Properties

Label 5819.2.a.o.1.16
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,2,-2,18,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 25 x^{16} + 48 x^{15} + 251 x^{14} - 460 x^{13} - 1295 x^{12} + 2248 x^{11} + \cdots - 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(2.24352\) of defining polynomial
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.24352 q^{2} +2.33974 q^{3} +3.03336 q^{4} +4.11350 q^{5} +5.24923 q^{6} -1.26950 q^{7} +2.31836 q^{8} +2.47436 q^{9} +9.22871 q^{10} -1.00000 q^{11} +7.09726 q^{12} -5.17789 q^{13} -2.84813 q^{14} +9.62451 q^{15} -0.865449 q^{16} +5.76076 q^{17} +5.55127 q^{18} +5.14046 q^{19} +12.4777 q^{20} -2.97028 q^{21} -2.24352 q^{22} +5.42434 q^{24} +11.9209 q^{25} -11.6167 q^{26} -1.22986 q^{27} -3.85084 q^{28} +10.0462 q^{29} +21.5927 q^{30} -0.138232 q^{31} -6.57836 q^{32} -2.33974 q^{33} +12.9244 q^{34} -5.22207 q^{35} +7.50563 q^{36} -0.439152 q^{37} +11.5327 q^{38} -12.1149 q^{39} +9.53657 q^{40} -5.19984 q^{41} -6.66388 q^{42} +2.61480 q^{43} -3.03336 q^{44} +10.1783 q^{45} -7.83119 q^{47} -2.02492 q^{48} -5.38838 q^{49} +26.7447 q^{50} +13.4787 q^{51} -15.7064 q^{52} +1.53250 q^{53} -2.75920 q^{54} -4.11350 q^{55} -2.94315 q^{56} +12.0273 q^{57} +22.5387 q^{58} +4.18861 q^{59} +29.1946 q^{60} -2.39403 q^{61} -0.310126 q^{62} -3.14119 q^{63} -13.0278 q^{64} -21.2993 q^{65} -5.24923 q^{66} -12.0538 q^{67} +17.4745 q^{68} -11.7158 q^{70} -3.68996 q^{71} +5.73645 q^{72} -5.19238 q^{73} -0.985244 q^{74} +27.8918 q^{75} +15.5929 q^{76} +1.26950 q^{77} -27.1799 q^{78} +3.84426 q^{79} -3.56003 q^{80} -10.3006 q^{81} -11.6659 q^{82} -2.32289 q^{83} -9.00994 q^{84} +23.6969 q^{85} +5.86635 q^{86} +23.5054 q^{87} -2.31836 q^{88} +13.4702 q^{89} +22.8352 q^{90} +6.57331 q^{91} -0.323427 q^{93} -17.5694 q^{94} +21.1453 q^{95} -15.3916 q^{96} -9.73757 q^{97} -12.0889 q^{98} -2.47436 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 2 q^{3} + 18 q^{4} + 8 q^{5} - 6 q^{6} + 10 q^{7} + 6 q^{8} + 16 q^{9} + 12 q^{10} - 18 q^{11} + 10 q^{12} + 28 q^{14} + 8 q^{15} + 26 q^{16} - 20 q^{18} + 16 q^{19} + 40 q^{20} + 12 q^{21}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24352 1.58640 0.793202 0.608958i \(-0.208412\pi\)
0.793202 + 0.608958i \(0.208412\pi\)
\(3\) 2.33974 1.35085 0.675423 0.737430i \(-0.263961\pi\)
0.675423 + 0.737430i \(0.263961\pi\)
\(4\) 3.03336 1.51668
\(5\) 4.11350 1.83961 0.919807 0.392371i \(-0.128345\pi\)
0.919807 + 0.392371i \(0.128345\pi\)
\(6\) 5.24923 2.14299
\(7\) −1.26950 −0.479824 −0.239912 0.970795i \(-0.577119\pi\)
−0.239912 + 0.970795i \(0.577119\pi\)
\(8\) 2.31836 0.819663
\(9\) 2.47436 0.824787
\(10\) 9.22871 2.91837
\(11\) −1.00000 −0.301511
\(12\) 7.09726 2.04880
\(13\) −5.17789 −1.43609 −0.718044 0.695998i \(-0.754962\pi\)
−0.718044 + 0.695998i \(0.754962\pi\)
\(14\) −2.84813 −0.761195
\(15\) 9.62451 2.48504
\(16\) −0.865449 −0.216362
\(17\) 5.76076 1.39719 0.698595 0.715518i \(-0.253809\pi\)
0.698595 + 0.715518i \(0.253809\pi\)
\(18\) 5.55127 1.30845
\(19\) 5.14046 1.17930 0.589651 0.807658i \(-0.299265\pi\)
0.589651 + 0.807658i \(0.299265\pi\)
\(20\) 12.4777 2.79011
\(21\) −2.97028 −0.648169
\(22\) −2.24352 −0.478319
\(23\) 0 0
\(24\) 5.42434 1.10724
\(25\) 11.9209 2.38418
\(26\) −11.6167 −2.27822
\(27\) −1.22986 −0.236686
\(28\) −3.85084 −0.727740
\(29\) 10.0462 1.86553 0.932763 0.360491i \(-0.117391\pi\)
0.932763 + 0.360491i \(0.117391\pi\)
\(30\) 21.5927 3.94227
\(31\) −0.138232 −0.0248272 −0.0124136 0.999923i \(-0.503951\pi\)
−0.0124136 + 0.999923i \(0.503951\pi\)
\(32\) −6.57836 −1.16290
\(33\) −2.33974 −0.407296
\(34\) 12.9244 2.21651
\(35\) −5.22207 −0.882692
\(36\) 7.50563 1.25094
\(37\) −0.439152 −0.0721961 −0.0360981 0.999348i \(-0.511493\pi\)
−0.0360981 + 0.999348i \(0.511493\pi\)
\(38\) 11.5327 1.87085
\(39\) −12.1149 −1.93993
\(40\) 9.53657 1.50786
\(41\) −5.19984 −0.812078 −0.406039 0.913856i \(-0.633090\pi\)
−0.406039 + 0.913856i \(0.633090\pi\)
\(42\) −6.66388 −1.02826
\(43\) 2.61480 0.398754 0.199377 0.979923i \(-0.436108\pi\)
0.199377 + 0.979923i \(0.436108\pi\)
\(44\) −3.03336 −0.457296
\(45\) 10.1783 1.51729
\(46\) 0 0
\(47\) −7.83119 −1.14230 −0.571148 0.820847i \(-0.693502\pi\)
−0.571148 + 0.820847i \(0.693502\pi\)
\(48\) −2.02492 −0.292272
\(49\) −5.38838 −0.769769
\(50\) 26.7447 3.78228
\(51\) 13.4787 1.88739
\(52\) −15.7064 −2.17809
\(53\) 1.53250 0.210505 0.105253 0.994446i \(-0.466435\pi\)
0.105253 + 0.994446i \(0.466435\pi\)
\(54\) −2.75920 −0.375479
\(55\) −4.11350 −0.554665
\(56\) −2.94315 −0.393294
\(57\) 12.0273 1.59306
\(58\) 22.5387 2.95948
\(59\) 4.18861 0.545310 0.272655 0.962112i \(-0.412098\pi\)
0.272655 + 0.962112i \(0.412098\pi\)
\(60\) 29.1946 3.76901
\(61\) −2.39403 −0.306524 −0.153262 0.988186i \(-0.548978\pi\)
−0.153262 + 0.988186i \(0.548978\pi\)
\(62\) −0.310126 −0.0393861
\(63\) −3.14119 −0.395753
\(64\) −13.0278 −1.62847
\(65\) −21.2993 −2.64185
\(66\) −5.24923 −0.646136
\(67\) −12.0538 −1.47260 −0.736300 0.676655i \(-0.763429\pi\)
