Properties

Label 5819.2.a.u.1.11
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.03269 q^{2} +1.07604 q^{3} +2.13185 q^{4} +0.410257 q^{5} -2.18727 q^{6} +4.26763 q^{7} -0.268004 q^{8} -1.84213 q^{9} -0.833927 q^{10} +1.00000 q^{11} +2.29396 q^{12} -1.13363 q^{13} -8.67478 q^{14} +0.441455 q^{15} -3.71892 q^{16} +1.83597 q^{17} +3.74449 q^{18} +5.52428 q^{19} +0.874605 q^{20} +4.59216 q^{21} -2.03269 q^{22} -0.288384 q^{24} -4.83169 q^{25} +2.30432 q^{26} -5.21034 q^{27} +9.09793 q^{28} -7.28033 q^{29} -0.897342 q^{30} -9.07836 q^{31} +8.09544 q^{32} +1.07604 q^{33} -3.73197 q^{34} +1.75082 q^{35} -3.92714 q^{36} +10.0489 q^{37} -11.2292 q^{38} -1.21983 q^{39} -0.109950 q^{40} +9.84403 q^{41} -9.33445 q^{42} +2.29332 q^{43} +2.13185 q^{44} -0.755746 q^{45} +2.36835 q^{47} -4.00173 q^{48} +11.2126 q^{49} +9.82135 q^{50} +1.97559 q^{51} -2.41672 q^{52} -4.17752 q^{53} +10.5910 q^{54} +0.410257 q^{55} -1.14374 q^{56} +5.94437 q^{57} +14.7987 q^{58} -4.33626 q^{59} +0.941114 q^{60} -5.04035 q^{61} +18.4535 q^{62} -7.86152 q^{63} -9.01771 q^{64} -0.465078 q^{65} -2.18727 q^{66} +11.8136 q^{67} +3.91401 q^{68} -3.55889 q^{70} -5.38445 q^{71} +0.493698 q^{72} +10.9055 q^{73} -20.4264 q^{74} -5.19911 q^{75} +11.7769 q^{76} +4.26763 q^{77} +2.47955 q^{78} +8.85428 q^{79} -1.52571 q^{80} -0.0801725 q^{81} -20.0099 q^{82} +2.55026 q^{83} +9.78977 q^{84} +0.753220 q^{85} -4.66162 q^{86} -7.83396 q^{87} -0.268004 q^{88} +2.04836 q^{89} +1.53620 q^{90} -4.83789 q^{91} -9.76872 q^{93} -4.81413 q^{94} +2.26638 q^{95} +8.71105 q^{96} -9.82847 q^{97} -22.7919 q^{98} -1.84213 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.03269 −1.43733 −0.718666 0.695355i \(-0.755247\pi\)
−0.718666 + 0.695355i \(0.755247\pi\)
\(3\) 1.07604 0.621254 0.310627 0.950532i \(-0.399461\pi\)
0.310627 + 0.950532i \(0.399461\pi\)
\(4\) 2.13185 1.06592
\(5\) 0.410257 0.183473 0.0917363 0.995783i \(-0.470758\pi\)
0.0917363 + 0.995783i \(0.470758\pi\)
\(6\) −2.18727 −0.892949
\(7\) 4.26763 1.61301 0.806506 0.591226i \(-0.201356\pi\)
0.806506 + 0.591226i \(0.201356\pi\)
\(8\) −0.268004 −0.0947536
\(9\) −1.84213 −0.614043
\(10\) −0.833927 −0.263711
\(11\) 1.00000 0.301511
\(12\) 2.29396 0.662209
\(13\) −1.13363 −0.314411 −0.157206 0.987566i \(-0.550249\pi\)
−0.157206 + 0.987566i \(0.550249\pi\)
\(14\) −8.67478 −2.31843
\(15\) 0.441455 0.113983
\(16\) −3.71892 −0.929731
\(17\) 1.83597 0.445288 0.222644 0.974900i \(-0.428531\pi\)
0.222644 + 0.974900i \(0.428531\pi\)
\(18\) 3.74449 0.882584
\(19\) 5.52428 1.26736 0.633679 0.773596i \(-0.281544\pi\)
0.633679 + 0.773596i \(0.281544\pi\)
\(20\) 0.874605 0.195568
\(21\) 4.59216 1.00209
\(22\) −2.03269 −0.433372
\(23\) 0 0
\(24\) −0.288384 −0.0588661
\(25\) −4.83169 −0.966338
\(26\) 2.30432 0.451913
\(27\) −5.21034 −1.00273
\(28\) 9.09793 1.71935
\(29\) −7.28033 −1.35192 −0.675962 0.736937i \(-0.736272\pi\)
−0.675962 + 0.736937i \(0.736272\pi\)
\(30\) −0.897342 −0.163832
\(31\) −9.07836 −1.63052 −0.815261 0.579094i \(-0.803406\pi\)
−0.815261 + 0.579094i \(0.803406\pi\)
\(32\) 8.09544 1.43109
\(33\) 1.07604 0.187315
\(34\) −3.73197 −0.640027
\(35\) 1.75082 0.295943
\(36\) −3.92714 −0.654523
\(37\) 10.0489 1.65203 0.826016 0.563647i \(-0.190602\pi\)
0.826016 + 0.563647i \(0.190602\pi\)
\(38\) −11.2292 −1.82161
\(39\) −1.21983 −0.195329
\(40\) −0.109950 −0.0173847
\(41\) 9.84403 1.53738 0.768690 0.639622i \(-0.220909\pi\)
0.768690 + 0.639622i \(0.220909\pi\)
\(42\) −9.33445 −1.44034
\(43\) 2.29332 0.349728 0.174864 0.984593i \(-0.444051\pi\)
0.174864 + 0.984593i \(0.444051\pi\)
\(44\) 2.13185 0.321388
\(45\) −0.755746 −0.112660
\(46\) 0 0
\(47\) 2.36835 0.345459 0.172730 0.984969i \(-0.444741\pi\)
0.172730 + 0.984969i \(0.444741\pi\)
\(48\) −4.00173 −0.577599
\(49\) 11.2126 1.60181
\(50\) 9.82135 1.38895
\(51\) 1.97559 0.276637
\(52\) −2.41672 −0.335138
\(53\) −4.17752 −0.573826 −0.286913 0.957957i \(-0.592629\pi\)
−0.286913 + 0.957957i \(0.592629\pi\)
\(54\) 10.5910 1.44126
\(55\) 0.410257 0.0553190
\(56\) −1.14374 −0.152839
\(57\) 5.94437 0.787351
\(58\) 14.7987 1.94316
\(59\) −4.33626 −0.564533 −0.282266 0.959336i \(-0.591086\pi\)
−0.282266 + 0.959336i \(0.591086\pi\)
\(60\) 0.941114 0.121497
\(61\) −5.04035 −0.645351 −0.322676 0.946510i \(-0.604582\pi\)
−0.322676 + 0.946510i \(0.604582\pi\)
\(62\) 18.4535 2.34360
\(63\) −7.86152 −0.990459
\(64\) −9.01771 −1.12721
\(65\) −0.465078 −0.0576858
\(66\) −2.18727 −0.269234
\(67\) 11.8136 1.44326 0.721632 0.692277i \(-0.243392\pi\)
0.721632 + 0.692277i \(0.243392\pi\)
\(68\) 3.91401 0.474643
\(69\) 0 0
\(70\) −3.55889 −0.425369
\(71\) −5.38445 −0.639016 −0.319508 0.947584i \(-0.603518\pi\)
−0.319508 + 0.947584i \(0.603518\pi\)
\(72\) 0.493698 0.0581828
\(73\) 10.9055 1.27639 0.638194 0.769875i \(-0.279682\pi\)
0.638194 + 0.769875i \(0.279682\pi\)
\(74\) −20.4264 −2.37452
\(75\) −5.19911 −0.600342
\(76\) 11.7769 1.35091
\(77\) 4.26763 0.486341
\(78\) 2.47955 0.280753
