Properties

Label 5819.2.a.u.1.10
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,5,9,73,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(60\)
Twist minimal: no (minimal twist has level 253)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.05610 q^{2} -2.21869 q^{3} +2.22755 q^{4} -4.33173 q^{5} +4.56186 q^{6} +2.89005 q^{7} -0.467865 q^{8} +1.92260 q^{9} +8.90647 q^{10} +1.00000 q^{11} -4.94225 q^{12} +3.80993 q^{13} -5.94222 q^{14} +9.61078 q^{15} -3.49312 q^{16} -6.41271 q^{17} -3.95307 q^{18} -1.52667 q^{19} -9.64914 q^{20} -6.41213 q^{21} -2.05610 q^{22} +1.03805 q^{24} +13.7639 q^{25} -7.83361 q^{26} +2.39041 q^{27} +6.43772 q^{28} +1.72451 q^{29} -19.7607 q^{30} +5.22427 q^{31} +8.11794 q^{32} -2.21869 q^{33} +13.1852 q^{34} -12.5189 q^{35} +4.28270 q^{36} +7.05826 q^{37} +3.13899 q^{38} -8.45308 q^{39} +2.02667 q^{40} +2.45336 q^{41} +13.1840 q^{42} +2.96049 q^{43} +2.22755 q^{44} -8.32819 q^{45} +6.98634 q^{47} +7.75017 q^{48} +1.35236 q^{49} -28.2999 q^{50} +14.2278 q^{51} +8.48682 q^{52} +1.45325 q^{53} -4.91493 q^{54} -4.33173 q^{55} -1.35215 q^{56} +3.38722 q^{57} -3.54577 q^{58} +13.8389 q^{59} +21.4085 q^{60} -2.81307 q^{61} -10.7416 q^{62} +5.55641 q^{63} -9.70506 q^{64} -16.5036 q^{65} +4.56186 q^{66} +5.36304 q^{67} -14.2846 q^{68} +25.7401 q^{70} +0.660274 q^{71} -0.899520 q^{72} +11.2357 q^{73} -14.5125 q^{74} -30.5378 q^{75} -3.40074 q^{76} +2.89005 q^{77} +17.3804 q^{78} +8.74672 q^{79} +15.1312 q^{80} -11.0714 q^{81} -5.04435 q^{82} -0.901787 q^{83} -14.2833 q^{84} +27.7781 q^{85} -6.08707 q^{86} -3.82616 q^{87} -0.467865 q^{88} -3.38269 q^{89} +17.1236 q^{90} +11.0109 q^{91} -11.5911 q^{93} -14.3646 q^{94} +6.61313 q^{95} -18.0112 q^{96} +2.65813 q^{97} -2.78060 q^{98} +1.92260 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 5 q^{2} + 9 q^{3} + 73 q^{4} + 8 q^{5} + 26 q^{6} + 30 q^{8} + 75 q^{9} - 7 q^{10} + 60 q^{11} + 41 q^{12} + 46 q^{13} + 16 q^{14} + 4 q^{15} + 99 q^{16} - 5 q^{17} + 36 q^{18} - 8 q^{19} + 82 q^{20}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.05610 −1.45388 −0.726941 0.686700i \(-0.759059\pi\)
−0.726941 + 0.686700i \(0.759059\pi\)
\(3\) −2.21869 −1.28096 −0.640482 0.767973i \(-0.721265\pi\)
−0.640482 + 0.767973i \(0.721265\pi\)
\(4\) 2.22755 1.11377
\(5\) −4.33173 −1.93721 −0.968604 0.248610i \(-0.920026\pi\)
−0.968604 + 0.248610i \(0.920026\pi\)
\(6\) 4.56186 1.86237
\(7\) 2.89005 1.09233 0.546167 0.837676i \(-0.316086\pi\)
0.546167 + 0.837676i \(0.316086\pi\)
\(8\) −0.467865 −0.165415
\(9\) 1.92260 0.640868
\(10\) 8.90647 2.81647
\(11\) 1.00000 0.301511
\(12\) −4.94225 −1.42671
\(13\) 3.80993 1.05669 0.528343 0.849031i \(-0.322814\pi\)
0.528343 + 0.849031i \(0.322814\pi\)
\(14\) −5.94222 −1.58813
\(15\) 9.61078 2.48149
\(16\) −3.49312 −0.873280
\(17\) −6.41271 −1.55531 −0.777655 0.628691i \(-0.783591\pi\)
−0.777655 + 0.628691i \(0.783591\pi\)
\(18\) −3.95307 −0.931747
\(19\) −1.52667 −0.350243 −0.175121 0.984547i \(-0.556032\pi\)
−0.175121 + 0.984547i \(0.556032\pi\)
\(20\) −9.64914 −2.15761
\(21\) −6.41213 −1.39924
\(22\) −2.05610 −0.438362
\(23\) 0 0
\(24\) 1.03805 0.211891
\(25\) 13.7639 2.75277
\(26\) −7.83361 −1.53630
\(27\) 2.39041 0.460035
\(28\) 6.43772 1.21661
\(29\) 1.72451 0.320234 0.160117 0.987098i \(-0.448813\pi\)
0.160117 + 0.987098i \(0.448813\pi\)
\(30\) −19.7607 −3.60780
\(31\) 5.22427 0.938306 0.469153 0.883117i \(-0.344559\pi\)
0.469153 + 0.883117i \(0.344559\pi\)
\(32\) 8.11794 1.43506
\(33\) −2.21869 −0.386225
\(34\) 13.1852 2.26124
\(35\) −12.5189 −2.11608
\(36\) 4.28270 0.713783
\(37\) 7.05826 1.16037 0.580186 0.814484i \(-0.302980\pi\)
0.580186 + 0.814484i \(0.302980\pi\)
\(38\) 3.13899 0.509212
\(39\) −8.45308 −1.35358
\(40\) 2.02667 0.320444
\(41\) 2.45336 0.383150 0.191575 0.981478i \(-0.438640\pi\)
0.191575 + 0.981478i \(0.438640\pi\)
\(42\) 13.1840 2.03433
\(43\) 2.96049 0.451471 0.225735 0.974189i \(-0.427521\pi\)
0.225735 + 0.974189i \(0.427521\pi\)
\(44\) 2.22755 0.335816
\(45\) −8.32819 −1.24149
\(46\) 0 0
\(47\) 6.98634 1.01906 0.509531 0.860452i \(-0.329819\pi\)
0.509531 + 0.860452i \(0.329819\pi\)
\(48\) 7.75017 1.11864
\(49\) 1.35236 0.193195
\(50\) −28.2999 −4.00221
\(51\) 14.2278 1.99230
\(52\) 8.48682 1.17691
\(53\) 1.45325 0.199619 0.0998096 0.995007i \(-0.468177\pi\)
0.0998096 + 0.995007i \(0.468177\pi\)
\(54\) −4.91493 −0.668837
\(55\) −4.33173 −0.584090
\(56\) −1.35215 −0.180689
\(57\) 3.38722 0.448648
\(58\) −3.54577 −0.465582
\(59\) 13.8389 1.80168 0.900838 0.434156i \(-0.142953\pi\)
0.900838 + 0.434156i \(0.142953\pi\)
\(60\) 21.4085 2.76382
\(61\) −2.81307 −0.360176 −0.180088 0.983650i \(-0.557638\pi\)
−0.180088 + 0.983650i \(0.557638\pi\)
\(62\) −10.7416 −1.36419
\(63\) 5.55641 0.700042
\(64\) −9.70506 −1.21313
\(65\) −16.5036 −2.04702
\(66\) 4.56186 0.561526
\(67\) 5.36304 0.655200 0.327600 0.944817i \(-0.393760\pi\)
0.327600 + 0.944817i \(0.393760\pi\)
\(68\) −14.2846 −1.73227
\(69\) 0 0
\(70\) 25.7401 3.07653
