Properties

Label 5819.2.a.u.1.12
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.77899 q^{2} -1.88973 q^{3} +1.16479 q^{4} +1.17802 q^{5} +3.36180 q^{6} -1.47227 q^{7} +1.48583 q^{8} +0.571076 q^{9} -2.09569 q^{10} +1.00000 q^{11} -2.20114 q^{12} -2.91011 q^{13} +2.61914 q^{14} -2.22614 q^{15} -4.97284 q^{16} -7.64172 q^{17} -1.01594 q^{18} +8.29282 q^{19} +1.37215 q^{20} +2.78219 q^{21} -1.77899 q^{22} -2.80781 q^{24} -3.61226 q^{25} +5.17704 q^{26} +4.59001 q^{27} -1.71488 q^{28} +1.86761 q^{29} +3.96028 q^{30} -3.39140 q^{31} +5.87496 q^{32} -1.88973 q^{33} +13.5945 q^{34} -1.73436 q^{35} +0.665183 q^{36} -9.70746 q^{37} -14.7528 q^{38} +5.49931 q^{39} +1.75034 q^{40} -2.49583 q^{41} -4.94947 q^{42} +4.71348 q^{43} +1.16479 q^{44} +0.672740 q^{45} -11.1406 q^{47} +9.39733 q^{48} -4.83243 q^{49} +6.42616 q^{50} +14.4408 q^{51} -3.38966 q^{52} +1.48214 q^{53} -8.16556 q^{54} +1.17802 q^{55} -2.18754 q^{56} -15.6712 q^{57} -3.32246 q^{58} +4.87652 q^{59} -2.59299 q^{60} -5.00863 q^{61} +6.03326 q^{62} -0.840776 q^{63} -0.505780 q^{64} -3.42817 q^{65} +3.36180 q^{66} -5.28241 q^{67} -8.90099 q^{68} +3.08541 q^{70} +1.24607 q^{71} +0.848520 q^{72} +14.9184 q^{73} +17.2694 q^{74} +6.82620 q^{75} +9.65938 q^{76} -1.47227 q^{77} -9.78320 q^{78} +10.4945 q^{79} -5.85812 q^{80} -10.3871 q^{81} +4.44004 q^{82} -2.32476 q^{83} +3.24066 q^{84} -9.00212 q^{85} -8.38522 q^{86} -3.52929 q^{87} +1.48583 q^{88} +16.5139 q^{89} -1.19679 q^{90} +4.28446 q^{91} +6.40884 q^{93} +19.8190 q^{94} +9.76913 q^{95} -11.1021 q^{96} -8.94688 q^{97} +8.59682 q^{98} +0.571076 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.77899 −1.25793 −0.628966 0.777433i \(-0.716522\pi\)
−0.628966 + 0.777433i \(0.716522\pi\)
\(3\) −1.88973 −1.09104 −0.545518 0.838099i \(-0.683667\pi\)
−0.545518 + 0.838099i \(0.683667\pi\)
\(4\) 1.16479 0.582394
\(5\) 1.17802 0.526828 0.263414 0.964683i \(-0.415152\pi\)
0.263414 + 0.964683i \(0.415152\pi\)
\(6\) 3.36180 1.37245
\(7\) −1.47227 −0.556465 −0.278232 0.960514i \(-0.589749\pi\)
−0.278232 + 0.960514i \(0.589749\pi\)
\(8\) 1.48583 0.525320
\(9\) 0.571076 0.190359
\(10\) −2.09569 −0.662714
\(11\) 1.00000 0.301511
\(12\) −2.20114 −0.635413
\(13\) −2.91011 −0.807119 −0.403559 0.914953i \(-0.632227\pi\)
−0.403559 + 0.914953i \(0.632227\pi\)
\(14\) 2.61914 0.699995
\(15\) −2.22614 −0.574788
\(16\) −4.97284 −1.24321
\(17\) −7.64172 −1.85339 −0.926695 0.375815i \(-0.877363\pi\)
−0.926695 + 0.375815i \(0.877363\pi\)
\(18\) −1.01594 −0.239458
\(19\) 8.29282 1.90250 0.951251 0.308417i \(-0.0997991\pi\)
0.951251 + 0.308417i \(0.0997991\pi\)
\(20\) 1.37215 0.306822
\(21\) 2.78219 0.607123
\(22\) −1.77899 −0.379281
\(23\) 0 0
\(24\) −2.80781 −0.573142
\(25\) −3.61226 −0.722452
\(26\) 5.17704 1.01530
\(27\) 4.59001 0.883348
\(28\) −1.71488 −0.324082
\(29\) 1.86761 0.346807 0.173404 0.984851i \(-0.444523\pi\)
0.173404 + 0.984851i \(0.444523\pi\)
\(30\) 3.96028 0.723044
\(31\) −3.39140 −0.609114 −0.304557 0.952494i \(-0.598508\pi\)
−0.304557 + 0.952494i \(0.598508\pi\)
\(32\) 5.87496 1.03856
\(33\) −1.88973 −0.328960
\(34\) 13.5945 2.33144
\(35\) −1.73436 −0.293161
\(36\) 0.665183 0.110864
\(37\) −9.70746 −1.59590 −0.797948 0.602726i \(-0.794081\pi\)
−0.797948 + 0.602726i \(0.794081\pi\)
\(38\) −14.7528 −2.39322
\(39\) 5.49931 0.880595
\(40\) 1.75034 0.276753
\(41\) −2.49583 −0.389783 −0.194891 0.980825i \(-0.562435\pi\)
−0.194891 + 0.980825i \(0.562435\pi\)
\(42\) −4.94947 −0.763720
\(43\) 4.71348 0.718799 0.359400 0.933184i \(-0.382981\pi\)
0.359400 + 0.933184i \(0.382981\pi\)
\(44\) 1.16479 0.175599
\(45\) 0.672740 0.100286
\(46\) 0 0
\(47\) −11.1406 −1.62503 −0.812515 0.582941i \(-0.801902\pi\)
−0.812515 + 0.582941i \(0.801902\pi\)
\(48\) 9.39733 1.35639
\(49\) −4.83243 −0.690347
\(50\) 6.42616 0.908796
\(51\) 14.4408 2.02211
\(52\) −3.38966 −0.470061
\(53\) 1.48214 0.203587 0.101794 0.994806i \(-0.467542\pi\)
0.101794 + 0.994806i \(0.467542\pi\)
\(54\) −8.16556 −1.11119
\(55\) 1.17802 0.158845
\(56\) −2.18754 −0.292322
\(57\) −15.6712 −2.07570
\(58\) −3.32246 −0.436260
\(59\) 4.87652 0.634868 0.317434 0.948280i \(-0.397179\pi\)
0.317434 + 0.948280i \(0.397179\pi\)
\(60\) −2.59299 −0.334753
\(61\) −5.00863 −0.641290 −0.320645 0.947199i \(-0.603900\pi\)
−0.320645 + 0.947199i \(0.603900\pi\)
\(62\) 6.03326 0.766225
\(63\) −0.840776 −0.105928
\(64\) −0.505780 −0.0632224
\(65\) −3.42817 −0.425213
\(66\) 3.36180 0.413809
\(67\) −5.28241 −0.645349 −0.322674 0.946510i \(-0.604582\pi\)
−0.322674 + 0.946510i \(0.604582\pi\)
\(68\) −8.90099 −1.07940
\(69\) 0 0
\(70\) 3.08541 0.368777
\(71\) 1.24607 0.147882 0.0739408 0.997263i \(-0.476442\pi\)
0.0739408 + 0.997263i \(0.476442\pi\)
\(72\) 0.848520 0.0999991
\(73\) 14.9184 1.74607 0.873033 0.487662i \(-0.162150\pi\)
0.873033 + 0.487662i \(0.162150\pi\)
\(74\) 17.2694 2.00753
\(75\) 6.82620 0.788221
\(76\) 9.65938 1.10801
\(77\) −1.47227 −0.167780
\(78\) −9.78320 −1.10773