\(79\) 8.85428 0.996184 0.498092 0.867124i \(-0.334034\pi\)
0.498092 + 0.867124i \(0.334034\pi\)
\(80\) −1.52571 −0.170580
\(81\) −0.0801725 −0.00890805
\(82\) −20.0099 −2.20973
\(83\) 2.55026 0.279927 0.139964 0.990157i \(-0.455301\pi\)
0.139964 + 0.990157i \(0.455301\pi\)
\(84\) 9.78977 1.06815
\(85\) 0.753220 0.0816982
\(86\) −4.66162 −0.502675
\(87\) −7.83396 −0.839888
\(88\) −0.268004 −0.0285693
\(89\) 2.04836 0.217126 0.108563 0.994090i \(-0.465375\pi\)
0.108563 + 0.994090i \(0.465375\pi\)
\(90\) 1.53620 0.161930
\(91\) −4.83789 −0.507149
\(92\) 0 0
\(93\) −9.76872 −1.01297
\(94\) −4.81413 −0.496540
\(95\) 2.26638 0.232525
\(96\) 8.71105 0.889068
\(97\) −9.82847 −0.997930 −0.498965 0.866622i \(-0.666286\pi\)
−0.498965 + 0.866622i \(0.666286\pi\)
\(98\) −22.7919 −2.30233
\(99\) −1.84213 −0.185141
\(100\) −10.3004 −1.03004
\(101\) 11.8548 1.17960 0.589800 0.807550i \(-0.299207\pi\)
0.589800 + 0.807550i \(0.299207\pi\)
\(102\) −4.01576 −0.397620
\(103\) 14.1414 1.39339 0.696697 0.717366i \(-0.254652\pi\)
0.696697 + 0.717366i \(0.254652\pi\)
\(104\) 0.303816 0.0297916
\(105\) 1.88396 0.183856
\(106\) 8.49161 0.824778
\(107\) 14.0842 1.36157 0.680786 0.732483i \(-0.261639\pi\)
0.680786 + 0.732483i \(0.261639\pi\)
\(108\) −11.1077 −1.06883
\(109\) 1.64522 0.157583 0.0787916 0.996891i \(-0.474894\pi\)
0.0787916 + 0.996891i \(0.474894\pi\)
\(110\) −0.833927 −0.0795118
\(111\) 10.8131 1.02633
\(112\) −15.8710 −1.49967
\(113\) 1.19898 0.112791 0.0563954 0.998409i \(-0.482039\pi\)
0.0563954 + 0.998409i \(0.482039\pi\)
\(114\) −12.0831 −1.13169
\(115\) 0 0
\(116\) −15.5205 −1.44105
\(117\) 2.08829 0.193062
\(118\) 8.81429 0.811421
\(119\) 7.83524 0.718255
\(120\) −0.118312 −0.0108003
\(121\) 1.00000 0.0909091
\(122\) 10.2455 0.927584
\(123\) 10.5926 0.955104
\(124\) −19.3537 −1.73801
\(125\) −4.03352 −0.360769
\(126\) 15.9801 1.42362
\(127\) 17.9572 1.59344 0.796721 0.604348i \(-0.206566\pi\)
0.796721 + 0.604348i \(0.206566\pi\)
\(128\) 2.13937 0.189095
\(129\) 2.46771 0.217270
\(130\) 0.945362 0.0829137
\(131\) −13.6801 −1.19524 −0.597618 0.801781i \(-0.703886\pi\)
−0.597618 + 0.801781i \(0.703886\pi\)
\(132\) 2.29396 0.199664
\(133\) 23.5756 2.04426
\(134\) −24.0135 −2.07445
\(135\) −2.13758 −0.183974
\(136\) −0.492047 −0.0421927
\(137\) 20.1737 1.72355 0.861777 0.507288i \(-0.169352\pi\)
0.861777 + 0.507288i \(0.169352\pi\)
\(138\) 0 0
\(139\) −0.829831 −0.0703853 −0.0351927 0.999381i \(-0.511204\pi\)
−0.0351927 + 0.999381i \(0.511204\pi\)
\(140\) 3.73249 0.315453
\(141\) 2.54845 0.214618
\(142\) 10.9449 0.918478
\(143\) −1.13363 −0.0947986
\(144\) 6.85074 0.570895
\(145\) −2.98681 −0.248041
\(146\) −22.1675 −1.83459
\(147\) 12.0653 0.995129
\(148\) 21.4227 1.76094
\(149\) −7.69477 −0.630380 −0.315190 0.949029i \(-0.602068\pi\)
−0.315190 + 0.949029i \(0.602068\pi\)
\(150\) 10.5682 0.862890
\(151\) 13.1253 1.06812 0.534062 0.845445i \(-0.320665\pi\)
0.534062 + 0.845445i \(0.320665\pi\)
\(152\) −1.48053 −0.120087
\(153\) −3.38209 −0.273426
\(154\) −8.67478 −0.699034
\(155\) −3.72446 −0.299156
\(156\) −2.60049 −0.208206
\(157\) 5.16506 0.412216 0.206108 0.978529i \(-0.433920\pi\)
0.206108 + 0.978529i \(0.433920\pi\)
\(158\) −17.9980 −1.43185
\(159\) −4.49519 −0.356492
\(160\) 3.32121 0.262565
\(161\) 0 0
\(162\) 0.162966 0.0128038
\(163\) 9.97894 0.781611 0.390806 0.920473i \(-0.372196\pi\)
0.390806 + 0.920473i \(0.372196\pi\)
\(164\) 20.9860 1.63873
\(165\) 0.441455 0.0343672
\(166\) −5.18389 −0.402348
\(167\) −10.1447 −0.785018 −0.392509 0.919748i \(-0.628393\pi\)
−0.392509 + 0.919748i \(0.628393\pi\)
\(168\) −1.23071 −0.0949517
\(169\) −11.7149 −0.901146
\(170\) −1.53107 −0.117427
\(171\) −10.1764 −0.778212
\(172\) 4.88900 0.372783
\(173\) 12.4819 0.948982 0.474491 0.880260i \(-0.342632\pi\)
0.474491 + 0.880260i \(0.342632\pi\)
\(174\) 15.9240 1.20720
\(175\) −20.6198 −1.55871
\(176\) −3.71892 −0.280324
\(177\) −4.66601 −0.350718
\(178\) −4.16369 −0.312082
\(179\) 4.29725 0.321192 0.160596 0.987020i \(-0.448658\pi\)
0.160596 + 0.987020i \(0.448658\pi\)
\(180\) −1.61114 −0.120087
\(181\) 4.64826 0.345502 0.172751 0.984966i \(-0.444734\pi\)
0.172751 + 0.984966i \(0.444734\pi\)
\(182\) 9.83396 0.728942
\(183\) −5.42364 −0.400927
\(184\) 0 0
\(185\) 4.12264 0.303102
\(186\) 19.8568 1.45597
\(187\) 1.83597 0.134259
\(188\) 5.04896 0.368233
\(189\) −22.2358 −1.61742
\(190\) −4.60685 −0.334216
\(191\) 8.89964 0.643955 0.321978 0.946747i \(-0.395652\pi\)
0.321978 + 0.946747i \(0.395652\pi\)
\(192\) −9.70346 −0.700287
\(193\) −18.1016 −1.30298 −0.651491 0.758656i \(-0.725856\pi\)
−0.651491 + 0.758656i \(0.725856\pi\)
\(194\) 19.9783 1.43436
\(195\) −0.500445 −0.0358376
\(196\) 23.9036 1.70740
\(197\) 6.56843 0.467981 0.233991 0.972239i \(-0.424822\pi\)
0.233991 + 0.972239i \(0.424822\pi\)
\(198\) 3.74449 0.266109
\(199\) 3.07539 0.218009 0.109004 0.994041i \(-0.465234\pi\)
0.109004 + 0.994041i \(0.465234\pi\)
\(200\) 1.29491 0.0915640
\(201\) 12.7120 0.896634
