Properties

Label 5819.2.a.u.1.14
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.66144 q^{2} -1.56821 q^{3} +0.760370 q^{4} -0.618995 q^{5} +2.60547 q^{6} +1.60957 q^{7} +2.05957 q^{8} -0.540729 q^{9} +1.02842 q^{10} +1.00000 q^{11} -1.19242 q^{12} -4.28258 q^{13} -2.67420 q^{14} +0.970711 q^{15} -4.94258 q^{16} -2.36953 q^{17} +0.898386 q^{18} -7.82169 q^{19} -0.470665 q^{20} -2.52414 q^{21} -1.66144 q^{22} -3.22982 q^{24} -4.61685 q^{25} +7.11523 q^{26} +5.55259 q^{27} +1.22387 q^{28} -9.55885 q^{29} -1.61278 q^{30} -6.15045 q^{31} +4.09265 q^{32} -1.56821 q^{33} +3.93682 q^{34} -0.996316 q^{35} -0.411154 q^{36} -8.68489 q^{37} +12.9952 q^{38} +6.71597 q^{39} -1.27486 q^{40} -2.31236 q^{41} +4.19370 q^{42} +4.99650 q^{43} +0.760370 q^{44} +0.334708 q^{45} +11.6513 q^{47} +7.75098 q^{48} -4.40928 q^{49} +7.67059 q^{50} +3.71591 q^{51} -3.25635 q^{52} -0.722668 q^{53} -9.22528 q^{54} -0.618995 q^{55} +3.31502 q^{56} +12.2660 q^{57} +15.8814 q^{58} -8.68909 q^{59} +0.738100 q^{60} -3.55721 q^{61} +10.2186 q^{62} -0.870341 q^{63} +3.08549 q^{64} +2.65089 q^{65} +2.60547 q^{66} +14.3884 q^{67} -1.80172 q^{68} +1.65532 q^{70} +1.36796 q^{71} -1.11367 q^{72} -10.2994 q^{73} +14.4294 q^{74} +7.24017 q^{75} -5.94738 q^{76} +1.60957 q^{77} -11.1582 q^{78} -7.06103 q^{79} +3.05943 q^{80} -7.08543 q^{81} +3.84184 q^{82} -14.1073 q^{83} -1.91928 q^{84} +1.46672 q^{85} -8.30136 q^{86} +14.9902 q^{87} +2.05957 q^{88} +3.97617 q^{89} -0.556096 q^{90} -6.89312 q^{91} +9.64518 q^{93} -19.3580 q^{94} +4.84159 q^{95} -6.41811 q^{96} +3.17407 q^{97} +7.32574 q^{98} -0.540729 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.66144 −1.17481 −0.587406 0.809292i \(-0.699851\pi\)
−0.587406 + 0.809292i \(0.699851\pi\)
\(3\) −1.56821 −0.905404 −0.452702 0.891662i \(-0.649540\pi\)
−0.452702 + 0.891662i \(0.649540\pi\)
\(4\) 0.760370 0.380185
\(5\) −0.618995 −0.276823 −0.138411 0.990375i \(-0.544200\pi\)
−0.138411 + 0.990375i \(0.544200\pi\)
\(6\) 2.60547 1.06368
\(7\) 1.60957 0.608361 0.304180 0.952614i \(-0.401617\pi\)
0.304180 + 0.952614i \(0.401617\pi\)
\(8\) 2.05957 0.728166
\(9\) −0.540729 −0.180243
\(10\) 1.02842 0.325215
\(11\) 1.00000 0.301511
\(12\) −1.19242 −0.344221
\(13\) −4.28258 −1.18777 −0.593887 0.804548i \(-0.702407\pi\)
−0.593887 + 0.804548i \(0.702407\pi\)
\(14\) −2.67420 −0.714710
\(15\) 0.970711 0.250637
\(16\) −4.94258 −1.23564
\(17\) −2.36953 −0.574695 −0.287347 0.957826i \(-0.592773\pi\)
−0.287347 + 0.957826i \(0.592773\pi\)
\(18\) 0.898386 0.211752
\(19\) −7.82169 −1.79442 −0.897210 0.441605i \(-0.854409\pi\)
−0.897210 + 0.441605i \(0.854409\pi\)
\(20\) −0.470665 −0.105244
\(21\) −2.52414 −0.550812
\(22\) −1.66144 −0.354219
\(23\) 0 0
\(24\) −3.22982 −0.659285
\(25\) −4.61685 −0.923369
\(26\) 7.11523 1.39541
\(27\) 5.55259 1.06860
\(28\) 1.22387 0.231290
\(29\) −9.55885 −1.77503 −0.887517 0.460776i \(-0.847571\pi\)
−0.887517 + 0.460776i \(0.847571\pi\)
\(30\) −1.61278 −0.294451
\(31\) −6.15045 −1.10465 −0.552327 0.833628i \(-0.686260\pi\)
−0.552327 + 0.833628i \(0.686260\pi\)
\(32\) 4.09265 0.723484
\(33\) −1.56821 −0.272990
\(34\) 3.93682 0.675159
\(35\) −0.996316 −0.168408
\(36\) −0.411154 −0.0685256
\(37\) −8.68489 −1.42779 −0.713894 0.700254i \(-0.753070\pi\)
−0.713894 + 0.700254i \(0.753070\pi\)
\(38\) 12.9952 2.10811
\(39\) 6.71597 1.07542
\(40\) −1.27486 −0.201573
\(41\) −2.31236 −0.361130 −0.180565 0.983563i \(-0.557793\pi\)
−0.180565 + 0.983563i \(0.557793\pi\)
\(42\) 4.19370 0.647102
\(43\) 4.99650 0.761959 0.380979 0.924584i \(-0.375587\pi\)
0.380979 + 0.924584i \(0.375587\pi\)
\(44\) 0.760370 0.114630
\(45\) 0.334708 0.0498953
\(46\) 0 0
\(47\) 11.6513 1.69952 0.849761 0.527167i \(-0.176746\pi\)
0.849761 + 0.527167i \(0.176746\pi\)
\(48\) 7.75098 1.11876
\(49\) −4.40928 −0.629897
\(50\) 7.67059 1.08479
\(51\) 3.71591 0.520331
\(52\) −3.25635 −0.451574
\(53\) −0.722668 −0.0992661 −0.0496331 0.998768i \(-0.515805\pi\)
−0.0496331 + 0.998768i \(0.515805\pi\)
\(54\) −9.22528 −1.25540
\(55\) −0.618995 −0.0834652
\(56\) 3.31502 0.442988
\(57\) 12.2660 1.62468
\(58\) 15.8814 2.08533
\(59\) −8.68909 −1.13122 −0.565612 0.824672i \(-0.691360\pi\)
−0.565612 + 0.824672i \(0.691360\pi\)
\(60\) 0.738100 0.0952883
\(61\) −3.55721 −0.455454 −0.227727 0.973725i \(-0.573129\pi\)
−0.227727 + 0.973725i \(0.573129\pi\)
\(62\) 10.2186 1.29776
\(63\) −0.870341 −0.109653
\(64\) 3.08549 0.385686
\(65\) 2.65089 0.328803
\(66\) 2.60547 0.320712
\(67\) 14.3884 1.75782 0.878909 0.476990i \(-0.158272\pi\)
0.878909 + 0.476990i \(0.158272\pi\)
\(68\) −1.80172 −0.218490
\(69\) 0 0
\(70\) 1.65532 0.197848
\(71\) 1.36796 0.162347 0.0811735 0.996700i \(-0.474133\pi\)
0.0811735 + 0.996700i \(0.474133\pi\)
\(72\) −1.11367 −0.131247
\(73\) −10.2994 −1.20545 −0.602725 0.797949i \(-0.705918\pi\)
−0.602725 + 0.797949i \(0.705918\pi\)
\(74\) 14.4294 1.67738
\(75\) 7.24017 0.836022
\(76\) −5.94738 −0.682211
\(77\) 1.60957 0.183428
\(78\) −11.1582 −1.26341
