Properties

Label 5819.2.a.o.1.14
Level $5819$
Weight $2$
Character 5819.1
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,2,-2,18,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 25 x^{16} + 48 x^{15} + 251 x^{14} - 460 x^{13} - 1295 x^{12} + 2248 x^{11} + \cdots - 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(1.65948\) of defining polynomial
Character \(\chi\) \(=\) 5819.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.65948 q^{2} -1.50381 q^{3} +0.753868 q^{4} +3.61083 q^{5} -2.49554 q^{6} -1.22717 q^{7} -2.06793 q^{8} -0.738551 q^{9} +5.99209 q^{10} -1.00000 q^{11} -1.13367 q^{12} -0.261302 q^{13} -2.03646 q^{14} -5.43001 q^{15} -4.93942 q^{16} -2.31448 q^{17} -1.22561 q^{18} -5.38737 q^{19} +2.72209 q^{20} +1.84543 q^{21} -1.65948 q^{22} +3.10978 q^{24} +8.03810 q^{25} -0.433625 q^{26} +5.62208 q^{27} -0.925121 q^{28} +5.59693 q^{29} -9.01098 q^{30} +3.25729 q^{31} -4.06100 q^{32} +1.50381 q^{33} -3.84083 q^{34} -4.43109 q^{35} -0.556769 q^{36} +6.59357 q^{37} -8.94022 q^{38} +0.392949 q^{39} -7.46694 q^{40} +12.0171 q^{41} +3.06245 q^{42} -2.22896 q^{43} -0.753868 q^{44} -2.66678 q^{45} -6.33332 q^{47} +7.42796 q^{48} -5.49406 q^{49} +13.3390 q^{50} +3.48054 q^{51} -0.196987 q^{52} +10.3180 q^{53} +9.32971 q^{54} -3.61083 q^{55} +2.53769 q^{56} +8.10159 q^{57} +9.28798 q^{58} -1.16731 q^{59} -4.09351 q^{60} +12.7076 q^{61} +5.40540 q^{62} +0.906325 q^{63} +3.13970 q^{64} -0.943517 q^{65} +2.49554 q^{66} +6.81171 q^{67} -1.74481 q^{68} -7.35330 q^{70} +7.18668 q^{71} +1.52727 q^{72} +8.73391 q^{73} +10.9419 q^{74} -12.0878 q^{75} -4.06136 q^{76} +1.22717 q^{77} +0.652090 q^{78} +3.54440 q^{79} -17.8354 q^{80} -6.23889 q^{81} +19.9421 q^{82} +9.08846 q^{83} +1.39121 q^{84} -8.35720 q^{85} -3.69891 q^{86} -8.41673 q^{87} +2.06793 q^{88} +15.5343 q^{89} -4.42547 q^{90} +0.320661 q^{91} -4.89835 q^{93} -10.5100 q^{94} -19.4529 q^{95} +6.10698 q^{96} -4.43488 q^{97} -9.11728 q^{98} +0.738551 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 2 q^{3} + 18 q^{4} + 8 q^{5} - 6 q^{6} + 10 q^{7} + 6 q^{8} + 16 q^{9} + 12 q^{10} - 18 q^{11} + 10 q^{12} + 28 q^{14} + 8 q^{15} + 26 q^{16} - 20 q^{18} + 16 q^{19} + 40 q^{20} + 12 q^{21}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65948 1.17343 0.586714 0.809794i \(-0.300421\pi\)
0.586714 + 0.809794i \(0.300421\pi\)
\(3\) −1.50381 −0.868226 −0.434113 0.900858i \(-0.642938\pi\)
−0.434113 + 0.900858i \(0.642938\pi\)
\(4\) 0.753868 0.376934
\(5\) 3.61083 1.61481 0.807406 0.589996i \(-0.200871\pi\)
0.807406 + 0.589996i \(0.200871\pi\)
\(6\) −2.49554 −1.01880
\(7\) −1.22717 −0.463825 −0.231913 0.972737i \(-0.574498\pi\)
−0.231913 + 0.972737i \(0.574498\pi\)
\(8\) −2.06793 −0.731124
\(9\) −0.738551 −0.246184
\(10\) 5.99209 1.89487