\(202\) −24.0972 −1.69548
\(203\) −31.0697 −2.18067
\(204\) 4.21164 0.294874
\(205\) 4.03858 0.282067
\(206\) −28.7451 −2.00277
\(207\) 0 0
\(208\) 4.21587 0.292318
\(209\) 5.52428 0.382123
\(210\) −3.82952 −0.264262
\(211\) −12.3299 −0.848825 −0.424413 0.905469i \(-0.639519\pi\)
−0.424413 + 0.905469i \(0.639519\pi\)
\(212\) −8.90582 −0.611654
\(213\) −5.79390 −0.396992
\(214\) −28.6289 −1.95703
\(215\) 0.940850 0.0641654
\(216\) 1.39639 0.0950124
\(217\) −38.7431 −2.63005
\(218\) −3.34422 −0.226499
\(219\) 11.7348 0.792962
\(220\) 0.874605 0.0589659
\(221\) −2.08130 −0.140004
\(222\) −21.9797 −1.47518
\(223\) 25.7156 1.72204 0.861021 0.508569i \(-0.169825\pi\)
0.861021 + 0.508569i \(0.169825\pi\)
\(224\) 34.5483 2.30836
\(225\) 8.90060 0.593373
\(226\) −2.43716 −0.162118
\(227\) −2.01299 −0.133607 −0.0668035 0.997766i \(-0.521280\pi\)
−0.0668035 + 0.997766i \(0.521280\pi\)
\(228\) 12.6725 0.839256
\(229\) 19.9468 1.31812 0.659061 0.752089i \(-0.270954\pi\)
0.659061 + 0.752089i \(0.270954\pi\)
\(230\) 0 0
\(231\) 4.59216 0.302142
\(232\) 1.95116 0.128100
\(233\) −13.7177 −0.898677 −0.449338 0.893362i \(-0.648340\pi\)
−0.449338 + 0.893362i \(0.648340\pi\)
\(234\) −4.24485 −0.277494
\(235\) 0.971632 0.0633823
\(236\) −9.24424 −0.601749
\(237\) 9.52759 0.618884
\(238\) −15.9266 −1.03237
\(239\) −8.72044 −0.564078 −0.282039 0.959403i \(-0.591011\pi\)
−0.282039 + 0.959403i \(0.591011\pi\)
\(240\) −1.64174 −0.105974
\(241\) 5.35123 0.344703 0.172351 0.985036i \(-0.444864\pi\)
0.172351 + 0.985036i \(0.444864\pi\)
\(242\) −2.03269 −0.130667
\(243\) 15.5448 0.997197
\(244\) −10.7453 −0.687895
\(245\) 4.60007 0.293887
\(246\) −21.5315 −1.37280
\(247\) −6.26247 −0.398472
\(248\) 2.43303 0.154498
\(249\) 2.74419 0.173906
\(250\) 8.19891 0.518545
\(251\) −16.3988 −1.03508 −0.517541 0.855659i \(-0.673152\pi\)
−0.517541 + 0.855659i \(0.673152\pi\)
\(252\) −16.7596 −1.05575
\(253\) 0 0
\(254\) −36.5014 −2.29030
\(255\) 0.810498 0.0507553
\(256\) 13.6867 0.855421
\(257\) −8.13632 −0.507530 −0.253765 0.967266i \(-0.581669\pi\)
−0.253765 + 0.967266i \(0.581669\pi\)
\(258\) −5.01610 −0.312289
\(259\) 42.8850 2.66475
\(260\) −0.991475 −0.0614887
\(261\) 13.4113 0.830139
\(262\) 27.8075 1.71795
\(263\) −21.1511 −1.30423 −0.652116 0.758120i \(-0.726118\pi\)
−0.652116 + 0.758120i \(0.726118\pi\)
\(264\) −0.288384 −0.0177488
\(265\) −1.71386 −0.105281
\(266\) −47.9220 −2.93828
\(267\) 2.20413 0.134890
\(268\) 25.1848 1.53841
\(269\) −28.7752 −1.75445 −0.877226 0.480077i \(-0.840609\pi\)
−0.877226 + 0.480077i \(0.840609\pi\)
\(270\) 4.34505 0.264431
\(271\) 8.54800 0.519254 0.259627 0.965709i \(-0.416400\pi\)
0.259627 + 0.965709i \(0.416400\pi\)
\(272\) −6.82783 −0.413998
\(273\) −5.20579 −0.315069
\(274\) −41.0069 −2.47732
\(275\) −4.83169 −0.291362
\(276\) 0 0
\(277\) 3.57776 0.214967 0.107483 0.994207i \(-0.465721\pi\)
0.107483 + 0.994207i \(0.465721\pi\)
\(278\) 1.68679 0.101167
\(279\) 16.7235 1.00121
\(280\) −0.469227 −0.0280417
\(281\) −20.2428 −1.20759 −0.603793 0.797141i \(-0.706345\pi\)
−0.603793 + 0.797141i \(0.706345\pi\)
\(282\) −5.18022 −0.308478
\(283\) 15.7206 0.934492 0.467246 0.884127i \(-0.345246\pi\)
0.467246 + 0.884127i \(0.345246\pi\)
\(284\) −11.4788 −0.681142
\(285\) 2.43872 0.144457
\(286\) 2.30432 0.136257
\(287\) 42.0107 2.47981
\(288\) −14.9129 −0.878748
\(289\) −13.6292 −0.801718
\(290\) 6.07127 0.356517
\(291\) −10.5759 −0.619969
\(292\) 23.2488 1.36053
\(293\) 6.24189 0.364655 0.182328 0.983238i \(-0.441637\pi\)
0.182328 + 0.983238i \(0.441637\pi\)
\(294\) −24.5251 −1.43033
\(295\) −1.77898 −0.103576
\(296\) −2.69315 −0.156536
\(297\) −5.21034 −0.302335
\(298\) 15.6411 0.906065
\(299\) 0 0
\(300\) −11.0837 −0.639918
\(301\) 9.78703 0.564115
\(302\) −26.6798 −1.53525
\(303\) 12.7563 0.732831
\(304\) −20.5444 −1.17830
\(305\) −2.06784 −0.118404
\(306\) 6.87477 0.393004
\(307\) 6.72906 0.384048 0.192024 0.981390i \(-0.438495\pi\)
0.192024 + 0.981390i \(0.438495\pi\)
\(308\) 9.09793 0.518402
\(309\) 15.2168 0.865652
\(310\) 7.57069 0.429986
\(311\) −18.9075 −1.07214 −0.536072 0.844172i \(-0.680093\pi\)
−0.536072 + 0.844172i \(0.680093\pi\)
\(312\) 0.326919 0.0185082
\(313\) −8.44851 −0.477538 −0.238769 0.971076i \(-0.576744\pi\)
−0.238769 + 0.971076i \(0.576744\pi\)
\(314\) −10.4990 −0.592492
\(315\) −3.22524 −0.181722
\(316\) 18.8760 1.06186
\(317\) 21.1314 1.18686 0.593429 0.804886i \(-0.297774\pi\)
0.593429 + 0.804886i \(0.297774\pi\)
\(318\) 9.13735 0.512397
\(319\) −7.28033 −0.407620
\(320\) −3.69958 −0.206813
\(321\) 15.1552 0.845882
\(322\) 0 0
\(323\) 10.1424 0.564339
\(324\) −0.170915 −0.00949530
\(325\) 5.47733 0.303828
\(326\) −20.2841 −1.12343
\(327\) 1.77033 0.0978992
\(328\) −2.63824 −0.145672
\(329\) 10.1072 0.557230
\(330\) −0.897342 −0.0493971
\(331\) −8.78571 −0.482906 −0.241453 0.970412i \(-0.577624\pi\)
−0.241453 + 0.970412i \(0.577624\pi\)
\(332\) 5.43676 0.298381
\(333\) −18.5114 −1.01442
\(334\) 20.6210 1.12833
\(335\) 4.84662 0.264799