\(79\) 10.4945 1.18072 0.590362 0.807138i \(-0.298985\pi\)
0.590362 + 0.807138i \(0.298985\pi\)
\(80\) −5.85812 −0.654958
\(81\) −10.3871 −1.15412
\(82\) 4.44004 0.490321
\(83\) −2.32476 −0.255175 −0.127588 0.991827i \(-0.540723\pi\)
−0.127588 + 0.991827i \(0.540723\pi\)
\(84\) 3.24066 0.353585
\(85\) −9.00212 −0.976417
\(86\) −8.38522 −0.904201
\(87\) −3.52929 −0.378379
\(88\) 1.48583 0.158390
\(89\) 16.5139 1.75047 0.875237 0.483694i \(-0.160705\pi\)
0.875237 + 0.483694i \(0.160705\pi\)
\(90\) −1.19679 −0.126153
\(91\) 4.28446 0.449133
\(92\) 0 0
\(93\) 6.40884 0.664565
\(94\) 19.8190 2.04418
\(95\) 9.76913 1.00229
\(96\) −11.1021 −1.13310
\(97\) −8.94688 −0.908418 −0.454209 0.890895i \(-0.650078\pi\)
−0.454209 + 0.890895i \(0.650078\pi\)
\(98\) 8.59682 0.868410
\(99\) 0.571076 0.0573953
\(100\) −4.20752 −0.420752
\(101\) 1.89460 0.188519 0.0942597 0.995548i \(-0.469952\pi\)
0.0942597 + 0.995548i \(0.469952\pi\)
\(102\) −25.6899 −2.54368
\(103\) 6.90660 0.680528 0.340264 0.940330i \(-0.389484\pi\)
0.340264 + 0.940330i \(0.389484\pi\)
\(104\) −4.32392 −0.423995
\(105\) 3.27748 0.319849
\(106\) −2.63670 −0.256099
\(107\) −11.0879 −1.07191 −0.535956 0.844246i \(-0.680049\pi\)
−0.535956 + 0.844246i \(0.680049\pi\)
\(108\) 5.34639 0.514457
\(109\) −2.27328 −0.217741 −0.108871 0.994056i \(-0.534723\pi\)
−0.108871 + 0.994056i \(0.534723\pi\)
\(110\) −2.09569 −0.199816
\(111\) 18.3445 1.74118
\(112\) 7.32136 0.691803
\(113\) −1.32432 −0.124582 −0.0622908 0.998058i \(-0.519841\pi\)
−0.0622908 + 0.998058i \(0.519841\pi\)
\(114\) 27.8788 2.61109
\(115\) 0 0
\(116\) 2.17538 0.201979
\(117\) −1.66189 −0.153642
\(118\) −8.67525 −0.798622
\(119\) 11.2507 1.03135
\(120\) −3.30767 −0.301947
\(121\) 1.00000 0.0909091
\(122\) 8.91028 0.806699
\(123\) 4.71644 0.425267
\(124\) −3.95027 −0.354745
\(125\) −10.1454 −0.907436
\(126\) 1.49573 0.133250
\(127\) −10.4223 −0.924829 −0.462415 0.886664i \(-0.653017\pi\)
−0.462415 + 0.886664i \(0.653017\pi\)
\(128\) −10.8501 −0.959027
\(129\) −8.90720 −0.784236
\(130\) 6.09867 0.534889
\(131\) −1.68691 −0.147386 −0.0736932 0.997281i \(-0.523479\pi\)
−0.0736932 + 0.997281i \(0.523479\pi\)
\(132\) −2.20114 −0.191584
\(133\) −12.2092 −1.05868
\(134\) 9.39732 0.811805
\(135\) 5.40713 0.465372
\(136\) −11.3543 −0.973622
\(137\) 18.2425 1.55856 0.779280 0.626676i \(-0.215585\pi\)
0.779280 + 0.626676i \(0.215585\pi\)
\(138\) 0 0
\(139\) −21.6814 −1.83899 −0.919496 0.393099i \(-0.871403\pi\)
−0.919496 + 0.393099i \(0.871403\pi\)
\(140\) −2.02017 −0.170735
\(141\) 21.0528 1.77296
\(142\) −2.21675 −0.186025
\(143\) −2.91011 −0.243355
\(144\) −2.83987 −0.236656
\(145\) 2.20009 0.182708
\(146\) −26.5396 −2.19643
\(147\) 9.13198 0.753193
\(148\) −11.3071 −0.929441
\(149\) 14.4386 1.18286 0.591429 0.806357i \(-0.298564\pi\)
0.591429 + 0.806357i \(0.298564\pi\)
\(150\) −12.1437 −0.991529
\(151\) −4.25102 −0.345943 −0.172971 0.984927i \(-0.555337\pi\)
−0.172971 + 0.984927i \(0.555337\pi\)
\(152\) 12.3217 0.999422
\(153\) −4.36400 −0.352809
\(154\) 2.61914 0.211057
\(155\) −3.99515 −0.320898
\(156\) 6.40554 0.512854
\(157\) −14.9517 −1.19327 −0.596637 0.802511i \(-0.703497\pi\)
−0.596637 + 0.802511i \(0.703497\pi\)
\(158\) −18.6696 −1.48527
\(159\) −2.80084 −0.222121
\(160\) 6.92084 0.547140
\(161\) 0 0
\(162\) 18.4785 1.45181
\(163\) −3.40411 −0.266630 −0.133315 0.991074i \(-0.542562\pi\)
−0.133315 + 0.991074i \(0.542562\pi\)
\(164\) −2.90711 −0.227007
\(165\) −2.22614 −0.173305
\(166\) 4.13571 0.320993
\(167\) −17.6557 −1.36624 −0.683120 0.730306i \(-0.739377\pi\)
−0.683120 + 0.730306i \(0.739377\pi\)
\(168\) 4.13385 0.318934
\(169\) −4.53127 −0.348559
\(170\) 16.0146 1.22827
\(171\) 4.73583 0.362158
\(172\) 5.49021 0.418625
\(173\) −11.3483 −0.862798 −0.431399 0.902161i \(-0.641980\pi\)
−0.431399 + 0.902161i \(0.641980\pi\)
\(174\) 6.27855 0.475975
\(175\) 5.31822 0.402019
\(176\) −4.97284 −0.374842
\(177\) −9.21530 −0.692664
\(178\) −29.3781 −2.20198
\(179\) 5.18497 0.387543 0.193772 0.981047i \(-0.437928\pi\)
0.193772 + 0.981047i \(0.437928\pi\)
\(180\) 0.783600 0.0584061
\(181\) −9.06688 −0.673936 −0.336968 0.941516i \(-0.609401\pi\)
−0.336968 + 0.941516i \(0.609401\pi\)
\(182\) −7.62199 −0.564979
\(183\) 9.46496 0.699670
\(184\) 0 0
\(185\) −11.4356 −0.840763
\(186\) −11.4012 −0.835978
\(187\) −7.64172 −0.558818
\(188\) −12.9765 −0.946408
\(189\) −6.75772 −0.491552
\(190\) −17.3791 −1.26081
\(191\) −15.1506 −1.09626 −0.548129 0.836394i \(-0.684660\pi\)
−0.548129 + 0.836394i \(0.684660\pi\)
\(192\) 0.955786 0.0689779
\(193\) −9.25275 −0.666028 −0.333014 0.942922i \(-0.608066\pi\)
−0.333014 + 0.942922i \(0.608066\pi\)
\(194\) 15.9164 1.14273
\(195\) 6.47832 0.463922
\(196\) −5.62876 −0.402054
\(197\) −2.59222 −0.184688 −0.0923439 0.995727i \(-0.529436\pi\)
−0.0923439 + 0.995727i \(0.529436\pi\)
\(198\) −1.01594 −0.0721994
\(199\) 14.9313 1.05845 0.529227 0.848480i \(-0.322482\pi\)
0.529227 + 0.848480i \(0.322482\pi\)
\(200\) −5.36720 −0.379519