\(11\) −1.00000 −0.301511
\(12\) −1.13367 −0.327264
\(13\) −0.261302 −0.0724721 −0.0362361 0.999343i \(-0.511537\pi\)
−0.0362361 + 0.999343i \(0.511537\pi\)
\(14\) −2.03646 −0.544266
\(15\) −5.43001 −1.40202
\(16\) −4.93942 −1.23485
\(17\) −2.31448 −0.561344 −0.280672 0.959804i \(-0.590557\pi\)
−0.280672 + 0.959804i \(0.590557\pi\)
\(18\) −1.22561 −0.288879
\(19\) −5.38737 −1.23595 −0.617973 0.786199i \(-0.712046\pi\)
−0.617973 + 0.786199i \(0.712046\pi\)
\(20\) 2.72209 0.608677
\(21\) 1.84543 0.402705
\(22\) −1.65948 −0.353802
\(23\) 0 0
\(24\) 3.10978 0.634780
\(25\) 8.03810 1.60762
\(26\) −0.433625 −0.0850408
\(27\) 5.62208 1.08197
\(28\) −0.925121 −0.174831
\(29\) 5.59693 1.03932 0.519662 0.854372i \(-0.326058\pi\)
0.519662 + 0.854372i \(0.326058\pi\)
\(30\) −9.01098 −1.64517
\(31\) 3.25729 0.585026 0.292513 0.956262i \(-0.405509\pi\)
0.292513 + 0.956262i \(0.405509\pi\)
\(32\) −4.06100 −0.717890
\(33\) 1.50381 0.261780
\(34\) −3.84083 −0.658697
\(35\) −4.43109 −0.748991
\(36\) −0.556769 −0.0927949
\(37\) 6.59357 1.08398 0.541988 0.840386i \(-0.317672\pi\)
0.541988 + 0.840386i \(0.317672\pi\)
\(38\) −8.94022 −1.45029
\(39\) 0.392949 0.0629222
\(40\) −7.46694 −1.18063
\(41\) 12.0171 1.87675 0.938375 0.345618i \(-0.112331\pi\)
0.938375 + 0.345618i \(0.112331\pi\)
\(42\) 3.06245 0.472546
\(43\) −2.22896 −0.339913 −0.169957 0.985452i \(-0.554363\pi\)
−0.169957 + 0.985452i \(0.554363\pi\)
\(44\) −0.753868 −0.113650
\(45\) −2.66678 −0.397540
\(46\) 0 0
\(47\) −6.33332 −0.923809 −0.461905 0.886930i \(-0.652834\pi\)
−0.461905 + 0.886930i \(0.652834\pi\)
\(48\) 7.42796 1.07213
\(49\) −5.49406 −0.784866
\(50\) 13.3390 1.88643
\(51\) 3.48054 0.487373
\(52\) −0.196987 −0.0273172
\(53\) 10.3180 1.41728 0.708642 0.705569i \(-0.249308\pi\)
0.708642 + 0.705569i \(0.249308\pi\)
\(54\) 9.32971 1.26961
\(55\) −3.61083 −0.486884
\(56\) 2.53769 0.339114
\(57\) 8.10159 1.07308
\(58\) 9.28798 1.21957
\(59\) −1.16731 −0.151971 −0.0759856 0.997109i \(-0.524210\pi\)
−0.0759856 + 0.997109i \(0.524210\pi\)
\(60\) −4.09351 −0.528470
\(61\) 12.7076 1.62705 0.813523 0.581533i \(-0.197547\pi\)
0.813523 + 0.581533i \(0.197547\pi\)
\(62\) 5.40540 0.686486
\(63\) 0.906325 0.114186
\(64\) 3.13970 0.392463
\(65\) −0.943517 −0.117029
\(66\) 2.49554 0.307180
\(67\) 6.81171 0.832183 0.416092 0.909323i \(-0.363400\pi\)
0.416092 + 0.909323i \(0.363400\pi\)
\(68\) −1.74481 −0.211590
\(69\) 0 0
\(70\) −7.35330 −0.878887
\(71\) 7.18668 0.852902 0.426451 0.904511i \(-0.359764\pi\)
0.426451 + 0.904511i \(0.359764\pi\)
\(72\) 1.52727 0.179991
\(73\) 8.73391 1.02223 0.511113 0.859513i \(-0.329233\pi\)
0.511113 + 0.859513i \(0.329233\pi\)
\(74\) 10.9419 1.27197
\(75\) −12.0878 −1.39578
\(76\) −4.06136 −0.465870
\(77\) 1.22717 0.139849
\(78\) 0.652090 0.0738346