\(336\) −17.0779 −0.931674
\(337\) 9.46485 0.515583 0.257792 0.966201i \(-0.417005\pi\)
0.257792 + 0.966201i \(0.417005\pi\)
\(338\) 23.8128 1.29525
\(339\) 1.29016 0.0700717
\(340\) 1.60575 0.0870840
\(341\) −9.07836 −0.491621
\(342\) 20.6856 1.11855
\(343\) 17.9780 0.970721
\(344\) −0.614618 −0.0331380
\(345\) 0 0
\(346\) −25.3719 −1.36400
\(347\) −13.5027 −0.724866 −0.362433 0.932010i \(-0.618054\pi\)
−0.362433 + 0.932010i \(0.618054\pi\)
\(348\) −16.7008 −0.895257
\(349\) 22.9371 1.22780 0.613898 0.789385i \(-0.289600\pi\)
0.613898 + 0.789385i \(0.289600\pi\)
\(350\) 41.9139 2.24039
\(351\) 5.90658 0.315270
\(352\) 8.09544 0.431489
\(353\) −13.2279 −0.704052 −0.352026 0.935990i \(-0.614507\pi\)
−0.352026 + 0.935990i \(0.614507\pi\)
\(354\) 9.48456 0.504099
\(355\) −2.20901 −0.117242
\(356\) 4.36679 0.231439
\(357\) 8.43106 0.446219
\(358\) −8.73500 −0.461659
\(359\) 4.69699 0.247898 0.123949 0.992289i \(-0.460444\pi\)
0.123949 + 0.992289i \(0.460444\pi\)
\(360\) 0.202543 0.0106749
\(361\) 11.5177 0.606195
\(362\) −9.44849 −0.496601
\(363\) 1.07604 0.0564777
\(364\) −10.3136 −0.540582
\(365\) 4.47404 0.234182
\(366\) 11.0246 0.576265
\(367\) 33.1406 1.72993 0.864963 0.501835i \(-0.167342\pi\)
0.864963 + 0.501835i \(0.167342\pi\)
\(368\) 0 0
\(369\) −18.1340 −0.944017
\(370\) −8.38006 −0.435659
\(371\) −17.8281 −0.925588
\(372\) −20.8254 −1.07975
\(373\) −11.1381 −0.576706 −0.288353 0.957524i \(-0.593108\pi\)
−0.288353 + 0.957524i \(0.593108\pi\)
\(374\) −3.73197 −0.192975
\(375\) −4.34025 −0.224129
\(376\) −0.634727 −0.0327335
\(377\) 8.25317 0.425060
\(378\) 45.1986 2.32477
\(379\) −7.06630 −0.362972 −0.181486 0.983394i \(-0.558091\pi\)
−0.181486 + 0.983394i \(0.558091\pi\)
\(380\) 4.83157 0.247854
\(381\) 19.3227 0.989932
\(382\) −18.0903 −0.925578
\(383\) 12.0185 0.614119 0.307060 0.951690i \(-0.400655\pi\)
0.307060 + 0.951690i \(0.400655\pi\)
\(384\) 2.30206 0.117476
\(385\) 1.75082 0.0892303
\(386\) 36.7950 1.87282
\(387\) −4.22459 −0.214748
\(388\) −20.9528 −1.06372
\(389\) −4.81673 −0.244218 −0.122109 0.992517i \(-0.538966\pi\)
−0.122109 + 0.992517i \(0.538966\pi\)
\(390\) 1.01725 0.0515105
\(391\) 0 0
\(392\) −3.00503 −0.151777
\(393\) −14.7204 −0.742546
\(394\) −13.3516 −0.672644
\(395\) 3.63253 0.182772
\(396\) −3.92714 −0.197346
\(397\) −27.5316 −1.38177 −0.690886 0.722964i \(-0.742779\pi\)
−0.690886 + 0.722964i \(0.742779\pi\)
\(398\) −6.25133 −0.313351
\(399\) 25.3684 1.27001
\(400\) 17.9687 0.898434
\(401\) −28.1334 −1.40492 −0.702458 0.711725i \(-0.747914\pi\)
−0.702458 + 0.711725i \(0.747914\pi\)
\(402\) −25.8396 −1.28876
\(403\) 10.2915 0.512654
\(404\) 25.2727 1.25736
\(405\) −0.0328913 −0.00163438
\(406\) 63.1553 3.13434
\(407\) 10.0489 0.498106
\(408\) −0.529464 −0.0262124
\(409\) −29.6682 −1.46700 −0.733500 0.679689i \(-0.762115\pi\)
−0.733500 + 0.679689i \(0.762115\pi\)
\(410\) −8.20921 −0.405424
\(411\) 21.7078 1.07076
\(412\) 30.1473 1.48525
\(413\) −18.5055 −0.910598
\(414\) 0 0
\(415\) 1.04626 0.0513589
\(416\) −9.17721 −0.449950
\(417\) −0.892935 −0.0437272
\(418\) −11.2292 −0.549237
\(419\) 0.114691 0.00560304 0.00280152 0.999996i \(-0.499108\pi\)
0.00280152 + 0.999996i \(0.499108\pi\)
\(420\) 4.01632 0.195976
\(421\) −33.9728 −1.65573 −0.827866 0.560926i \(-0.810445\pi\)
−0.827866 + 0.560926i \(0.810445\pi\)
\(422\) 25.0629 1.22004
\(423\) −4.36281 −0.212127
\(424\) 1.11959 0.0543721
\(425\) −8.87084 −0.430299
\(426\) 11.7772 0.570609
\(427\) −21.5103 −1.04096
\(428\) 30.0254 1.45133
\(429\) −1.21983 −0.0588940
\(430\) −1.91246 −0.0922270
\(431\) 32.2604 1.55393 0.776964 0.629545i \(-0.216759\pi\)
0.776964 + 0.629545i \(0.216759\pi\)
\(432\) 19.3769 0.932270
\(433\) 27.4907 1.32112 0.660558 0.750775i \(-0.270320\pi\)
0.660558 + 0.750775i \(0.270320\pi\)
\(434\) 78.7528 3.78026
\(435\) −3.21394 −0.154096
\(436\) 3.50735 0.167972
\(437\) 0 0
\(438\) −23.8532 −1.13975
\(439\) 9.23889 0.440948 0.220474 0.975393i \(-0.429240\pi\)
0.220474 + 0.975393i \(0.429240\pi\)
\(440\) −0.109950 −0.00524168
\(441\) −20.6551 −0.983578
\(442\) 4.23066 0.201232
\(443\) 35.3646 1.68022 0.840111 0.542415i \(-0.182490\pi\)
0.840111 + 0.542415i \(0.182490\pi\)
\(444\) 23.0518 1.09399
\(445\) 0.840354 0.0398366
\(446\) −52.2719 −2.47515
\(447\) −8.27991 −0.391626
\(448\) −38.4842 −1.81821
\(449\) −0.833433 −0.0393321 −0.0196661 0.999807i \(-0.506260\pi\)
−0.0196661 + 0.999807i \(0.506260\pi\)
\(450\) −18.0922 −0.852874
\(451\) 9.84403 0.463537
\(452\) 2.55605 0.120226
\(453\) 14.1234 0.663577
\(454\) 4.09180 0.192038
\(455\) −1.98478 −0.0930479
\(456\) −1.59311 −0.0746044
\(457\) 12.6635 0.592372 0.296186 0.955130i \(-0.404285\pi\)
0.296186 + 0.955130i \(0.404285\pi\)
\(458\) −40.5458 −1.89458
\(459\) −9.56604 −0.446504
\(460\) 0 0
\(461\) 7.42632 0.345878 0.172939 0.984933i \(-0.444674\pi\)
0.172939 + 0.984933i \(0.444674\pi\)
\(462\) −9.33445 −0.434278
\(463\) 8.53991 0.396883 0.198442 0.980113i \(-0.436412\pi\)