−0.736300 + 0.676655i \(0.763429\pi\)
\(68\) 17.4745 2.11909
\(69\) 0 0
\(70\) −11.7158 −1.40031
\(71\) −3.68996 −0.437918 −0.218959 0.975734i \(-0.570266\pi\)
−0.218959 + 0.975734i \(0.570266\pi\)
\(72\) 5.73645 0.676048
\(73\) −5.19238 −0.607722 −0.303861 0.952716i \(-0.598276\pi\)
−0.303861 + 0.952716i \(0.598276\pi\)
\(74\) −0.985244 −0.114532
\(75\) 27.8918 3.22066
\(76\) 15.5929 1.78862
\(77\) 1.26950 0.144672
\(78\) −27.1799 −3.07752
\(79\) 3.84426 0.432513 0.216256 0.976337i \(-0.430615\pi\)
0.216256 + 0.976337i \(0.430615\pi\)
\(80\) −3.56003 −0.398023
\(81\) −10.3006 −1.14451
\(82\) −11.6659 −1.28828
\(83\) −2.32289 −0.254970 −0.127485 0.991841i \(-0.540690\pi\)
−0.127485 + 0.991841i \(0.540690\pi\)
\(84\) −9.00994 −0.983065
\(85\) 23.6969 2.57029
\(86\) 5.86635 0.632584
\(87\) 23.5054 2.52004
\(88\) −2.31836 −0.247138
\(89\) 13.4702 1.42784 0.713921 0.700226i \(-0.246917\pi\)
0.713921 + 0.700226i \(0.246917\pi\)
\(90\) 22.8352 2.40704
\(91\) 6.57331 0.689070
\(92\) 0 0
\(93\) −0.323427 −0.0335378
\(94\) −17.5694 −1.81214
\(95\) 21.1453 2.16946
\(96\) −15.3916 −1.57090
\(97\) −9.73757 −0.988700 −0.494350 0.869263i \(-0.664594\pi\)
−0.494350 + 0.869263i \(0.664594\pi\)
\(98\) −12.0889 −1.22116
\(99\) −2.47436 −0.248683
\(100\) 36.1604 3.61604
\(101\) −11.6842 −1.16262 −0.581311 0.813681i \(-0.697460\pi\)
−0.581311 + 0.813681i \(0.697460\pi\)
\(102\) 30.2396 2.99416
\(103\) −6.21786 −0.612664 −0.306332 0.951925i \(-0.599102\pi\)
−0.306332 + 0.951925i \(0.599102\pi\)
\(104\) −12.0042 −1.17711
\(105\) −12.2183 −1.19238
\(106\) 3.43819 0.333947
\(107\) 2.12494 0.205426 0.102713 0.994711i \(-0.467248\pi\)
0.102713 + 0.994711i \(0.467248\pi\)
\(108\) −3.73059 −0.358977
\(109\) 8.51932 0.816003 0.408002 0.912981i \(-0.366226\pi\)
0.408002 + 0.912981i \(0.366226\pi\)
\(110\) −9.22871 −0.879923
\(111\) −1.02750 −0.0975259
\(112\) 1.09868 0.103816
\(113\) −8.24786 −0.775893 −0.387947 0.921682i \(-0.626816\pi\)
−0.387947 + 0.921682i \(0.626816\pi\)
\(114\) 26.9834 2.52723
\(115\) 0 0
\(116\) 30.4736 2.82940
\(117\) −12.8120 −1.18447
\(118\) 9.39720 0.865082
\(119\) −7.31326 −0.670405
\(120\) 22.3131 2.03689
\(121\) 1.00000 0.0909091
\(122\) −5.37104 −0.486271
\(123\) −12.1662 −1.09699
\(124\) −0.419308 −0.0376550
\(125\) 28.4692 2.54636
\(126\) −7.04731 −0.627824
\(127\) −14.6998 −1.30439 −0.652196 0.758050i \(-0.726152\pi\)
−0.652196 + 0.758050i \(0.726152\pi\)
\(128\) −16.0712 −1.42051
\(129\) 6.11794 0.538655
\(130\) −47.7852 −4.19104
\(131\) 13.4794 1.17770 0.588852 0.808241i \(-0.299580\pi\)
0.588852 + 0.808241i \(0.299580\pi\)
\(132\) −7.09726 −0.617737
\(133\) −6.52579 −0.565858
\(134\) −27.0428 −2.33614
\(135\) −5.05901 −0.435411
\(136\) 13.3555 1.14522
\(137\) −3.70059 −0.316163 −0.158082 0.987426i \(-0.550531\pi\)
−0.158082 + 0.987426i \(0.550531\pi\)
\(138\) 0 0
\(139\) 13.5566 1.14985 0.574927 0.818205i \(-0.305030\pi\)
0.574927 + 0.818205i \(0.305030\pi\)
\(140\) −15.8404 −1.33876
\(141\) −18.3229 −1.54307
\(142\) −8.27848 −0.694715
\(143\) 5.17789 0.432997
\(144\) −2.14143 −0.178453
\(145\) 41.3249 3.43185
\(146\) −11.6492 −0.964093
\(147\) −12.6074 −1.03984
\(148\) −1.33211 −0.109498
\(149\) −10.9764 −0.899223 −0.449612 0.893224i \(-0.648438\pi\)
−0.449612 + 0.893224i \(0.648438\pi\)
\(150\) 62.5756 5.10928
\(151\) 14.5257 1.18209 0.591044 0.806639i \(-0.298716\pi\)
0.591044 + 0.806639i \(0.298716\pi\)
\(152\) 11.9174 0.966630
\(153\) 14.2542 1.15238
\(154\) 2.84813 0.229509
\(155\) −0.568619 −0.0456726
\(156\) −36.7488 −2.94226
\(157\) 21.5134 1.71696 0.858479 0.512849i \(-0.171410\pi\)
0.858479 + 0.512849i \(0.171410\pi\)
\(158\) 8.62465 0.686140
\(159\) 3.58565 0.284361
\(160\) −27.0601 −2.13929
\(161\) 0 0
\(162\) −23.1096 −1.81566
\(163\) −22.5485 −1.76614 −0.883068 0.469245i \(-0.844526\pi\)
−0.883068 + 0.469245i \(0.844526\pi\)
\(164\) −15.7730 −1.23166
\(165\) −9.62451 −0.749267
\(166\) −5.21143 −0.404485
\(167\) 19.0163 1.47152 0.735762 0.677241i \(-0.236824\pi\)
0.735762 + 0.677241i \(0.236824\pi\)
\(168\) −6.88618 −0.531280
\(169\) 13.8105 1.06235
\(170\) 53.1644 4.07752
\(171\) 12.7193 0.972673
\(172\) 7.93163 0.604781
\(173\) 8.29995 0.631033 0.315517 0.948920i \(-0.397822\pi\)
0.315517 + 0.948920i \(0.397822\pi\)
\(174\) 52.7346 3.99780
\(175\) −15.1335 −1.14399
\(176\) 0.865449 0.0652357
\(177\) 9.80023 0.736630
\(178\) 30.2207 2.26514
\(179\) 0.759507 0.0567682 0.0283841 0.999597i \(-0.490964\pi\)
0.0283841 + 0.999597i \(0.490964\pi\)
\(180\) 30.8744 2.30124
\(181\) −0.389625 −0.0289606 −0.0144803 0.999895i \(-0.504609\pi\)
−0.0144803 + 0.999895i \(0.504609\pi\)
\(182\) 14.7473 1.09314
\(183\) −5.60140 −0.414067
\(184\) 0 0
\(185\) −1.80645 −0.132813
\(186\) −0.725613 −0.0532045
\(187\) −5.76076 −0.421269
\(188\) −23.7548 −1.73250
\(189\) 1.56130 0.113568
\(190\) 47.4398 3.44164
\(191\) −25.7293 −1.86171 −0.930853 0.365394i \(-0.880934\pi\)
−0.930853 + 0.365394i \(0.880934\pi\)
\(192\) −30.4815 −2.19981