\(79\) 3.54440 0.398776 0.199388 0.979921i \(-0.436105\pi\)
0.199388 + 0.979921i \(0.436105\pi\)
\(80\) −17.8354 −1.99406
\(81\) −6.23889 −0.693210
\(82\) 19.9421 2.20223
\(83\) 9.08846 0.997588 0.498794 0.866721i \(-0.333776\pi\)
0.498794 + 0.866721i \(0.333776\pi\)
\(84\) 1.39121 0.151793
\(85\) −8.35720 −0.906465
\(86\) −3.69891 −0.398864
\(87\) −8.41673 −0.902368
\(88\) 2.06793 0.220442
\(89\) 15.5343 1.64664 0.823319 0.567579i \(-0.192120\pi\)
0.823319 + 0.567579i \(0.192120\pi\)
\(90\) −4.42547 −0.466485
\(91\) 0.320661 0.0336144
\(92\) 0 0
\(93\) −4.89835 −0.507935
\(94\) −10.5100 −1.08402
\(95\) −19.4529 −1.99582
\(96\) 6.10698 0.623291
\(97\) −4.43488 −0.450294 −0.225147 0.974325i \(-0.572286\pi\)
−0.225147 + 0.974325i \(0.572286\pi\)
\(98\) −9.11728 −0.920984
\(99\) 0.738551 0.0742271
\(100\) 6.05966 0.605966
\(101\) −2.94301 −0.292841 −0.146420 0.989222i \(-0.546775\pi\)
−0.146420 + 0.989222i \(0.546775\pi\)
\(102\) 5.77588 0.571898
\(103\) 9.75473 0.961162 0.480581 0.876950i \(-0.340426\pi\)
0.480581 + 0.876950i \(0.340426\pi\)
\(104\) 0.540354 0.0529861
\(105\) 6.66352 0.650293
\(106\) 17.1225 1.66308
\(107\) −6.47389 −0.625854 −0.312927 0.949777i \(-0.601310\pi\)
−0.312927 + 0.949777i \(0.601310\pi\)
\(108\) 4.23830 0.407831
\(109\) −0.495246 −0.0474360 −0.0237180 0.999719i \(-0.507550\pi\)
−0.0237180 + 0.999719i \(0.507550\pi\)
\(110\) −5.99209 −0.571324
\(111\) −9.91548 −0.941136
\(112\) 6.06149 0.572757
\(113\) −6.48075 −0.609658 −0.304829 0.952407i \(-0.598599\pi\)
−0.304829 + 0.952407i \(0.598599\pi\)
\(114\) 13.4444 1.25918
\(115\) 0 0
\(116\) 4.21934 0.391756
\(117\) 0.192985 0.0178414
\(118\) −1.93713 −0.178327
\(119\) 2.84025 0.260366
\(120\) 11.2289 1.02505
\(121\) 1.00000 0.0909091
\(122\) 21.0880 1.90922
\(123\) −18.0714 −1.62944
\(124\) 2.45556 0.220516
\(125\) 10.9701 0.981192
\(126\) 1.50403 0.133989
\(127\) −16.1595 −1.43392 −0.716962 0.697112i \(-0.754468\pi\)
−0.716962 + 0.697112i \(0.754468\pi\)
\(128\) 13.3323 1.17842
\(129\) 3.35193 0.295121
\(130\) −1.56575 −0.137325
\(131\) 12.9820 1.13424 0.567120 0.823635i \(-0.308058\pi\)
0.567120 + 0.823635i \(0.308058\pi\)
\(132\) 1.13367 0.0986737
\(133\) 6.61120 0.573263
\(134\) 11.3039 0.976507
\(135\) 20.3004 1.74718
\(136\) 4.78618 0.410412
\(137\) −15.8701 −1.35588 −0.677938 0.735119i \(-0.737126\pi\)
−0.677938 + 0.735119i \(0.737126\pi\)
\(138\) 0 0
\(139\) −13.3735 −1.13433 −0.567165 0.823604i \(-0.691960\pi\)
−0.567165 + 0.823604i \(0.691960\pi\)
\(140\) −3.34045 −0.282320
\(141\) 9.52412 0.802075
\(142\) 11.9261 1.00082
\(143\) 0.261302 0.0218512
\(144\) 3.64801 0.304001
\(145\) 20.2096 1.67831
\(146\) 14.4937 1.19951
\(147\) 8.26203 0.681441
\(148\) 4.97068 0.408587
\(149\) 14.7333 1.20700 0.603498 0.797365i \(-0.293773\pi\)