\(79\) −7.06103 −0.794428 −0.397214 0.917726i \(-0.630023\pi\)
−0.397214 + 0.917726i \(0.630023\pi\)
\(80\) 3.05943 0.342055
\(81\) −7.08543 −0.787270
\(82\) 3.84184 0.424260
\(83\) −14.1073 −1.54848 −0.774240 0.632892i \(-0.781868\pi\)
−0.774240 + 0.632892i \(0.781868\pi\)
\(84\) −1.91928 −0.209411
\(85\) 1.46672 0.159089
\(86\) −8.30136 −0.895159
\(87\) 14.9902 1.60712
\(88\) 2.05957 0.219550
\(89\) 3.97617 0.421473 0.210737 0.977543i \(-0.432414\pi\)
0.210737 + 0.977543i \(0.432414\pi\)
\(90\) −0.556096 −0.0586177
\(91\) −6.89312 −0.722595
\(92\) 0 0
\(93\) 9.64518 1.00016
\(94\) −19.3580 −1.99662
\(95\) 4.84159 0.496736
\(96\) −6.41811 −0.655046
\(97\) 3.17407 0.322278 0.161139 0.986932i \(-0.448483\pi\)
0.161139 + 0.986932i \(0.448483\pi\)
\(98\) 7.32574 0.740011
\(99\) −0.540729 −0.0543453
\(100\) −3.51051 −0.351051
\(101\) −4.22752 −0.420654 −0.210327 0.977631i \(-0.567453\pi\)
−0.210327 + 0.977631i \(0.567453\pi\)
\(102\) −6.17374 −0.611292
\(103\) 5.15172 0.507614 0.253807 0.967255i \(-0.418317\pi\)
0.253807 + 0.967255i \(0.418317\pi\)
\(104\) −8.82025 −0.864897
\(105\) 1.56243 0.152477
\(106\) 1.20067 0.116619
\(107\) 15.2074 1.47015 0.735077 0.677983i \(-0.237146\pi\)
0.735077 + 0.677983i \(0.237146\pi\)
\(108\) 4.22203 0.406265
\(109\) −0.736074 −0.0705031 −0.0352515 0.999378i \(-0.511223\pi\)
−0.0352515 + 0.999378i \(0.511223\pi\)
\(110\) 1.02842 0.0980560
\(111\) 13.6197 1.29272
\(112\) −7.95543 −0.751717
\(113\) −14.5947 −1.37295 −0.686476 0.727152i \(-0.740843\pi\)
−0.686476 + 0.727152i \(0.740843\pi\)
\(114\) −20.3792 −1.90869
\(115\) 0 0
\(116\) −7.26826 −0.674841
\(117\) 2.31571 0.214088
\(118\) 14.4364 1.32898
\(119\) −3.81392 −0.349622
\(120\) 1.99924 0.182505
\(121\) 1.00000 0.0909091
\(122\) 5.91008 0.535073
\(123\) 3.62626 0.326969
\(124\) −4.67662 −0.419973
\(125\) 5.95278 0.532432
\(126\) 1.44602 0.128821
\(127\) −17.2343 −1.52930 −0.764648 0.644448i \(-0.777087\pi\)
−0.764648 + 0.644448i \(0.777087\pi\)
\(128\) −13.3116 −1.17659
\(129\) −7.83554 −0.689881
\(130\) −4.40429 −0.386282
\(131\) −0.660279 −0.0576888 −0.0288444 0.999584i \(-0.509183\pi\)
−0.0288444 + 0.999584i \(0.509183\pi\)
\(132\) −1.19242 −0.103787
\(133\) −12.5896 −1.09165
\(134\) −23.9053 −2.06511
\(135\) −3.43703 −0.295812
\(136\) −4.88020 −0.418473
\(137\) −10.4980 −0.896902 −0.448451 0.893807i \(-0.648024\pi\)
−0.448451 + 0.893807i \(0.648024\pi\)
\(138\) 0 0
\(139\) −3.07522 −0.260836 −0.130418 0.991459i \(-0.541632\pi\)
−0.130418 + 0.991459i \(0.541632\pi\)
\(140\) −0.757569 −0.0640263
\(141\) −18.2717 −1.53876
\(142\) −2.27278 −0.190727
\(143\) −4.28258 −0.358127
\(144\) 2.67259 0.222716
\(145\) 5.91687 0.491370
\(146\) 17.1117 1.41618
\(147\) 6.91466 0.570312
\(148\) −6.60373 −0.542823
\(149\) 1.96657 0.161108 0.0805539 0.996750i \(-0.474331\pi\)
0.0805539 + 0.996750i \(0.474331\pi\)
\(150\) −12.0291 −0.982170
\(151\) 9.92919 0.808026 0.404013 0.914753i \(-0.367615\pi\)
0.404013 + 0.914753i \(0.367615\pi\)
\(152\) −16.1093 −1.30664
\(153\) 1.28127 0.103585
\(154\) −2.67420 −0.215493
\(155\) 3.80710 0.305793
\(156\) 5.10662 0.408857
\(157\) 9.82429 0.784064 0.392032 0.919952i \(-0.371772\pi\)
0.392032 + 0.919952i \(0.371772\pi\)
\(158\) 11.7314 0.933304
\(159\) 1.13329 0.0898760
\(160\) −2.53333 −0.200277
\(161\) 0 0
\(162\) 11.7720 0.924894
\(163\) −1.99477 −0.156243 −0.0781213 0.996944i \(-0.524892\pi\)
−0.0781213 + 0.996944i \(0.524892\pi\)
\(164\) −1.75825 −0.137296
\(165\) 0.970711 0.0755698
\(166\) 23.4384 1.81917
\(167\) −3.14885 −0.243666 −0.121833 0.992551i \(-0.538877\pi\)
−0.121833 + 0.992551i \(0.538877\pi\)
\(168\) −5.19863 −0.401083
\(169\) 5.34049 0.410807
\(170\) −2.43687 −0.186899
\(171\) 4.22941 0.323431
\(172\) 3.79919 0.289685
\(173\) 5.96172 0.453261 0.226631 0.973981i \(-0.427229\pi\)
0.226631 + 0.973981i \(0.427229\pi\)
\(174\) −24.9053 −1.88807
\(175\) −7.43114 −0.561741
\(176\) −4.94258 −0.372561
\(177\) 13.6263 1.02421
\(178\) −6.60616 −0.495152
\(179\) 5.31241 0.397068 0.198534 0.980094i \(-0.436382\pi\)
0.198534 + 0.980094i \(0.436382\pi\)
\(180\) 0.254502 0.0189695
\(181\) −15.7729 −1.17239 −0.586197 0.810169i \(-0.699376\pi\)
−0.586197 + 0.810169i \(0.699376\pi\)
\(182\) 11.4525 0.848914
\(183\) 5.57844 0.412370
\(184\) 0 0
\(185\) 5.37590 0.395244
\(186\) −16.0248 −1.17500
\(187\) −2.36953 −0.173277
\(188\) 8.85933 0.646133
\(189\) 8.93729 0.650092
\(190\) −8.04399 −0.583572
\(191\) −27.2318 −1.97042 −0.985212 0.171342i \(-0.945190\pi\)
−0.985212 + 0.171342i \(0.945190\pi\)
\(192\) −4.83868 −0.349202
\(193\) −2.37337 −0.170839 −0.0854195 0.996345i \(-0.527223\pi\)
−0.0854195 + 0.996345i \(0.527223\pi\)
\(194\) −5.27351 −0.378616
\(195\) −4.15715 −0.297700
\(196\) −3.35269 −0.239478
\(197\) −22.6702 −1.61519 −0.807593 0.589740i \(-0.799230\pi\)
−0.807593 + 0.589740i \(0.799230\pi\)
\(198\) 0.898386 0.0638455
\(199\) 27.8125 1.97158 0.985789 0.167988i \(-0.0537271\pi\)
0.985789 + 0.167988i \(0.0537271\pi\)
\(200\) −9.50870 −0.672366