\(71\) 0.660274 0.0783601 0.0391800 0.999232i \(-0.487525\pi\)
0.0391800 + 0.999232i \(0.487525\pi\)
\(72\) −0.899520 −0.106009
\(73\) 11.2357 1.31504 0.657519 0.753438i \(-0.271606\pi\)
0.657519 + 0.753438i \(0.271606\pi\)
\(74\) −14.5125 −1.68704
\(75\) −30.5378 −3.52620
\(76\) −3.40074 −0.390091
\(77\) 2.89005 0.329351
\(78\) 17.3804 1.96794
\(79\) 8.74672 0.984083 0.492042 0.870572i \(-0.336251\pi\)
0.492042 + 0.870572i \(0.336251\pi\)
\(80\) 15.1312 1.69172
\(81\) −11.0714 −1.23016
\(82\) −5.04435 −0.557055
\(83\) −0.901787 −0.0989840 −0.0494920 0.998775i \(-0.515760\pi\)
−0.0494920 + 0.998775i \(0.515760\pi\)
\(84\) −14.2833 −1.55844
\(85\) 27.7781 3.01296
\(86\) −6.08707 −0.656386
\(87\) −3.82616 −0.410208
\(88\) −0.467865 −0.0498746
\(89\) −3.38269 −0.358565 −0.179282 0.983798i \(-0.557378\pi\)
−0.179282 + 0.983798i \(0.557378\pi\)
\(90\) 17.1236 1.80499
\(91\) 11.0109 1.15425
\(92\) 0 0
\(93\) −11.5911 −1.20194
\(94\) −14.3646 −1.48160
\(95\) 6.61313 0.678492
\(96\) −18.0112 −1.83826
\(97\) 2.65813 0.269892 0.134946 0.990853i \(-0.456914\pi\)
0.134946 + 0.990853i \(0.456914\pi\)
\(98\) −2.78060 −0.280883
\(99\) 1.92260 0.193229
\(100\) 30.6597 3.06597
\(101\) 3.58924 0.357143 0.178571 0.983927i \(-0.442852\pi\)
0.178571 + 0.983927i \(0.442852\pi\)
\(102\) −29.2539 −2.89656
\(103\) −8.13818 −0.801879 −0.400939 0.916105i \(-0.631316\pi\)
−0.400939 + 0.916105i \(0.631316\pi\)
\(104\) −1.78254 −0.174792
\(105\) 27.7756 2.71062
\(106\) −2.98803 −0.290223
\(107\) −2.75678 −0.266508 −0.133254 0.991082i \(-0.542543\pi\)
−0.133254 + 0.991082i \(0.542543\pi\)
\(108\) 5.32476 0.512376
\(109\) −9.71977 −0.930985 −0.465493 0.885052i \(-0.654123\pi\)
−0.465493 + 0.885052i \(0.654123\pi\)
\(110\) 8.90647 0.849198
\(111\) −15.6601 −1.48639
\(112\) −10.0953 −0.953914
\(113\) −11.3012 −1.06312 −0.531562 0.847019i \(-0.678395\pi\)
−0.531562 + 0.847019i \(0.678395\pi\)
\(114\) −6.96446 −0.652282
\(115\) 0 0
\(116\) 3.84144 0.356668
\(117\) 7.32499 0.677196
\(118\) −28.4542 −2.61942
\(119\) −18.5330 −1.69892
\(120\) −4.49655 −0.410477
\(121\) 1.00000 0.0909091
\(122\) 5.78395 0.523654
\(123\) −5.44325 −0.490801
\(124\) 11.6373 1.04506
\(125\) −37.9626 −3.39548
\(126\) −11.4245 −1.01778
\(127\) −14.4321 −1.28064 −0.640319 0.768109i \(-0.721198\pi\)
−0.640319 + 0.768109i \(0.721198\pi\)
\(128\) 3.71870 0.328690
\(129\) −6.56843 −0.578318
\(130\) 33.9331 2.97613
\(131\) 7.41846 0.648154 0.324077 0.946031i \(-0.394946\pi\)
0.324077 + 0.946031i \(0.394946\pi\)
\(132\) −4.94225 −0.430168
\(133\) −4.41215 −0.382582
\(134\) −11.0270 −0.952584
\(135\) −10.3546 −0.891183
\(136\) 3.00028 0.257272
\(137\) 4.41814 0.377467 0.188733 0.982028i \(-0.439562\pi\)
0.188733 + 0.982028i \(0.439562\pi\)
\(138\) 0 0
\(139\) −0.359835 −0.0305208 −0.0152604 0.999884i \(-0.504858\pi\)
−0.0152604 + 0.999884i \(0.504858\pi\)
\(140\) −27.8864 −2.35684
\(141\) −15.5006 −1.30538
\(142\) −1.35759 −0.113926
\(143\) 3.80993 0.318603
\(144\) −6.71589 −0.559657
\(145\) −7.47011 −0.620359
\(146\) −23.1017 −1.91191
\(147\) −3.00048 −0.247476
\(148\) 15.7226 1.29239
\(149\) −12.9573 −1.06151 −0.530754 0.847526i \(-0.678091\pi\)
−0.530754 + 0.847526i \(0.678091\pi\)
\(150\) 62.7888 5.12668
\(151\) −5.04818 −0.410815 −0.205408 0.978677i \(-0.565852\pi\)
−0.205408 + 0.978677i \(0.565852\pi\)
\(152\) 0.714277 0.0579355
\(153\) −12.3291 −0.996748
\(154\) −5.94222 −0.478838
\(155\) −22.6301 −1.81769
\(156\) −18.8297 −1.50758
\(157\) 12.9516 1.03365 0.516823 0.856092i \(-0.327114\pi\)
0.516823 + 0.856092i \(0.327114\pi\)
\(158\) −17.9841 −1.43074
\(159\) −3.22432 −0.255705
\(160\) −35.1647 −2.78001
\(161\) 0 0
\(162\) 22.7639 1.78850
\(163\) −16.6852 −1.30689 −0.653444 0.756974i \(-0.726677\pi\)
−0.653444 + 0.756974i \(0.726677\pi\)
\(164\) 5.46498 0.426743
\(165\) 9.61078 0.748198
\(166\) 1.85417 0.143911
\(167\) −6.79567 −0.525865 −0.262932 0.964814i \(-0.584690\pi\)
−0.262932 + 0.964814i \(0.584690\pi\)
\(168\) 3.00001 0.231456
\(169\) 1.51560 0.116585
\(170\) −57.1146 −4.38049
\(171\) −2.93518 −0.224459
\(172\) 6.59465 0.502837
\(173\) 12.4784 0.948713 0.474356 0.880333i \(-0.342681\pi\)
0.474356 + 0.880333i \(0.342681\pi\)
\(174\) 7.86698 0.596394
\(175\) 39.7782 3.00695
\(176\) −3.49312 −0.263304
\(177\) −30.7044 −2.30788
\(178\) 6.95516 0.521311
\(179\) 16.5404 1.23629 0.618143 0.786066i \(-0.287885\pi\)
0.618143 + 0.786066i \(0.287885\pi\)
\(180\) −18.5515 −1.38274
\(181\) 17.9548 1.33457 0.667283 0.744804i \(-0.267457\pi\)
0.667283 + 0.744804i \(0.267457\pi\)
\(182\) −22.6395 −1.67815
\(183\) 6.24134 0.461373
\(184\) 0 0
\(185\) −30.5745 −2.24788
\(186\) 23.8324 1.74747
\(187\) −6.41271 −0.468944
\(188\) 15.5624 1.13501
\(189\) 6.90840 0.502512
\(190\) −13.5973 −0.986448
\(191\) 2.27349 0.164504 0.0822520 0.996612i \(-0.473789\pi\)
0.0822520 + 0.996612i \(0.473789\pi\)
\(192\) 21.5326 1.55398
\(193\) −21.1289 −1.52089 −0.760444 0.649403i \(-0.775019\pi\)
−0.760444 + 0.649403i \(0.775019\pi\)
\(194\) −5.46538 −0.392391
\(195\) 36.6164 2.62216