0.603498 + 0.797365i \(0.293773\pi\)
\(150\) −20.0594 −1.63784
\(151\) 7.16752 0.583285 0.291642 0.956527i \(-0.405798\pi\)
0.291642 + 0.956527i \(0.405798\pi\)
\(152\) 11.1407 0.903630
\(153\) 1.70936 0.138194
\(154\) 2.03646 0.164102
\(155\) 11.7615 0.944707
\(156\) 0.296231 0.0237175
\(157\) −21.6027 −1.72408 −0.862042 0.506837i \(-0.830814\pi\)
−0.862042 + 0.506837i \(0.830814\pi\)
\(158\) 5.88185 0.467935
\(159\) −15.5163 −1.23052
\(160\) −14.6636 −1.15926
\(161\) 0 0
\(162\) −10.3533 −0.813432
\(163\) −9.28152 −0.726985 −0.363493 0.931597i \(-0.618416\pi\)
−0.363493 + 0.931597i \(0.618416\pi\)
\(164\) 9.05928 0.707411
\(165\) 5.43001 0.422726
\(166\) 15.0821 1.17060
\(167\) 11.5039 0.890197 0.445099 0.895482i \(-0.353169\pi\)
0.445099 + 0.895482i \(0.353169\pi\)
\(168\) −3.81621 −0.294427
\(169\) −12.9317 −0.994748
\(170\) −13.8686 −1.06367
\(171\) 3.97884 0.304270
\(172\) −1.68034 −0.128125
\(173\) −16.5378 −1.25735 −0.628674 0.777669i \(-0.716402\pi\)
−0.628674 + 0.777669i \(0.716402\pi\)
\(174\) −13.9674 −1.05886
\(175\) −9.86408 −0.745655
\(176\) 4.93942 0.372323
\(177\) 1.75542 0.131945
\(178\) 25.7789 1.93221
\(179\) −24.0810 −1.79990 −0.899951 0.435991i \(-0.856398\pi\)
−0.899951 + 0.435991i \(0.856398\pi\)
\(180\) −2.01040 −0.149846
\(181\) −11.1797 −0.830981 −0.415491 0.909597i \(-0.636390\pi\)
−0.415491 + 0.909597i \(0.636390\pi\)
\(182\) 0.532130 0.0394441
\(183\) −19.1099 −1.41264
\(184\) 0 0
\(185\) 23.8083 1.75042
\(186\) −8.12870 −0.596025
\(187\) 2.31448 0.169252
\(188\) −4.77448 −0.348215
\(189\) −6.89922 −0.501845
\(190\) −32.2816 −2.34195
\(191\) −3.49949 −0.253214 −0.126607 0.991953i \(-0.540409\pi\)
−0.126607 + 0.991953i \(0.540409\pi\)
\(192\) −4.72152 −0.340746
\(193\) 21.7972 1.56900 0.784499 0.620130i \(-0.212920\pi\)
0.784499 + 0.620130i \(0.212920\pi\)
\(194\) −7.35958 −0.528387
\(195\) 1.41887 0.101608
\(196\) −4.14180 −0.295843
\(197\) 18.5531 1.32185 0.660925 0.750452i \(-0.270164\pi\)
0.660925 + 0.750452i \(0.270164\pi\)
\(198\) 1.22561 0.0871002
\(199\) 16.2533 1.15217 0.576083 0.817391i \(-0.304580\pi\)
0.576083 + 0.817391i \(0.304580\pi\)
\(200\) −16.6222 −1.17537
\(201\) −10.2435 −0.722523
\(202\) −4.88386 −0.343628
\(203\) −6.86836 −0.482065
\(204\) 2.62387 0.183708
\(205\) 43.3916 3.03060
\(206\) 16.1878 1.12785
\(207\) 0 0
\(208\) 1.29068 0.0894925
\(209\) 5.38737 0.372652
\(210\) 11.0580 0.763073
\(211\) −6.99965 −0.481875 −0.240938 0.970541i \(-0.577455\pi\)
−0.240938 + 0.970541i \(0.577455\pi\)
\(212\) 7.77839 0.534222
\(213\) −10.8074 −0.740511
\(214\) −10.7433 −0.734395
\(215\) −8.04839 −0.548896
\(216\) −11.6261 −0.791053
\(217\) −3.99723 −0.271350
\(218\) −0.821850 −0.0556627
\(219\) −13.1342 −0.887524
\(220\) −2.72209 −0.183523
\(221\) 0.604778 0.0406818
