0.970208i \(-0.577894\pi\)
−0.242275 + 0.970208i \(0.577894\pi\)
\(812\) −1.21429 −0.0426131
\(813\) −35.8029 −1.25566
\(814\) 6.19477 0.217126
\(815\) −19.9158 −0.697619
\(816\) 9.07011 0.317517
\(817\) 12.9512 0.453105
\(818\) −27.0814 −0.946879
\(819\) 40.0656 1.40001
\(820\) −3.21302 −0.112203
\(821\) 2.89848 0.101158 0.0505788 0.998720i \(-0.483893\pi\)
0.0505788 + 0.998720i \(0.483893\pi\)
\(822\) −9.11051 −0.317766
\(823\) −11.6184 −0.404992 −0.202496 0.979283i \(-0.564905\pi\)
−0.202496 + 0.979283i \(0.564905\pi\)
\(824\) 31.8245 1.10866
\(825\) 3.08802 0.107511
\(826\) −1.73857 −0.0604926
\(827\) −48.3541 −1.68144 −0.840718 0.541473i \(-0.817867\pi\)
−0.840718 + 0.541473i \(0.817867\pi\)
\(828\) 0 0
\(829\) 35.0072 1.21585 0.607925 0.793994i \(-0.292002\pi\)
0.607925 + 0.793994i \(0.292002\pi\)
\(830\) −17.1513 −0.595329
\(831\) 19.1715 0.665053
\(832\) 48.8768 1.69450
\(833\) −44.4035 −1.53849
\(834\) 24.8529 0.860585
\(835\) 46.8449 1.62114
\(836\) 3.12605 0.108117
\(837\) −29.3553 −1.01467
\(838\) 30.4105 1.05051
\(839\) −2.76971 −0.0956212 −0.0478106 0.998856i \(-0.515224\pi\)
−0.0478106 + 0.998856i \(0.515224\pi\)
\(840\) −49.8875 −1.72128
\(841\) −28.7467 −0.991266
\(842\) 14.9786 0.516196
\(843\) −33.5451 −1.15536
\(844\) −7.26056 −0.249919
\(845\) 47.4898 1.63370
\(846\) 18.3248 0.630020
\(847\) −4.85150 −0.166700
\(848\) −28.5294 −0.979705
\(849\) −25.6519 −0.880372
\(850\) 8.29864 0.284641
\(851\) 0 0
\(852\) 4.34048 0.148703
\(853\) −49.3637 −1.69018 −0.845090 0.534625i \(-0.820453\pi\)
−0.845090 + 0.534625i \(0.820453\pi\)
\(854\) −27.0692 −0.926288
\(855\) 25.8553 0.884232
\(856\) 8.56363 0.292699
\(857\) 30.8614 1.05420 0.527102 0.849802i \(-0.323278\pi\)
0.527102 + 0.849802i \(0.323278\pi\)
\(858\) −8.26669 −0.282220
\(859\) 5.67360 0.193581 0.0967903 0.995305i \(-0.469142\pi\)
0.0967903 + 0.995305i \(0.469142\pi\)
\(860\) 2.81034 0.0958317
\(861\) −13.9977 −0.477040
\(862\) 2.71539 0.0924866
\(863\) −27.9405 −0.951104 −0.475552 0.879688i \(-0.657752\pi\)
−0.475552 + 0.879688i \(0.657752\pi\)
\(864\) 15.1112 0.514095
\(865\) −44.9796 −1.52935
\(866\) −37.2360 −1.26533
\(867\) −11.9911 −0.407239
\(868\) 12.8514 0.436204
\(869\) 7.37456 0.250165
\(870\) 2.07221 0.0702544
\(871\) −1.21660 −0.0412230
\(872\) −26.3215 −0.891357
\(873\) −5.84487 −0.197819
\(874\) 0 0
\(875\) 32.9802 1.11493
\(876\) −2.29407 −0.0775093