\(193\) 0.00346159 0.000249171 0 0.000124586 1.00000i \(-0.499960\pi\)
0.000124586 1.00000i \(0.499960\pi\)
\(194\) −21.8464 −1.56848
\(195\) −49.8346 −3.56873
\(196\) −16.3449 −1.16749
\(197\) −2.88624 −0.205636 −0.102818 0.994700i \(-0.532786\pi\)
−0.102818 + 0.994700i \(0.532786\pi\)
\(198\) −5.55127 −0.394511
\(199\) −11.0110 −0.780550 −0.390275 0.920698i \(-0.627620\pi\)
−0.390275 + 0.920698i \(0.627620\pi\)
\(200\) 27.6369 1.95423
\(201\) −28.2026 −1.98926
\(202\) −26.2137 −1.84439
\(203\) −12.7536 −0.895124
\(204\) 40.8856 2.86256
\(205\) −21.3896 −1.49391
\(206\) −13.9499 −0.971933
\(207\) 0 0
\(208\) 4.48120 0.310715
\(209\) −5.14046 −0.355573
\(210\) −27.4119 −1.89160
\(211\) 3.22795 0.222221 0.111110 0.993808i \(-0.464559\pi\)
0.111110 + 0.993808i \(0.464559\pi\)
\(212\) 4.64863 0.319269
\(213\) −8.63353 −0.591560
\(214\) 4.76734 0.325889
\(215\) 10.7560 0.733553
\(216\) −2.85124 −0.194003
\(217\) 0.175485 0.0119127
\(218\) 19.1132 1.29451
\(219\) −12.1488 −0.820939
\(220\) −12.4777 −0.841249
\(221\) −29.8286 −2.00649
\(222\) −2.30521 −0.154716
\(223\) −17.9624 −1.20285 −0.601425 0.798929i \(-0.705400\pi\)
−0.601425 + 0.798929i \(0.705400\pi\)
\(224\) 8.35120 0.557988
\(225\) 29.4966 1.96644
\(226\) −18.5042 −1.23088
\(227\) −19.8097 −1.31481 −0.657407 0.753536i \(-0.728347\pi\)
−0.657407 + 0.753536i \(0.728347\pi\)
\(228\) 36.4831 2.41616
\(229\) 26.6173 1.75892 0.879460 0.475973i \(-0.157904\pi\)
0.879460 + 0.475973i \(0.157904\pi\)
\(230\) 0 0
\(231\) 2.97028 0.195430
\(232\) 23.2906 1.52910
\(233\) 22.4717 1.47217 0.736085 0.676889i \(-0.236672\pi\)
0.736085 + 0.676889i \(0.236672\pi\)
\(234\) −28.7438 −1.87904
\(235\) −32.2136 −2.10138
\(236\) 12.7055 0.827061
\(237\) 8.99455 0.584259
\(238\) −16.4074 −1.06353
\(239\) 8.73635 0.565107 0.282554 0.959252i \(-0.408818\pi\)
0.282554 + 0.959252i \(0.408818\pi\)
\(240\) −8.32952 −0.537668
\(241\) 5.63342 0.362881 0.181440 0.983402i \(-0.441924\pi\)
0.181440 + 0.983402i \(0.441924\pi\)
\(242\) 2.24352 0.144219
\(243\) −20.4112 −1.30938
\(244\) −7.26196 −0.464899
\(245\) −22.1651 −1.41608
\(246\) −27.2952 −1.74028
\(247\) −26.6167 −1.69358
\(248\) −0.320472 −0.0203500
\(249\) −5.43494 −0.344425
\(250\) 63.8710 4.03956
\(251\) 8.92961 0.563632 0.281816 0.959468i \(-0.409063\pi\)
0.281816 + 0.959468i \(0.409063\pi\)
\(252\) −9.52836 −0.600230
\(253\) 0 0
\(254\) −32.9791 −2.06929
\(255\) 55.4445 3.47207
\(256\) −10.0006 −0.625035
\(257\) −2.28069 −0.142266 −0.0711329 0.997467i \(-0.522661\pi\)
−0.0711329 + 0.997467i \(0.522661\pi\)
\(258\) 13.7257 0.854525
\(259\) 0.557502 0.0346415
\(260\) −64.6083 −4.00684
\(261\) 24.8578 1.53866
\(262\) 30.2413 1.86832
\(263\) 8.94548 0.551602 0.275801 0.961215i \(-0.411057\pi\)
0.275801 + 0.961215i \(0.411057\pi\)
\(264\) −5.42434 −0.333845
\(265\) 6.30396 0.387249
\(266\) −14.6407 −0.897679
\(267\) 31.5168 1.92880
\(268\) −36.5634 −2.23346
\(269\) −2.06038 −0.125624 −0.0628118 0.998025i \(-0.520007\pi\)
−0.0628118 + 0.998025i \(0.520007\pi\)
\(270\) −11.3500 −0.690737
\(271\) 9.88178 0.600276 0.300138 0.953896i \(-0.402967\pi\)
0.300138 + 0.953896i \(0.402967\pi\)
\(272\) −4.98564 −0.302299
\(273\) 15.3798 0.930828
\(274\) −8.30234 −0.501563
\(275\) −11.9209 −0.718858
\(276\) 0 0
\(277\) −14.3719 −0.863525 −0.431762 0.901987i \(-0.642108\pi\)
−0.431762 + 0.901987i \(0.642108\pi\)
\(278\) 30.4144 1.82413
\(279\) −0.342037 −0.0204772
\(280\) −12.1066 −0.723510
\(281\) 5.10541 0.304563 0.152282 0.988337i \(-0.451338\pi\)
0.152282 + 0.988337i \(0.451338\pi\)
\(282\) −41.1077 −2.44793
\(283\) −16.4834 −0.979836 −0.489918 0.871768i \(-0.662973\pi\)
−0.489918 + 0.871768i \(0.662973\pi\)
\(284\) −11.1930 −0.664181
\(285\) 49.4744 2.93061
\(286\) 11.6167 0.686908
\(287\) 6.60117 0.389655
\(288\) −16.2772 −0.959146
\(289\) 16.1864 0.952139
\(290\) 92.7131 5.44430
\(291\) −22.7833 −1.33558
\(292\) −15.7503 −0.921719
\(293\) −18.1277 −1.05903 −0.529515 0.848300i \(-0.677626\pi\)
−0.529515 + 0.848300i \(0.677626\pi\)
\(294\) −28.2849 −1.64961
\(295\) 17.2298 1.00316
\(296\) −1.01811 −0.0591765
\(297\) 1.22986 0.0713634
\(298\) −24.6258 −1.42653
\(299\) 0 0
\(300\) 84.6058 4.88472
\(301\) −3.31948 −0.191332
\(302\) 32.5887 1.87527
\(303\) −27.3380 −1.57052
\(304\) −4.44880 −0.255156
\(305\) −9.84785 −0.563886
\(306\) 31.9795 1.82815
\(307\) −22.3135 −1.27350 −0.636749 0.771071i \(-0.719721\pi\)
−0.636749 + 0.771071i \(0.719721\pi\)
\(308\) 3.85084 0.219422
\(309\) −14.5481 −0.827615
\(310\) −1.27570 −0.0724552
\(311\) −33.0099 −1.87182 −0.935911 0.352237i \(-0.885421\pi\)
−0.935911 + 0.352237i \(0.885421\pi\)
\(312\) −28.0866 −1.59009
\(313\) −12.4217 −0.702117 −0.351059 0.936353i \(-0.614178\pi\)
−0.351059 + 0.936353i \(0.614178\pi\)
\(314\) 48.2657 2.72379
\(315\) −12.9213 −0.728033
\(316\) 11.6610 0.655983
\(317\) −0.0312776 −0.00175672 −0.000878362 1.00000i \(-0.500280\pi\)
−0.000878362 1.00000i \(0.500280\pi\)
\(318\) 8.04446 0.451111
\(319\) −10.0462 −0.562477
\(320\) −53.5897 −2.99576
\(321\) 4.97180 0.277499
\(322\) 0 0