\(222\) −16.4545 −1.10436
\(223\) 3.12105 0.209001 0.104500 0.994525i \(-0.466676\pi\)
0.104500 + 0.994525i \(0.466676\pi\)
\(224\) 4.98352 0.332975
\(225\) −5.93654 −0.395770
\(226\) −10.7547 −0.715389
\(227\) −19.8734 −1.31905 −0.659523 0.751684i \(-0.729242\pi\)
−0.659523 + 0.751684i \(0.729242\pi\)
\(228\) 6.10752 0.404481
\(229\) 21.3844 1.41312 0.706560 0.707653i \(-0.250246\pi\)
0.706560 + 0.707653i \(0.250246\pi\)
\(230\) 0 0
\(231\) −1.84543 −0.121420
\(232\) −11.5741 −0.759874
\(233\) 9.25101 0.606054 0.303027 0.952982i \(-0.402003\pi\)
0.303027 + 0.952982i \(0.402003\pi\)
\(234\) 0.320254 0.0209357
\(235\) −22.8685 −1.49178
\(236\) −0.879999 −0.0572831
\(237\) −5.33011 −0.346228
\(238\) 4.71334 0.305520
\(239\) 13.3912 0.866204 0.433102 0.901345i \(-0.357419\pi\)
0.433102 + 0.901345i \(0.357419\pi\)
\(240\) 26.8211 1.73129
\(241\) −17.2886 −1.11365 −0.556827 0.830628i \(-0.687981\pi\)
−0.556827 + 0.830628i \(0.687981\pi\)
\(242\) 1.65948 0.106675
\(243\) −7.48411 −0.480106
\(244\) 9.57987 0.613288
\(245\) −19.8381 −1.26741
\(246\) −29.9891 −1.91204
\(247\) 1.40773 0.0895717
\(248\) −6.73584 −0.427726
\(249\) −13.6673 −0.866132
\(250\) 18.2046 1.15136
\(251\) 20.4006 1.28767 0.643837 0.765163i \(-0.277342\pi\)
0.643837 + 0.765163i \(0.277342\pi\)
\(252\) 0.683249 0.0430406
\(253\) 0 0
\(254\) −26.8163 −1.68261
\(255\) 12.5677 0.787017
\(256\) 15.8452 0.990325
\(257\) −24.2625 −1.51345 −0.756726 0.653732i \(-0.773202\pi\)
−0.756726 + 0.653732i \(0.773202\pi\)
\(258\) 5.56246 0.346304
\(259\) −8.09140 −0.502775
\(260\) −0.711287 −0.0441121
\(261\) −4.13362 −0.255864
\(262\) 21.5433 1.33095
\(263\) 13.9784 0.861945 0.430973 0.902365i \(-0.358171\pi\)
0.430973 + 0.902365i \(0.358171\pi\)
\(264\) −3.10978 −0.191394
\(265\) 37.2565 2.28865
\(266\) 10.9711 0.672684
\(267\) −23.3607 −1.42965
\(268\) 5.13513 0.313678
\(269\) −4.12554 −0.251539 −0.125769 0.992060i \(-0.540140\pi\)
−0.125769 + 0.992060i \(0.540140\pi\)
\(270\) 33.6880 2.05019
\(271\) −23.8044 −1.44602 −0.723008 0.690840i \(-0.757241\pi\)
−0.723008 + 0.690840i \(0.757241\pi\)
\(272\) 11.4322 0.693178
\(273\) −0.482214 −0.0291849
\(274\) −26.3361 −1.59102
\(275\) −8.03810 −0.484716
\(276\) 0 0
\(277\) −8.46281 −0.508481 −0.254241 0.967141i \(-0.581826\pi\)
−0.254241 + 0.967141i \(0.581826\pi\)
\(278\) −22.1931 −1.33105
\(279\) −2.40567 −0.144024
\(280\) 9.16318 0.547605
\(281\) 5.68815 0.339326 0.169663 0.985502i \(-0.445732\pi\)
0.169663 + 0.985502i \(0.445732\pi\)
\(282\) 15.8051 0.941178
\(283\) 24.9590 1.48366 0.741829 0.670589i \(-0.233958\pi\)
0.741829 + 0.670589i \(0.233958\pi\)
\(284\) 5.41780 0.321487
\(285\) 29.2535 1.73283
\(286\) 0.433625 0.0256408
\(287\) −14.7469 −0.870485
\(288\) 2.99925 0.176733
\(289\) −11.6432 −0.684893