\(201\) −22.5639 −1.59154
\(202\) 7.02375 0.494190
\(203\) −15.3856 −1.07986
\(204\) 2.82547 0.197822
\(205\) 1.43134 0.0999690
\(206\) −8.55926 −0.596352
\(207\) 0 0
\(208\) 21.1670 1.46767
\(209\) −7.82169 −0.541038
\(210\) −2.59588 −0.179132
\(211\) 10.9511 0.753906 0.376953 0.926232i \(-0.376972\pi\)
0.376953 + 0.926232i \(0.376972\pi\)
\(212\) −0.549496 −0.0377395
\(213\) −2.14524 −0.146990
\(214\) −25.2661 −1.72716
\(215\) −3.09281 −0.210928
\(216\) 11.4359 0.778117
\(217\) −9.89959 −0.672028
\(218\) 1.22294 0.0828279
\(219\) 16.1515 1.09142
\(220\) −0.470665 −0.0317322
\(221\) 10.1477 0.682608
\(222\) −22.6283 −1.51871
\(223\) −25.2390 −1.69013 −0.845063 0.534667i \(-0.820437\pi\)
−0.845063 + 0.534667i \(0.820437\pi\)
\(224\) 6.58740 0.440139
\(225\) 2.49646 0.166431
\(226\) 24.2481 1.61296
\(227\) 13.9598 0.926544 0.463272 0.886216i \(-0.346675\pi\)
0.463272 + 0.886216i \(0.346675\pi\)
\(228\) 9.32672 0.617677
\(229\) 5.97008 0.394514 0.197257 0.980352i \(-0.436797\pi\)
0.197257 + 0.980352i \(0.436797\pi\)
\(230\) 0 0
\(231\) −2.52414 −0.166076
\(232\) −19.6871 −1.29252
\(233\) −17.7243 −1.16115 −0.580577 0.814205i \(-0.697173\pi\)
−0.580577 + 0.814205i \(0.697173\pi\)
\(234\) −3.84741 −0.251513
\(235\) −7.21212 −0.470467
\(236\) −6.60692 −0.430074
\(237\) 11.0731 0.719278
\(238\) 6.33659 0.410740
\(239\) −10.5599 −0.683062 −0.341531 0.939870i \(-0.610945\pi\)
−0.341531 + 0.939870i \(0.610945\pi\)
\(240\) −4.79782 −0.309698
\(241\) −12.1664 −0.783708 −0.391854 0.920027i \(-0.628166\pi\)
−0.391854 + 0.920027i \(0.628166\pi\)
\(242\) −1.66144 −0.106801
\(243\) −5.54637 −0.355800
\(244\) −2.70480 −0.173157
\(245\) 2.72932 0.174370
\(246\) −6.02480 −0.384127
\(247\) 33.4970 2.13136
\(248\) −12.6673 −0.804372
\(249\) 22.1232 1.40200
\(250\) −9.89016 −0.625508
\(251\) 9.31176 0.587753 0.293876 0.955843i \(-0.405055\pi\)
0.293876 + 0.955843i \(0.405055\pi\)
\(252\) −0.661781 −0.0416883
\(253\) 0 0
\(254\) 28.6337 1.79664
\(255\) −2.30013 −0.144040
\(256\) 15.9455 0.996591
\(257\) −19.5798 −1.22136 −0.610678 0.791879i \(-0.709103\pi\)
−0.610678 + 0.791879i \(0.709103\pi\)
\(258\) 13.0183 0.810481
\(259\) −13.9790 −0.868610
\(260\) 2.01566 0.125006
\(261\) 5.16874 0.319937
\(262\) 1.09701 0.0677736
\(263\) 4.32096 0.266442 0.133221 0.991086i \(-0.457468\pi\)
0.133221 + 0.991086i \(0.457468\pi\)
\(264\) −3.22982 −0.198782
\(265\) 0.447328 0.0274791
\(266\) 20.9168 1.28249
\(267\) −6.23546 −0.381604
\(268\) 10.9405 0.668296
\(269\) 19.2846 1.17580 0.587901 0.808933i \(-0.299955\pi\)
0.587901 + 0.808933i \(0.299955\pi\)
\(270\) 5.71040 0.347524
\(271\) 13.9372 0.846624 0.423312 0.905984i \(-0.360867\pi\)
0.423312 + 0.905984i \(0.360867\pi\)
\(272\) 11.7116 0.710118
\(273\) 10.8098 0.654241
\(274\) 17.4417 1.05369
\(275\) −4.61685 −0.278406
\(276\) 0 0
\(277\) −8.25234 −0.495835 −0.247917 0.968781i \(-0.579746\pi\)
−0.247917 + 0.968781i \(0.579746\pi\)
\(278\) 5.10927 0.306434
\(279\) 3.32572 0.199106
\(280\) −2.05198 −0.122629
\(281\) −6.03675 −0.360122 −0.180061 0.983655i \(-0.557630\pi\)
−0.180061 + 0.983655i \(0.557630\pi\)
\(282\) 30.3573 1.80775
\(283\) 21.2256 1.26173 0.630865 0.775893i \(-0.282700\pi\)
0.630865 + 0.775893i \(0.282700\pi\)
\(284\) 1.04016 0.0617219
\(285\) −7.59261 −0.449747
\(286\) 7.11523 0.420733
\(287\) −3.72191 −0.219697
\(288\) −2.21301 −0.130403
\(289\) −11.3853 −0.669726
\(290\) −9.83051 −0.577267
\(291\) −4.97759 −0.291792
\(292\) −7.83133 −0.458294
\(293\) 13.6311 0.796340 0.398170 0.917312i \(-0.369645\pi\)
0.398170 + 0.917312i \(0.369645\pi\)
\(294\) −11.4883 −0.670010
\(295\) 5.37850 0.313148
\(296\) −17.8871 −1.03967
\(297\) 5.55259 0.322194
\(298\) −3.26733 −0.189272
\(299\) 0 0
\(300\) 5.50521 0.317843
\(301\) 8.04222 0.463546
\(302\) −16.4967 −0.949279
\(303\) 6.62962 0.380862
\(304\) 38.6593 2.21726
\(305\) 2.20189 0.126080
\(306\) −2.12875 −0.121693
\(307\) 24.1392 1.37770 0.688848 0.724906i \(-0.258117\pi\)
0.688848 + 0.724906i \(0.258117\pi\)
\(308\) 1.22387 0.0697365
\(309\) −8.07896 −0.459596
\(310\) −6.32525 −0.359250
\(311\) −26.5152 −1.50354 −0.751770 0.659426i \(-0.770799\pi\)
−0.751770 + 0.659426i \(0.770799\pi\)
\(312\) 13.8320 0.783082
\(313\) −14.8723 −0.840632 −0.420316 0.907378i \(-0.638081\pi\)
−0.420316 + 0.907378i \(0.638081\pi\)
\(314\) −16.3224 −0.921128
\(315\) 0.538736 0.0303544
\(316\) −5.36899 −0.302030
\(317\) 13.6152 0.764707 0.382353 0.924016i \(-0.375114\pi\)
0.382353 + 0.924016i \(0.375114\pi\)
\(318\) −1.88289 −0.105587
\(319\) −9.55885 −0.535193
\(320\) −1.90990 −0.106767
\(321\) −23.8483 −1.33108
\(322\) 0 0
\(323\) 18.5337 1.03124
\(324\) −5.38755 −0.299308
\(325\) 19.7720 1.09675
\(326\) 3.31419 0.183556
\(327\) 1.15432 0.0638338
\(328\) −4.76246 −0.262963
\(329\) 18.7537 1.03392
\(330\) −1.61278 −0.0887803
\(331\) 15.5614 0.855333 0.427666 0.903937i \(-0.359336\pi\)
0.427666 + 0.903937i \(0.359336\pi\)
\(332\) −10.7268 −0.588709
\(333\) 4.69617 0.257348
\(334\) 5.23162 0.286261