\(196\) 3.01246 0.215176
\(197\) −11.7109 −0.834370 −0.417185 0.908822i \(-0.636983\pi\)
−0.417185 + 0.908822i \(0.636983\pi\)
\(198\) −3.95307 −0.280932
\(199\) 20.1956 1.43163 0.715815 0.698290i \(-0.246055\pi\)
0.715815 + 0.698290i \(0.246055\pi\)
\(200\) −6.43963 −0.455351
\(201\) −11.8990 −0.839287
\(202\) −7.37984 −0.519244
\(203\) 4.98392 0.349802
\(204\) 31.6932 2.21897
\(205\) −10.6273 −0.742241
\(206\) 16.7329 1.16584
\(207\) 0 0
\(208\) −13.3086 −0.922783
\(209\) −1.52667 −0.105602
\(210\) −57.1094 −3.94092
\(211\) 17.4475 1.20113 0.600566 0.799575i \(-0.294942\pi\)
0.600566 + 0.799575i \(0.294942\pi\)
\(212\) 3.23719 0.222331
\(213\) −1.46495 −0.100376
\(214\) 5.66823 0.387472
\(215\) −12.8240 −0.874593
\(216\) −1.11839 −0.0760969
\(217\) 15.0984 1.02494
\(218\) 19.9848 1.35354
\(219\) −24.9286 −1.68452
\(220\) −9.64914 −0.650545
\(221\) −24.4320 −1.64347
\(222\) 32.1988 2.16104
\(223\) −11.2915 −0.756132 −0.378066 0.925779i \(-0.623411\pi\)
−0.378066 + 0.925779i \(0.623411\pi\)
\(224\) 23.4612 1.56757
\(225\) 26.4624 1.76416
\(226\) 23.2363 1.54566
\(227\) 10.2367 0.679436 0.339718 0.940527i \(-0.389668\pi\)
0.339718 + 0.940527i \(0.389668\pi\)
\(228\) 7.54520 0.499693
\(229\) −4.45586 −0.294452 −0.147226 0.989103i \(-0.547034\pi\)
−0.147226 + 0.989103i \(0.547034\pi\)
\(230\) 0 0
\(231\) −6.41213 −0.421887
\(232\) −0.806839 −0.0529716
\(233\) −11.3574 −0.744050 −0.372025 0.928223i \(-0.621336\pi\)
−0.372025 + 0.928223i \(0.621336\pi\)
\(234\) −15.0609 −0.984563
\(235\) −30.2629 −1.97414
\(236\) 30.8269 2.00666
\(237\) −19.4063 −1.26058
\(238\) 38.1058 2.47003
\(239\) 15.8082 1.02255 0.511275 0.859417i \(-0.329173\pi\)
0.511275 + 0.859417i \(0.329173\pi\)
\(240\) −33.5716 −2.16704
\(241\) −2.99569 −0.192969 −0.0964847 0.995334i \(-0.530760\pi\)
−0.0964847 + 0.995334i \(0.530760\pi\)
\(242\) −2.05610 −0.132171
\(243\) 17.3928 1.11575
\(244\) −6.26625 −0.401156
\(245\) −5.85807 −0.374258
\(246\) 11.1919 0.713568
\(247\) −5.81652 −0.370096
\(248\) −2.44425 −0.155210
\(249\) 2.00079 0.126795
\(250\) 78.0550 4.93663
\(251\) −4.03716 −0.254823 −0.127412 0.991850i \(-0.540667\pi\)
−0.127412 + 0.991850i \(0.540667\pi\)
\(252\) 12.3772 0.779689
\(253\) 0 0
\(254\) 29.6738 1.86190
\(255\) −61.6311 −3.85949
\(256\) 11.7641 0.735256
\(257\) −4.95896 −0.309331 −0.154666 0.987967i \(-0.549430\pi\)
−0.154666 + 0.987967i \(0.549430\pi\)
\(258\) 13.5054 0.840806
\(259\) 20.3987 1.26751
\(260\) −36.7626 −2.27992
\(261\) 3.31555 0.205228
\(262\) −15.2531 −0.942340
\(263\) 10.3871 0.640497 0.320249 0.947334i \(-0.396234\pi\)
0.320249 + 0.947334i \(0.396234\pi\)
\(264\) 1.03805 0.0638876
\(265\) −6.29508 −0.386704
\(266\) 9.07183 0.556229
\(267\) 7.50516 0.459309
\(268\) 11.9464 0.729745
\(269\) −24.6684 −1.50406 −0.752029 0.659130i \(-0.770925\pi\)
−0.752029 + 0.659130i \(0.770925\pi\)
\(270\) 21.2901 1.29568
\(271\) 10.4042 0.632007 0.316004 0.948758i \(-0.397659\pi\)
0.316004 + 0.948758i \(0.397659\pi\)
\(272\) 22.4004 1.35822
\(273\) −24.4298 −1.47856
\(274\) −9.08414 −0.548793
\(275\) 13.7639 0.829992
\(276\) 0 0
\(277\) 13.8144 0.830029 0.415015 0.909815i \(-0.363776\pi\)
0.415015 + 0.909815i \(0.363776\pi\)
\(278\) 0.739857 0.0443736
\(279\) 10.0442 0.601330
\(280\) 5.85716 0.350032
\(281\) −17.9297 −1.06959 −0.534797 0.844980i \(-0.679612\pi\)
−0.534797 + 0.844980i \(0.679612\pi\)
\(282\) 31.8707 1.89787
\(283\) 23.8691 1.41887 0.709434 0.704772i \(-0.248951\pi\)
0.709434 + 0.704772i \(0.248951\pi\)
\(284\) 1.47079 0.0872755
\(285\) −14.6725 −0.869124
\(286\) −7.83361 −0.463211
\(287\) 7.09032 0.418528
\(288\) 15.6076 0.919686
\(289\) 24.1228 1.41899
\(290\) 15.3593 0.901929
\(291\) −5.89757 −0.345722
\(292\) 25.0281 1.46466
\(293\) 32.6407 1.90689 0.953445 0.301568i \(-0.0975102\pi\)
0.953445 + 0.301568i \(0.0975102\pi\)
\(294\) 6.16929 0.359800
\(295\) −59.9465 −3.49022
\(296\) −3.30232 −0.191943
\(297\) 2.39041 0.138706
\(298\) 26.6416 1.54331
\(299\) 0 0
\(300\) −68.0245 −3.92739
\(301\) 8.55596 0.493157
\(302\) 10.3796 0.597277
\(303\) −7.96343 −0.457487
\(304\) 5.33285 0.305860
\(305\) 12.1854 0.697736
\(306\) 25.3499 1.44916
\(307\) −0.232419 −0.0132649 −0.00663244 0.999978i \(-0.502111\pi\)
−0.00663244 + 0.999978i \(0.502111\pi\)
\(308\) 6.43772 0.366823
\(309\) 18.0561 1.02718
\(310\) 46.5298 2.64271
\(311\) 14.5723 0.826320 0.413160 0.910658i \(-0.364425\pi\)
0.413160 + 0.910658i \(0.364425\pi\)
\(312\) 3.95490 0.223902
\(313\) 3.14964 0.178028 0.0890140 0.996030i \(-0.471628\pi\)
0.0890140 + 0.996030i \(0.471628\pi\)
\(314\) −26.6297 −1.50280
\(315\) −24.0689 −1.35613
\(316\) 19.4838 1.09605
\(317\) −16.7399 −0.940209 −0.470105 0.882611i \(-0.655784\pi\)
−0.470105 + 0.882611i \(0.655784\pi\)
\(318\) 6.62952 0.371765
\(319\) 1.72451 0.0965541
\(320\) 42.0397 2.35009
\(321\) 6.11646 0.341388
\(322\) 0 0
\(323\) 9.79010 0.544736
\(324\) −24.6621 −1.37012
\(325\) 52.4394 2.90881
\(326\) 34.3065 1.90006
\(327\) 21.5652 1.19256
\(328\) −1.14784 −0.0633789