\(323\) 29.6129 1.64771
\(324\) −31.2455 −1.73586
\(325\) −61.7251 −3.42389
\(326\) −50.5879 −2.80181
\(327\) 19.9330 1.10230
\(328\) −12.0551 −0.665631
\(329\) 9.94166 0.548101
\(330\) −21.5927 −1.18864
\(331\) −34.1674 −1.87801 −0.939004 0.343905i \(-0.888250\pi\)
−0.939004 + 0.343905i \(0.888250\pi\)
\(332\) −7.04615 −0.386708
\(333\) −1.08662 −0.0595464
\(334\) 42.6633 2.33443
\(335\) −49.5831 −2.70902
\(336\) 2.57063 0.140239
\(337\) −12.6987 −0.691744 −0.345872 0.938282i \(-0.612417\pi\)
−0.345872 + 0.938282i \(0.612417\pi\)
\(338\) 30.9841 1.68531
\(339\) −19.2978 −1.04811
\(340\) 71.8812 3.89831
\(341\) 0.138232 0.00748570
\(342\) 28.5360 1.54305
\(343\) 15.7270 0.849178
\(344\) 6.06205 0.326844
\(345\) 0 0
\(346\) 18.6211 1.00107
\(347\) 1.21840 0.0654071 0.0327035 0.999465i \(-0.489588\pi\)
0.0327035 + 0.999465i \(0.489588\pi\)
\(348\) 71.3002 3.82209
\(349\) −9.18540 −0.491683 −0.245842 0.969310i \(-0.579064\pi\)
−0.245842 + 0.969310i \(0.579064\pi\)
\(350\) −33.9523 −1.81483
\(351\) 6.36805 0.339902
\(352\) 6.57836 0.350628
\(353\) 3.50470 0.186537 0.0932683 0.995641i \(-0.470269\pi\)
0.0932683 + 0.995641i \(0.470269\pi\)
\(354\) 21.9870 1.16859
\(355\) −15.1787 −0.805600
\(356\) 40.8601 2.16558
\(357\) −17.1111 −0.905615
\(358\) 1.70397 0.0900574
\(359\) 35.3782 1.86719 0.933595 0.358330i \(-0.116654\pi\)
0.933595 + 0.358330i \(0.116654\pi\)
\(360\) 23.5969 1.24367
\(361\) 7.42429 0.390752
\(362\) −0.874130 −0.0459433
\(363\) 2.33974 0.122804
\(364\) 19.9392 1.04510
\(365\) −21.3589 −1.11797
\(366\) −12.5668 −0.656878
\(367\) 16.9321 0.883847 0.441923 0.897053i \(-0.354296\pi\)
0.441923 + 0.897053i \(0.354296\pi\)
\(368\) 0 0
\(369\) −12.8663 −0.669792
\(370\) −4.05280 −0.210695
\(371\) −1.94551 −0.101006
\(372\) −0.981070 −0.0508661
\(373\) 16.5696 0.857944 0.428972 0.903318i \(-0.358876\pi\)
0.428972 + 0.903318i \(0.358876\pi\)
\(374\) −12.9244 −0.668302
\(375\) 66.6103 3.43974
\(376\) −18.1555 −0.936298
\(377\) −52.0179 −2.67906
\(378\) 3.50279 0.180164
\(379\) −9.50512 −0.488245 −0.244123 0.969744i \(-0.578500\pi\)
−0.244123 + 0.969744i \(0.578500\pi\)
\(380\) 64.1412 3.29038
\(381\) −34.3935 −1.76203
\(382\) −57.7240 −2.95342
\(383\) 22.3217 1.14059 0.570293 0.821442i \(-0.306830\pi\)
0.570293 + 0.821442i \(0.306830\pi\)
\(384\) −37.6025 −1.91889
\(385\) 5.22207 0.266142
\(386\) 0.00776614 0.000395286 0
\(387\) 6.46996 0.328887
\(388\) −29.5375 −1.49954
\(389\) 34.0539 1.72660 0.863301 0.504689i \(-0.168393\pi\)
0.863301 + 0.504689i \(0.168393\pi\)
\(390\) −111.805 −5.66145
\(391\) 0 0
\(392\) −12.4922 −0.630951
\(393\) 31.5383 1.59090
\(394\) −6.47532 −0.326222
\(395\) 15.8134 0.795657
\(396\) −7.50563 −0.377172
\(397\) −13.3777 −0.671405 −0.335703 0.941968i \(-0.608974\pi\)
−0.335703 + 0.941968i \(0.608974\pi\)
\(398\) −24.7034 −1.23827
\(399\) −15.2686 −0.764387
\(400\) −10.3169 −0.515847
\(401\) 15.9691 0.797460 0.398730 0.917068i \(-0.369451\pi\)
0.398730 + 0.917068i \(0.369451\pi\)
\(402\) −63.2729 −3.15577
\(403\) 0.715751 0.0356541
\(404\) −35.4424 −1.76333
\(405\) −42.3716 −2.10546
\(406\) −28.6128 −1.42003
\(407\) 0.439152 0.0217680
\(408\) 31.2483 1.54702
\(409\) −5.55381 −0.274618 −0.137309 0.990528i \(-0.543845\pi\)
−0.137309 + 0.990528i \(0.543845\pi\)
\(410\) −47.9878 −2.36995
\(411\) −8.65841 −0.427088
\(412\) −18.8610 −0.929215
\(413\) −5.31742 −0.261653
\(414\) 0 0
\(415\) −9.55520 −0.469046
\(416\) 34.0620 1.67003
\(417\) 31.7188 1.55328
\(418\) −11.5327 −0.564082
\(419\) −5.07582 −0.247970 −0.123985 0.992284i \(-0.539568\pi\)
−0.123985 + 0.992284i \(0.539568\pi\)
\(420\) −37.0624 −1.80846
\(421\) −24.7237 −1.20496 −0.602480 0.798134i \(-0.705821\pi\)
−0.602480 + 0.798134i \(0.705821\pi\)
\(422\) 7.24195 0.352532
\(423\) −19.3772 −0.942151
\(424\) 3.55289 0.172544
\(425\) 68.6735 3.33115
\(426\) −19.3695 −0.938453
\(427\) 3.03921 0.147078
\(428\) 6.44572 0.311565
\(429\) 12.1149 0.584912
\(430\) 24.1312 1.16371
\(431\) 19.2956 0.929437 0.464719 0.885458i \(-0.346155\pi\)
0.464719 + 0.885458i \(0.346155\pi\)
\(432\) 1.06438 0.0512098
\(433\) 8.85926 0.425749 0.212874 0.977080i \(-0.431717\pi\)
0.212874 + 0.977080i \(0.431717\pi\)
\(434\) 0.393704 0.0188984
\(435\) 96.6894 4.63590
\(436\) 25.8422 1.23762
\(437\) 0 0
\(438\) −27.2560 −1.30234
\(439\) 2.69819 0.128777 0.0643887 0.997925i \(-0.479490\pi\)
0.0643887 + 0.997925i \(0.479490\pi\)
\(440\) −9.53657 −0.454638
\(441\) −13.3328 −0.634895
\(442\) −66.9208 −3.18310
\(443\) −2.59486 −0.123286 −0.0616428 0.998098i \(-0.519634\pi\)
−0.0616428 + 0.998098i \(0.519634\pi\)
\(444\) −3.11678 −0.147916
\(445\) 55.4099 2.62668
\(446\) −40.2989 −1.90821
\(447\) −25.6819 −1.21471
\(448\) 16.5387 0.781379
\(449\) 33.6796 1.58944 0.794720 0.606976i \(-0.207618\pi\)
0.794720 + 0.606976i \(0.207618\pi\)
\(450\) 66.1761 3.11957
\(451\) 5.19984 0.244851
\(452\) −25.0187 −1.17678
\(453\) 33.9864 1.59682
\(454\) −44.4433 −2.08583
\(455\) 27.0393 1.26762
\(456\) 27.8836 1.30577