\(290\) 33.5373 1.96938
\(291\) 6.66922 0.390957
\(292\) 6.58421 0.385312
\(293\) 12.8962 0.753407 0.376703 0.926334i \(-0.377058\pi\)
0.376703 + 0.926334i \(0.377058\pi\)
\(294\) 13.7107 0.799622
\(295\) −4.21497 −0.245405
\(296\) −13.6350 −0.792520
\(297\) −5.62208 −0.326226
\(298\) 24.4495 1.41632
\(299\) 0 0
\(300\) −9.11259 −0.526115
\(301\) 2.73530 0.157660
\(302\) 11.8943 0.684443
\(303\) 4.42574 0.254252
\(304\) 26.6105 1.52621
\(305\) 45.8851 2.62737
\(306\) 2.83665 0.162160
\(307\) 23.0234 1.31401 0.657007 0.753884i \(-0.271822\pi\)
0.657007 + 0.753884i \(0.271822\pi\)
\(308\) 0.925121 0.0527137
\(309\) −14.6693 −0.834506
\(310\) 19.5180 1.10855
\(311\) −29.2156 −1.65666 −0.828331 0.560239i \(-0.810709\pi\)
−0.828331 + 0.560239i \(0.810709\pi\)
\(312\) −0.812590 −0.0460039
\(313\) 32.8856 1.85880 0.929401 0.369070i \(-0.120324\pi\)
0.929401 + 0.369070i \(0.120324\pi\)
\(314\) −35.8492 −2.02309
\(315\) 3.27258 0.184389
\(316\) 2.67201 0.150312
\(317\) 8.97457 0.504062 0.252031 0.967719i \(-0.418902\pi\)
0.252031 + 0.967719i \(0.418902\pi\)
\(318\) −25.7490 −1.44393
\(319\) −5.59693 −0.313368
\(320\) 11.3369 0.633753
\(321\) 9.73550 0.543383
\(322\) 0 0
\(323\) 12.4690 0.693791
\(324\) −4.70330 −0.261294
\(325\) −2.10037 −0.116508
\(326\) −15.4025 −0.853065
\(327\) 0.744757 0.0411851
\(328\) −24.8505 −1.37214
\(329\) 7.77203 0.428486
\(330\) 9.01098 0.496038
\(331\) 23.1573 1.27284 0.636420 0.771343i \(-0.280415\pi\)
0.636420 + 0.771343i \(0.280415\pi\)
\(332\) 6.85149 0.376025
\(333\) −4.86968 −0.266857
\(334\) 19.0904 1.04458
\(335\) 24.5959 1.34382
\(336\) −9.11534 −0.497282
\(337\) 3.94062 0.214659 0.107330 0.994223i \(-0.465770\pi\)
0.107330 + 0.994223i \(0.465770\pi\)
\(338\) −21.4599 −1.16727
\(339\) 9.74582 0.529321
\(340\) −6.30022 −0.341677
\(341\) −3.25729 −0.176392
\(342\) 6.60281 0.357039
\(343\) 15.3323 0.827866
\(344\) 4.60933 0.248518
\(345\) 0 0
\(346\) −27.4442 −1.47541
\(347\) 26.9065 1.44442 0.722209 0.691675i \(-0.243127\pi\)
0.722209 + 0.691675i \(0.243127\pi\)
\(348\) −6.34510 −0.340133
\(349\) 9.61839 0.514861 0.257430 0.966297i \(-0.417124\pi\)
0.257430 + 0.966297i \(0.417124\pi\)
\(350\) −16.3692 −0.874972
\(351\) −1.46906 −0.0784126
\(352\) 4.06100 0.216452
\(353\) 2.56552 0.136549 0.0682744 0.997667i \(-0.478251\pi\)
0.0682744 + 0.997667i \(0.478251\pi\)
\(354\) 2.91308 0.154828
\(355\) 25.9499 1.37728
\(356\) 11.7108 0.620673
\(357\) −4.27121 −0.226056
\(358\) −39.9620 −2.11206
\(359\) 12.7579 0.673337 0.336669 0.941623i \(-0.390700\pi\)
0.336669 + 0.941623i \(0.390700\pi\)
\(360\) 5.51472 0.290651
\(361\) 10.0237 0.527565
\(362\) −18.5525 −0.975097
\(363\) −1.50381 −0.0789296
\(364\) 0.241736 0.0126704
\(365\) 31.5367 1.65070
\(366\) −31.7124 −1.65764
\(367\) 25.1126 1.31087 0.655433 0.755253i \(-0.272486\pi\)