\(329\) 20.1908 1.11316
\(330\) −19.7607 −1.08779
\(331\) −14.9545 −0.821972 −0.410986 0.911642i \(-0.634815\pi\)
−0.410986 + 0.911642i \(0.634815\pi\)
\(332\) −2.00878 −0.110246
\(333\) 13.5702 0.743645
\(334\) 13.9726 0.764546
\(335\) −23.2312 −1.26926
\(336\) 22.3983 1.22193
\(337\) −32.5164 −1.77128 −0.885641 0.464370i \(-0.846281\pi\)
−0.885641 + 0.464370i \(0.846281\pi\)
\(338\) −3.11623 −0.169500
\(339\) 25.0738 1.36182
\(340\) 61.8771 3.35576
\(341\) 5.22427 0.282910
\(342\) 6.03504 0.326337
\(343\) −16.3219 −0.881301
\(344\) −1.38511 −0.0746803
\(345\) 0 0
\(346\) −25.6568 −1.37932
\(347\) 20.6269 1.10731 0.553656 0.832746i \(-0.313232\pi\)
0.553656 + 0.832746i \(0.313232\pi\)
\(348\) −8.52297 −0.456879
\(349\) −12.4441 −0.666117 −0.333058 0.942906i \(-0.608081\pi\)
−0.333058 + 0.942906i \(0.608081\pi\)
\(350\) −81.7879 −4.37175
\(351\) 9.10732 0.486113
\(352\) 8.11794 0.432688
\(353\) −10.9466 −0.582631 −0.291316 0.956627i \(-0.594093\pi\)
−0.291316 + 0.956627i \(0.594093\pi\)
\(354\) 63.1312 3.35539
\(355\) −2.86013 −0.151800
\(356\) −7.53512 −0.399361
\(357\) 41.1191 2.17625
\(358\) −34.0087 −1.79742
\(359\) 23.7664 1.25434 0.627172 0.778881i \(-0.284212\pi\)
0.627172 + 0.778881i \(0.284212\pi\)
\(360\) 3.89647 0.205362
\(361\) −16.6693 −0.877330
\(362\) −36.9168 −1.94030
\(363\) −2.21869 −0.116451
\(364\) 24.5273 1.28558
\(365\) −48.6700 −2.54750
\(366\) −12.8328 −0.670782
\(367\) −15.9940 −0.834881 −0.417441 0.908704i \(-0.637073\pi\)
−0.417441 + 0.908704i \(0.637073\pi\)
\(368\) 0 0
\(369\) 4.71684 0.245549
\(370\) 62.8642 3.26815
\(371\) 4.19996 0.218051
\(372\) −25.8196 −1.33869
\(373\) −33.4633 −1.73267 −0.866333 0.499467i \(-0.833529\pi\)
−0.866333 + 0.499467i \(0.833529\pi\)
\(374\) 13.1852 0.681789
\(375\) 84.2275 4.34949
\(376\) −3.26867 −0.168569
\(377\) 6.57028 0.338386
\(378\) −14.2044 −0.730594
\(379\) −17.3556 −0.891496 −0.445748 0.895159i \(-0.647062\pi\)
−0.445748 + 0.895159i \(0.647062\pi\)
\(380\) 14.7311 0.755688
\(381\) 32.0203 1.64045
\(382\) −4.67453 −0.239170
\(383\) 27.8536 1.42326 0.711628 0.702557i \(-0.247958\pi\)
0.711628 + 0.702557i \(0.247958\pi\)
\(384\) −8.25065 −0.421039
\(385\) −12.5189 −0.638022
\(386\) 43.4431 2.21119
\(387\) 5.69185 0.289333
\(388\) 5.92111 0.300599
\(389\) −9.32078 −0.472583 −0.236291 0.971682i \(-0.575932\pi\)
−0.236291 + 0.971682i \(0.575932\pi\)
\(390\) −75.2871 −3.81231
\(391\) 0 0
\(392\) −0.632724 −0.0319574
\(393\) −16.4593 −0.830262
\(394\) 24.0789 1.21308
\(395\) −37.8884 −1.90637
\(396\) 4.28270 0.215214
\(397\) −11.3041 −0.567337 −0.283669 0.958922i \(-0.591552\pi\)
−0.283669 + 0.958922i \(0.591552\pi\)
\(398\) −41.5243 −2.08142
\(399\) 9.78921 0.490074
\(400\) −48.0788 −2.40394
\(401\) −8.03359 −0.401179 −0.200589 0.979675i \(-0.564286\pi\)
−0.200589 + 0.979675i \(0.564286\pi\)
\(402\) 24.4654 1.22023
\(403\) 19.9041 0.991495
\(404\) 7.99522 0.397777
\(405\) 47.9583 2.38307
\(406\) −10.2474 −0.508572
\(407\) 7.05826 0.349865
\(408\) −6.65671 −0.329556
\(409\) 33.7950 1.67106 0.835528 0.549448i \(-0.185162\pi\)
0.835528 + 0.549448i \(0.185162\pi\)
\(410\) 21.8508 1.07913
\(411\) −9.80250 −0.483521
\(412\) −18.1282 −0.893112
\(413\) 39.9951 1.96803
\(414\) 0 0
\(415\) 3.90630 0.191753
\(416\) 30.9288 1.51641
\(417\) 0.798363 0.0390960
\(418\) 3.13899 0.153533
\(419\) 26.9868 1.31839 0.659195 0.751972i \(-0.270897\pi\)
0.659195 + 0.751972i \(0.270897\pi\)
\(420\) 61.8715 3.01902
\(421\) −10.9779 −0.535030 −0.267515 0.963554i \(-0.586203\pi\)
−0.267515 + 0.963554i \(0.586203\pi\)
\(422\) −35.8737 −1.74631
\(423\) 13.4320 0.653085
\(424\) −0.679925 −0.0330201
\(425\) −88.2636 −4.28141
\(426\) 3.01208 0.145936
\(427\) −8.12990 −0.393433
\(428\) −6.14087 −0.296830
\(429\) −8.45308 −0.408119
\(430\) 26.3675 1.27156
\(431\) −16.4497 −0.792356 −0.396178 0.918174i \(-0.629664\pi\)
−0.396178 + 0.918174i \(0.629664\pi\)
\(432\) −8.35000 −0.401740
\(433\) 27.9939 1.34530 0.672651 0.739960i \(-0.265156\pi\)
0.672651 + 0.739960i \(0.265156\pi\)
\(434\) −31.0438 −1.49015
\(435\) 16.5739 0.794658
\(436\) −21.6513 −1.03691
\(437\) 0 0
\(438\) 51.2556 2.44909
\(439\) 33.7378 1.61022 0.805109 0.593126i \(-0.202107\pi\)
0.805109 + 0.593126i \(0.202107\pi\)
\(440\) 2.02667 0.0966175
\(441\) 2.60006 0.123812
\(442\) 50.2347 2.38942
\(443\) −25.3926 −1.20644 −0.603218 0.797576i \(-0.706115\pi\)
−0.603218 + 0.797576i \(0.706115\pi\)
\(444\) −34.8837 −1.65551
\(445\) 14.6529 0.694615
\(446\) 23.2164 1.09933
\(447\) 28.7484 1.35975
\(448\) −28.0481 −1.32515
\(449\) −14.1215 −0.666435 −0.333218 0.942850i \(-0.608134\pi\)
−0.333218 + 0.942850i \(0.608134\pi\)
\(450\) −54.4094 −2.56489
\(451\) 2.45336 0.115524
\(452\) −25.1739 −1.18408
\(453\) 11.2004 0.526239
\(454\) −21.0478 −0.987821
\(455\) −47.6961 −2.23603
\(456\) −1.58476 −0.0742133
\(457\) −17.6303 −0.824710 −0.412355 0.911023i \(-0.635294\pi\)
−0.412355 + 0.911023i \(0.635294\pi\)
\(458\) 9.16170 0.428098
\(459\) −15.3290 −0.715497
\(460\) 0 0