\(457\) −35.8928 −1.67899 −0.839497 0.543365i \(-0.817150\pi\)
−0.839497 + 0.543365i \(0.817150\pi\)
\(458\) 59.7163 2.79036
\(459\) −7.08490 −0.330695
\(460\) 0 0
\(461\) 18.8750 0.879098 0.439549 0.898219i \(-0.355138\pi\)
0.439549 + 0.898219i \(0.355138\pi\)
\(462\) 6.66388 0.310032
\(463\) −22.5480 −1.04790 −0.523948 0.851750i \(-0.675541\pi\)
−0.523948 + 0.851750i \(0.675541\pi\)
\(464\) −8.69444 −0.403629
\(465\) −1.33042 −0.0616966
\(466\) 50.4156 2.33546
\(467\) −9.37665 −0.433899 −0.216950 0.976183i \(-0.569611\pi\)
−0.216950 + 0.976183i \(0.569611\pi\)
\(468\) −38.8633 −1.79646
\(469\) 15.3022 0.706589
\(470\) −72.2717 −3.33365
\(471\) 50.3357 2.31935
\(472\) 9.71069 0.446971
\(473\) −2.61480 −0.120229
\(474\) 20.1794 0.926870
\(475\) 61.2789 2.81167
\(476\) −22.1837 −1.01679
\(477\) 3.79197 0.173622
\(478\) 19.6001 0.896489
\(479\) 19.2127 0.877850 0.438925 0.898524i \(-0.355359\pi\)
0.438925 + 0.898524i \(0.355359\pi\)
\(480\) −63.3135 −2.88985
\(481\) 2.27388 0.103680
\(482\) 12.6387 0.575676
\(483\) 0 0
\(484\) 3.03336 0.137880
\(485\) −40.0555 −1.81883
\(486\) −45.7927 −2.07720
\(487\) 29.0830 1.31788 0.658938 0.752197i \(-0.271006\pi\)
0.658938 + 0.752197i \(0.271006\pi\)
\(488\) −5.55022 −0.251247
\(489\) −52.7576 −2.38578
\(490\) −49.7278 −2.24647
\(491\) 4.75089 0.214405 0.107202 0.994237i \(-0.465811\pi\)
0.107202 + 0.994237i \(0.465811\pi\)
\(492\) −36.9046 −1.66379
\(493\) 57.8735 2.60649
\(494\) −59.7150 −2.68670
\(495\) −10.1783 −0.457480
\(496\) 0.119633 0.00537168
\(497\) 4.68439 0.210124
\(498\) −12.1934 −0.546398
\(499\) 33.8752 1.51646 0.758230 0.651987i \(-0.226064\pi\)
0.758230 + 0.651987i \(0.226064\pi\)
\(500\) 86.3572 3.86201
\(501\) 44.4930 1.98780
\(502\) 20.0337 0.894148
\(503\) −4.93174 −0.219895 −0.109948 0.993937i \(-0.535068\pi\)
−0.109948 + 0.993937i \(0.535068\pi\)
\(504\) −7.28241 −0.324384
\(505\) −48.0630 −2.13878
\(506\) 0 0
\(507\) 32.3130 1.43507
\(508\) −44.5896 −1.97835
\(509\) 40.7083 1.80436 0.902181 0.431358i \(-0.141965\pi\)
0.902181 + 0.431358i \(0.141965\pi\)
\(510\) 124.391 5.50811
\(511\) 6.59170 0.291600
\(512\) 9.70608 0.428952
\(513\) −6.32202 −0.279124
\(514\) −5.11677 −0.225691
\(515\) −25.5772 −1.12706
\(516\) 18.5579 0.816967
\(517\) 7.83119 0.344415
\(518\) 1.25076 0.0549554
\(519\) 19.4197 0.852430
\(520\) −49.3793 −2.16543
\(521\) −35.2316 −1.54352 −0.771762 0.635911i \(-0.780624\pi\)
−0.771762 + 0.635911i \(0.780624\pi\)
\(522\) 55.7689 2.44094
\(523\) −23.7044 −1.03652 −0.518260 0.855223i \(-0.673420\pi\)
−0.518260 + 0.855223i \(0.673420\pi\)
\(524\) 40.8880 1.78620
\(525\) −35.4085 −1.54535
\(526\) 20.0693 0.875064
\(527\) −0.796323 −0.0346884
\(528\) 2.02492 0.0881234
\(529\) 0 0
\(530\) 14.1430 0.614333
\(531\) 10.3641 0.449765
\(532\) −19.7951 −0.858225
\(533\) 26.9242 1.16622
\(534\) 70.7084 3.05985
\(535\) 8.74096 0.377905
\(536\) −27.9449 −1.20704
\(537\) 1.77705 0.0766852
\(538\) −4.62250 −0.199290
\(539\) 5.38838 0.232094
\(540\) −15.3458 −0.660378
\(541\) −41.7025 −1.79293 −0.896465 0.443114i \(-0.853874\pi\)
−0.896465 + 0.443114i \(0.853874\pi\)
\(542\) 22.1699 0.952280
\(543\) −0.911620 −0.0391214
\(544\) −37.8964 −1.62479
\(545\) 35.0443 1.50113
\(546\) 34.5048 1.47667
\(547\) −2.82101 −0.120618 −0.0603088 0.998180i \(-0.519209\pi\)
−0.0603088 + 0.998180i \(0.519209\pi\)
\(548\) −11.2252 −0.479518
\(549\) −5.92370 −0.252817
\(550\) −26.7447 −1.14040
\(551\) 51.6419 2.20002
\(552\) 0 0
\(553\) −4.88027 −0.207530
\(554\) −32.2436 −1.36990
\(555\) −4.22662 −0.179410
\(556\) 41.1220 1.74396
\(557\) 9.05227 0.383557 0.191778 0.981438i \(-0.438574\pi\)
0.191778 + 0.981438i \(0.438574\pi\)
\(558\) −0.767364 −0.0324851
\(559\) −13.5392 −0.572645
\(560\) 4.51944 0.190981
\(561\) −13.4787 −0.569069
\(562\) 11.4541 0.483161
\(563\) 27.4113 1.15525 0.577624 0.816303i \(-0.303980\pi\)
0.577624 + 0.816303i \(0.303980\pi\)
\(564\) −55.5800 −2.34034
\(565\) −33.9276 −1.42734
\(566\) −36.9808 −1.55442
\(567\) 13.0766 0.549165
\(568\) −8.55465 −0.358945
\(569\) 17.5350 0.735104 0.367552 0.930003i \(-0.380196\pi\)
0.367552 + 0.930003i \(0.380196\pi\)
\(570\) 110.996 4.64913
\(571\) 1.65910 0.0694314 0.0347157 0.999397i \(-0.488947\pi\)
0.0347157 + 0.999397i \(0.488947\pi\)
\(572\) 15.7064 0.656717
\(573\) −60.1997 −2.51488
\(574\) 14.8098 0.618150
\(575\) 0 0
\(576\) −32.2354 −1.34314
\(577\) −3.98427 −0.165867 −0.0829337 0.996555i \(-0.526429\pi\)
−0.0829337 + 0.996555i \(0.526429\pi\)
\(578\) 36.3143 1.51048
\(579\) 0.00809921 0.000336592 0
\(580\) 125.353 5.20501
\(581\) 2.94889 0.122341
\(582\) −51.1147 −2.11877
\(583\) −1.53250 −0.0634698
\(584\) −12.0378 −0.498127
\(585\) −52.7021 −2.17896
\(586\) −40.6697 −1.68005
\(587\) −28.2027 −1.16405 −0.582025 0.813171i \(-0.697739\pi\)
−0.582025 + 0.813171i \(0.697739\pi\)
\(588\) −38.2427 −1.57710
\(589\) −0.710577 −0.0292788
\(590\) 38.6554 1.59142
\(591\) −6.75303 −0.277783
\(592\) 0.380064 0.0156205
\(593\) 3.61432 0.148422 0.0742111 0.997243i \(-0.476356\pi\)