0.198442 + 0.980113i \(0.436412\pi\)
\(464\) 27.0750 1.25693
\(465\) −4.00768 −0.185852
\(466\) 27.8839 1.29170
\(467\) 29.4128 1.36106 0.680532 0.732718i \(-0.261749\pi\)
0.680532 + 0.732718i \(0.261749\pi\)
\(468\) 4.45191 0.205789
\(469\) 50.4161 2.32800
\(470\) −1.97503 −0.0911014
\(471\) 5.55783 0.256091
\(472\) 1.16213 0.0534915
\(473\) 2.29332 0.105447
\(474\) −19.3667 −0.889541
\(475\) −26.6916 −1.22470
\(476\) 16.7035 0.765605
\(477\) 7.69552 0.352354
\(478\) 17.7260 0.810768
\(479\) −36.5558 −1.67028 −0.835140 0.550038i \(-0.814613\pi\)
−0.835140 + 0.550038i \(0.814613\pi\)
\(480\) 3.57377 0.163120
\(481\) −11.3917 −0.519417
\(482\) −10.8774 −0.495453
\(483\) 0 0
\(484\) 2.13185 0.0969021
\(485\) −4.03220 −0.183093
\(486\) −31.5978 −1.43330
\(487\) −5.53035 −0.250604 −0.125302 0.992119i \(-0.539990\pi\)
−0.125302 + 0.992119i \(0.539990\pi\)
\(488\) 1.35083 0.0611494
\(489\) 10.7378 0.485579
\(490\) −9.35053 −0.422414
\(491\) −10.7545 −0.485344 −0.242672 0.970108i \(-0.578024\pi\)
−0.242672 + 0.970108i \(0.578024\pi\)
\(492\) 22.5818 1.01807
\(493\) −13.3665 −0.601996
\(494\) 12.7297 0.572736
\(495\) −0.755746 −0.0339683
\(496\) 33.7617 1.51595
\(497\) −22.9788 −1.03074
\(498\) −5.57810 −0.249961
\(499\) 13.3349 0.596950 0.298475 0.954417i \(-0.403522\pi\)
0.298475 + 0.954417i \(0.403522\pi\)
\(500\) −8.59885 −0.384552
\(501\) −10.9161 −0.487696
\(502\) 33.3337 1.48776
\(503\) 5.06433 0.225807 0.112904 0.993606i \(-0.463985\pi\)
0.112904 + 0.993606i \(0.463985\pi\)
\(504\) 2.10692 0.0938495
\(505\) 4.86353 0.216424
\(506\) 0 0
\(507\) −12.6057 −0.559841
\(508\) 38.2819 1.69849
\(509\) −31.3068 −1.38765 −0.693825 0.720143i \(-0.744076\pi\)
−0.693825 + 0.720143i \(0.744076\pi\)
\(510\) −1.64749 −0.0729523
\(511\) 46.5405 2.05883
\(512\) −32.0997 −1.41862
\(513\) −28.7834 −1.27082
\(514\) 16.5386 0.729489
\(515\) 5.80161 0.255649
\(516\) 5.26078 0.231593
\(517\) 2.36835 0.104160
\(518\) −87.1722 −3.83012
\(519\) 13.4311 0.589559
\(520\) 0.124643 0.00546594
\(521\) 4.33674 0.189996 0.0949979 0.995477i \(-0.469716\pi\)
0.0949979 + 0.995477i \(0.469716\pi\)
\(522\) −27.2611 −1.19319
\(523\) 28.5934 1.25030 0.625150 0.780504i \(-0.285038\pi\)
0.625150 + 0.780504i \(0.285038\pi\)
\(524\) −29.1639 −1.27403
\(525\) −22.1879 −0.968358
\(526\) 42.9937 1.87461
\(527\) −16.6676 −0.726052
\(528\) −4.00173 −0.174153
\(529\) 0 0
\(530\) 3.48374 0.151324
\(531\) 7.98795 0.346647
\(532\) 50.2595 2.17903
\(533\) −11.1595 −0.483370
\(534\) −4.48031 −0.193882
\(535\) 5.77814 0.249811
\(536\) −3.16609 −0.136754
\(537\) 4.62403 0.199542
\(538\) 58.4911 2.52173
\(539\) 11.2126 0.482963
\(540\) −4.55699 −0.196102
\(541\) 1.32806 0.0570976 0.0285488 0.999592i \(-0.490911\pi\)
0.0285488 + 0.999592i \(0.490911\pi\)
\(542\) −17.3755 −0.746341
\(543\) 5.00173 0.214645
\(544\) 14.8630 0.637246
\(545\) 0.674962 0.0289122
\(546\) 10.5818 0.452858
\(547\) 17.0258 0.727972 0.363986 0.931404i \(-0.381416\pi\)
0.363986 + 0.931404i \(0.381416\pi\)
\(548\) 43.0072 1.83718
\(549\) 9.28498 0.396273
\(550\) 9.82135 0.418784
\(551\) −40.2186 −1.71337
\(552\) 0 0
\(553\) 37.7868 1.60686
\(554\) −7.27249 −0.308978
\(555\) 4.43614 0.188304
\(556\) −1.76907 −0.0750254
\(557\) 20.3391 0.861793 0.430897 0.902401i \(-0.358197\pi\)
0.430897 + 0.902401i \(0.358197\pi\)
\(558\) −33.9938 −1.43907
\(559\) −2.59977 −0.109958
\(560\) −6.51118 −0.275148
\(561\) 1.97559 0.0834093
\(562\) 41.1475 1.73570
\(563\) 23.3518 0.984163 0.492081 0.870549i \(-0.336236\pi\)
0.492081 + 0.870549i \(0.336236\pi\)
\(564\) 5.43290 0.228766
\(565\) 0.491891 0.0206940
\(566\) −31.9552 −1.34318
\(567\) −0.342146 −0.0143688
\(568\) 1.44305 0.0605491
\(569\) 9.05297 0.379520 0.189760 0.981830i \(-0.439229\pi\)
0.189760 + 0.981830i \(0.439229\pi\)
\(570\) −4.95717 −0.207633
\(571\) 22.0070 0.920966 0.460483 0.887668i \(-0.347676\pi\)
0.460483 + 0.887668i \(0.347676\pi\)
\(572\) −2.41672 −0.101048
\(573\) 9.57641 0.400060
\(574\) −85.3948 −3.56431
\(575\) 0 0
\(576\) 16.6118 0.692158
\(577\) 17.2914 0.719852 0.359926 0.932981i \(-0.382802\pi\)
0.359926 + 0.932981i \(0.382802\pi\)
\(578\) 27.7040 1.15234
\(579\) −19.4781 −0.809483
\(580\) −6.36742 −0.264393
\(581\) 10.8835 0.451526
\(582\) 21.4975 0.891101
\(583\) −4.17752 −0.173015
\(584\) −2.92271 −0.120942
\(585\) 0.856734 0.0354216
\(586\) −12.6879 −0.524130
\(587\) 17.0879 0.705292 0.352646 0.935757i \(-0.385282\pi\)
0.352646 + 0.935757i \(0.385282\pi\)
\(588\) 25.7214 1.06073
\(589\) −50.1514 −2.06645
\(590\) 3.61612 0.148873
\(591\) 7.06792 0.290735
\(592\) −37.3711 −1.53594
\(593\) −40.4915 −1.66279 −0.831394 0.555684i \(-0.812456\pi\)
−0.831394 + 0.555684i \(0.812456\pi\)
\(594\) 10.5910 0.434556
\(595\) 3.21446 0.131780
\(596\) −16.4041 −0.671936
\(597\) 3.30926 0.135439
\(598\) 0 0
\(599\) 20.1843 0.824708 0.412354 0.911024i \(-0.364707\pi\)
0.412354 + 0.911024i \(0.364707\pi\)
\(600\) 1.39338 0.0568845
\(601\) −3.60034 −0.146861 −0.0734306 0.997300i \(-0.523395\pi\)