\(461\) 17.8012 0.829084 0.414542 0.910030i \(-0.363942\pi\)
0.414542 + 0.910030i \(0.363942\pi\)
\(462\) 13.1840 0.613374
\(463\) −7.20653 −0.334916 −0.167458 0.985879i \(-0.553556\pi\)
−0.167458 + 0.985879i \(0.553556\pi\)
\(464\) −6.02393 −0.279654
\(465\) 50.2093 2.32840
\(466\) 23.3520 1.08176
\(467\) −3.32989 −0.154089 −0.0770445 0.997028i \(-0.524548\pi\)
−0.0770445 + 0.997028i \(0.524548\pi\)
\(468\) 16.3168 0.754244
\(469\) 15.4994 0.715698
\(470\) 62.2236 2.87016
\(471\) −28.7355 −1.32406
\(472\) −6.47476 −0.298025
\(473\) 2.96049 0.136124
\(474\) 39.9013 1.83273
\(475\) −21.0129 −0.964138
\(476\) −41.2832 −1.89221
\(477\) 2.79402 0.127930
\(478\) −32.5033 −1.48667
\(479\) −18.9619 −0.866390 −0.433195 0.901300i \(-0.642614\pi\)
−0.433195 + 0.901300i \(0.642614\pi\)
\(480\) 78.0197 3.56110
\(481\) 26.8915 1.22615
\(482\) 6.15944 0.280555
\(483\) 0 0
\(484\) 2.22755 0.101252
\(485\) −11.5143 −0.522837
\(486\) −35.7614 −1.62217
\(487\) −43.1625 −1.95588 −0.977940 0.208885i \(-0.933017\pi\)
−0.977940 + 0.208885i \(0.933017\pi\)
\(488\) 1.31614 0.0595787
\(489\) 37.0194 1.67408
\(490\) 12.0448 0.544128
\(491\) −19.9626 −0.900898 −0.450449 0.892802i \(-0.648736\pi\)
−0.450449 + 0.892802i \(0.648736\pi\)
\(492\) −12.1251 −0.546642
\(493\) −11.0588 −0.498063
\(494\) 11.9594 0.538077
\(495\) −8.32819 −0.374324
\(496\) −18.2490 −0.819404
\(497\) 1.90822 0.0855954
\(498\) −4.11383 −0.184345
\(499\) 6.06017 0.271291 0.135645 0.990757i \(-0.456689\pi\)
0.135645 + 0.990757i \(0.456689\pi\)
\(500\) −84.5637 −3.78180
\(501\) 15.0775 0.673614
\(502\) 8.30080 0.370483
\(503\) −40.6847 −1.81404 −0.907020 0.421089i \(-0.861648\pi\)
−0.907020 + 0.421089i \(0.861648\pi\)
\(504\) −2.59965 −0.115798
\(505\) −15.5476 −0.691860
\(506\) 0 0
\(507\) −3.36266 −0.149341
\(508\) −32.1481 −1.42634
\(509\) 35.2348 1.56175 0.780877 0.624685i \(-0.214773\pi\)
0.780877 + 0.624685i \(0.214773\pi\)
\(510\) 126.720 5.61125
\(511\) 32.4717 1.43646
\(512\) −31.6256 −1.39767
\(513\) −3.64938 −0.161124
\(514\) 10.1961 0.449732
\(515\) 35.2524 1.55341
\(516\) −14.6315 −0.644116
\(517\) 6.98634 0.307259
\(518\) −41.9418 −1.84282
\(519\) −27.6857 −1.21527
\(520\) 7.72146 0.338609
\(521\) 18.3373 0.803370 0.401685 0.915778i \(-0.368425\pi\)
0.401685 + 0.915778i \(0.368425\pi\)
\(522\) −6.81711 −0.298377
\(523\) 2.80993 0.122870 0.0614348 0.998111i \(-0.480432\pi\)
0.0614348 + 0.998111i \(0.480432\pi\)
\(524\) 16.5250 0.721898
\(525\) −88.2556 −3.85179
\(526\) −21.3570 −0.931208
\(527\) −33.5017 −1.45936
\(528\) 7.75017 0.337283
\(529\) 0 0
\(530\) 12.9433 0.562222
\(531\) 26.6068 1.15464
\(532\) −9.82829 −0.426110
\(533\) 9.34713 0.404869
\(534\) −15.4314 −0.667781
\(535\) 11.9416 0.516282
\(536\) −2.50918 −0.108380
\(537\) −36.6980 −1.58364
\(538\) 50.7207 2.18672
\(539\) 1.35236 0.0582504
\(540\) −23.0654 −0.992578
\(541\) 35.7209 1.53576 0.767881 0.640592i \(-0.221311\pi\)
0.767881 + 0.640592i \(0.221311\pi\)
\(542\) −21.3920 −0.918865
\(543\) −39.8361 −1.70953
\(544\) −52.0580 −2.23197
\(545\) 42.1034 1.80351
\(546\) 50.2301 2.14965
\(547\) 28.2178 1.20651 0.603253 0.797550i \(-0.293871\pi\)
0.603253 + 0.797550i \(0.293871\pi\)
\(548\) 9.84162 0.420413
\(549\) −5.40842 −0.230826
\(550\) −28.2999 −1.20671
\(551\) −2.63276 −0.112159
\(552\) 0 0
\(553\) 25.2784 1.07495
\(554\) −28.4039 −1.20677
\(555\) 67.8354 2.87945
\(556\) −0.801550 −0.0339933
\(557\) 18.2657 0.773945 0.386972 0.922091i \(-0.373521\pi\)
0.386972 + 0.922091i \(0.373521\pi\)
\(558\) −20.6519 −0.874264
\(559\) 11.2793 0.477063
\(560\) 43.7300 1.84793
\(561\) 14.2278 0.600700
\(562\) 36.8652 1.55507
\(563\) −0.631160 −0.0266002 −0.0133001 0.999912i \(-0.504234\pi\)
−0.0133001 + 0.999912i \(0.504234\pi\)
\(564\) −34.5283 −1.45390
\(565\) 48.9535 2.05949
\(566\) −49.0772 −2.06287
\(567\) −31.9969 −1.34374
\(568\) −0.308919 −0.0129620
\(569\) −14.4853 −0.607256 −0.303628 0.952791i \(-0.598198\pi\)
−0.303628 + 0.952791i \(0.598198\pi\)
\(570\) 30.1681 1.26360
\(571\) 11.2868 0.472339 0.236169 0.971712i \(-0.424108\pi\)
0.236169 + 0.971712i \(0.424108\pi\)
\(572\) 8.48682 0.354852
\(573\) −5.04418 −0.210724
\(574\) −14.5784 −0.608491
\(575\) 0 0
\(576\) −18.6590 −0.777458
\(577\) 4.89983 0.203983 0.101991 0.994785i \(-0.467479\pi\)
0.101991 + 0.994785i \(0.467479\pi\)
\(578\) −49.5990 −2.06305
\(579\) 46.8785 1.94820
\(580\) −16.6401 −0.690940
\(581\) −2.60621 −0.108124
\(582\) 12.1260 0.502639
\(583\) 1.45325 0.0601874
\(584\) −5.25679 −0.217528
\(585\) −31.7299 −1.31187
\(586\) −67.1125 −2.77239
\(587\) 9.93826 0.410196 0.205098 0.978741i \(-0.434249\pi\)
0.205098 + 0.978741i \(0.434249\pi\)
\(588\) −6.68372 −0.275632
\(589\) −7.97574 −0.328635
\(590\) 123.256 5.07437
\(591\) 25.9830 1.06880
\(592\) −24.6554 −1.01333
\(593\) 9.48537 0.389517 0.194759 0.980851i \(-0.437608\pi\)
0.194759 + 0.980851i \(0.437608\pi\)
\(594\) −4.91493 −0.201662
\(595\) 80.2800 3.29116
\(596\) −28.8631 −1.18228
\(597\) −44.8079 −1.83387
\(598\) 0 0