0.0742111 + 0.997243i \(0.476356\pi\)
\(594\) 2.75920 0.113211
\(595\) −30.0831 −1.23329
\(596\) −33.2954 −1.36383
\(597\) −25.7629 −1.05440
\(598\) 0 0
\(599\) −36.5117 −1.49183 −0.745913 0.666044i \(-0.767986\pi\)
−0.745913 + 0.666044i \(0.767986\pi\)
\(600\) 64.6631 2.63986
\(601\) 3.07562 0.125457 0.0627286 0.998031i \(-0.480020\pi\)
0.0627286 + 0.998031i \(0.480020\pi\)
\(602\) −7.44730 −0.303529
\(603\) −29.8253 −1.21458
\(604\) 44.0618 1.79285
\(605\) 4.11350 0.167238
\(606\) −61.3331 −2.49149
\(607\) −4.49119 −0.182292 −0.0911460 0.995838i \(-0.529053\pi\)
−0.0911460 + 0.995838i \(0.529053\pi\)
\(608\) −33.8158 −1.37141
\(609\) −29.8400 −1.20918
\(610\) −22.0938 −0.894552
\(611\) 40.5490 1.64044
\(612\) 43.2381 1.74780
\(613\) 33.4772 1.35213 0.676065 0.736842i \(-0.263684\pi\)
0.676065 + 0.736842i \(0.263684\pi\)
\(614\) −50.0606 −2.02028
\(615\) −50.0459 −2.01804
\(616\) 2.94315 0.118583
\(617\) 15.5865 0.627487 0.313744 0.949508i \(-0.398417\pi\)
0.313744 + 0.949508i \(0.398417\pi\)
\(618\) −32.6390 −1.31293
\(619\) −12.1981 −0.490283 −0.245141 0.969487i \(-0.578834\pi\)
−0.245141 + 0.969487i \(0.578834\pi\)
\(620\) −1.72483 −0.0692707
\(621\) 0 0
\(622\) −74.0583 −2.96947
\(623\) −17.1004 −0.685113
\(624\) 10.4848 0.419728
\(625\) 57.5035 2.30014
\(626\) −27.8683 −1.11384
\(627\) −12.0273 −0.480324
\(628\) 65.2579 2.60408
\(629\) −2.52985 −0.100872
\(630\) −28.9891 −1.15495
\(631\) 24.6470 0.981180 0.490590 0.871390i \(-0.336781\pi\)
0.490590 + 0.871390i \(0.336781\pi\)
\(632\) 8.91236 0.354515
\(633\) 7.55254 0.300186
\(634\) −0.0701718 −0.00278688
\(635\) −60.4675 −2.39958
\(636\) 10.8766 0.431284
\(637\) 27.9004 1.10546
\(638\) −22.5387 −0.892316
\(639\) −9.13029 −0.361189
\(640\) −66.1091 −2.61319
\(641\) 11.1343 0.439778 0.219889 0.975525i \(-0.429430\pi\)
0.219889 + 0.975525i \(0.429430\pi\)
\(642\) 11.1543 0.440226
\(643\) 16.1309 0.636142 0.318071 0.948067i \(-0.396965\pi\)
0.318071 + 0.948067i \(0.396965\pi\)
\(644\) 0 0
\(645\) 25.1662 0.990917
\(646\) 66.4371 2.61393
\(647\) −6.91331 −0.271790 −0.135895 0.990723i \(-0.543391\pi\)
−0.135895 + 0.990723i \(0.543391\pi\)
\(648\) −23.8805 −0.938116
\(649\) −4.18861 −0.164417
\(650\) −138.481 −5.43168
\(651\) 0.410589 0.0160923
\(652\) −68.3978 −2.67866
\(653\) 9.24594 0.361822 0.180911 0.983499i \(-0.442095\pi\)
0.180911 + 0.983499i \(0.442095\pi\)
\(654\) 44.7199 1.74869
\(655\) 55.4477 2.16652
\(656\) 4.50019 0.175703
\(657\) −12.8478 −0.501241
\(658\) 22.3043 0.869510
\(659\) 6.62802 0.258191 0.129095 0.991632i \(-0.458793\pi\)
0.129095 + 0.991632i \(0.458793\pi\)
\(660\) −29.1946 −1.13640
\(661\) 33.8343 1.31600 0.658001 0.753017i \(-0.271402\pi\)
0.658001 + 0.753017i \(0.271402\pi\)
\(662\) −76.6550 −2.97928
\(663\) −69.7910 −2.71046
\(664\) −5.38528 −0.208989
\(665\) −26.8438 −1.04096
\(666\) −2.43785 −0.0944648
\(667\) 0 0
\(668\) 57.6832 2.23183
\(669\) −42.0272 −1.62487
\(670\) −111.241 −4.29760
\(671\) 2.39403 0.0924205
\(672\) 19.5396 0.753757
\(673\) −2.79411 −0.107705 −0.0538524 0.998549i \(-0.517150\pi\)
−0.0538524 + 0.998549i \(0.517150\pi\)
\(674\) −28.4898 −1.09739
\(675\) −14.6610 −0.564302
\(676\) 41.8923 1.61124
\(677\) −36.8561 −1.41650 −0.708248 0.705964i \(-0.750514\pi\)
−0.708248 + 0.705964i \(0.750514\pi\)
\(678\) −43.2949 −1.66273
\(679\) 12.3618 0.474402
\(680\) 54.9379 2.10677
\(681\) −46.3494 −1.77611
\(682\) 0.310126 0.0118753
\(683\) −4.26427 −0.163168 −0.0815838 0.996666i \(-0.525998\pi\)
−0.0815838 + 0.996666i \(0.525998\pi\)
\(684\) 38.5824 1.47523
\(685\) −15.2224 −0.581618
\(686\) 35.2838 1.34714
\(687\) 62.2774 2.37603
\(688\) −2.26298 −0.0862752
\(689\) −7.93513 −0.302304
\(690\) 0 0
\(691\) 25.3100 0.962839 0.481419 0.876490i \(-0.340121\pi\)
0.481419 + 0.876490i \(0.340121\pi\)
\(692\) 25.1767 0.957076
\(693\) 3.14119 0.119324
\(694\) 2.73350 0.103762
\(695\) 55.7650 2.11529
\(696\) 54.4938 2.06558
\(697\) −29.9550 −1.13463
\(698\) −20.6076 −0.780009
\(699\) 52.5779 1.98868
\(700\) −45.9055 −1.73506
\(701\) 27.9680 1.05634 0.528169 0.849139i \(-0.322879\pi\)
0.528169 + 0.849139i \(0.322879\pi\)
\(702\) 14.2868 0.539221
\(703\) −2.25744 −0.0851410
\(704\) 13.0278 0.491002
\(705\) −75.3713 −2.83865
\(706\) 7.86285 0.295922
\(707\) 14.8331 0.557855
\(708\) 29.7276 1.11723
\(709\) −27.2677 −1.02406 −0.512031 0.858967i \(-0.671107\pi\)
−0.512031 + 0.858967i \(0.671107\pi\)
\(710\) −34.0535 −1.27801
\(711\) 9.51208 0.356731
\(712\) 31.2288 1.17035
\(713\) 0 0
\(714\) −38.3890 −1.43667
\(715\) 21.2993 0.796547
\(716\) 2.30386 0.0860992
\(717\) 20.4407 0.763373
\(718\) 79.3715 2.96212
\(719\) 0.618322 0.0230595 0.0115298 0.999934i \(-0.496330\pi\)
0.0115298 + 0.999934i \(0.496330\pi\)
\(720\) −8.80879 −0.328284
\(721\) 7.89354 0.293971
\(722\) 16.6565 0.619891
\(723\) 13.1807 0.490196
\(724\) −1.18187 −0.0439240
\(725\) 119.759 4.44775
\(726\) 5.24923 0.194817
\(727\) −15.9522 −0.591636 −0.295818 0.955244i \(-0.595592\pi\)
−0.295818 + 0.955244i \(0.595592\pi\)
\(728\) 15.2393 0.564805