\(877\) 32.4640 1.09623 0.548116 0.836402i \(-0.315345\pi\)
0.548116 + 0.836402i \(0.315345\pi\)
\(878\) 33.9888 1.14707
\(879\) −0.335625 −0.0113203
\(880\) −7.56375 −0.254974
\(881\) 23.7814 0.801217 0.400609 0.916249i \(-0.368799\pi\)
0.400609 + 0.916249i \(0.368799\pi\)
\(882\) 30.4052 1.02380
\(883\) 25.9477 0.873210 0.436605 0.899653i \(-0.356181\pi\)
0.436605 + 0.899653i \(0.356181\pi\)
\(884\) 7.35269 0.247298
\(885\) −0.981957 −0.0330081
\(886\) −17.3672 −0.583463
\(887\) −35.6756 −1.19787 −0.598934 0.800798i \(-0.704409\pi\)
−0.598934 + 0.800798i \(0.704409\pi\)
\(888\) −18.9480 −0.635855
\(889\) 80.0440 2.68459
\(890\) −18.8491 −0.631823
\(891\) −2.25070 −0.0754012
\(892\) −7.29138 −0.244134
\(893\) −62.6466 −2.09639
\(894\) −17.7566 −0.593871
\(895\) 64.6957 2.16254
\(896\) 26.1887 0.874902
\(897\) 0 0
\(898\) −31.1090 −1.03812
\(899\) −2.68051 −0.0894002
\(900\) 1.88072 0.0626908
\(901\) −27.7754 −0.925331
\(902\) −2.88768 −0.0961491
\(903\) 12.2434 0.407435
\(904\) 3.85137 0.128095
\(905\) 1.58229 0.0525970
\(906\) 27.0872 0.899911
\(907\) −35.5540 −1.18055 −0.590276 0.807201i \(-0.700981\pi\)
−0.590276 + 0.807201i \(0.700981\pi\)
\(908\) −12.3298 −0.409178
\(909\) −18.8966 −0.626760
\(910\) 89.8030 2.97694
\(911\) −6.64958 −0.220310 −0.110155 0.993914i \(-0.535135\pi\)
−0.110155 + 0.993914i \(0.535135\pi\)
\(912\) 21.2325 0.703078
\(913\) 5.10176 0.168843
\(914\) 2.76291 0.0913888
\(915\) −15.2889 −0.505434
\(916\) −7.79333 −0.257499
\(917\) −47.1999 −1.55868
\(918\) −18.1407 −0.598731
\(919\) −17.7463 −0.585397 −0.292698 0.956205i \(-0.594553\pi\)
−0.292698 + 0.956205i \(0.594553\pi\)
\(920\) 0 0
\(921\) −16.2628 −0.535876
\(922\) −16.1196 −0.530870
\(923\) −39.2341 −1.29141
\(924\) 2.95521 0.0972194
\(925\) −12.7412 −0.418929
\(926\) −43.5912 −1.43250
\(927\) −15.5923 −0.512120
\(928\) 1.37985 0.0452957
\(929\) 5.07120 0.166381 0.0831904 0.996534i \(-0.473489\pi\)
0.0831904 + 0.996534i \(0.473489\pi\)
\(930\) −21.9312 −0.719152
\(931\) −103.945 −3.40667
\(932\) −9.57842 −0.313751
\(933\) 6.45149 0.211212
\(934\) −12.4172 −0.406304
\(935\) −7.36383 −0.240823
\(936\) −25.2816 −0.826353
\(937\) −39.7236 −1.29771 −0.648857 0.760910i \(-0.724753\pi\)
−0.648857 + 0.760910i \(0.724753\pi\)
\(938\) −1.31407 −0.0429058
\(939\) −32.0503 −1.04592
\(940\) −13.5940 −0.443386
\(941\) −21.3636 −0.696433 −0.348217 0.937414i \(-0.613213\pi\)
−0.348217 + 0.937414i \(0.613213\pi\)