0.655433 + 0.755253i \(0.272486\pi\)
\(368\) 0 0
\(369\) −8.87522 −0.462025
\(370\) 39.5093 2.05399
\(371\) −12.6619 −0.657372
\(372\) −3.69270 −0.191458
\(373\) −13.6744 −0.708035 −0.354017 0.935239i \(-0.615185\pi\)
−0.354017 + 0.935239i \(0.615185\pi\)
\(374\) 3.84083 0.198605
\(375\) −16.4969 −0.851896
\(376\) 13.0969 0.675419
\(377\) −1.46249 −0.0753220
\(378\) −11.4491 −0.588879
\(379\) 6.70712 0.344522 0.172261 0.985051i \(-0.444893\pi\)
0.172261 + 0.985051i \(0.444893\pi\)
\(380\) −14.6649 −0.752293
\(381\) 24.3009 1.24497
\(382\) −5.80733 −0.297129
\(383\) −26.0432 −1.33074 −0.665372 0.746512i \(-0.731727\pi\)
−0.665372 + 0.746512i \(0.731727\pi\)
\(384\) −20.0492 −1.02313
\(385\) 4.43109 0.225829
\(386\) 36.1720 1.84111
\(387\) 1.64620 0.0836810
\(388\) −3.34331 −0.169731
\(389\) 32.6351 1.65466 0.827332 0.561713i \(-0.189857\pi\)
0.827332 + 0.561713i \(0.189857\pi\)
\(390\) 2.35459 0.119229
\(391\) 0 0
\(392\) 11.3613 0.573834
\(393\) −19.5224 −0.984776
\(394\) 30.7884 1.55110
\(395\) 12.7982 0.643949
\(396\) 0.556769 0.0279787
\(397\) −19.9695 −1.00224 −0.501120 0.865378i \(-0.667079\pi\)
−0.501120 + 0.865378i \(0.667079\pi\)
\(398\) 26.9720 1.35198
\(399\) −9.94199 −0.497722
\(400\) −39.7035 −1.98518
\(401\) −9.36083 −0.467458 −0.233729 0.972302i \(-0.575093\pi\)
−0.233729 + 0.972302i \(0.575093\pi\)
\(402\) −16.9989 −0.847829
\(403\) −0.851135 −0.0423981
\(404\) −2.21864 −0.110382
\(405\) −22.5276 −1.11940
\(406\) −11.3979 −0.565668
\(407\) −6.59357 −0.326831
\(408\) −7.19752 −0.356330
\(409\) 1.43798 0.0711036 0.0355518 0.999368i \(-0.488681\pi\)
0.0355518 + 0.999368i \(0.488681\pi\)
\(410\) 72.0074 3.55619
\(411\) 23.8657 1.17721
\(412\) 7.35377 0.362294
\(413\) 1.43249 0.0704881
\(414\) 0 0
\(415\) 32.8169 1.61092
\(416\) 1.06115 0.0520270
\(417\) 20.1113 0.984854
\(418\) 8.94022 0.437280
\(419\) −1.58881 −0.0776182 −0.0388091 0.999247i \(-0.512356\pi\)
−0.0388091 + 0.999247i \(0.512356\pi\)
\(420\) 5.02341 0.245118
\(421\) 9.26391 0.451495 0.225748 0.974186i \(-0.427518\pi\)
0.225748 + 0.974186i \(0.427518\pi\)
\(422\) −11.6158 −0.565446
\(423\) 4.67748 0.227427
\(424\) −21.3369 −1.03621
\(425\) −18.6040 −0.902428
\(426\) −17.9347 −0.868937
\(427\) −15.5944 −0.754665
\(428\) −4.88045 −0.235906
\(429\) −0.392949 −0.0189717
\(430\) −13.3561 −0.644090
\(431\) 9.66062 0.465336 0.232668 0.972556i \(-0.425255\pi\)
0.232668 + 0.972556i \(0.425255\pi\)
\(432\) −27.7698 −1.33607
\(433\) −5.83436 −0.280382 −0.140191 0.990125i \(-0.544772\pi\)
−0.140191 + 0.990125i \(0.544772\pi\)
\(434\) −6.63332 −0.318410
\(435\) −30.3914 −1.45716
\(436\) −0.373350 −0.0178802
\(437\) 0 0
\(438\) −21.7958 −1.04145
\(439\) −33.1940 −1.58426 −0.792131 0.610351i \(-0.791028\pi\)