\(201\) 9.98232 0.704098
\(202\) −3.37046 −0.237145
\(203\) −2.74963 −0.192986
\(204\) 16.8205 1.17767
\(205\) −2.94014 −0.205348
\(206\) −12.2867 −0.856058
\(207\) 0 0
\(208\) 14.4715 1.00342
\(209\) 8.29282 0.573626
\(210\) −5.83059 −0.402349
\(211\) −15.6848 −1.07979 −0.539894 0.841733i \(-0.681536\pi\)
−0.539894 + 0.841733i \(0.681536\pi\)
\(212\) 1.72638 0.118568
\(213\) −2.35474 −0.161344
\(214\) 19.7253 1.34839
\(215\) 5.55259 0.378683
\(216\) 6.81997 0.464040
\(217\) 4.99306 0.338951
\(218\) 4.04414 0.273904
\(219\) −28.1917 −1.90502
\(220\) 1.37215 0.0925102
\(221\) 22.2382 1.49591
\(222\) −32.6345 −2.19029
\(223\) 16.9577 1.13557 0.567786 0.823176i \(-0.307800\pi\)
0.567786 + 0.823176i \(0.307800\pi\)
\(224\) −8.64951 −0.577920
\(225\) −2.06288 −0.137525
\(226\) 2.35595 0.156715
\(227\) 20.3232 1.34890 0.674450 0.738320i \(-0.264381\pi\)
0.674450 + 0.738320i \(0.264381\pi\)
\(228\) −18.2536 −1.20887
\(229\) 6.88626 0.455057 0.227528 0.973771i \(-0.426936\pi\)
0.227528 + 0.973771i \(0.426936\pi\)
\(230\) 0 0
\(231\) 2.78219 0.183054
\(232\) 2.77495 0.182185
\(233\) −5.66004 −0.370801 −0.185401 0.982663i \(-0.559358\pi\)
−0.185401 + 0.982663i \(0.559358\pi\)
\(234\) 2.95648 0.193271
\(235\) −13.1239 −0.856111
\(236\) 5.68011 0.369744
\(237\) −19.8318 −1.28821
\(238\) −20.0148 −1.29736
\(239\) −20.0549 −1.29725 −0.648623 0.761110i \(-0.724655\pi\)
−0.648623 + 0.761110i \(0.724655\pi\)
\(240\) 11.0703 0.714583
\(241\) −13.9290 −0.897244 −0.448622 0.893722i \(-0.648085\pi\)
−0.448622 + 0.893722i \(0.648085\pi\)
\(242\) −1.77899 −0.114358
\(243\) 5.85878 0.375841
\(244\) −5.83400 −0.373484
\(245\) −5.69271 −0.363694
\(246\) −8.39048 −0.534957
\(247\) −24.1330 −1.53555
\(248\) −5.03905 −0.319980
\(249\) 4.39316 0.278405
\(250\) 18.0486 1.14149
\(251\) −6.30319 −0.397854 −0.198927 0.980014i \(-0.563746\pi\)
−0.198927 + 0.980014i \(0.563746\pi\)
\(252\) −0.979327 −0.0616918
\(253\) 0 0
\(254\) 18.5411 1.16337
\(255\) 17.0116 1.06531
\(256\) 20.3138 1.26961
\(257\) −1.57916 −0.0985054 −0.0492527 0.998786i \(-0.515684\pi\)
−0.0492527 + 0.998786i \(0.515684\pi\)
\(258\) 15.8458 0.986515
\(259\) 14.2920 0.888060
\(260\) −3.99310 −0.247641
\(261\) 1.06655 0.0660177
\(262\) 3.00100 0.185402
\(263\) 4.07808 0.251465 0.125733 0.992064i \(-0.459872\pi\)
0.125733 + 0.992064i \(0.459872\pi\)
\(264\) −2.80781 −0.172809
\(265\) 1.74599 0.107255
\(266\) 21.7201 1.33174
\(267\) −31.2069 −1.90983
\(268\) −6.15289 −0.375847
\(269\) −16.9352 −1.03256 −0.516279 0.856421i \(-0.672683\pi\)
−0.516279 + 0.856421i \(0.672683\pi\)
\(270\) −9.61921 −0.585407
\(271\) 19.7028 1.19686 0.598431 0.801174i \(-0.295791\pi\)
0.598431 + 0.801174i \(0.295791\pi\)
\(272\) 38.0011 2.30415
\(273\) −8.09646 −0.490020
\(274\) −32.4531 −1.96056
\(275\) −3.61226 −0.217828
\(276\) 0 0
\(277\) 29.0173 1.74348 0.871740 0.489968i \(-0.162992\pi\)
0.871740 + 0.489968i \(0.162992\pi\)
\(278\) 38.5709 2.31333
\(279\) −1.93675 −0.115950
\(280\) −2.57697 −0.154003
\(281\) 2.37569 0.141722 0.0708608 0.997486i \(-0.477425\pi\)
0.0708608 + 0.997486i \(0.477425\pi\)
\(282\) −37.4526 −2.23027
\(283\) −17.7144 −1.05301 −0.526507 0.850171i \(-0.676499\pi\)
−0.526507 + 0.850171i \(0.676499\pi\)
\(284\) 1.45141 0.0861255
\(285\) −18.4610 −1.09354
\(286\) 5.17704 0.306125
\(287\) 3.67453 0.216901
\(288\) 3.35505 0.197698
\(289\) 41.3959 2.43505
\(290\) −3.91393 −0.229834
\(291\) 16.9072 0.991116
\(292\) 17.3768 1.01690
\(293\) −1.62082 −0.0946891 −0.0473445 0.998879i \(-0.515076\pi\)
−0.0473445 + 0.998879i \(0.515076\pi\)
\(294\) −16.2457 −0.947466
\(295\) 5.74465 0.334466
\(296\) −14.4236 −0.838356
\(297\) 4.59001 0.266339
\(298\) −25.6861 −1.48796
\(299\) 0 0
\(300\) 7.95108 0.459056
\(301\) −6.93951 −0.399987
\(302\) 7.56250 0.435173
\(303\) −3.58027 −0.205681
\(304\) −41.2389 −2.36521
\(305\) −5.90028 −0.337849
\(306\) 7.76349 0.443809
\(307\) 0.664207 0.0379083 0.0189541 0.999820i \(-0.493966\pi\)
0.0189541 + 0.999820i \(0.493966\pi\)
\(308\) −1.71488 −0.0977144
\(309\) −13.0516 −0.742480
\(310\) 7.10732 0.403668
\(311\) 32.0445 1.81708 0.908540 0.417799i \(-0.137198\pi\)
0.908540 + 0.417799i \(0.137198\pi\)
\(312\) 8.17104 0.462594
\(313\) 21.6509 1.22378 0.611891 0.790942i \(-0.290409\pi\)
0.611891 + 0.790942i \(0.290409\pi\)
\(314\) 26.5988 1.50106
\(315\) −0.990454 −0.0558057
\(316\) 12.2239 0.687648
\(317\) −1.07598 −0.0604333 −0.0302166 0.999543i \(-0.509620\pi\)
−0.0302166 + 0.999543i \(0.509620\pi\)
\(318\) 4.98265 0.279413
\(319\) 1.86761 0.104566
\(320\) −0.595820 −0.0333073
\(321\) 20.9532 1.16949
\(322\) 0 0
\(323\) −63.3714 −3.52608
\(324\) −12.0988 −0.672154
\(325\) 10.5121 0.583105
\(326\) 6.05586 0.335403
\(327\) 4.29589 0.237563
\(328\) −3.70837 −0.204761
\(329\) 16.4020 0.904272
\(330\) 3.96028 0.218006
\(331\) 15.2717 0.839410 0.419705 0.907661i \(-0.362134\pi\)
0.419705 + 0.907661i \(0.362134\pi\)
\(332\) −2.70785 −0.148613
\(333\) −5.54369 −0.303792
\(334\) 31.4092 1.71864