\(335\) −8.90632 −0.486604
\(336\) 12.4758 0.680608
\(337\) −17.0840 −0.930624 −0.465312 0.885147i \(-0.654058\pi\)
−0.465312 + 0.885147i \(0.654058\pi\)
\(338\) −8.87288 −0.482621
\(339\) 22.8875 1.24308
\(340\) 1.11525 0.0604831
\(341\) −6.15045 −0.333066
\(342\) −7.02690 −0.379971
\(343\) −18.3640 −0.991565
\(344\) 10.2906 0.554833
\(345\) 0 0
\(346\) −9.90502 −0.532497
\(347\) 25.7060 1.37997 0.689986 0.723823i \(-0.257617\pi\)
0.689986 + 0.723823i \(0.257617\pi\)
\(348\) 11.3981 0.611004
\(349\) 28.0255 1.50017 0.750086 0.661340i \(-0.230012\pi\)
0.750086 + 0.661340i \(0.230012\pi\)
\(350\) 12.3464 0.659941
\(351\) −23.7794 −1.26925
\(352\) 4.09265 0.218139
\(353\) 1.01036 0.0537762 0.0268881 0.999638i \(-0.491440\pi\)
0.0268881 + 0.999638i \(0.491440\pi\)
\(354\) −22.6392 −1.20326
\(355\) −0.846760 −0.0449414
\(356\) 3.02336 0.160238
\(357\) 5.98102 0.316549
\(358\) −8.82623 −0.466481
\(359\) −5.70273 −0.300978 −0.150489 0.988612i \(-0.548085\pi\)
−0.150489 + 0.988612i \(0.548085\pi\)
\(360\) 0.689353 0.0363321
\(361\) 42.1789 2.21994
\(362\) 26.2057 1.37734
\(363\) −1.56821 −0.0823095
\(364\) −5.24132 −0.274720
\(365\) 6.37525 0.333696
\(366\) −9.26822 −0.484458
\(367\) 5.35487 0.279522 0.139761 0.990185i \(-0.455367\pi\)
0.139761 + 0.990185i \(0.455367\pi\)
\(368\) 0 0
\(369\) 1.25036 0.0650911
\(370\) −8.93172 −0.464338
\(371\) −1.16319 −0.0603896
\(372\) 7.33391 0.380245
\(373\) 0.235458 0.0121916 0.00609578 0.999981i \(-0.498060\pi\)
0.00609578 + 0.999981i \(0.498060\pi\)
\(374\) 3.93682 0.203568
\(375\) −9.33518 −0.482067
\(376\) 23.9967 1.23754
\(377\) 40.9365 2.10834
\(378\) −14.8487 −0.763737
\(379\) −6.96773 −0.357908 −0.178954 0.983857i \(-0.557271\pi\)
−0.178954 + 0.983857i \(0.557271\pi\)
\(380\) 3.68140 0.188852
\(381\) 27.0269 1.38463
\(382\) 45.2439 2.31488
\(383\) −8.77251 −0.448254 −0.224127 0.974560i \(-0.571953\pi\)
−0.224127 + 0.974560i \(0.571953\pi\)
\(384\) 20.8754 1.06529
\(385\) −0.996316 −0.0507770
\(386\) 3.94320 0.200704
\(387\) −2.70175 −0.137338
\(388\) 2.41347 0.122525
\(389\) 8.75227 0.443758 0.221879 0.975074i \(-0.428781\pi\)
0.221879 + 0.975074i \(0.428781\pi\)
\(390\) 6.90684 0.349741
\(391\) 0 0
\(392\) −9.08120 −0.458670
\(393\) 1.03545 0.0522317
\(394\) 37.6651 1.89754
\(395\) 4.37074 0.219916
\(396\) −0.411154 −0.0206613
\(397\) 6.34338 0.318365 0.159183 0.987249i \(-0.449114\pi\)
0.159183 + 0.987249i \(0.449114\pi\)
\(398\) −46.2087 −2.31624
\(399\) 19.7430 0.988389
\(400\) 22.8191 1.14096
\(401\) −29.9288 −1.49457 −0.747287 0.664501i \(-0.768644\pi\)
−0.747287 + 0.664501i \(0.768644\pi\)
\(402\) 37.4885 1.86976
\(403\) 26.3398 1.31208
\(404\) −3.21448 −0.159926
\(405\) 4.38584 0.217934
\(406\) 25.5623 1.26863
\(407\) −8.68489 −0.430494
\(408\) 7.65316 0.378888
\(409\) 29.1785 1.44278 0.721392 0.692527i \(-0.243503\pi\)
0.721392 + 0.692527i \(0.243503\pi\)
\(410\) −2.37808 −0.117445
\(411\) 16.4630 0.812059
\(412\) 3.91722 0.192987
\(413\) −13.9857 −0.688192
\(414\) 0 0
\(415\) 8.73236 0.428655
\(416\) −17.5271 −0.859336
\(417\) 4.82257 0.236162
\(418\) 12.9952 0.635618
\(419\) −18.8284 −0.919827 −0.459914 0.887964i \(-0.652120\pi\)
−0.459914 + 0.887964i \(0.652120\pi\)
\(420\) 1.18802 0.0579697
\(421\) −18.5020 −0.901731 −0.450865 0.892592i \(-0.648885\pi\)
−0.450865 + 0.892592i \(0.648885\pi\)
\(422\) −18.1946 −0.885698
\(423\) −6.30021 −0.306327
\(424\) −1.48838 −0.0722823
\(425\) 10.9397 0.530655
\(426\) 3.56419 0.172685
\(427\) −5.72558 −0.277080
\(428\) 11.5633 0.558931
\(429\) 6.71597 0.324250
\(430\) 5.13850 0.247800
\(431\) 5.02957 0.242266 0.121133 0.992636i \(-0.461347\pi\)
0.121133 + 0.992636i \(0.461347\pi\)
\(432\) −27.4441 −1.32041
\(433\) −9.96080 −0.478685 −0.239343 0.970935i \(-0.576932\pi\)
−0.239343 + 0.970935i \(0.576932\pi\)
\(434\) 16.4475 0.789507
\(435\) −9.27888 −0.444888
\(436\) −0.559688 −0.0268042
\(437\) 0 0
\(438\) −26.8347 −1.28221
\(439\) 26.1168 1.24649 0.623244 0.782028i \(-0.285815\pi\)
0.623244 + 0.782028i \(0.285815\pi\)
\(440\) −1.27486 −0.0607766
\(441\) 2.38422 0.113534
\(442\) −16.8597 −0.801936
\(443\) −19.2364 −0.913950 −0.456975 0.889480i \(-0.651067\pi\)
−0.456975 + 0.889480i \(0.651067\pi\)
\(444\) 10.3560 0.491475
\(445\) −2.46123 −0.116673
\(446\) 41.9329 1.98558
\(447\) −3.08399 −0.145868
\(448\) 4.96631 0.234636
\(449\) 10.6314 0.501726 0.250863 0.968023i \(-0.419286\pi\)
0.250863 + 0.968023i \(0.419286\pi\)
\(450\) −4.14771 −0.195525
\(451\) −2.31236 −0.108885
\(452\) −11.0974 −0.521976
\(453\) −15.5710 −0.731590
\(454\) −23.1933 −1.08852
\(455\) 4.26680 0.200031
\(456\) 25.2627 1.18303
\(457\) −19.9177 −0.931712 −0.465856 0.884861i \(-0.654254\pi\)
−0.465856 + 0.884861i \(0.654254\pi\)
\(458\) −9.91891 −0.463480
\(459\) −13.1570 −0.614117
\(460\) 0 0
\(461\) −5.49988 −0.256155 −0.128078 0.991764i \(-0.540881\pi\)
−0.128078 + 0.991764i \(0.540881\pi\)
\(462\) 4.19370 0.195108
\(463\) −21.6472 −1.00603 −0.503015 0.864277i \(-0.667776\pi\)
−0.503015 + 0.864277i \(0.667776\pi\)