\(729\) −16.8548 −0.624254
\(730\) −47.9189 −1.77356
\(731\) 15.0632 0.557134
\(732\) −16.9911 −0.628007
\(733\) 31.2434 1.15400 0.577000 0.816744i \(-0.304223\pi\)
0.577000 + 0.816744i \(0.304223\pi\)
\(734\) 37.9873 1.40214
\(735\) −51.8605 −1.91290
\(736\) 0 0
\(737\) 12.0538 0.444006
\(738\) −28.8657 −1.06256
\(739\) 6.43193 0.236602 0.118301 0.992978i \(-0.462255\pi\)
0.118301 + 0.992978i \(0.462255\pi\)
\(740\) −5.47962 −0.201435
\(741\) −62.2760 −2.28777
\(742\) −4.36477 −0.160236
\(743\) −17.8713 −0.655635 −0.327817 0.944741i \(-0.606313\pi\)
−0.327817 + 0.944741i \(0.606313\pi\)
\(744\) −0.749819 −0.0274897
\(745\) −45.1515 −1.65422
\(746\) 37.1743 1.36105
\(747\) −5.74766 −0.210296
\(748\) −17.4745 −0.638929
\(749\) −2.69761 −0.0985684
\(750\) 149.441 5.45682
\(751\) 43.1909 1.57606 0.788030 0.615637i \(-0.211101\pi\)
0.788030 + 0.615637i \(0.211101\pi\)
\(752\) 6.77749 0.247150
\(753\) 20.8929 0.761380
\(754\) −116.703 −4.25007
\(755\) 59.7517 2.17459
\(756\) 4.73597 0.172246
\(757\) 2.32299 0.0844306 0.0422153 0.999109i \(-0.486558\pi\)
0.0422153 + 0.999109i \(0.486558\pi\)
\(758\) −21.3249 −0.774555
\(759\) 0 0
\(760\) 49.0223 1.77823
\(761\) −20.5101 −0.743491 −0.371745 0.928335i \(-0.621241\pi\)
−0.371745 + 0.928335i \(0.621241\pi\)
\(762\) −77.1624 −2.79530
\(763\) −10.8152 −0.391538
\(764\) −78.0462 −2.82361
\(765\) 58.6347 2.11994
\(766\) 50.0791 1.80943
\(767\) −21.6881 −0.783113
\(768\) −23.3987 −0.844327
\(769\) −26.8326 −0.967607 −0.483803 0.875177i \(-0.660745\pi\)
−0.483803 + 0.875177i \(0.660745\pi\)
\(770\) 11.7158 0.422208
\(771\) −5.33622 −0.192179
\(772\) 0.0105003 0.000377913 0
\(773\) 21.3624 0.768353 0.384176 0.923260i \(-0.374485\pi\)
0.384176 + 0.923260i \(0.374485\pi\)
\(774\) 14.5155 0.521748
\(775\) −1.64785 −0.0591927
\(776\) −22.5752 −0.810401
\(777\) 1.30441 0.0467953
\(778\) 76.4005 2.73909
\(779\) −26.7295 −0.957685
\(780\) −151.166 −5.41262
\(781\) 3.68996 0.132037
\(782\) 0 0
\(783\) −12.3553 −0.441543
\(784\) 4.66337 0.166549
\(785\) 88.4955 3.15854
\(786\) 70.7567 2.52381
\(787\) −0.656433 −0.0233993 −0.0116997 0.999932i \(-0.503724\pi\)
−0.0116997 + 0.999932i \(0.503724\pi\)
\(788\) −8.75500 −0.311884
\(789\) 20.9301 0.745130
\(790\) 35.4775 1.26223
\(791\) 10.4706 0.372292
\(792\) −5.73645 −0.203836
\(793\) 12.3960 0.440196
\(794\) −30.0130 −1.06512
\(795\) 14.7496 0.523114
\(796\) −33.4004 −1.18384
\(797\) 25.1336 0.890279 0.445139 0.895461i \(-0.353154\pi\)
0.445139 + 0.895461i \(0.353154\pi\)
\(798\) −34.2554 −1.21263
\(799\) −45.1136 −1.59600
\(800\) −78.4200 −2.77257
\(801\) 33.3302 1.17767
\(802\) 35.8270 1.26509
\(803\) 5.19238 0.183235
\(804\) −85.5486 −3.01707
\(805\) 0 0
\(806\) 1.60580 0.0565618
\(807\) −4.82075 −0.169698
\(808\) −27.0882 −0.952959
\(809\) −8.43753 −0.296648 −0.148324 0.988939i \(-0.547388\pi\)
−0.148324 + 0.988939i \(0.547388\pi\)
\(810\) −95.0614 −3.34012
\(811\) −40.3635 −1.41735 −0.708676 0.705534i \(-0.750707\pi\)
−0.708676 + 0.705534i \(0.750707\pi\)
\(812\) −38.6861 −1.35762
\(813\) 23.1208 0.810880
\(814\) 0.985244 0.0345328
\(815\) −92.7534 −3.24901
\(816\) −11.6651 −0.408360
\(817\) 13.4413 0.470251
\(818\) −12.4601 −0.435656
\(819\) 16.2647 0.568336
\(820\) −64.8822 −2.26578
\(821\) 26.8251 0.936204 0.468102 0.883675i \(-0.344938\pi\)
0.468102 + 0.883675i \(0.344938\pi\)
\(822\) −19.4253 −0.677534
\(823\) 26.3320 0.917876 0.458938 0.888468i \(-0.348230\pi\)
0.458938 + 0.888468i \(0.348230\pi\)
\(824\) −14.4152 −0.502178
\(825\) −27.8918 −0.971067
\(826\) −11.9297 −0.415088
\(827\) 1.52437 0.0530076 0.0265038 0.999649i \(-0.491563\pi\)
0.0265038 + 0.999649i \(0.491563\pi\)
\(828\) 0 0
\(829\) −48.9323 −1.69949 −0.849745 0.527194i \(-0.823244\pi\)
−0.849745 + 0.527194i \(0.823244\pi\)
\(830\) −21.4372 −0.744097
\(831\) −33.6265 −1.16649
\(832\) 67.4563 2.33863
\(833\) −31.0412 −1.07551
\(834\) 71.1616 2.46413
\(835\) 78.2235 2.70703
\(836\) −15.5929 −0.539290
\(837\) 0.170006 0.00587626
\(838\) −11.3877 −0.393381
\(839\) 1.53217 0.0528963 0.0264482 0.999650i \(-0.491580\pi\)
0.0264482 + 0.999650i \(0.491580\pi\)
\(840\) −28.3263 −0.977351
\(841\) 71.9254 2.48019
\(842\) −55.4680 −1.91155
\(843\) 11.9453 0.411419
\(844\) 9.79152 0.337038
\(845\) 56.8096 1.95431
\(846\) −43.4730 −1.49463
\(847\) −1.26950 −0.0436204
\(848\) −1.32630 −0.0455454
\(849\) −38.5668 −1.32361
\(850\) 154.070 5.28456
\(851\) 0 0
\(852\) −26.1886 −0.897207
\(853\) 20.7396 0.710110 0.355055 0.934845i \(-0.384462\pi\)
0.355055 + 0.934845i \(0.384462\pi\)
\(854\) 6.81852 0.233325
\(855\) 52.3211 1.78934
\(856\) 4.92638 0.168380
\(857\) 51.0704 1.74453 0.872266 0.489033i \(-0.162650\pi\)
0.872266 + 0.489033i \(0.162650\pi\)
\(858\) 27.1799 0.927908
\(859\) 24.0075 0.819124 0.409562 0.912282i \(-0.365682\pi\)
0.409562 + 0.912282i \(0.365682\pi\)
\(860\) 32.6268 1.11256
\(861\) 15.4450 0.526364
\(862\) 43.2900 1.47446
\(863\) 25.5164 0.868590 0.434295 0.900771i \(-0.356998\pi\)
0.434295 + 0.900771i \(0.356998\pi\)