−0.0734306 + 0.997300i \(0.523395\pi\)
\(602\) −19.8940 −0.810820
\(603\) −21.7622 −0.886226
\(604\) 27.9812 1.13854
\(605\) 0.410257 0.0166793
\(606\) −25.9297 −1.05332
\(607\) −39.0252 −1.58399 −0.791993 0.610530i \(-0.790956\pi\)
−0.791993 + 0.610530i \(0.790956\pi\)
\(608\) 44.7215 1.81370
\(609\) −33.4324 −1.35475
\(610\) 4.20329 0.170186
\(611\) −2.68482 −0.108616
\(612\) −7.21011 −0.291451
\(613\) −42.2888 −1.70803 −0.854014 0.520250i \(-0.825839\pi\)
−0.854014 + 0.520250i \(0.825839\pi\)
\(614\) −13.6781 −0.552004
\(615\) 4.34569 0.175235
\(616\) −1.14374 −0.0460826
\(617\) 18.8486 0.758817 0.379409 0.925229i \(-0.376127\pi\)
0.379409 + 0.925229i \(0.376127\pi\)
\(618\) −30.9310 −1.24423
\(619\) −3.79490 −0.152530 −0.0762650 0.997088i \(-0.524300\pi\)
−0.0762650 + 0.997088i \(0.524300\pi\)
\(620\) −7.93998 −0.318877
\(621\) 0 0
\(622\) 38.4331 1.54103
\(623\) 8.74164 0.350226
\(624\) 4.53646 0.181604
\(625\) 22.5037 0.900147
\(626\) 17.1732 0.686381
\(627\) 5.94437 0.237395
\(628\) 11.0111 0.439391
\(629\) 18.4495 0.735630
\(630\) 6.55594 0.261195
\(631\) 12.0419 0.479382 0.239691 0.970849i \(-0.422954\pi\)
0.239691 + 0.970849i \(0.422954\pi\)
\(632\) −2.37298 −0.0943921
\(633\) −13.2675 −0.527336
\(634\) −42.9537 −1.70591
\(635\) 7.36706 0.292353
\(636\) −9.58306 −0.379993
\(637\) −12.7109 −0.503626
\(638\) 14.7987 0.585886
\(639\) 9.91884 0.392383
\(640\) 0.877692 0.0346938
\(641\) −35.9629 −1.42045 −0.710224 0.703976i \(-0.751406\pi\)
−0.710224 + 0.703976i \(0.751406\pi\)
\(642\) −30.8059 −1.21581
\(643\) 8.57269 0.338074 0.169037 0.985610i \(-0.445934\pi\)
0.169037 + 0.985610i \(0.445934\pi\)
\(644\) 0 0
\(645\) 1.01240 0.0398631
\(646\) −20.6164 −0.811143
\(647\) 34.3946 1.35219 0.676097 0.736813i \(-0.263670\pi\)
0.676097 + 0.736813i \(0.263670\pi\)
\(648\) 0.0214865 0.000844070 0
\(649\) −4.33626 −0.170213
\(650\) −11.1337 −0.436701
\(651\) −41.6892 −1.63393
\(652\) 21.2736 0.833138
\(653\) −14.5224 −0.568306 −0.284153 0.958779i \(-0.591712\pi\)
−0.284153 + 0.958779i \(0.591712\pi\)
\(654\) −3.59853 −0.140714
\(655\) −5.61236 −0.219293
\(656\) −36.6092 −1.42935
\(657\) −20.0893 −0.783757
\(658\) −20.5449 −0.800924
\(659\) −41.6501 −1.62246 −0.811228 0.584729i \(-0.801201\pi\)
−0.811228 + 0.584729i \(0.801201\pi\)
\(660\) 0.941114 0.0366328
\(661\) −5.31246 −0.206631 −0.103315 0.994649i \(-0.532945\pi\)
−0.103315 + 0.994649i \(0.532945\pi\)
\(662\) 17.8587 0.694097
\(663\) −2.23958 −0.0869779
\(664\) −0.683479 −0.0265241
\(665\) 9.67205 0.375066
\(666\) 37.6280 1.45806
\(667\) 0 0
\(668\) −21.6269 −0.836769
\(669\) 27.6711 1.06983
\(670\) −9.85170 −0.380604
\(671\) −5.04035 −0.194581
\(672\) 37.1755 1.43408
\(673\) 37.3690 1.44047 0.720234 0.693731i \(-0.244035\pi\)
0.720234 + 0.693731i \(0.244035\pi\)
\(674\) −19.2391 −0.741064
\(675\) 25.1748 0.968977
\(676\) −24.9744 −0.960552
\(677\) 4.70224 0.180722 0.0903609 0.995909i \(-0.471198\pi\)
0.0903609 + 0.995909i \(0.471198\pi\)
\(678\) −2.62250 −0.100716
\(679\) −41.9443 −1.60967
\(680\) −0.201866 −0.00774120
\(681\) −2.16607 −0.0830039
\(682\) 18.4535 0.706622
\(683\) 10.6020 0.405675 0.202837 0.979212i \(-0.434984\pi\)
0.202837 + 0.979212i \(0.434984\pi\)
\(684\) −21.6946 −0.829514
\(685\) 8.27639 0.316225
\(686\) −36.5438 −1.39525
\(687\) 21.4636 0.818889
\(688\) −8.52868 −0.325153
\(689\) 4.73574 0.180417
\(690\) 0 0
\(691\) 29.4870 1.12174 0.560869 0.827904i \(-0.310467\pi\)
0.560869 + 0.827904i \(0.310467\pi\)
\(692\) 26.6095 1.01154
\(693\) −7.86152 −0.298634
\(694\) 27.4470 1.04187
\(695\) −0.340444 −0.0129138
\(696\) 2.09953 0.0795825
\(697\) 18.0734 0.684577
\(698\) −46.6242 −1.76475
\(699\) −14.7609 −0.558307
\(700\) −43.9584 −1.66147
\(701\) 28.9427 1.09315 0.546575 0.837410i \(-0.315931\pi\)
0.546575 + 0.837410i \(0.315931\pi\)
\(702\) −12.0063 −0.453148
\(703\) 55.5131 2.09371
\(704\) −9.01771 −0.339868
\(705\) 1.04552 0.0393765
\(706\) 26.8884 1.01196
\(707\) 50.5920 1.90271
\(708\) −9.94721 −0.373839
\(709\) −33.4099 −1.25473 −0.627367 0.778723i \(-0.715868\pi\)
−0.627367 + 0.778723i \(0.715868\pi\)
\(710\) 4.49024 0.168516
\(711\) −16.3107 −0.611700
\(712\) −0.548968 −0.0205735
\(713\) 0 0
\(714\) −17.1378 −0.641365
\(715\) −0.465078 −0.0173929
\(716\) 9.16108 0.342366
\(717\) −9.38357 −0.350436
\(718\) −9.54755 −0.356312
\(719\) 10.3377 0.385533 0.192766 0.981245i \(-0.438254\pi\)
0.192766 + 0.981245i \(0.438254\pi\)
\(720\) 2.81056 0.104744
\(721\) 60.3502 2.24756
\(722\) −23.4120 −0.871304
\(723\) 5.75816 0.214148
\(724\) 9.90937 0.368279
\(725\) 35.1763 1.30641
\(726\) −2.18727 −0.0811772
\(727\) 48.3261 1.79232 0.896158 0.443736i \(-0.146347\pi\)
0.896158 + 0.443736i \(0.146347\pi\)
\(728\) 1.29657 0.0480542
\(729\) 16.9674 0.628421
\(730\) −9.09436 −0.336598
\(731\) 4.21047 0.155730
\(732\) −11.5624 −0.427358
\(733\) −40.7229 −1.50413 −0.752067 0.659086i \(-0.770943\pi\)
−0.752067 + 0.659086i \(0.770943\pi\)
\(734\) −67.3647 −2.48648