\(335\) −6.22280 −0.339988
\(336\) −13.8354 −0.754782
\(337\) −11.5856 −0.631106 −0.315553 0.948908i \(-0.602190\pi\)
−0.315553 + 0.948908i \(0.602190\pi\)
\(338\) 8.06107 0.438464
\(339\) 2.50261 0.135923
\(340\) −10.4856 −0.568660
\(341\) −3.39140 −0.183655
\(342\) −8.42496 −0.455570
\(343\) 17.4205 0.940619
\(344\) 7.00343 0.377599
\(345\) 0 0
\(346\) 20.1885 1.08534
\(347\) −0.160098 −0.00859452 −0.00429726 0.999991i \(-0.501368\pi\)
−0.00429726 + 0.999991i \(0.501368\pi\)
\(348\) −4.11087 −0.220366
\(349\) −6.27288 −0.335779 −0.167890 0.985806i \(-0.553695\pi\)
−0.167890 + 0.985806i \(0.553695\pi\)
\(350\) −9.46103 −0.505713
\(351\) −13.3574 −0.712966
\(352\) 5.87496 0.313136
\(353\) 17.0972 0.909993 0.454997 0.890493i \(-0.349640\pi\)
0.454997 + 0.890493i \(0.349640\pi\)
\(354\) 16.3939 0.871325
\(355\) 1.46790 0.0779082
\(356\) 19.2353 1.01947
\(357\) −21.2607 −1.12524
\(358\) −9.22399 −0.487503
\(359\) −7.09556 −0.374489 −0.187245 0.982313i \(-0.559956\pi\)
−0.187245 + 0.982313i \(0.559956\pi\)
\(360\) 0.999576 0.0526823
\(361\) 49.7708 2.61952
\(362\) 16.1299 0.847766
\(363\) −1.88973 −0.0991850
\(364\) 4.99049 0.261573
\(365\) 17.5742 0.919876
\(366\) −16.8380 −0.880137
\(367\) 3.72910 0.194658 0.0973288 0.995252i \(-0.468970\pi\)
0.0973288 + 0.995252i \(0.468970\pi\)
\(368\) 0 0
\(369\) −1.42531 −0.0741985
\(370\) 20.3438 1.05762
\(371\) −2.18210 −0.113289
\(372\) 7.46494 0.387039
\(373\) 24.9200 1.29031 0.645153 0.764053i \(-0.276793\pi\)
0.645153 + 0.764053i \(0.276793\pi\)
\(374\) 13.5945 0.702955
\(375\) 19.1721 0.990045
\(376\) −16.5531 −0.853660
\(377\) −5.43496 −0.279915
\(378\) 12.0219 0.618339
\(379\) 14.7494 0.757626 0.378813 0.925473i \(-0.376332\pi\)
0.378813 + 0.925473i \(0.376332\pi\)
\(380\) 11.3790 0.583729
\(381\) 19.6953 1.00902
\(382\) 26.9526 1.37902
\(383\) −7.82313 −0.399743 −0.199872 0.979822i \(-0.564053\pi\)
−0.199872 + 0.979822i \(0.564053\pi\)
\(384\) 20.5038 1.04633
\(385\) −1.73436 −0.0883914
\(386\) 16.4605 0.837818
\(387\) 2.69175 0.136830
\(388\) −10.4212 −0.529057
\(389\) 10.9813 0.556775 0.278388 0.960469i \(-0.410200\pi\)
0.278388 + 0.960469i \(0.410200\pi\)
\(390\) −11.5248 −0.583583
\(391\) 0 0
\(392\) −7.18016 −0.362653
\(393\) 3.18781 0.160804
\(394\) 4.61152 0.232325
\(395\) 12.3628 0.622039
\(396\) 0.665183 0.0334267
\(397\) 35.6270 1.78807 0.894033 0.448001i \(-0.147864\pi\)
0.894033 + 0.448001i \(0.147864\pi\)
\(398\) −26.5626 −1.33146
\(399\) 23.0722 1.15505
\(400\) 17.9632 0.898161
\(401\) −2.17225 −0.108477 −0.0542384 0.998528i \(-0.517273\pi\)
−0.0542384 + 0.998528i \(0.517273\pi\)
\(402\) −17.7584 −0.885708
\(403\) 9.86935 0.491627
\(404\) 2.20681 0.109793
\(405\) −12.2362 −0.608024
\(406\) 4.89155 0.242763
\(407\) −9.70746 −0.481181
\(408\) 21.4565 1.06226
\(409\) −7.24365 −0.358176 −0.179088 0.983833i \(-0.557315\pi\)
−0.179088 + 0.983833i \(0.557315\pi\)
\(410\) 5.23047 0.258315
\(411\) −34.4733 −1.70044
\(412\) 8.04473 0.396336
\(413\) −7.17954 −0.353282
\(414\) 0 0
\(415\) −2.73861 −0.134433
\(416\) −17.0968 −0.838238
\(417\) 40.9720 2.00641
\(418\) −14.7528 −0.721583
\(419\) −2.70576 −0.132185 −0.0660926 0.997813i \(-0.521053\pi\)
−0.0660926 + 0.997813i \(0.521053\pi\)
\(420\) 3.81757 0.186278
\(421\) −20.4462 −0.996485 −0.498242 0.867038i \(-0.666021\pi\)
−0.498242 + 0.867038i \(0.666021\pi\)
\(422\) 27.9031 1.35830
\(423\) −6.36215 −0.309338
\(424\) 2.20220 0.106948
\(425\) 27.6039 1.33899
\(426\) 4.18905 0.202960
\(427\) 7.37405 0.356855
\(428\) −12.9151 −0.624275
\(429\) 5.49931 0.265509
\(430\) −9.87797 −0.476358
\(431\) −2.27340 −0.109506 −0.0547529 0.998500i \(-0.517437\pi\)
−0.0547529 + 0.998500i \(0.517437\pi\)
\(432\) −22.8254 −1.09819
\(433\) −10.2647 −0.493288 −0.246644 0.969106i \(-0.579328\pi\)
−0.246644 + 0.969106i \(0.579328\pi\)
\(434\) −8.88257 −0.426377
\(435\) −4.15758 −0.199341
\(436\) −2.64789 −0.126811
\(437\) 0 0
\(438\) 50.1526 2.39639
\(439\) 5.36257 0.255941 0.127971 0.991778i \(-0.459154\pi\)
0.127971 + 0.991778i \(0.459154\pi\)
\(440\) 1.75034 0.0834442
\(441\) −2.75968 −0.131413
\(442\) −39.5615 −1.88175
\(443\) −3.29069 −0.156345 −0.0781726 0.996940i \(-0.524909\pi\)
−0.0781726 + 0.996940i \(0.524909\pi\)
\(444\) 21.3674 1.01405
\(445\) 19.4538 0.922199
\(446\) −30.1675 −1.42847
\(447\) −27.2851 −1.29054
\(448\) 0.744643 0.0351811
\(449\) −17.9872 −0.848871 −0.424435 0.905458i \(-0.639527\pi\)
−0.424435 + 0.905458i \(0.639527\pi\)
\(450\) 3.66982 0.172997
\(451\) −2.49583 −0.117524
\(452\) −1.54255 −0.0725556
\(453\) 8.03327 0.377436
\(454\) −36.1547 −1.69683
\(455\) 5.04719 0.236616
\(456\) −23.2847 −1.09041
\(457\) −22.8271 −1.06781 −0.533904 0.845545i \(-0.679276\pi\)
−0.533904 + 0.845545i \(0.679276\pi\)
\(458\) −12.2505 −0.572430
\(459\) −35.0756 −1.63719
\(460\) 0 0
\(461\) 32.0936 1.49475 0.747375 0.664403i \(-0.231314\pi\)
0.747375 + 0.664403i \(0.231314\pi\)
\(462\) −4.94947 −0.230270
\(463\) 29.6416 1.37756 0.688782 0.724969i \(-0.258146\pi\)