\(599\) 15.1557 0.619247 0.309623 0.950859i \(-0.399797\pi\)
0.309623 + 0.950859i \(0.399797\pi\)
\(600\) 14.2876 0.583288
\(601\) −22.0796 −0.900645 −0.450323 0.892866i \(-0.648691\pi\)
−0.450323 + 0.892866i \(0.648691\pi\)
\(602\) −17.5919 −0.716993
\(603\) 10.3110 0.419897
\(604\) −11.2451 −0.457556
\(605\) −4.33173 −0.176110
\(606\) 16.3736 0.665133
\(607\) −31.3695 −1.27325 −0.636624 0.771174i \(-0.719670\pi\)
−0.636624 + 0.771174i \(0.719670\pi\)
\(608\) −12.3934 −0.502620
\(609\) −11.0578 −0.448084
\(610\) −25.0545 −1.01443
\(611\) 26.6175 1.07683
\(612\) −27.4637 −1.11015
\(613\) −21.6870 −0.875929 −0.437965 0.898992i \(-0.644300\pi\)
−0.437965 + 0.898992i \(0.644300\pi\)
\(614\) 0.477878 0.0192856
\(615\) 23.5787 0.950784
\(616\) −1.35215 −0.0544798
\(617\) 48.9622 1.97114 0.985572 0.169257i \(-0.0541367\pi\)
0.985572 + 0.169257i \(0.0541367\pi\)
\(618\) −37.1252 −1.49340
\(619\) 35.5606 1.42930 0.714651 0.699481i \(-0.246585\pi\)
0.714651 + 0.699481i \(0.246585\pi\)
\(620\) −50.4097 −2.02450
\(621\) 0 0
\(622\) −29.9621 −1.20137
\(623\) −9.77614 −0.391673
\(624\) 29.5276 1.18205
\(625\) 95.6245 3.82498
\(626\) −6.47597 −0.258832
\(627\) 3.38722 0.135272
\(628\) 28.8502 1.15125
\(629\) −45.2626 −1.80474
\(630\) 49.4880 1.97165
\(631\) 24.3548 0.969549 0.484775 0.874639i \(-0.338902\pi\)
0.484775 + 0.874639i \(0.338902\pi\)
\(632\) −4.09229 −0.162783
\(633\) −38.7106 −1.53861
\(634\) 34.4190 1.36695
\(635\) 62.5157 2.48086
\(636\) −7.18232 −0.284798
\(637\) 5.15242 0.204146
\(638\) −3.54577 −0.140378
\(639\) 1.26944 0.0502185
\(640\) −16.1084 −0.636740
\(641\) −8.93168 −0.352780 −0.176390 0.984320i \(-0.556442\pi\)
−0.176390 + 0.984320i \(0.556442\pi\)
\(642\) −12.5761 −0.496337
\(643\) −21.7066 −0.856024 −0.428012 0.903773i \(-0.640786\pi\)
−0.428012 + 0.903773i \(0.640786\pi\)
\(644\) 0 0
\(645\) 28.4526 1.12032
\(646\) −20.1294 −0.791982
\(647\) 20.5879 0.809392 0.404696 0.914451i \(-0.367377\pi\)
0.404696 + 0.914451i \(0.367377\pi\)
\(648\) 5.17993 0.203487
\(649\) 13.8389 0.543226
\(650\) −107.821 −4.22907
\(651\) −33.4987 −1.31292
\(652\) −37.1672 −1.45558
\(653\) 41.9239 1.64061 0.820305 0.571927i \(-0.193804\pi\)
0.820305 + 0.571927i \(0.193804\pi\)
\(654\) −44.3402 −1.73384
\(655\) −32.1348 −1.25561
\(656\) −8.56988 −0.334598
\(657\) 21.6018 0.842766
\(658\) −41.5144 −1.61840
\(659\) 13.8062 0.537812 0.268906 0.963166i \(-0.413338\pi\)
0.268906 + 0.963166i \(0.413338\pi\)
\(660\) 21.4085 0.833324
\(661\) 0.0154939 0.000602642 0 0.000301321 1.00000i \(-0.499904\pi\)
0.000301321 1.00000i \(0.499904\pi\)
\(662\) 30.7479 1.19505
\(663\) 54.2071 2.10523
\(664\) 0.421915 0.0163735
\(665\) 19.1122 0.741141
\(666\) −27.9018 −1.08117
\(667\) 0 0
\(668\) −15.1377 −0.585695
\(669\) 25.0523 0.968578
\(670\) 47.7658 1.84535
\(671\) −2.81307 −0.108597
\(672\) −52.0533 −2.00800
\(673\) 45.0944 1.73826 0.869131 0.494581i \(-0.164679\pi\)
0.869131 + 0.494581i \(0.164679\pi\)
\(674\) 66.8570 2.57524
\(675\) 32.9013 1.26637
\(676\) 3.37608 0.129849
\(677\) −24.0327 −0.923653 −0.461827 0.886970i \(-0.652806\pi\)
−0.461827 + 0.886970i \(0.652806\pi\)
\(678\) −51.5543 −1.97993
\(679\) 7.68211 0.294812
\(680\) −12.9964 −0.498390
\(681\) −22.7122 −0.870333
\(682\) −10.7416 −0.411318
\(683\) 10.3994 0.397920 0.198960 0.980008i \(-0.436244\pi\)
0.198960 + 0.980008i \(0.436244\pi\)
\(684\) −6.53827 −0.249997
\(685\) −19.1382 −0.731232
\(686\) 33.5595 1.28131
\(687\) 9.88619 0.377182
\(688\) −10.3414 −0.394261
\(689\) 5.53678 0.210935
\(690\) 0 0
\(691\) 14.8474 0.564820 0.282410 0.959294i \(-0.408866\pi\)
0.282410 + 0.959294i \(0.408866\pi\)
\(692\) 27.7962 1.05665
\(693\) 5.55641 0.211071
\(694\) −42.4110 −1.60990
\(695\) 1.55871 0.0591251
\(696\) 1.79013 0.0678547
\(697\) −15.7327 −0.595917
\(698\) 25.5863 0.968456
\(699\) 25.1987 0.953101
\(700\) 88.6079 3.34906
\(701\) 5.40765 0.204244 0.102122 0.994772i \(-0.467437\pi\)
0.102122 + 0.994772i \(0.467437\pi\)
\(702\) −18.7256 −0.706751
\(703\) −10.7756 −0.406411
\(704\) −9.70506 −0.365773
\(705\) 67.1442 2.52880
\(706\) 22.5074 0.847077
\(707\) 10.3731 0.390120
\(708\) −68.3955 −2.57046
\(709\) 5.20178 0.195357 0.0976785 0.995218i \(-0.468858\pi\)
0.0976785 + 0.995218i \(0.468858\pi\)
\(710\) 5.88071 0.220699
\(711\) 16.8165 0.630667
\(712\) 1.58265 0.0593122
\(713\) 0 0
\(714\) −84.5450 −3.16402
\(715\) −16.5036 −0.617199
\(716\) 36.8445 1.37694
\(717\) −35.0737 −1.30985
\(718\) −48.8661 −1.82367
\(719\) 25.9654 0.968346 0.484173 0.874972i \(-0.339121\pi\)
0.484173 + 0.874972i \(0.339121\pi\)
\(720\) 29.0914 1.08417
\(721\) −23.5197 −0.875920
\(722\) 34.2737 1.27554
\(723\) 6.64652 0.247187
\(724\) 39.9951 1.48641
\(725\) 23.7359 0.881530
\(726\) 4.56186 0.169306
\(727\) 28.3183 1.05027 0.525133 0.851020i \(-0.324015\pi\)
0.525133 + 0.851020i \(0.324015\pi\)
\(728\) −5.15161 −0.190931
\(729\) −5.37514 −0.199079
\(730\) 100.070 3.70377
\(731\) −18.9848 −0.702177
\(732\) 13.9029 0.513866
\(733\) −47.7054 −1.76204 −0.881019 0.473081i \(-0.843142\pi\)