\(735\) 4.94987 0.182579
\(736\) 0 0
\(737\) 11.8136 0.435160
\(738\) 36.8608 1.35687
\(739\) −11.7025 −0.430485 −0.215243 0.976561i \(-0.569054\pi\)
−0.215243 + 0.976561i \(0.569054\pi\)
\(740\) 8.78883 0.323084
\(741\) −6.73870 −0.247552
\(742\) 36.2390 1.33038
\(743\) −39.1523 −1.43636 −0.718179 0.695858i \(-0.755024\pi\)
−0.718179 + 0.695858i \(0.755024\pi\)
\(744\) 2.61805 0.0959825
\(745\) −3.15683 −0.115657
\(746\) 22.6403 0.828919
\(747\) −4.69790 −0.171887
\(748\) 3.91401 0.143110
\(749\) 60.1061 2.19623
\(750\) 8.82239 0.322148
\(751\) −53.0501 −1.93583 −0.967913 0.251287i \(-0.919146\pi\)
−0.967913 + 0.251287i \(0.919146\pi\)
\(752\) −8.80771 −0.321184
\(753\) −17.6458 −0.643049
\(754\) −16.7762 −0.610953
\(755\) 5.38476 0.195972
\(756\) −47.4033 −1.72404
\(757\) −3.83293 −0.139310 −0.0696551 0.997571i \(-0.522190\pi\)
−0.0696551 + 0.997571i \(0.522190\pi\)
\(758\) 14.3636 0.521711
\(759\) 0 0
\(760\) −0.607397 −0.0220326
\(761\) −28.9474 −1.04934 −0.524671 0.851305i \(-0.675812\pi\)
−0.524671 + 0.851305i \(0.675812\pi\)
\(762\) −39.2772 −1.42286
\(763\) 7.02117 0.254183
\(764\) 18.9727 0.686407
\(765\) −1.38753 −0.0501662
\(766\) −24.4300 −0.882693
\(767\) 4.91570 0.177496
\(768\) 14.7275 0.531434
\(769\) 14.5000 0.522883 0.261442 0.965219i \(-0.415802\pi\)
0.261442 + 0.965219i \(0.415802\pi\)
\(770\) −3.55889 −0.128254
\(771\) −8.75504 −0.315305
\(772\) −38.5898 −1.38888
\(773\) 15.3948 0.553714 0.276857 0.960911i \(-0.410707\pi\)
0.276857 + 0.960911i \(0.410707\pi\)
\(774\) 8.58730 0.308664
\(775\) 43.8638 1.57563
\(776\) 2.63407 0.0945575
\(777\) 46.1462 1.65548
\(778\) 9.79093 0.351022
\(779\) 54.3812 1.94841
\(780\) −1.06687 −0.0382001
\(781\) −5.38445 −0.192671
\(782\) 0 0
\(783\) 37.9330 1.35562
\(784\) −41.6990 −1.48925
\(785\) 2.11900 0.0756304
\(786\) 29.9221 1.06729
\(787\) −2.41008 −0.0859102 −0.0429551 0.999077i \(-0.513677\pi\)
−0.0429551 + 0.999077i \(0.513677\pi\)
\(788\) 14.0029 0.498832
\(789\) −22.7595 −0.810259
\(790\) −7.38382 −0.262705
\(791\) 5.11681 0.181933
\(792\) 0.493698 0.0175428
\(793\) 5.71388 0.202906
\(794\) 55.9633 1.98606
\(795\) −1.84418 −0.0654064
\(796\) 6.55626 0.232381
\(797\) 36.9527 1.30893 0.654465 0.756092i \(-0.272894\pi\)
0.654465 + 0.756092i \(0.272894\pi\)
\(798\) −51.5661 −1.82542
\(799\) 4.34822 0.153829
\(800\) −39.1147 −1.38291
\(801\) −3.77334 −0.133325
\(802\) 57.1867 2.01933
\(803\) 10.9055 0.384846
\(804\) 27.1000 0.955743
\(805\) 0 0
\(806\) −20.9194 −0.736855
\(807\) −30.9633 −1.08996
\(808\) −3.17714 −0.111771
\(809\) 16.6912 0.586831 0.293415 0.955985i \(-0.405208\pi\)
0.293415 + 0.955985i \(0.405208\pi\)
\(810\) 0.0668580 0.00234915
\(811\) 20.8060 0.730597 0.365298 0.930890i \(-0.380967\pi\)
0.365298 + 0.930890i \(0.380967\pi\)
\(812\) −66.2359 −2.32443
\(813\) 9.19803 0.322589
\(814\) −20.4264 −0.715944
\(815\) 4.09393 0.143404
\(816\) −7.34705 −0.257198
\(817\) 12.6689 0.443230
\(818\) 60.3065 2.10857
\(819\) 8.91203 0.311411
\(820\) 8.60964 0.300662
\(821\) 35.7565 1.24791 0.623955 0.781460i \(-0.285525\pi\)
0.623955 + 0.781460i \(0.285525\pi\)
\(822\) −44.1252 −1.53904
\(823\) 13.1104 0.457001 0.228501 0.973544i \(-0.426618\pi\)
0.228501 + 0.973544i \(0.426618\pi\)
\(824\) −3.78995 −0.132029
\(825\) −5.19911 −0.181010
\(826\) 37.6161 1.30883
\(827\) −40.6838 −1.41471 −0.707356 0.706857i \(-0.750112\pi\)
−0.707356 + 0.706857i \(0.750112\pi\)
\(828\) 0 0
\(829\) 45.9617 1.59632 0.798158 0.602448i \(-0.205808\pi\)
0.798158 + 0.602448i \(0.205808\pi\)
\(830\) −2.12673 −0.0738198
\(831\) 3.84982 0.133549
\(832\) 10.2227 0.354409
\(833\) 20.5861 0.713266
\(834\) 1.81506 0.0628505
\(835\) −4.16192 −0.144029
\(836\) 11.7769 0.407313
\(837\) 47.3014 1.63497
\(838\) −0.233133 −0.00805343
\(839\) 27.8644 0.961986 0.480993 0.876724i \(-0.340276\pi\)
0.480993 + 0.876724i \(0.340276\pi\)
\(840\) −0.504909 −0.0174210
\(841\) 24.0032 0.827698
\(842\) 69.0563 2.37984
\(843\) −21.7822 −0.750218
\(844\) −26.2855 −0.904783
\(845\) −4.80612 −0.165335
\(846\) 8.86825 0.304897
\(847\) 4.26763 0.146637
\(848\) 15.5359 0.533504
\(849\) 16.9160 0.580557
\(850\) 18.0317 0.618482
\(851\) 0 0
\(852\) −12.3517 −0.423163
\(853\) 2.79580 0.0957263 0.0478631 0.998854i \(-0.484759\pi\)
0.0478631 + 0.998854i \(0.484759\pi\)
\(854\) 43.7240 1.49620
\(855\) −4.17496 −0.142781
\(856\) −3.77462 −0.129014
\(857\) −23.2507 −0.794227 −0.397114 0.917769i \(-0.629988\pi\)
−0.397114 + 0.917769i \(0.629988\pi\)
\(858\) 2.47955 0.0846503
\(859\) −32.2635 −1.10082 −0.550408 0.834896i \(-0.685528\pi\)
−0.550408 + 0.834896i \(0.685528\pi\)
\(860\) 2.00575 0.0683954
\(861\) 45.2053 1.54059
\(862\) −65.5755 −2.23351
\(863\) −23.4834 −0.799383 −0.399692 0.916650i \(-0.630883\pi\)
−0.399692 + 0.916650i \(0.630883\pi\)
\(864\) −42.1800 −1.43499
\(865\) 5.12079 0.174112
\(866\) −55.8801 −1.89888
\(867\) −14.6656 −0.498071
\(868\) −82.5943 −2.80343
\(869\) 8.85428 0.300361
\(870\) 6.53295 0.221488
\(871\) −13.3922 −0.453778