0.688782 + 0.724969i \(0.258146\pi\)
\(464\) −9.28736 −0.431155
\(465\) 7.54975 0.350111
\(466\) 10.0691 0.466443
\(467\) −42.2264 −1.95401 −0.977003 0.213225i \(-0.931603\pi\)
−0.977003 + 0.213225i \(0.931603\pi\)
\(468\) −1.93575 −0.0894802
\(469\) 7.77712 0.359114
\(470\) 23.3473 1.07693
\(471\) 28.2546 1.30190
\(472\) 7.24567 0.333509
\(473\) 4.71348 0.216726
\(474\) 35.2805 1.62048
\(475\) −29.9558 −1.37447
\(476\) 13.1046 0.600650
\(477\) 0.846412 0.0387545
\(478\) 35.6774 1.63185
\(479\) −21.9761 −1.00411 −0.502056 0.864835i \(-0.667423\pi\)
−0.502056 + 0.864835i \(0.667423\pi\)
\(480\) −13.0785 −0.596949
\(481\) 28.2497 1.28808
\(482\) 24.7794 1.12867
\(483\) 0 0
\(484\) 1.16479 0.0529449
\(485\) −10.5396 −0.478580
\(486\) −10.4227 −0.472782
\(487\) 22.1390 1.00321 0.501607 0.865095i \(-0.332742\pi\)
0.501607 + 0.865095i \(0.332742\pi\)
\(488\) −7.44197 −0.336882
\(489\) 6.43284 0.290903
\(490\) 10.1272 0.457502
\(491\) −1.19152 −0.0537727 −0.0268863 0.999638i \(-0.508559\pi\)
−0.0268863 + 0.999638i \(0.508559\pi\)
\(492\) 5.49366 0.247673
\(493\) −14.2718 −0.642769
\(494\) 42.9322 1.93161
\(495\) 0.672740 0.0302374
\(496\) 16.8649 0.757258
\(497\) −1.83455 −0.0822909
\(498\) −7.81536 −0.350215
\(499\) 18.8592 0.844253 0.422127 0.906537i \(-0.361284\pi\)
0.422127 + 0.906537i \(0.361284\pi\)
\(500\) −11.8173 −0.528486
\(501\) 33.3645 1.49062
\(502\) 11.2133 0.500474
\(503\) 36.9360 1.64690 0.823448 0.567392i \(-0.192048\pi\)
0.823448 + 0.567392i \(0.192048\pi\)
\(504\) −1.24925 −0.0556460
\(505\) 2.23188 0.0993173
\(506\) 0 0
\(507\) 8.56288 0.380291
\(508\) −12.1398 −0.538615
\(509\) −20.6141 −0.913704 −0.456852 0.889543i \(-0.651023\pi\)
−0.456852 + 0.889543i \(0.651023\pi\)
\(510\) −30.2633 −1.34008
\(511\) −21.9639 −0.971624
\(512\) −14.4377 −0.638061
\(513\) 38.0641 1.68057
\(514\) 2.80931 0.123913
\(515\) 8.13613 0.358521
\(516\) −10.3750 −0.456734
\(517\) −11.1406 −0.489965
\(518\) −25.4252 −1.11712
\(519\) 21.4453 0.941343
\(520\) −5.09368 −0.223373
\(521\) 6.53030 0.286098 0.143049 0.989716i \(-0.454309\pi\)
0.143049 + 0.989716i \(0.454309\pi\)
\(522\) −1.89738 −0.0830459
\(523\) 15.9545 0.697643 0.348821 0.937189i \(-0.386582\pi\)
0.348821 + 0.937189i \(0.386582\pi\)
\(524\) −1.96490 −0.0858370
\(525\) −10.0500 −0.438617
\(526\) −7.25485 −0.316326
\(527\) 25.9162 1.12893
\(528\) 9.39733 0.408966
\(529\) 0 0
\(530\) −3.10609 −0.134920
\(531\) 2.78486 0.120853
\(532\) −14.2212 −0.616567
\(533\) 7.26313 0.314601
\(534\) 55.5166 2.40244
\(535\) −13.0618 −0.564713
\(536\) −7.84875 −0.339014
\(537\) −9.79820 −0.422823
\(538\) 30.1275 1.29889
\(539\) −4.83243 −0.208147
\(540\) 6.29817 0.271030
\(541\) 30.9141 1.32910 0.664550 0.747244i \(-0.268623\pi\)
0.664550 + 0.747244i \(0.268623\pi\)
\(542\) −35.0510 −1.50557
\(543\) 17.1339 0.735288
\(544\) −44.8948 −1.92485
\(545\) −2.67798 −0.114712
\(546\) 14.4035 0.616412
\(547\) 25.5267 1.09144 0.545721 0.837967i \(-0.316256\pi\)
0.545721 + 0.837967i \(0.316256\pi\)
\(548\) 21.2486 0.907696
\(549\) −2.86031 −0.122075
\(550\) 6.42616 0.274012
\(551\) 15.4878 0.659802
\(552\) 0 0
\(553\) −15.4507 −0.657032
\(554\) −51.6214 −2.19318
\(555\) 21.6102 0.917302
\(556\) −25.2543 −1.07102
\(557\) −7.40361 −0.313701 −0.156851 0.987622i \(-0.550134\pi\)
−0.156851 + 0.987622i \(0.550134\pi\)
\(558\) 3.44545 0.145857
\(559\) −13.7167 −0.580156
\(560\) 8.62473 0.364461
\(561\) 14.4408 0.609690
\(562\) −4.22631 −0.178276
\(563\) −32.3268 −1.36241 −0.681207 0.732091i \(-0.738545\pi\)
−0.681207 + 0.732091i \(0.738545\pi\)
\(564\) 24.5221 1.03256
\(565\) −1.56008 −0.0656331
\(566\) 31.5137 1.32462
\(567\) 15.2926 0.642228
\(568\) 1.85145 0.0776852
\(569\) 12.6352 0.529693 0.264847 0.964291i \(-0.414679\pi\)
0.264847 + 0.964291i \(0.414679\pi\)
\(570\) 32.8419 1.37559
\(571\) 4.77267 0.199730 0.0998650 0.995001i \(-0.468159\pi\)
0.0998650 + 0.995001i \(0.468159\pi\)
\(572\) −3.38966 −0.141729
\(573\) 28.6305 1.19606
\(574\) −6.53693 −0.272846
\(575\) 0 0
\(576\) −0.288838 −0.0120349
\(577\) −33.9889 −1.41498 −0.707489 0.706724i \(-0.750172\pi\)
−0.707489 + 0.706724i \(0.750172\pi\)
\(578\) −73.6427 −3.06313
\(579\) 17.4852 0.726660
\(580\) 2.56264 0.106408
\(581\) 3.42266 0.141996
\(582\) −30.0776 −1.24676
\(583\) 1.48214 0.0613838
\(584\) 22.1662 0.917243
\(585\) −1.95775 −0.0809428
\(586\) 2.88341 0.119112
\(587\) −0.107063 −0.00441898 −0.00220949 0.999998i \(-0.500703\pi\)
−0.00220949 + 0.999998i \(0.500703\pi\)
\(588\) 10.6368 0.438655
\(589\) −28.1243 −1.15884
\(590\) −10.2196 −0.420736
\(591\) 4.89859 0.201501
\(592\) 48.2737 1.98404
\(593\) 39.0649 1.60420 0.802101 0.597188i \(-0.203715\pi\)
0.802101 + 0.597188i \(0.203715\pi\)
\(594\) −8.16556 −0.335037
\(595\) 13.2535 0.543342
\(596\) 16.8179 0.688890
\(597\) −28.2162 −1.15481
\(598\) 0 0
\(599\) 24.3793 0.996113 0.498056 0.867145i \(-0.334047\pi\)
0.498056 + 0.867145i \(0.334047\pi\)
\(600\) 10.1426 0.414068