\(464\) 47.2453 2.19331
\(465\) −5.97031 −0.276867
\(466\) 29.4477 1.36414
\(467\) 11.0214 0.510011 0.255005 0.966940i \(-0.417923\pi\)
0.255005 + 0.966940i \(0.417923\pi\)
\(468\) 1.76080 0.0813930
\(469\) 23.1591 1.06939
\(470\) 11.9825 0.552710
\(471\) −15.4065 −0.709895
\(472\) −17.8958 −0.823719
\(473\) 4.99650 0.229739
\(474\) −18.3973 −0.845017
\(475\) 36.1115 1.65691
\(476\) −2.89999 −0.132921
\(477\) 0.390767 0.0178920
\(478\) 17.5446 0.802470
\(479\) −7.53167 −0.344131 −0.172065 0.985086i \(-0.555044\pi\)
−0.172065 + 0.985086i \(0.555044\pi\)
\(480\) 3.97278 0.181332
\(481\) 37.1937 1.69589
\(482\) 20.2137 0.920710
\(483\) 0 0
\(484\) 0.760370 0.0345623
\(485\) −1.96473 −0.0892138
\(486\) 9.21494 0.417998
\(487\) 17.1588 0.777539 0.388769 0.921335i \(-0.372900\pi\)
0.388769 + 0.921335i \(0.372900\pi\)
\(488\) −7.32631 −0.331646
\(489\) 3.12822 0.141463
\(490\) −4.53459 −0.204852
\(491\) 23.4006 1.05605 0.528027 0.849227i \(-0.322932\pi\)
0.528027 + 0.849227i \(0.322932\pi\)
\(492\) 2.75730 0.124309
\(493\) 22.6499 1.02010
\(494\) −55.6532 −2.50395
\(495\) 0.334708 0.0150440
\(496\) 30.3991 1.36496
\(497\) 2.20183 0.0987655
\(498\) −36.7563 −1.64709
\(499\) 21.1155 0.945261 0.472631 0.881261i \(-0.343304\pi\)
0.472631 + 0.881261i \(0.343304\pi\)
\(500\) 4.52631 0.202423
\(501\) 4.93805 0.220616
\(502\) −15.4709 −0.690500
\(503\) −13.1797 −0.587653 −0.293827 0.955859i \(-0.594929\pi\)
−0.293827 + 0.955859i \(0.594929\pi\)
\(504\) −1.79252 −0.0798454
\(505\) 2.61681 0.116447
\(506\) 0 0
\(507\) −8.37499 −0.371946
\(508\) −13.1044 −0.581416
\(509\) −5.50880 −0.244173 −0.122087 0.992519i \(-0.538959\pi\)
−0.122087 + 0.992519i \(0.538959\pi\)
\(510\) 3.82151 0.169220
\(511\) −16.5776 −0.733348
\(512\) 0.130908 0.00578539
\(513\) −43.4307 −1.91751
\(514\) 32.5306 1.43487
\(515\) −3.18889 −0.140519
\(516\) −5.95791 −0.262282
\(517\) 11.6513 0.512425
\(518\) 23.2251 1.02045
\(519\) −9.34921 −0.410385
\(520\) 5.45969 0.239423
\(521\) −21.3858 −0.936927 −0.468464 0.883483i \(-0.655192\pi\)
−0.468464 + 0.883483i \(0.655192\pi\)
\(522\) −8.58753 −0.375866
\(523\) −27.7437 −1.21315 −0.606575 0.795026i \(-0.707457\pi\)
−0.606575 + 0.795026i \(0.707457\pi\)
\(524\) −0.502056 −0.0219324
\(525\) 11.6536 0.508603
\(526\) −7.17900 −0.313019
\(527\) 14.5737 0.634839
\(528\) 7.75098 0.337318
\(529\) 0 0
\(530\) −0.743207 −0.0322828
\(531\) 4.69844 0.203895
\(532\) −9.57273 −0.415031
\(533\) 9.90287 0.428941
\(534\) 10.3598 0.448313
\(535\) −9.41330 −0.406972
\(536\) 29.6338 1.27998
\(537\) −8.33095 −0.359507
\(538\) −32.0401 −1.38135
\(539\) −4.40928 −0.189921
\(540\) −2.61341 −0.112463
\(541\) 3.27579 0.140837 0.0704185 0.997518i \(-0.477567\pi\)
0.0704185 + 0.997518i \(0.477567\pi\)
\(542\) −23.1557 −0.994624
\(543\) 24.7352 1.06149
\(544\) −9.69764 −0.415783
\(545\) 0.455626 0.0195169
\(546\) −17.9598 −0.768610
\(547\) −26.4931 −1.13276 −0.566382 0.824143i \(-0.691657\pi\)
−0.566382 + 0.824143i \(0.691657\pi\)
\(548\) −7.98234 −0.340989
\(549\) 1.92349 0.0820924
\(550\) 7.67059 0.327075
\(551\) 74.7664 3.18515
\(552\) 0 0
\(553\) −11.3652 −0.483299
\(554\) 13.7107 0.582513
\(555\) −8.43052 −0.357856
\(556\) −2.33830 −0.0991661
\(557\) −34.7407 −1.47201 −0.736005 0.676976i \(-0.763290\pi\)
−0.736005 + 0.676976i \(0.763290\pi\)
\(558\) −5.52548 −0.233912
\(559\) −21.3979 −0.905035
\(560\) 4.92437 0.208093
\(561\) 3.71591 0.156886
\(562\) 10.0297 0.423076
\(563\) −1.85743 −0.0782813 −0.0391407 0.999234i \(-0.512462\pi\)
−0.0391407 + 0.999234i \(0.512462\pi\)
\(564\) −13.8933 −0.585012
\(565\) 9.03403 0.380064
\(566\) −35.2650 −1.48230
\(567\) −11.4045 −0.478944
\(568\) 2.81740 0.118216
\(569\) −28.0289 −1.17503 −0.587516 0.809212i \(-0.699894\pi\)
−0.587516 + 0.809212i \(0.699894\pi\)
\(570\) 12.6146 0.528369
\(571\) −23.3753 −0.978226 −0.489113 0.872220i \(-0.662679\pi\)
−0.489113 + 0.872220i \(0.662679\pi\)
\(572\) −3.25635 −0.136155
\(573\) 42.7051 1.78403
\(574\) 6.18371 0.258103
\(575\) 0 0
\(576\) −1.66841 −0.0695171
\(577\) 33.5017 1.39469 0.697346 0.716734i \(-0.254364\pi\)
0.697346 + 0.716734i \(0.254364\pi\)
\(578\) 18.9160 0.786803
\(579\) 3.72194 0.154678
\(580\) 4.49902 0.186811
\(581\) −22.7067 −0.942035
\(582\) 8.26995 0.342800
\(583\) −0.722668 −0.0299299
\(584\) −21.2122 −0.877768
\(585\) −1.43341 −0.0592644
\(586\) −22.6473 −0.935550
\(587\) −10.5456 −0.435262 −0.217631 0.976031i \(-0.569833\pi\)
−0.217631 + 0.976031i \(0.569833\pi\)
\(588\) 5.25770 0.216824
\(589\) 48.1069 1.98221
\(590\) −8.93603 −0.367891
\(591\) 35.5516 1.46240
\(592\) 42.9257 1.76424
\(593\) −19.6322 −0.806197 −0.403098 0.915157i \(-0.632067\pi\)
−0.403098 + 0.915157i \(0.632067\pi\)
\(594\) −9.22528 −0.378518
\(595\) 2.36080 0.0967833
\(596\) 1.49532 0.0612508
\(597\) −43.6158 −1.78508
\(598\) 0 0
\(599\) 9.40424 0.384247 0.192124 0.981371i \(-0.438463\pi\)
0.192124 + 0.981371i \(0.438463\pi\)
\(600\) 14.9116 0.608764
\(601\) 11.2566 0.459167 0.229583 0.973289i \(-0.426264\pi\)