\(864\) 8.09043 0.275242
\(865\) 34.1419 1.16086
\(866\) 19.8759 0.675410
\(867\) 37.8718 1.28619
\(868\) 0.532310 0.0180678
\(869\) −3.84426 −0.130408
\(870\) 216.924 7.35441
\(871\) 62.4130 2.11478
\(872\) 19.7508 0.668848
\(873\) −24.0943 −0.815467
\(874\) 0 0
\(875\) −36.1415 −1.22181
\(876\) −36.8516 −1.24510
\(877\) 18.2882 0.617549 0.308775 0.951135i \(-0.400081\pi\)
0.308775 + 0.951135i \(0.400081\pi\)
\(878\) 6.05342 0.204293
\(879\) −42.4140 −1.43059
\(880\) 3.56003 0.120008
\(881\) 10.0066 0.337132 0.168566 0.985690i \(-0.446086\pi\)
0.168566 + 0.985690i \(0.446086\pi\)
\(882\) −29.9123 −1.00720
\(883\) −25.2300 −0.849057 −0.424528 0.905415i \(-0.639560\pi\)
−0.424528 + 0.905415i \(0.639560\pi\)
\(884\) −90.4808 −3.04320
\(885\) 40.3133 1.35512
\(886\) −5.82161 −0.195581
\(887\) 23.8744 0.801625 0.400813 0.916160i \(-0.368728\pi\)
0.400813 + 0.916160i \(0.368728\pi\)
\(888\) −2.38211 −0.0799384
\(889\) 18.6613 0.625879
\(890\) 124.313 4.16698
\(891\) 10.3006 0.345084
\(892\) −54.4864 −1.82434
\(893\) −40.2559 −1.34711
\(894\) −57.6178 −1.92703
\(895\) 3.12423 0.104432
\(896\) 20.4024 0.681596
\(897\) 0 0
\(898\) 75.5608 2.52150
\(899\) −1.38870 −0.0463159
\(900\) 89.4739 2.98246
\(901\) 8.82838 0.294116
\(902\) 11.6659 0.388433
\(903\) −7.76670 −0.258460
\(904\) −19.1215 −0.635971
\(905\) −1.60272 −0.0532764
\(906\) 76.2489 2.53320
\(907\) 12.8716 0.427394 0.213697 0.976900i \(-0.431449\pi\)
0.213697 + 0.976900i \(0.431449\pi\)
\(908\) −60.0898 −1.99415
\(909\) −28.9110 −0.958916
\(910\) 60.6631 2.01096
\(911\) 35.2266 1.16711 0.583555 0.812073i \(-0.301661\pi\)
0.583555 + 0.812073i \(0.301661\pi\)
\(912\) −10.4090 −0.344677
\(913\) 2.32289 0.0768763
\(914\) −80.5260 −2.66356
\(915\) −23.0414 −0.761724
\(916\) 80.7398 2.66772
\(917\) −17.1121 −0.565091
\(918\) −15.8951 −0.524616
\(919\) −7.21706 −0.238069 −0.119034 0.992890i \(-0.537980\pi\)
−0.119034 + 0.992890i \(0.537980\pi\)
\(920\) 0 0
\(921\) −52.2076 −1.72030
\(922\) 42.3464 1.39461
\(923\) 19.1062 0.628888
\(924\) 9.00994 0.296405
\(925\) −5.23509 −0.172129
\(926\) −50.5868 −1.66239
\(927\) −15.3852 −0.505317
\(928\) −66.0873 −2.16942
\(929\) 53.8813 1.76779 0.883895 0.467686i \(-0.154912\pi\)
0.883895 + 0.467686i \(0.154912\pi\)
\(930\) −2.98481 −0.0978758
\(931\) −27.6987 −0.907789
\(932\) 68.1648 2.23281
\(933\) −77.2345 −2.52854
\(934\) −21.0366 −0.688340
\(935\) −23.6969 −0.774972
\(936\) −29.7027 −0.970864
\(937\) −44.7379 −1.46152 −0.730761 0.682633i \(-0.760835\pi\)
−0.730761 + 0.682633i \(0.760835\pi\)
\(938\) 34.3307 1.12094
\(939\) −29.0635 −0.948453
\(940\) −97.7154 −3.18713
\(941\) 46.6574 1.52099 0.760494 0.649345i \(-0.224957\pi\)
0.760494 + 0.649345i \(0.224957\pi\)
\(942\) 112.929 3.67942
\(943\) 0 0
\(944\) −3.62502 −0.117984
\(945\) 6.42240 0.208921
\(946\) −5.86635 −0.190731
\(947\) 24.6900 0.802317 0.401159 0.916009i \(-0.368608\pi\)
0.401159 + 0.916009i \(0.368608\pi\)
\(948\) 27.2837 0.886133
\(949\) 26.8855 0.872742
\(950\) 137.480 4.46044
\(951\) −0.0731813 −0.00237307
\(952\) −16.9548 −0.549507
\(953\) −10.4522 −0.338581 −0.169290 0.985566i \(-0.554148\pi\)
−0.169290 + 0.985566i \(0.554148\pi\)
\(954\) 8.50733 0.275435
\(955\) −105.837 −3.42482
\(956\) 26.5005 0.857087
\(957\) −23.5054 −0.759820
\(958\) 43.1039 1.39262
\(959\) 4.69789 0.151703
\(960\) −125.386 −4.04681
\(961\) −30.9809 −0.999384
\(962\) 5.10148 0.164478
\(963\) 5.25788 0.169433
\(964\) 17.0882 0.550374
\(965\) 0.0142393 0.000458379 0
\(966\) 0 0
\(967\) 3.99607 0.128505 0.0642524 0.997934i \(-0.479534\pi\)
0.0642524 + 0.997934i \(0.479534\pi\)
\(968\) 2.31836 0.0745148
\(969\) 69.2864 2.22580
\(970\) −89.8651 −2.88540
\(971\) −49.6389 −1.59299 −0.796493 0.604647i \(-0.793314\pi\)
−0.796493 + 0.604647i \(0.793314\pi\)
\(972\) −61.9144 −1.98590
\(973\) −17.2100 −0.551728
\(974\) 65.2481 2.09068
\(975\) −144.420 −4.62516
\(976\) 2.07191 0.0663203
\(977\) 31.9209 1.02124 0.510619 0.859807i \(-0.329416\pi\)
0.510619 + 0.859807i \(0.329416\pi\)
\(978\) −118.362 −3.78481
\(979\) −13.4702 −0.430511
\(980\) −67.2348 −2.14774
\(981\) 21.0799 0.673029
\(982\) 10.6587 0.340133
\(983\) −31.9754 −1.01986 −0.509929 0.860217i \(-0.670328\pi\)
−0.509929 + 0.860217i \(0.670328\pi\)
\(984\) −28.2057 −0.899165
\(985\) −11.8726 −0.378291
\(986\) 129.840 4.13495
\(987\) 23.2608 0.740401
\(988\) −80.7380 −2.56862
\(989\) 0 0
\(990\) −22.8352 −0.725749
\(991\) −16.2458 −0.516066 −0.258033 0.966136i \(-0.583074\pi\)
−0.258033 + 0.966136i \(0.583074\pi\)
\(992\) 0.909342 0.0288716
\(993\) −79.9426 −2.53690
\(994\) 10.5095 0.333341
\(995\) −45.2938 −1.43591
\(996\) −16.4861 −0.522383
\(997\) 43.2306 1.36913 0.684563 0.728954i \(-0.259993\pi\)
0.684563 + 0.728954i \(0.259993\pi\)
\(998\) 75.9994 2.40572
\(999\) 0.540093 0.0170878
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.o.1.16 yes 18
23.22 odd 2 5819.2.a.n.1.16 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5819.2.a.n.1.16 18 23.22 odd 2
5819.2.a.o.1.16 yes 18 1.1 even 1 trivial