\(601\) 10.6259 0.433439 0.216719 0.976234i \(-0.430464\pi\)
0.216719 + 0.976234i \(0.430464\pi\)
\(602\) 12.3453 0.503156
\(603\) −3.01665 −0.122848
\(604\) −4.95154 −0.201475
\(605\) 1.17802 0.0478934
\(606\) 6.36926 0.258733
\(607\) 16.1436 0.655247 0.327624 0.944808i \(-0.393752\pi\)
0.327624 + 0.944808i \(0.393752\pi\)
\(608\) 48.7200 1.97586
\(609\) 5.19605 0.210555
\(610\) 10.4965 0.424992
\(611\) 32.4205 1.31159
\(612\) −5.08314 −0.205474
\(613\) 33.1283 1.33804 0.669019 0.743245i \(-0.266714\pi\)
0.669019 + 0.743245i \(0.266714\pi\)
\(614\) −1.18161 −0.0476861
\(615\) 5.55607 0.224043
\(616\) −2.18754 −0.0881384
\(617\) 32.5368 1.30988 0.654942 0.755679i \(-0.272693\pi\)
0.654942 + 0.755679i \(0.272693\pi\)
\(618\) 23.2186 0.933990
\(619\) 15.9871 0.642576 0.321288 0.946982i \(-0.395884\pi\)
0.321288 + 0.946982i \(0.395884\pi\)
\(620\) −4.65351 −0.186889
\(621\) 0 0
\(622\) −57.0068 −2.28576
\(623\) −24.3129 −0.974077
\(624\) −27.3472 −1.09477
\(625\) 6.10975 0.244390
\(626\) −38.5167 −1.53944
\(627\) −15.6712 −0.625847
\(628\) −17.4155 −0.694956
\(629\) 74.1817 2.95782
\(630\) 1.76200 0.0701999
\(631\) −1.83745 −0.0731476 −0.0365738 0.999331i \(-0.511644\pi\)
−0.0365738 + 0.999331i \(0.511644\pi\)
\(632\) 15.5930 0.620258
\(633\) 29.6401 1.17809
\(634\) 1.91416 0.0760210
\(635\) −12.2777 −0.487226
\(636\) −3.26238 −0.129362
\(637\) 14.0629 0.557192
\(638\) −3.32246 −0.131537
\(639\) 0.711602 0.0281505
\(640\) −12.7817 −0.505242
\(641\) 9.20200 0.363457 0.181729 0.983349i \(-0.441831\pi\)
0.181729 + 0.983349i \(0.441831\pi\)
\(642\) −37.2754 −1.47114
\(643\) −10.5860 −0.417470 −0.208735 0.977972i \(-0.566935\pi\)
−0.208735 + 0.977972i \(0.566935\pi\)
\(644\) 0 0
\(645\) −10.4929 −0.413157
\(646\) 112.737 4.43557
\(647\) −11.9908 −0.471406 −0.235703 0.971825i \(-0.575739\pi\)
−0.235703 + 0.971825i \(0.575739\pi\)
\(648\) −15.4334 −0.606283
\(649\) 4.87652 0.191420
\(650\) −18.7008 −0.733507
\(651\) −9.43552 −0.369807
\(652\) −3.96507 −0.155284
\(653\) −3.96070 −0.154994 −0.0774971 0.996993i \(-0.524693\pi\)
−0.0774971 + 0.996993i \(0.524693\pi\)
\(654\) −7.64232 −0.298838
\(655\) −1.98722 −0.0776472
\(656\) 12.4114 0.484583
\(657\) 8.51953 0.332378
\(658\) −29.1789 −1.13751
\(659\) −38.1614 −1.48656 −0.743279 0.668981i \(-0.766731\pi\)
−0.743279 + 0.668981i \(0.766731\pi\)
\(660\) −2.59299 −0.100932
\(661\) 26.1891 1.01864 0.509318 0.860578i \(-0.329898\pi\)
0.509318 + 0.860578i \(0.329898\pi\)
\(662\) −27.1682 −1.05592
\(663\) −42.0242 −1.63209
\(664\) −3.45419 −0.134048
\(665\) −14.3828 −0.557740
\(666\) 9.86215 0.382150
\(667\) 0 0
\(668\) −20.5652 −0.795690
\(669\) −32.0454 −1.23895
\(670\) 11.0703 0.427682
\(671\) −5.00863 −0.193356
\(672\) 16.3452 0.630531
\(673\) −16.9110 −0.651871 −0.325935 0.945392i \(-0.605679\pi\)
−0.325935 + 0.945392i \(0.605679\pi\)
\(674\) 20.6106 0.793889
\(675\) −16.5803 −0.638177
\(676\) −5.27798 −0.202999
\(677\) 50.7708 1.95128 0.975640 0.219377i \(-0.0704024\pi\)
0.975640 + 0.219377i \(0.0704024\pi\)
\(678\) −4.45210 −0.170982
\(679\) 13.1722 0.505502
\(680\) −13.3756 −0.512931
\(681\) −38.4054 −1.47170
\(682\) 6.03326 0.231025
\(683\) −10.4515 −0.399917 −0.199959 0.979804i \(-0.564081\pi\)
−0.199959 + 0.979804i \(0.564081\pi\)
\(684\) 5.51624 0.210919
\(685\) 21.4901 0.821093
\(686\) −30.9908 −1.18323
\(687\) −13.0132 −0.496483
\(688\) −23.4394 −0.893619
\(689\) −4.31318 −0.164319
\(690\) 0 0
\(691\) 19.0341 0.724092 0.362046 0.932160i \(-0.382078\pi\)
0.362046 + 0.932160i \(0.382078\pi\)
\(692\) −13.2184 −0.502489
\(693\) −0.840776 −0.0319384
\(694\) 0.284812 0.0108113
\(695\) −25.5412 −0.968832
\(696\) −5.24391 −0.198770
\(697\) 19.0724 0.722420
\(698\) 11.1594 0.422388
\(699\) 10.6959 0.404558
\(700\) 6.19460 0.234134
\(701\) −37.6400 −1.42164 −0.710821 0.703373i \(-0.751676\pi\)
−0.710821 + 0.703373i \(0.751676\pi\)
\(702\) 23.7627 0.896864
\(703\) −80.5022 −3.03620
\(704\) −0.505780 −0.0190623
\(705\) 24.8007 0.934047
\(706\) −30.4157 −1.14471
\(707\) −2.78935 −0.104904
\(708\) −10.7339 −0.403404
\(709\) 27.7626 1.04265 0.521323 0.853359i \(-0.325439\pi\)
0.521323 + 0.853359i \(0.325439\pi\)
\(710\) −2.61138 −0.0980032
\(711\) 5.99316 0.224761
\(712\) 24.5369 0.919559
\(713\) 0 0
\(714\) 37.8225 1.41547
\(715\) −3.42817 −0.128206
\(716\) 6.03940 0.225703
\(717\) 37.8984 1.41534
\(718\) 12.6229 0.471082
\(719\) 15.0105 0.559797 0.279899 0.960030i \(-0.409699\pi\)
0.279899 + 0.960030i \(0.409699\pi\)
\(720\) −3.34543 −0.124677
\(721\) −10.1684 −0.378690
\(722\) −88.5415 −3.29518
\(723\) 26.3220 0.978925
\(724\) −10.5610 −0.392497
\(725\) −6.74631 −0.250552
\(726\) 3.36180 0.124768
\(727\) 39.1531 1.45211 0.726053 0.687638i \(-0.241352\pi\)
0.726053 + 0.687638i \(0.241352\pi\)
\(728\) 6.36597 0.235939
\(729\) 20.0898 0.744067
\(730\) −31.2642 −1.15714
\(731\) −36.0191 −1.33222
\(732\) 11.0247 0.407484
\(733\) −42.1742 −1.55774 −0.778871 0.627185i \(-0.784207\pi\)
−0.778871 + 0.627185i \(0.784207\pi\)
\(734\) −6.63402 −0.244866