−0.881019 + 0.473081i \(0.843142\pi\)
\(734\) 32.8853 1.21382
\(735\) 12.9973 0.479411
\(736\) 0 0
\(737\) 5.36304 0.197550
\(738\) −9.69829 −0.356999
\(739\) 7.71007 0.283619 0.141810 0.989894i \(-0.454708\pi\)
0.141810 + 0.989894i \(0.454708\pi\)
\(740\) −68.1061 −2.50363
\(741\) 12.9051 0.474080
\(742\) −8.63553 −0.317020
\(743\) −25.7124 −0.943295 −0.471648 0.881787i \(-0.656341\pi\)
−0.471648 + 0.881787i \(0.656341\pi\)
\(744\) 5.42305 0.198819
\(745\) 56.1277 2.05636
\(746\) 68.8040 2.51909
\(747\) −1.73378 −0.0634357
\(748\) −14.2846 −0.522298
\(749\) −7.96723 −0.291116
\(750\) −173.180 −6.32365
\(751\) −10.9593 −0.399911 −0.199955 0.979805i \(-0.564080\pi\)
−0.199955 + 0.979805i \(0.564080\pi\)
\(752\) −24.4041 −0.889927
\(753\) 8.95722 0.326419
\(754\) −13.5091 −0.491974
\(755\) 21.8673 0.795834
\(756\) 15.3888 0.559686
\(757\) 43.3639 1.57609 0.788044 0.615619i \(-0.211094\pi\)
0.788044 + 0.615619i \(0.211094\pi\)
\(758\) 35.6848 1.29613
\(759\) 0 0
\(760\) −3.09405 −0.112233
\(761\) −27.2775 −0.988807 −0.494404 0.869233i \(-0.664613\pi\)
−0.494404 + 0.869233i \(0.664613\pi\)
\(762\) −65.8370 −2.38502
\(763\) −28.0906 −1.01695
\(764\) 5.06431 0.183220
\(765\) 53.4063 1.93091
\(766\) −57.2699 −2.06925
\(767\) 52.7254 1.90380
\(768\) −26.1009 −0.941837
\(769\) −52.6492 −1.89858 −0.949290 0.314402i \(-0.898196\pi\)
−0.949290 + 0.314402i \(0.898196\pi\)
\(770\) 25.7401 0.927609
\(771\) 11.0024 0.396242
\(772\) −47.0656 −1.69393
\(773\) −28.8150 −1.03640 −0.518202 0.855258i \(-0.673398\pi\)
−0.518202 + 0.855258i \(0.673398\pi\)
\(774\) −11.7030 −0.420657
\(775\) 71.9061 2.58294
\(776\) −1.24365 −0.0446443
\(777\) −45.2585 −1.62364
\(778\) 19.1645 0.687080
\(779\) −3.74547 −0.134195
\(780\) 81.5649 2.92049
\(781\) 0.660274 0.0236265
\(782\) 0 0
\(783\) 4.12229 0.147319
\(784\) −4.72397 −0.168713
\(785\) −56.1026 −2.00239
\(786\) 33.8420 1.20710
\(787\) 12.3824 0.441384 0.220692 0.975344i \(-0.429168\pi\)
0.220692 + 0.975344i \(0.429168\pi\)
\(788\) −26.0867 −0.929301
\(789\) −23.0458 −0.820454
\(790\) 77.9024 2.77164
\(791\) −32.6609 −1.16129
\(792\) −0.899520 −0.0319630
\(793\) −10.7176 −0.380593
\(794\) 23.2424 0.824842
\(795\) 13.9669 0.495353
\(796\) 44.9868 1.59451
\(797\) 2.11487 0.0749126 0.0374563 0.999298i \(-0.488075\pi\)
0.0374563 + 0.999298i \(0.488075\pi\)
\(798\) −20.1276 −0.712510
\(799\) −44.8014 −1.58496
\(800\) 111.734 3.95040
\(801\) −6.50358 −0.229793
\(802\) 16.5179 0.583267
\(803\) 11.2357 0.396499
\(804\) −26.5055 −0.934777
\(805\) 0 0
\(806\) −40.9249 −1.44152
\(807\) 54.7316 1.92664
\(808\) −1.67928 −0.0590770
\(809\) 32.6545 1.14807 0.574036 0.818830i \(-0.305377\pi\)
0.574036 + 0.818830i \(0.305377\pi\)
\(810\) −98.6071 −3.46470
\(811\) 26.1035 0.916619 0.458309 0.888793i \(-0.348455\pi\)
0.458309 + 0.888793i \(0.348455\pi\)
\(812\) 11.1019 0.389601
\(813\) −23.0836 −0.809579
\(814\) −14.5125 −0.508663
\(815\) 72.2759 2.53171
\(816\) −49.6996 −1.73983
\(817\) −4.51970 −0.158124
\(818\) −69.4860 −2.42952
\(819\) 21.1696 0.739725
\(820\) −23.6728 −0.826690
\(821\) −21.6788 −0.756595 −0.378297 0.925684i \(-0.623490\pi\)
−0.378297 + 0.925684i \(0.623490\pi\)
\(822\) 20.1549 0.702984
\(823\) 17.4941 0.609805 0.304903 0.952384i \(-0.401376\pi\)
0.304903 + 0.952384i \(0.401376\pi\)
\(824\) 3.80757 0.132643
\(825\) −30.5378 −1.06319
\(826\) −82.2340 −2.86129
\(827\) 6.05049 0.210396 0.105198 0.994451i \(-0.466452\pi\)
0.105198 + 0.994451i \(0.466452\pi\)
\(828\) 0 0
\(829\) 37.6759 1.30854 0.654269 0.756262i \(-0.272976\pi\)
0.654269 + 0.756262i \(0.272976\pi\)
\(830\) −8.03174 −0.278786
\(831\) −30.6500 −1.06324
\(832\) −36.9756 −1.28190
\(833\) −8.67232 −0.300478
\(834\) −1.64152 −0.0568410
\(835\) 29.4370 1.01871
\(836\) −3.40074 −0.117617
\(837\) 12.4882 0.431654
\(838\) −55.4875 −1.91678
\(839\) −10.2034 −0.352262 −0.176131 0.984367i \(-0.556358\pi\)
−0.176131 + 0.984367i \(0.556358\pi\)
\(840\) −12.9952 −0.448378
\(841\) −26.0261 −0.897450
\(842\) 22.5717 0.777871
\(843\) 39.7805 1.37011
\(844\) 38.8651 1.33779
\(845\) −6.56517 −0.225849
\(846\) −27.6175 −0.949508
\(847\) 2.89005 0.0993031
\(848\) −5.07638 −0.174323
\(849\) −52.9582 −1.81752
\(850\) 181.479 6.22467
\(851\) 0 0
\(852\) −3.26324 −0.111797
\(853\) −46.9586 −1.60783 −0.803916 0.594743i \(-0.797254\pi\)
−0.803916 + 0.594743i \(0.797254\pi\)
\(854\) 16.7159 0.572006
\(855\) 12.7144 0.434824
\(856\) 1.28980 0.0440846
\(857\) −24.1920 −0.826383 −0.413192 0.910644i \(-0.635586\pi\)
−0.413192 + 0.910644i \(0.635586\pi\)
\(858\) 17.3804 0.593356
\(859\) −15.6270 −0.533188 −0.266594 0.963809i \(-0.585898\pi\)
−0.266594 + 0.963809i \(0.585898\pi\)
\(860\) −28.5662 −0.974100
\(861\) −15.7312 −0.536119
\(862\) 33.8223 1.15199
\(863\) −44.1104 −1.50154 −0.750769 0.660565i \(-0.770317\pi\)
−0.750769 + 0.660565i \(0.770317\pi\)
\(864\) 19.4052 0.660179
\(865\) −54.0529 −1.83785
\(866\) −57.5583 −1.95591
\(867\) −53.5212 −1.81767
\(868\) 33.6324 1.14156
\(869\) 8.74672 0.296712