0.229583 + 0.973289i \(0.426264\pi\)
\(602\) −13.3616 −0.544580
\(603\) −7.78020 −0.316834
\(604\) 7.54986 0.307199
\(605\) −0.618995 −0.0251657
\(606\) −11.0147 −0.447441
\(607\) 30.1996 1.22576 0.612881 0.790175i \(-0.290010\pi\)
0.612881 + 0.790175i \(0.290010\pi\)
\(608\) −32.0114 −1.29823
\(609\) 24.1279 0.977710
\(610\) −3.65831 −0.148121
\(611\) −49.8978 −2.01865
\(612\) 0.974240 0.0393813
\(613\) −14.3241 −0.578546 −0.289273 0.957247i \(-0.593414\pi\)
−0.289273 + 0.957247i \(0.593414\pi\)
\(614\) −40.1057 −1.61853
\(615\) −2.24463 −0.0905124
\(616\) 3.31502 0.133566
\(617\) 16.4854 0.663676 0.331838 0.943336i \(-0.392331\pi\)
0.331838 + 0.943336i \(0.392331\pi\)
\(618\) 13.4227 0.539940
\(619\) −26.6043 −1.06932 −0.534658 0.845069i \(-0.679560\pi\)
−0.534658 + 0.845069i \(0.679560\pi\)
\(620\) 2.89480 0.116258
\(621\) 0 0
\(622\) 44.0533 1.76638
\(623\) 6.39993 0.256408
\(624\) −33.1942 −1.32883
\(625\) 19.3995 0.775980
\(626\) 24.7094 0.987585
\(627\) 12.2660 0.489858
\(628\) 7.47010 0.298089
\(629\) 20.5791 0.820542
\(630\) −0.895076 −0.0356607
\(631\) −1.52350 −0.0606496 −0.0303248 0.999540i \(-0.509654\pi\)
−0.0303248 + 0.999540i \(0.509654\pi\)
\(632\) −14.5426 −0.578476
\(633\) −17.1736 −0.682590
\(634\) −22.6208 −0.898387
\(635\) 10.6679 0.423344
\(636\) 0.861722 0.0341695
\(637\) 18.8831 0.748176
\(638\) 15.8814 0.628751
\(639\) −0.739695 −0.0292619
\(640\) 8.23983 0.325708
\(641\) 42.8758 1.69349 0.846746 0.531998i \(-0.178559\pi\)
0.846746 + 0.531998i \(0.178559\pi\)
\(642\) 39.6225 1.56378
\(643\) 48.7538 1.92266 0.961332 0.275393i \(-0.0888079\pi\)
0.961332 + 0.275393i \(0.0888079\pi\)
\(644\) 0 0
\(645\) 4.85016 0.190975
\(646\) −30.7926 −1.21152
\(647\) 15.8590 0.623483 0.311741 0.950167i \(-0.399088\pi\)
0.311741 + 0.950167i \(0.399088\pi\)
\(648\) −14.5929 −0.573263
\(649\) −8.68909 −0.341077
\(650\) −32.8499 −1.28848
\(651\) 15.5246 0.608457
\(652\) −1.51677 −0.0594011
\(653\) 11.6310 0.455155 0.227577 0.973760i \(-0.426920\pi\)
0.227577 + 0.973760i \(0.426920\pi\)
\(654\) −1.91782 −0.0749927
\(655\) 0.408709 0.0159696
\(656\) 11.4290 0.446228
\(657\) 5.56916 0.217274
\(658\) −31.1580 −1.21467
\(659\) −15.2980 −0.595926 −0.297963 0.954577i \(-0.596307\pi\)
−0.297963 + 0.954577i \(0.596307\pi\)
\(660\) 0.738100 0.0287305
\(661\) 33.6313 1.30810 0.654052 0.756449i \(-0.273068\pi\)
0.654052 + 0.756449i \(0.273068\pi\)
\(662\) −25.8543 −1.00486
\(663\) −15.9137 −0.618036
\(664\) −29.0550 −1.12755
\(665\) 7.79288 0.302195
\(666\) −7.80238 −0.302336
\(667\) 0 0
\(668\) −2.39429 −0.0926380
\(669\) 39.5799 1.53025
\(670\) 14.7973 0.571669
\(671\) −3.55721 −0.137325
\(672\) −10.3304 −0.398504
\(673\) 49.7912 1.91931 0.959655 0.281181i \(-0.0907261\pi\)
0.959655 + 0.281181i \(0.0907261\pi\)
\(674\) 28.3840 1.09331
\(675\) −25.6355 −0.986710
\(676\) 4.06075 0.156183
\(677\) 10.5029 0.403660 0.201830 0.979421i \(-0.435311\pi\)
0.201830 + 0.979421i \(0.435311\pi\)
\(678\) −38.0261 −1.46038
\(679\) 5.10889 0.196061
\(680\) 3.02082 0.115843
\(681\) −21.8918 −0.838897
\(682\) 10.2186 0.391290
\(683\) −2.73910 −0.104809 −0.0524045 0.998626i \(-0.516689\pi\)
−0.0524045 + 0.998626i \(0.516689\pi\)
\(684\) 3.21592 0.122964
\(685\) 6.49819 0.248283
\(686\) 30.5107 1.16490
\(687\) −9.36232 −0.357195
\(688\) −24.6956 −0.941510
\(689\) 3.09489 0.117906
\(690\) 0 0
\(691\) −10.0910 −0.383881 −0.191941 0.981407i \(-0.561478\pi\)
−0.191941 + 0.981407i \(0.561478\pi\)
\(692\) 4.53312 0.172323
\(693\) −0.870341 −0.0330615
\(694\) −42.7089 −1.62121
\(695\) 1.90354 0.0722055
\(696\) 30.8734 1.17025
\(697\) 5.47920 0.207540
\(698\) −46.5626 −1.76242
\(699\) 27.7953 1.05131
\(700\) −5.65042 −0.213566
\(701\) −8.91178 −0.336593 −0.168297 0.985736i \(-0.553827\pi\)
−0.168297 + 0.985736i \(0.553827\pi\)
\(702\) 39.5080 1.49113
\(703\) 67.9305 2.56205
\(704\) 3.08549 0.116289
\(705\) 11.3101 0.425963
\(706\) −1.67865 −0.0631770
\(707\) −6.80449 −0.255909
\(708\) 10.3610 0.389391
\(709\) 8.43966 0.316958 0.158479 0.987362i \(-0.449341\pi\)
0.158479 + 0.987362i \(0.449341\pi\)
\(710\) 1.40684 0.0527977
\(711\) 3.81810 0.143190
\(712\) 8.18919 0.306903
\(713\) 0 0
\(714\) −9.93708 −0.371886
\(715\) 2.65089 0.0991378
\(716\) 4.03940 0.150959
\(717\) 16.5601 0.618448
\(718\) 9.47472 0.353593
\(719\) −7.71862 −0.287856 −0.143928 0.989588i \(-0.545973\pi\)
−0.143928 + 0.989588i \(0.545973\pi\)
\(720\) −1.65432 −0.0616529
\(721\) 8.29206 0.308813
\(722\) −70.0775 −2.60801
\(723\) 19.0795 0.709573
\(724\) −11.9933 −0.445727
\(725\) 44.1317 1.63901
\(726\) 2.60547 0.0966982
\(727\) −21.1775 −0.785429 −0.392714 0.919660i \(-0.628464\pi\)
−0.392714 + 0.919660i \(0.628464\pi\)
\(728\) −14.1968 −0.526169
\(729\) 29.9541 1.10941
\(730\) −10.5921 −0.392030
\(731\) −11.8393 −0.437894
\(732\) 4.24168 0.156777
\(733\) 13.4252 0.495870 0.247935 0.968777i \(-0.420248\pi\)
0.247935 + 0.968777i \(0.420248\pi\)
\(734\) −8.89677 −0.328386
\(735\) −4.28014 −0.157875