\(735\) 10.7577 0.396803
\(736\) 0 0
\(737\) −5.28241 −0.194580
\(738\) 2.53560 0.0933367
\(739\) −32.7037 −1.20303 −0.601513 0.798863i \(-0.705435\pi\)
−0.601513 + 0.798863i \(0.705435\pi\)
\(740\) −13.3201 −0.489655
\(741\) 45.6048 1.67533
\(742\) 3.88193 0.142510
\(743\) 4.59040 0.168405 0.0842027 0.996449i \(-0.473166\pi\)
0.0842027 + 0.996449i \(0.473166\pi\)
\(744\) 9.52243 0.349109
\(745\) 17.0090 0.623162
\(746\) −44.3323 −1.62312
\(747\) −1.32761 −0.0485747
\(748\) −8.90099 −0.325452
\(749\) 16.3244 0.596481
\(750\) −34.1069 −1.24541
\(751\) 43.0737 1.57178 0.785891 0.618365i \(-0.212205\pi\)
0.785891 + 0.618365i \(0.212205\pi\)
\(752\) 55.4007 2.02025
\(753\) 11.9113 0.434073
\(754\) 9.66871 0.352114
\(755\) −5.00779 −0.182252
\(756\) −7.87132 −0.286277
\(757\) −21.8767 −0.795123 −0.397562 0.917575i \(-0.630144\pi\)
−0.397562 + 0.917575i \(0.630144\pi\)
\(758\) −26.2390 −0.953043
\(759\) 0 0
\(760\) 14.5152 0.526523
\(761\) 7.85990 0.284921 0.142461 0.989800i \(-0.454499\pi\)
0.142461 + 0.989800i \(0.454499\pi\)
\(762\) −35.0377 −1.26928
\(763\) 3.34688 0.121165
\(764\) −17.6472 −0.638454
\(765\) −5.14089 −0.185869
\(766\) 13.9172 0.502850
\(767\) −14.1912 −0.512414
\(768\) −38.3876 −1.38519
\(769\) −19.2418 −0.693878 −0.346939 0.937888i \(-0.612779\pi\)
−0.346939 + 0.937888i \(0.612779\pi\)
\(770\) 3.08541 0.111190
\(771\) 2.98419 0.107473
\(772\) −10.7775 −0.387891
\(773\) −12.0494 −0.433387 −0.216694 0.976240i \(-0.569527\pi\)
−0.216694 + 0.976240i \(0.569527\pi\)
\(774\) −4.78859 −0.172122
\(775\) 12.2506 0.440056
\(776\) −13.2935 −0.477210
\(777\) −27.0080 −0.968905
\(778\) −19.5356 −0.700385
\(779\) −20.6974 −0.741563
\(780\) 7.54587 0.270186
\(781\) 1.24607 0.0445880
\(782\) 0 0
\(783\) 8.57237 0.306351
\(784\) 24.0309 0.858247
\(785\) −17.6134 −0.628650
\(786\) −5.67107 −0.202280
\(787\) 6.99779 0.249444 0.124722 0.992192i \(-0.460196\pi\)
0.124722 + 0.992192i \(0.460196\pi\)
\(788\) −3.01938 −0.107561
\(789\) −7.70647 −0.274358
\(790\) −21.9932 −0.782483
\(791\) 1.94975 0.0693253
\(792\) 0.848520 0.0301509
\(793\) 14.5757 0.517597
\(794\) −63.3798 −2.24927
\(795\) −3.29945 −0.117019
\(796\) 17.3919 0.616438
\(797\) 5.77778 0.204659 0.102330 0.994751i \(-0.467370\pi\)
0.102330 + 0.994751i \(0.467370\pi\)
\(798\) −41.0450 −1.45298
\(799\) 85.1337 3.01181
\(800\) −21.2219 −0.750307
\(801\) 9.43071 0.333218
\(802\) 3.86440 0.136457
\(803\) 14.9184 0.526459
\(804\) 11.6273 0.410063
\(805\) 0 0
\(806\) −17.5574 −0.618434
\(807\) 32.0029 1.12656
\(808\) 2.81505 0.0990330
\(809\) 11.9756 0.421040 0.210520 0.977590i \(-0.432484\pi\)
0.210520 + 0.977590i \(0.432484\pi\)
\(810\) 21.7681 0.764853
\(811\) 51.6373 1.81323 0.906615 0.421958i \(-0.138657\pi\)
0.906615 + 0.421958i \(0.138657\pi\)
\(812\) −3.20274 −0.112394
\(813\) −37.2330 −1.30582
\(814\) 17.2694 0.605293
\(815\) −4.01012 −0.140468
\(816\) −71.8118 −2.51391
\(817\) 39.0880 1.36752
\(818\) 12.8864 0.450561
\(819\) 2.44675 0.0854963
\(820\) −3.42465 −0.119594
\(821\) 15.0823 0.526376 0.263188 0.964745i \(-0.415226\pi\)
0.263188 + 0.964745i \(0.415226\pi\)
\(822\) 61.3276 2.13904
\(823\) 22.8544 0.796654 0.398327 0.917244i \(-0.369591\pi\)
0.398327 + 0.917244i \(0.369591\pi\)
\(824\) 10.2620 0.357495
\(825\) 6.82620 0.237658
\(826\) 12.7723 0.444405
\(827\) −34.3535 −1.19459 −0.597293 0.802023i \(-0.703757\pi\)
−0.597293 + 0.802023i \(0.703757\pi\)
\(828\) 0 0
\(829\) 49.6108 1.72305 0.861526 0.507713i \(-0.169509\pi\)
0.861526 + 0.507713i \(0.169509\pi\)
\(830\) 4.87195 0.169108
\(831\) −54.8348 −1.90220
\(832\) 1.47187 0.0510280
\(833\) 36.9281 1.27948
\(834\) −72.8885 −2.52392
\(835\) −20.7988 −0.719773
\(836\) 9.65938 0.334077
\(837\) −15.5666 −0.538060
\(838\) 4.81351 0.166280
\(839\) 39.0726 1.34894 0.674469 0.738304i \(-0.264373\pi\)
0.674469 + 0.738304i \(0.264373\pi\)
\(840\) 4.86977 0.168023
\(841\) −25.5120 −0.879725
\(842\) 36.3734 1.25351
\(843\) −4.48940 −0.154623
\(844\) −18.2695 −0.628863
\(845\) −5.33794 −0.183631
\(846\) 11.3182 0.389127
\(847\) −1.47227 −0.0505877
\(848\) −7.37043 −0.253102
\(849\) 33.4755 1.14888
\(850\) −49.1069 −1.68435
\(851\) 0 0
\(852\) −2.74278 −0.0939659
\(853\) 29.8901 1.02342 0.511708 0.859159i \(-0.329013\pi\)
0.511708 + 0.859159i \(0.329013\pi\)
\(854\) −13.1183 −0.448900
\(855\) 5.57891 0.190795
\(856\) −16.4748 −0.563096
\(857\) 57.6526 1.96937 0.984687 0.174330i \(-0.0557760\pi\)
0.984687 + 0.174330i \(0.0557760\pi\)
\(858\) −9.78320 −0.333993
\(859\) 1.68688 0.0575557 0.0287778 0.999586i \(-0.490838\pi\)
0.0287778 + 0.999586i \(0.490838\pi\)
\(860\) 6.46759 0.220543
\(861\) −6.94386 −0.236646
\(862\) 4.04434 0.137751
\(863\) −46.9695 −1.59886 −0.799431 0.600758i \(-0.794866\pi\)
−0.799431 + 0.600758i \(0.794866\pi\)
\(864\) 26.9661 0.917406
\(865\) −13.3686 −0.454546
\(866\) 18.2607 0.620523
\(867\) −78.2271 −2.65673
\(868\) 5.81586 0.197403
\(869\) 10.4945 0.356002
\(870\) 7.39627 0.250757
\(871\) 15.3724 0.520873