\(870\) −34.0776 −1.15534
\(871\) 20.4328 0.692340
\(872\) 4.54755 0.153999
\(873\) 5.11053 0.172965
\(874\) 0 0
\(875\) −109.714 −3.70900
\(876\) −55.5296 −1.87617
\(877\) 6.30847 0.213022 0.106511 0.994312i \(-0.466032\pi\)
0.106511 + 0.994312i \(0.466032\pi\)
\(878\) −69.3684 −2.34107
\(879\) −72.4197 −2.44266
\(880\) 15.1312 0.510074
\(881\) 5.76879 0.194355 0.0971777 0.995267i \(-0.469018\pi\)
0.0971777 + 0.995267i \(0.469018\pi\)
\(882\) −5.34598 −0.180009
\(883\) 5.02373 0.169062 0.0845310 0.996421i \(-0.473061\pi\)
0.0845310 + 0.996421i \(0.473061\pi\)
\(884\) −54.4235 −1.83046
\(885\) 133.003 4.47084
\(886\) 52.2097 1.75402
\(887\) 11.8215 0.396926 0.198463 0.980108i \(-0.436405\pi\)
0.198463 + 0.980108i \(0.436405\pi\)
\(888\) 7.32683 0.245872
\(889\) −41.7093 −1.39889
\(890\) −30.1279 −1.00989
\(891\) −11.0714 −0.370906
\(892\) −25.1523 −0.842161
\(893\) −10.6659 −0.356919
\(894\) −59.1096 −1.97692
\(895\) −71.6484 −2.39494
\(896\) 10.7472 0.359039
\(897\) 0 0
\(898\) 29.0352 0.968918
\(899\) 9.00931 0.300477
\(900\) 58.9464 1.96488
\(901\) −9.31926 −0.310470
\(902\) −5.04435 −0.167959
\(903\) −18.9831 −0.631717
\(904\) 5.28742 0.175857
\(905\) −77.7751 −2.58533
\(906\) −23.0291 −0.765090
\(907\) −7.56238 −0.251105 −0.125552 0.992087i \(-0.540070\pi\)
−0.125552 + 0.992087i \(0.540070\pi\)
\(908\) 22.8028 0.756739
\(909\) 6.90069 0.228881
\(910\) 98.0681 3.25093
\(911\) 21.5290 0.713289 0.356644 0.934240i \(-0.383921\pi\)
0.356644 + 0.934240i \(0.383921\pi\)
\(912\) −11.8320 −0.391795
\(913\) −0.901787 −0.0298448
\(914\) 36.2497 1.19903
\(915\) −27.0358 −0.893775
\(916\) −9.92565 −0.327953
\(917\) 21.4397 0.708001
\(918\) 31.5180 1.04025
\(919\) −24.9287 −0.822323 −0.411161 0.911563i \(-0.634877\pi\)
−0.411161 + 0.911563i \(0.634877\pi\)
\(920\) 0 0
\(921\) 0.515668 0.0169918
\(922\) −36.6010 −1.20539
\(923\) 2.51560 0.0828020
\(924\) −14.2833 −0.469887
\(925\) 97.1489 3.19424
\(926\) 14.8173 0.486928
\(927\) −15.6465 −0.513898
\(928\) 13.9995 0.459555
\(929\) 15.0679 0.494362 0.247181 0.968969i \(-0.420496\pi\)
0.247181 + 0.968969i \(0.420496\pi\)
\(930\) −103.235 −3.38522
\(931\) −2.06462 −0.0676651
\(932\) −25.2992 −0.828704
\(933\) −32.3315 −1.05849
\(934\) 6.84659 0.224027
\(935\) 27.7781 0.908441
\(936\) −3.42711 −0.112019
\(937\) 19.9596 0.652053 0.326026 0.945361i \(-0.394290\pi\)
0.326026 + 0.945361i \(0.394290\pi\)
\(938\) −31.8684 −1.04054
\(939\) −6.98808 −0.228047
\(940\) −67.4122 −2.19874
\(941\) 46.8612 1.52763 0.763816 0.645434i \(-0.223323\pi\)
0.763816 + 0.645434i \(0.223323\pi\)
\(942\) 59.0832 1.92503
\(943\) 0 0
\(944\) −48.3411 −1.57337
\(945\) −29.9253 −0.973471
\(946\) −6.08707 −0.197908
\(947\) 29.1621 0.947641 0.473820 0.880622i \(-0.342875\pi\)
0.473820 + 0.880622i \(0.342875\pi\)
\(948\) −43.2285 −1.40400
\(949\) 42.8073 1.38958
\(950\) 43.2046 1.40174
\(951\) 37.1408 1.20437
\(952\) 8.67096 0.281027
\(953\) 16.2262 0.525619 0.262810 0.964848i \(-0.415351\pi\)
0.262810 + 0.964848i \(0.415351\pi\)
\(954\) −5.74479 −0.185994
\(955\) −9.84814 −0.318678
\(956\) 35.2137 1.13889
\(957\) −3.82616 −0.123682
\(958\) 38.9875 1.25963
\(959\) 12.7686 0.412320
\(960\) −93.2732 −3.01038
\(961\) −3.70703 −0.119582
\(962\) −55.2917 −1.78267
\(963\) −5.30020 −0.170797
\(964\) −6.67305 −0.214924
\(965\) 91.5245 2.94628
\(966\) 0 0
\(967\) 24.8078 0.797764 0.398882 0.917002i \(-0.369398\pi\)
0.398882 + 0.917002i \(0.369398\pi\)
\(968\) −0.467865 −0.0150378
\(969\) −21.7212 −0.697787
\(970\) 23.6745 0.760143
\(971\) −31.7098 −1.01761 −0.508807 0.860880i \(-0.669913\pi\)
−0.508807 + 0.860880i \(0.669913\pi\)
\(972\) 38.7434 1.24269
\(973\) −1.03994 −0.0333389
\(974\) 88.7465 2.84362
\(975\) −116.347 −3.72609
\(976\) 9.82639 0.314535
\(977\) −53.7258 −1.71884 −0.859421 0.511269i \(-0.829176\pi\)
−0.859421 + 0.511269i \(0.829176\pi\)
\(978\) −76.1157 −2.43391
\(979\) −3.38269 −0.108111
\(980\) −13.0491 −0.416840
\(981\) −18.6873 −0.596639
\(982\) 41.0451 1.30980
\(983\) −42.5283 −1.35644 −0.678220 0.734859i \(-0.737249\pi\)
−0.678220 + 0.734859i \(0.737249\pi\)
\(984\) 2.54671 0.0811861
\(985\) 50.7286 1.61635
\(986\) 22.7380 0.724125
\(987\) −44.7973 −1.42591
\(988\) −12.9566 −0.412204
\(989\) 0 0
\(990\) 17.1236 0.544224
\(991\) 15.2326 0.483879 0.241940 0.970291i \(-0.422216\pi\)
0.241940 + 0.970291i \(0.422216\pi\)
\(992\) 42.4103 1.34653
\(993\) 33.1794 1.05292
\(994\) −3.92350 −0.124446
\(995\) −87.4820 −2.77337
\(996\) 4.45686 0.141221
\(997\) 29.8669 0.945894 0.472947 0.881091i \(-0.343190\pi\)
0.472947 + 0.881091i \(0.343190\pi\)
\(998\) −12.4603 −0.394425
\(999\) 16.8722 0.533812
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.u.1.10 60
23.4 even 11 253.2.i.b.177.10 120
23.6 even 11 253.2.i.b.243.10 yes 120
23.22 odd 2 5819.2.a.t.1.10 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
253.2.i.b.177.10 120 23.4 even 11
253.2.i.b.243.10 yes 120 23.6 even 11
5819.2.a.t.1.10 60 23.22 odd 2
5819.2.a.u.1.10 60 1.1 even 1 trivial