\(736\) 0 0
\(737\) 14.3884 0.530002
\(738\) −2.07739 −0.0764699
\(739\) −45.1842 −1.66213 −0.831063 0.556178i \(-0.812267\pi\)
−0.831063 + 0.556178i \(0.812267\pi\)
\(740\) 4.08768 0.150266
\(741\) −52.5302 −1.92975
\(742\) 1.93256 0.0709465
\(743\) 12.4616 0.457170 0.228585 0.973524i \(-0.426590\pi\)
0.228585 + 0.973524i \(0.426590\pi\)
\(744\) 19.8649 0.728282
\(745\) −1.21730 −0.0445983
\(746\) −0.391199 −0.0143228
\(747\) 7.62823 0.279103
\(748\) −1.80172 −0.0658773
\(749\) 24.4774 0.894384
\(750\) 15.5098 0.566338
\(751\) −19.8926 −0.725890 −0.362945 0.931811i \(-0.618229\pi\)
−0.362945 + 0.931811i \(0.618229\pi\)
\(752\) −57.5877 −2.10001
\(753\) −14.6028 −0.532154
\(754\) −68.0134 −2.47690
\(755\) −6.14612 −0.223680
\(756\) 6.79565 0.247155
\(757\) −37.7019 −1.37030 −0.685149 0.728403i \(-0.740263\pi\)
−0.685149 + 0.728403i \(0.740263\pi\)
\(758\) 11.5764 0.420475
\(759\) 0 0
\(760\) 9.97156 0.361707
\(761\) −19.9487 −0.723141 −0.361571 0.932345i \(-0.617759\pi\)
−0.361571 + 0.932345i \(0.617759\pi\)
\(762\) −44.9035 −1.62668
\(763\) −1.18476 −0.0428913
\(764\) −20.7062 −0.749126
\(765\) −0.793100 −0.0286746
\(766\) 14.5750 0.526615
\(767\) 37.2117 1.34364
\(768\) −25.0058 −0.902318
\(769\) −6.83927 −0.246631 −0.123315 0.992368i \(-0.539353\pi\)
−0.123315 + 0.992368i \(0.539353\pi\)
\(770\) 1.65532 0.0596534
\(771\) 30.7052 1.10582
\(772\) −1.80464 −0.0649504
\(773\) 36.0368 1.29615 0.648077 0.761575i \(-0.275574\pi\)
0.648077 + 0.761575i \(0.275574\pi\)
\(774\) 4.48878 0.161346
\(775\) 28.3957 1.02000
\(776\) 6.53720 0.234672
\(777\) 21.9219 0.786443
\(778\) −14.5413 −0.521332
\(779\) 18.0866 0.648019
\(780\) −3.16097 −0.113181
\(781\) 1.36796 0.0489495
\(782\) 0 0
\(783\) −53.0764 −1.89680
\(784\) 21.7932 0.778329
\(785\) −6.08118 −0.217047
\(786\) −1.72034 −0.0613625
\(787\) −7.73134 −0.275593 −0.137796 0.990461i \(-0.544002\pi\)
−0.137796 + 0.990461i \(0.544002\pi\)
\(788\) −17.2378 −0.614070
\(789\) −6.77616 −0.241238
\(790\) −7.26170 −0.258360
\(791\) −23.4912 −0.835250
\(792\) −1.11367 −0.0395724
\(793\) 15.2340 0.540977
\(794\) −10.5391 −0.374020
\(795\) −0.701502 −0.0248797
\(796\) 21.1478 0.749565
\(797\) 21.0466 0.745510 0.372755 0.927930i \(-0.378413\pi\)
0.372755 + 0.927930i \(0.378413\pi\)
\(798\) −32.8018 −1.16117
\(799\) −27.6082 −0.976707
\(800\) −18.8951 −0.668043
\(801\) −2.15003 −0.0759676
\(802\) 49.7248 1.75584
\(803\) −10.2994 −0.363457
\(804\) −17.1569 −0.605078
\(805\) 0 0
\(806\) −43.7619 −1.54145
\(807\) −30.2422 −1.06458
\(808\) −8.70685 −0.306306
\(809\) 32.3982 1.13906 0.569531 0.821970i \(-0.307125\pi\)
0.569531 + 0.821970i \(0.307125\pi\)
\(810\) −7.28680 −0.256032
\(811\) 11.3359 0.398057 0.199028 0.979994i \(-0.436221\pi\)
0.199028 + 0.979994i \(0.436221\pi\)
\(812\) −11.6988 −0.410547
\(813\) −21.8564 −0.766537
\(814\) 14.4294 0.505750
\(815\) 1.23475 0.0432515
\(816\) −18.3662 −0.642944
\(817\) −39.0811 −1.36727
\(818\) −48.4782 −1.69500
\(819\) 3.72730 0.130243
\(820\) 1.08835 0.0380067
\(821\) −0.998090 −0.0348336 −0.0174168 0.999848i \(-0.505544\pi\)
−0.0174168 + 0.999848i \(0.505544\pi\)
\(822\) −27.3522 −0.954017
\(823\) −30.4306 −1.06074 −0.530372 0.847765i \(-0.677948\pi\)
−0.530372 + 0.847765i \(0.677948\pi\)
\(824\) 10.6103 0.369628
\(825\) 7.24017 0.252070
\(826\) 23.2364 0.808496
\(827\) −10.0372 −0.349028 −0.174514 0.984655i \(-0.555835\pi\)
−0.174514 + 0.984655i \(0.555835\pi\)
\(828\) 0 0
\(829\) 10.5351 0.365899 0.182950 0.983122i \(-0.441435\pi\)
0.182950 + 0.983122i \(0.441435\pi\)
\(830\) −14.5083 −0.503589
\(831\) 12.9414 0.448931
\(832\) −13.2138 −0.458107
\(833\) 10.4479 0.361999
\(834\) −8.01240 −0.277447
\(835\) 1.94912 0.0674522
\(836\) −5.94738 −0.205695
\(837\) −34.1510 −1.18043
\(838\) 31.2822 1.08062
\(839\) 25.4274 0.877850 0.438925 0.898524i \(-0.355359\pi\)
0.438925 + 0.898524i \(0.355359\pi\)
\(840\) 3.21793 0.111029
\(841\) 62.3716 2.15074
\(842\) 30.7398 1.05937
\(843\) 9.46687 0.326056
\(844\) 8.32690 0.286624
\(845\) −3.30573 −0.113721
\(846\) 10.4674 0.359877
\(847\) 1.60957 0.0553055
\(848\) 3.57184 0.122658
\(849\) −33.2861 −1.14238
\(850\) −18.1757 −0.623421
\(851\) 0 0
\(852\) −1.63118 −0.0558833
\(853\) 18.9160 0.647671 0.323835 0.946113i \(-0.395028\pi\)
0.323835 + 0.946113i \(0.395028\pi\)
\(854\) 9.51269 0.325518
\(855\) −2.61798 −0.0895331
\(856\) 31.3206 1.07052
\(857\) 0.387282 0.0132293 0.00661465 0.999978i \(-0.497894\pi\)
0.00661465 + 0.999978i \(0.497894\pi\)
\(858\) −11.1582 −0.380933
\(859\) 5.13183 0.175096 0.0875478 0.996160i \(-0.472097\pi\)
0.0875478 + 0.996160i \(0.472097\pi\)
\(860\) −2.35168 −0.0801915
\(861\) 5.83672 0.198915
\(862\) −8.35631 −0.284617
\(863\) 16.5309 0.562719 0.281360 0.959602i \(-0.409215\pi\)
0.281360 + 0.959602i \(0.409215\pi\)
\(864\) 22.7248 0.773113
\(865\) −3.69028 −0.125473
\(866\) 16.5492 0.562366
\(867\) 17.8546 0.606373
\(868\) −7.52735 −0.255495
\(869\) −7.06103 −0.239529
\(870\) 15.4163 0.522660
\(871\) −61.6193 −2.08789