\(872\) −3.37771 −0.114384
\(873\) −5.10934 −0.172925
\(874\) 0 0
\(875\) 14.9368 0.504956
\(876\) −32.8374 −1.10947
\(877\) 48.9606 1.65328 0.826640 0.562730i \(-0.190249\pi\)
0.826640 + 0.562730i \(0.190249\pi\)
\(878\) −9.53993 −0.321957
\(879\) 3.06290 0.103309
\(880\) −5.85812 −0.197477
\(881\) 14.3107 0.482138 0.241069 0.970508i \(-0.422502\pi\)
0.241069 + 0.970508i \(0.422502\pi\)
\(882\) 4.90943 0.165309
\(883\) 49.2746 1.65822 0.829111 0.559083i \(-0.188847\pi\)
0.829111 + 0.559083i \(0.188847\pi\)
\(884\) 25.9028 0.871207
\(885\) −10.8558 −0.364915
\(886\) 5.85408 0.196672
\(887\) 16.2926 0.547053 0.273526 0.961865i \(-0.411810\pi\)
0.273526 + 0.961865i \(0.411810\pi\)
\(888\) 27.2567 0.914676
\(889\) 15.3444 0.514635
\(890\) −34.6080 −1.16006
\(891\) −10.3871 −0.347981
\(892\) 19.7521 0.661350
\(893\) −92.3873 −3.09162
\(894\) 48.5398 1.62341
\(895\) 6.10802 0.204169
\(896\) 15.9743 0.533665
\(897\) 0 0
\(898\) 31.9991 1.06782
\(899\) −6.33384 −0.211245
\(900\) −2.40281 −0.0800938
\(901\) −11.3261 −0.377326
\(902\) 4.44004 0.147837
\(903\) 13.1138 0.436400
\(904\) −1.96771 −0.0654452
\(905\) −10.6810 −0.355048
\(906\) −14.2911 −0.474789
\(907\) −9.86041 −0.327410 −0.163705 0.986509i \(-0.552344\pi\)
−0.163705 + 0.986509i \(0.552344\pi\)
\(908\) 23.6723 0.785592
\(909\) 1.08196 0.0358863
\(910\) −8.97887 −0.297647
\(911\) 37.1508 1.23086 0.615431 0.788191i \(-0.288982\pi\)
0.615431 + 0.788191i \(0.288982\pi\)
\(912\) 77.9303 2.58053
\(913\) −2.32476 −0.0769382
\(914\) 40.6091 1.34323
\(915\) 11.1499 0.368606
\(916\) 8.02103 0.265022
\(917\) 2.48359 0.0820153
\(918\) 62.3989 2.05947
\(919\) 24.7268 0.815662 0.407831 0.913057i \(-0.366285\pi\)
0.407831 + 0.913057i \(0.366285\pi\)
\(920\) 0 0
\(921\) −1.25517 −0.0413593
\(922\) −57.0941 −1.88029
\(923\) −3.62621 −0.119358
\(924\) 3.24066 0.106610
\(925\) 35.0659 1.15296
\(926\) −52.7320 −1.73288
\(927\) 3.94419 0.129544
\(928\) 10.9722 0.360179
\(929\) 49.8142 1.63435 0.817175 0.576390i \(-0.195539\pi\)
0.817175 + 0.576390i \(0.195539\pi\)
\(930\) −13.4309 −0.440417
\(931\) −40.0744 −1.31339
\(932\) −6.59275 −0.215953
\(933\) −60.5555 −1.98250
\(934\) 75.1202 2.45801
\(935\) −9.00212 −0.294401
\(936\) −2.46929 −0.0807111
\(937\) −2.90796 −0.0949989 −0.0474994 0.998871i \(-0.515125\pi\)
−0.0474994 + 0.998871i \(0.515125\pi\)
\(938\) −13.8354 −0.451741
\(939\) −40.9144 −1.33519
\(940\) −15.2866 −0.498594
\(941\) −27.6207 −0.900409 −0.450204 0.892926i \(-0.648649\pi\)
−0.450204 + 0.892926i \(0.648649\pi\)
\(942\) −50.2645 −1.63771
\(943\) 0 0
\(944\) −24.2502 −0.789276
\(945\) −7.96075 −0.258963
\(946\) −8.38522 −0.272627
\(947\) 7.54684 0.245239 0.122620 0.992454i \(-0.460870\pi\)
0.122620 + 0.992454i \(0.460870\pi\)
\(948\) −23.0998 −0.750248
\(949\) −43.4141 −1.40928
\(950\) 53.2910 1.72899
\(951\) 2.03332 0.0659349
\(952\) 16.7166 0.541787
\(953\) −15.0773 −0.488400 −0.244200 0.969725i \(-0.578525\pi\)
−0.244200 + 0.969725i \(0.578525\pi\)
\(954\) −1.50575 −0.0487506
\(955\) −17.8477 −0.577539
\(956\) −23.3598 −0.755509
\(957\) −3.52929 −0.114086
\(958\) 39.0951 1.26311
\(959\) −26.8578 −0.867284
\(960\) 1.12594 0.0363395
\(961\) −19.4984 −0.628980
\(962\) −50.2559 −1.62031
\(963\) −6.33205 −0.204047
\(964\) −16.2243 −0.522550
\(965\) −10.9000 −0.350882
\(966\) 0 0
\(967\) −49.5086 −1.59209 −0.796044 0.605239i \(-0.793078\pi\)
−0.796044 + 0.605239i \(0.793078\pi\)
\(968\) 1.48583 0.0477563
\(969\) 119.755 3.84708
\(970\) 18.7498 0.602021
\(971\) −42.3810 −1.36007 −0.680036 0.733179i \(-0.738036\pi\)
−0.680036 + 0.733179i \(0.738036\pi\)
\(972\) 6.82424 0.218888
\(973\) 31.9208 1.02333
\(974\) −39.3850 −1.26198
\(975\) −19.8650 −0.636188
\(976\) 24.9072 0.797258
\(977\) −19.5088 −0.624141 −0.312071 0.950059i \(-0.601023\pi\)
−0.312071 + 0.950059i \(0.601023\pi\)
\(978\) −11.4439 −0.365937
\(979\) 16.5139 0.527788
\(980\) −6.63081 −0.211813
\(981\) −1.29822 −0.0414489
\(982\) 2.11970 0.0676424
\(983\) −50.7450 −1.61851 −0.809257 0.587454i \(-0.800130\pi\)
−0.809257 + 0.587454i \(0.800130\pi\)
\(984\) 7.00782 0.223401
\(985\) −3.05369 −0.0972987
\(986\) 25.3893 0.808560
\(987\) −30.9953 −0.986593
\(988\) −28.1098 −0.894293
\(989\) 0 0
\(990\) −1.19679 −0.0380366
\(991\) −19.2456 −0.611357 −0.305678 0.952135i \(-0.598883\pi\)
−0.305678 + 0.952135i \(0.598883\pi\)
\(992\) −19.9244 −0.632599
\(993\) −28.8594 −0.915826
\(994\) 3.26364 0.103516
\(995\) 17.5895 0.557623
\(996\) 5.11710 0.162142
\(997\) −6.71283 −0.212597 −0.106299 0.994334i \(-0.533900\pi\)
−0.106299 + 0.994334i \(0.533900\pi\)
\(998\) −33.5502 −1.06201
\(999\) −44.5573 −1.40973
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.12 60
23.9 even 11 253.2.i.b.12.3 120
23.18 even 11 253.2.i.b.232.3 yes 120
23.22 odd 2 5819.2.a.t.1.12 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.12.3 120 23.9 even 11
253.2.i.b.232.3 yes 120 23.18 even 11
5819.2.a.t.1.12 60 23.22 odd 2
5819.2.a.u.1.12 60 1.1 even 1 trivial