\(942\) 10.7095 0.348934
\(943\) 0 0
\(944\) 0.806263 0.0262416
\(945\) 73.3306 2.38544
\(946\) 2.52577 0.0821199
\(947\) −0.336647 −0.0109396 −0.00546978 0.999985i \(-0.501741\pi\)
−0.00546978 + 0.999985i \(0.501741\pi\)
\(948\) −4.49209 −0.145896
\(949\) 20.7363 0.673130
\(950\) 19.4265 0.630279
\(951\) −0.968273 −0.0313984
\(952\) 39.8788 1.29248
\(953\) −17.2068 −0.557383 −0.278691 0.960381i \(-0.589901\pi\)
−0.278691 + 0.960381i \(0.589901\pi\)
\(954\) 19.0191 0.615766
\(955\) 43.1637 1.39674
\(956\) −1.77575 −0.0574320
\(957\) −0.616392 −0.0199251
\(958\) 22.7506 0.735039
\(959\) −29.4392 −0.950640
\(960\) 29.8175 0.962357
\(961\) −2.63081 −0.0848648
\(962\) 34.1085 1.09970
\(963\) −4.19573 −0.135205
\(964\) −14.0455 −0.452375
\(965\) 42.0086 1.35230
\(966\) 0 0
\(967\) −42.3647 −1.36236 −0.681179 0.732117i \(-0.738532\pi\)
−0.681179 + 0.732117i \(0.738532\pi\)
\(968\) 3.06131 0.0983944
\(969\) 20.6713 0.664057
\(970\) −13.1007 −0.420637
\(971\) −46.9548 −1.50685 −0.753426 0.657533i \(-0.771600\pi\)
−0.753426 + 0.657533i \(0.771600\pi\)
\(972\) −6.85211 −0.219782
\(973\) 80.3081 2.57456
\(974\) 22.7749 0.729755
\(975\) 17.0027 0.544522
\(976\) 12.5533 0.401823
\(977\) −8.46398 −0.270787 −0.135393 0.990792i \(-0.543230\pi\)
−0.135393 + 0.990792i \(0.543230\pi\)
\(978\) 10.9030 0.348639
\(979\) 5.60679 0.179194
\(980\) −22.5556 −0.720512
\(981\) 12.8961 0.411742
\(982\) 9.42481 0.300758
\(983\) 37.3488 1.19124 0.595622 0.803265i \(-0.296906\pi\)
0.595622 + 0.803265i \(0.296906\pi\)
\(984\) 8.83259 0.281573
\(985\) 31.0638 0.989774
\(986\) −1.65647 −0.0527528
\(987\) −59.2229 −1.88508
\(988\) 17.2121 0.547591
\(989\) 0 0
\(990\) 5.04236 0.160257
\(991\) 52.7757 1.67648 0.838238 0.545305i \(-0.183586\pi\)
0.838238 + 0.545305i \(0.183586\pi\)
\(992\) −14.6036 −0.463665
\(993\) 22.8423 0.724880
\(994\) −42.3773 −1.34413
\(995\) −62.5813 −1.98396
\(996\) −3.10765 −0.0984696
\(997\) −0.605331 −0.0191710 −0.00958551 0.999954i \(-0.503051\pi\)
−0.00958551 + 0.999954i \(0.503051\pi\)
\(998\) 22.2492 0.704285
\(999\) 27.8521 0.881201
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.19 60
23.2 even 11 253.2.i.b.188.4 yes 120
23.12 even 11 253.2.i.b.144.4 120
23.22 odd 2 5819.2.a.t.1.19 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.144.4 120 23.12 even 11
253.2.i.b.188.4 yes 120 23.2 even 11
5819.2.a.t.1.19 60 23.22 odd 2
5819.2.a.u.1.19 60 1.1 even 1 trivial