\(872\) −1.51599 −0.0513380
\(873\) −1.71631 −0.0580882
\(874\) 0 0
\(875\) 9.58142 0.323911
\(876\) 12.2811 0.414942
\(877\) 42.9346 1.44980 0.724899 0.688855i \(-0.241886\pi\)
0.724899 + 0.688855i \(0.241886\pi\)
\(878\) −43.3914 −1.46439
\(879\) −21.3764 −0.721010
\(880\) 3.05943 0.103133
\(881\) 3.94591 0.132941 0.0664706 0.997788i \(-0.478826\pi\)
0.0664706 + 0.997788i \(0.478826\pi\)
\(882\) −3.96124 −0.133382
\(883\) −3.43182 −0.115490 −0.0577450 0.998331i \(-0.518391\pi\)
−0.0577450 + 0.998331i \(0.518391\pi\)
\(884\) 7.71600 0.259517
\(885\) −8.43460 −0.283526
\(886\) 31.9601 1.07372
\(887\) −55.6303 −1.86788 −0.933941 0.357427i \(-0.883654\pi\)
−0.933941 + 0.357427i \(0.883654\pi\)
\(888\) 28.0507 0.941319
\(889\) −27.7398 −0.930364
\(890\) 4.08918 0.137069
\(891\) −7.08543 −0.237371
\(892\) −19.1910 −0.642561
\(893\) −91.1332 −3.04966
\(894\) 5.12385 0.171367
\(895\) −3.28835 −0.109917
\(896\) −21.4260 −0.715793
\(897\) 0 0
\(898\) −17.6633 −0.589434
\(899\) 58.7912 1.96080
\(900\) 1.89823 0.0632745
\(901\) 1.71238 0.0570477
\(902\) 3.84184 0.127919
\(903\) −12.6119 −0.419696
\(904\) −30.0587 −0.999738
\(905\) 9.76337 0.324545
\(906\) 25.8703 0.859482
\(907\) 28.7837 0.955749 0.477874 0.878428i \(-0.341407\pi\)
0.477874 + 0.878428i \(0.341407\pi\)
\(908\) 10.6146 0.352258
\(909\) 2.28594 0.0758199
\(910\) −7.08902 −0.234999
\(911\) −18.4717 −0.611996 −0.305998 0.952032i \(-0.598990\pi\)
−0.305998 + 0.952032i \(0.598990\pi\)
\(912\) −60.6258 −2.00752
\(913\) −14.1073 −0.466884
\(914\) 33.0920 1.09459
\(915\) −3.45302 −0.114153
\(916\) 4.53947 0.149988
\(917\) −1.06277 −0.0350956
\(918\) 21.8596 0.721473
\(919\) −13.5885 −0.448243 −0.224121 0.974561i \(-0.571951\pi\)
−0.224121 + 0.974561i \(0.571951\pi\)
\(920\) 0 0
\(921\) −37.8552 −1.24737
\(922\) 9.13771 0.300934
\(923\) −5.85840 −0.192832
\(924\) −1.91928 −0.0631397
\(925\) 40.0968 1.31837
\(926\) 35.9654 1.18190
\(927\) −2.78568 −0.0914938
\(928\) −39.1210 −1.28421
\(929\) 11.5668 0.379495 0.189747 0.981833i \(-0.439233\pi\)
0.189747 + 0.981833i \(0.439233\pi\)
\(930\) 9.91929 0.325266
\(931\) 34.4880 1.13030
\(932\) −13.4770 −0.441454
\(933\) 41.5813 1.36131
\(934\) −18.3114 −0.599167
\(935\) 1.46672 0.0479670
\(936\) 4.76936 0.155892
\(937\) −58.0108 −1.89513 −0.947565 0.319564i \(-0.896464\pi\)
−0.947565 + 0.319564i \(0.896464\pi\)
\(938\) −38.4773 −1.25633
\(939\) 23.3228 0.761112
\(940\) −5.48388 −0.178864
\(941\) −32.4334 −1.05730 −0.528649 0.848840i \(-0.677301\pi\)
−0.528649 + 0.848840i \(0.677301\pi\)
\(942\) 25.5969 0.833994
\(943\) 0 0
\(944\) 42.9465 1.39779
\(945\) −5.53214 −0.179960
\(946\) −8.30136 −0.269901
\(947\) −0.711323 −0.0231149 −0.0115574 0.999933i \(-0.503679\pi\)
−0.0115574 + 0.999933i \(0.503679\pi\)
\(948\) 8.41969 0.273459
\(949\) 44.1079 1.43180
\(950\) −59.9970 −1.94656
\(951\) −21.3515 −0.692369
\(952\) −7.85503 −0.254583
\(953\) 48.7544 1.57931 0.789655 0.613551i \(-0.210260\pi\)
0.789655 + 0.613551i \(0.210260\pi\)
\(954\) −0.649235 −0.0210198
\(955\) 16.8563 0.545458
\(956\) −8.02942 −0.259690
\(957\) 14.9902 0.484566
\(958\) 12.5134 0.404289
\(959\) −16.8972 −0.545640
\(960\) 2.99512 0.0966669
\(961\) 6.82805 0.220260
\(962\) −61.7950 −1.99235
\(963\) −8.22307 −0.264985
\(964\) −9.25098 −0.297954
\(965\) 1.46910 0.0472921
\(966\) 0 0
\(967\) −14.9479 −0.480691 −0.240345 0.970687i \(-0.577261\pi\)
−0.240345 + 0.970687i \(0.577261\pi\)
\(968\) 2.05957 0.0661970
\(969\) −29.0647 −0.933692
\(970\) 3.26427 0.104810
\(971\) 20.7716 0.666592 0.333296 0.942822i \(-0.391839\pi\)
0.333296 + 0.942822i \(0.391839\pi\)
\(972\) −4.21729 −0.135270
\(973\) −4.94978 −0.158683
\(974\) −28.5082 −0.913463
\(975\) −31.0066 −0.993006
\(976\) 17.5818 0.562779
\(977\) −25.3681 −0.811598 −0.405799 0.913962i \(-0.633007\pi\)
−0.405799 + 0.913962i \(0.633007\pi\)
\(978\) −5.19733 −0.166192
\(979\) 3.97617 0.127079
\(980\) 2.07529 0.0662929
\(981\) 0.398016 0.0127077
\(982\) −38.8786 −1.24067
\(983\) −21.3360 −0.680514 −0.340257 0.940332i \(-0.610514\pi\)
−0.340257 + 0.940332i \(0.610514\pi\)
\(984\) 7.46852 0.238088
\(985\) 14.0327 0.447121
\(986\) −37.6314 −1.19843
\(987\) −29.4096 −0.936118
\(988\) 25.4701 0.810313
\(989\) 0 0
\(990\) −0.556096 −0.0176739
\(991\) 47.2508 1.50097 0.750486 0.660887i \(-0.229820\pi\)
0.750486 + 0.660887i \(0.229820\pi\)
\(992\) −25.1716 −0.799200
\(993\) −24.4035 −0.774422
\(994\) −3.65820 −0.116031
\(995\) −17.2158 −0.545778
\(996\) 16.8218 0.533020
\(997\) 7.49197 0.237273 0.118637 0.992938i \(-0.462148\pi\)
0.118637 + 0.992938i \(0.462148\pi\)
\(998\) −35.0821 −1.11050
\(999\) −48.2237 −1.52573
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.14 60
23.2 even 11 253.2.i.b.188.3 yes 120
23.12 even 11 253.2.i.b.144.3 120
23.22 odd 2 5819.2.a.t.1.14 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.144.3 120 23.12 even 11
253.2.i.b.188.3 yes 120 23.2 even 11
5819.2.a.t.1.14 60 23.22 odd 2
5819.2.a.u.1.14 60 1.1 even 1 trivial