\(872\) −0.440924 −0.0149316
\(873\) 18.1053 0.612772
\(874\) 0 0
\(875\) −17.2136 −0.581925
\(876\) 25.0167 0.845236
\(877\) 48.6987 1.64444 0.822219 0.569172i \(-0.192736\pi\)
0.822219 + 0.569172i \(0.192736\pi\)
\(878\) −18.7798 −0.633789
\(879\) 6.71655 0.226544
\(880\) −1.52571 −0.0514318
\(881\) −6.48150 −0.218367 −0.109184 0.994022i \(-0.534824\pi\)
−0.109184 + 0.994022i \(0.534824\pi\)
\(882\) 41.9856 1.41373
\(883\) −25.6058 −0.861704 −0.430852 0.902423i \(-0.641787\pi\)
−0.430852 + 0.902423i \(0.641787\pi\)
\(884\) −4.43702 −0.149233
\(885\) −1.91426 −0.0643472
\(886\) −71.8853 −2.41504
\(887\) 36.4018 1.22225 0.611126 0.791533i \(-0.290717\pi\)
0.611126 + 0.791533i \(0.290717\pi\)
\(888\) −2.89794 −0.0972487
\(889\) 76.6345 2.57024
\(890\) −1.70818 −0.0572584
\(891\) −0.0801725 −0.00268588
\(892\) 54.8217 1.83557
\(893\) 13.0834 0.437821
\(894\) 16.8305 0.562897
\(895\) 1.76298 0.0589298
\(896\) 9.13004 0.305013
\(897\) 0 0
\(898\) 1.69411 0.0565333
\(899\) 66.0935 2.20434
\(900\) 18.9747 0.632490
\(901\) −7.66979 −0.255518
\(902\) −20.0099 −0.666257
\(903\) 10.5313 0.350459
\(904\) −0.321332 −0.0106873
\(905\) 1.90698 0.0633902
\(906\) −28.7086 −0.953781
\(907\) −11.1176 −0.369155 −0.184578 0.982818i \(-0.559092\pi\)
−0.184578 + 0.982818i \(0.559092\pi\)
\(908\) −4.29139 −0.142415
\(909\) −21.8381 −0.724325
\(910\) 4.03445 0.133741
\(911\) 30.2628 1.00265 0.501326 0.865259i \(-0.332846\pi\)
0.501326 + 0.865259i \(0.332846\pi\)
\(912\) −22.1067 −0.732025
\(913\) 2.55026 0.0844012
\(914\) −25.7410 −0.851435
\(915\) −2.22509 −0.0735591
\(916\) 42.5235 1.40502
\(917\) −58.3816 −1.92793
\(918\) 19.4448 0.641775
\(919\) 54.5872 1.80067 0.900333 0.435202i \(-0.143323\pi\)
0.900333 + 0.435202i \(0.143323\pi\)
\(920\) 0 0
\(921\) 7.24076 0.238591
\(922\) −15.0954 −0.497142
\(923\) 6.10395 0.200914
\(924\) 9.78977 0.322060
\(925\) −48.5532 −1.59642
\(926\) −17.3590 −0.570453
\(927\) −26.0503 −0.855603
\(928\) −58.9375 −1.93472
\(929\) −3.22809 −0.105910 −0.0529551 0.998597i \(-0.516864\pi\)
−0.0529551 + 0.998597i \(0.516864\pi\)
\(930\) 8.14640 0.267131
\(931\) 61.9418 2.03006
\(932\) −29.2440 −0.957920
\(933\) −20.3453 −0.666075
\(934\) −59.7873 −1.95630
\(935\) 0.753220 0.0246329
\(936\) −0.559668 −0.0182933
\(937\) 10.3788 0.339059 0.169530 0.985525i \(-0.445775\pi\)
0.169530 + 0.985525i \(0.445775\pi\)
\(938\) −102.481 −3.34611
\(939\) −9.09097 −0.296673
\(940\) 2.07137 0.0675607
\(941\) 7.63093 0.248761 0.124381 0.992235i \(-0.460306\pi\)
0.124381 + 0.992235i \(0.460306\pi\)
\(942\) −11.2974 −0.368088
\(943\) 0 0
\(944\) 16.1262 0.524864
\(945\) −9.12240 −0.296752
\(946\) −4.66162 −0.151562
\(947\) −59.4124 −1.93064 −0.965321 0.261065i \(-0.915926\pi\)
−0.965321 + 0.261065i \(0.915926\pi\)
\(948\) 20.3114 0.659683
\(949\) −12.3627 −0.401311
\(950\) 54.2559 1.76029
\(951\) 22.7383 0.737341
\(952\) −2.09987 −0.0680573
\(953\) 44.3346 1.43614 0.718069 0.695972i \(-0.245026\pi\)
0.718069 + 0.695972i \(0.245026\pi\)
\(954\) −15.6426 −0.506449
\(955\) 3.65114 0.118148
\(956\) −18.5906 −0.601264
\(957\) −7.83396 −0.253236
\(958\) 74.3069 2.40075
\(959\) 86.0937 2.78011
\(960\) −3.98091 −0.128483
\(961\) 51.4166 1.65860
\(962\) 23.1559 0.746575
\(963\) −25.9449 −0.836063
\(964\) 11.4080 0.367427
\(965\) −7.42631 −0.239061
\(966\) 0 0
\(967\) −42.3917 −1.36323 −0.681613 0.731713i \(-0.738721\pi\)
−0.681613 + 0.731713i \(0.738721\pi\)
\(968\) −0.268004 −0.00861397
\(969\) 10.9137 0.350598
\(970\) 8.19623 0.263165
\(971\) −17.6998 −0.568013 −0.284006 0.958822i \(-0.591664\pi\)
−0.284006 + 0.958822i \(0.591664\pi\)
\(972\) 33.1391 1.06294
\(973\) −3.54141 −0.113532
\(974\) 11.2415 0.360201
\(975\) 5.89385 0.188754
\(976\) 18.7447 0.600003
\(977\) 54.7336 1.75108 0.875541 0.483143i \(-0.160505\pi\)
0.875541 + 0.483143i \(0.160505\pi\)
\(978\) −21.8266 −0.697939
\(979\) 2.04836 0.0654659
\(980\) 9.80664 0.313261
\(981\) −3.03070 −0.0967629
\(982\) 21.8606 0.697600
\(983\) 44.5482 1.42087 0.710434 0.703764i \(-0.248499\pi\)
0.710434 + 0.703764i \(0.248499\pi\)
\(984\) −2.83886 −0.0904996
\(985\) 2.69474 0.0858617
\(986\) 27.1700 0.865268
\(987\) 10.8758 0.346182
\(988\) −13.3506 −0.424740
\(989\) 0 0
\(990\) 1.53620 0.0488237
\(991\) −35.5303 −1.12866 −0.564329 0.825550i \(-0.690865\pi\)
−0.564329 + 0.825550i \(0.690865\pi\)
\(992\) −73.4933 −2.33342
\(993\) −9.45381 −0.300008
\(994\) 46.7089 1.48152
\(995\) 1.26170 0.0399986
\(996\) 5.85019 0.185370
\(997\) −28.6339 −0.906846 −0.453423 0.891295i \(-0.649797\pi\)
−0.453423 + 0.891295i \(0.649797\pi\)
\(998\) −27.1057 −0.858015
\(999\) −52.3583 −1.65654
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.11 60
23.13 even 11 253.2.i.b.100.11 120
23.16 even 11 253.2.i.b.210.11 yes 120
23.22 odd 2 5819.2.a.t.1.11 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.100.11 120 23.13 even 11
253.2.i.b.210.11 yes 120 23.16 even 11
5819.2.a.t.1.11 60 23.22 odd 2
5819.2.a.u.1.11 60 1.1 even 1 trivial