−0.792131 + 0.610351i \(0.791028\pi\)
\(440\) 7.46694 0.355973
\(441\) 4.05764 0.193221
\(442\) 1.00362 0.0477371
\(443\) −10.5814 −0.502739 −0.251369 0.967891i \(-0.580881\pi\)
−0.251369 + 0.967891i \(0.580881\pi\)
\(444\) −7.47496 −0.354746
\(445\) 56.0919 2.65901
\(446\) 5.17931 0.245247
\(447\) −22.1560 −1.04794
\(448\) −3.85293 −0.182034
\(449\) 35.6265 1.68132 0.840660 0.541563i \(-0.182167\pi\)
0.840660 + 0.541563i \(0.182167\pi\)
\(450\) −9.85156 −0.464407
\(451\) −12.0171 −0.565862
\(452\) −4.88563 −0.229801
\(453\) −10.7786 −0.506423
\(454\) −32.9795 −1.54781
\(455\) 1.15785 0.0542809
\(456\) −16.7535 −0.784555
\(457\) −3.18967 −0.149206 −0.0746032 0.997213i \(-0.523769\pi\)
−0.0746032 + 0.997213i \(0.523769\pi\)
\(458\) 35.4869 1.65819
\(459\) −13.0122 −0.607357
\(460\) 0 0
\(461\) −11.0291 −0.513674 −0.256837 0.966455i \(-0.582680\pi\)
−0.256837 + 0.966455i \(0.582680\pi\)
\(462\) −3.06245 −0.142478
\(463\) 35.3750 1.64402 0.822009 0.569475i \(-0.192854\pi\)
0.822009 + 0.569475i \(0.192854\pi\)
\(464\) −27.6456 −1.28341
\(465\) −17.6871 −0.820219
\(466\) 15.3518 0.711160
\(467\) −16.4405 −0.760775 −0.380387 0.924827i \(-0.624209\pi\)
−0.380387 + 0.924827i \(0.624209\pi\)
\(468\) 0.145485 0.00672504
\(469\) −8.35911 −0.385988
\(470\) −37.9498 −1.75050
\(471\) 32.4864 1.49689
\(472\) 2.41392 0.111110
\(473\) 2.22896 0.102488
\(474\) −8.84520 −0.406273
\(475\) −43.3042 −1.98693
\(476\) 2.14117 0.0981406
\(477\) −7.62035 −0.348912
\(478\) 22.2224 1.01643
\(479\) 17.3631 0.793342 0.396671 0.917961i \(-0.370165\pi\)
0.396671 + 0.917961i \(0.370165\pi\)
\(480\) 22.0513 1.00650
\(481\) −1.72291 −0.0785580
\(482\) −28.6900 −1.30679
\(483\) 0 0
\(484\) 0.753868 0.0342667
\(485\) −16.0136 −0.727140
\(486\) −12.4197 −0.563370
\(487\) −3.65322 −0.165543 −0.0827717 0.996569i \(-0.526377\pi\)
−0.0827717 + 0.996569i \(0.526377\pi\)
\(488\) −26.2785 −1.18957
\(489\) 13.9577 0.631187
\(490\) −32.9209 −1.48722
\(491\) −12.5694 −0.567251 −0.283626 0.958935i \(-0.591537\pi\)
−0.283626 + 0.958935i \(0.591537\pi\)
\(492\) −13.6234 −0.614192
\(493\) −12.9540 −0.583418
\(494\) 2.33610 0.105106
\(495\) 2.66678 0.119863
\(496\) −16.0891 −0.722422
\(497\) −8.81925 −0.395597
\(498\) −22.6806 −1.01634
\(499\) −14.9934 −0.671197 −0.335598 0.942005i \(-0.608938\pi\)
−0.335598 + 0.942005i \(0.608938\pi\)
\(500\) 8.26997 0.369844
\(501\) −17.2997 −0.772892
\(502\) 33.8543 1.51099
\(503\) 41.1688 1.83563 0.917813 0.397012i \(-0.129953\pi\)
0.917813 + 0.397012i \(0.129953\pi\)
\(504\) −1.87422 −0.0834842
\(505\) −10.6267 −0.472883
\(506\) 0 0
\(507\) 19.4469 0.863666
\(508\) −12.1821 −0.540494
\(509\) −9.72276 −0.430954 −0.215477 0.976509i \(-0.569131\pi\)
−0.215477 + 0.976509i \(0.569131\pi\)
\(510\) 20.8557 0.923508
\(511\) −10.7180 −0.474135
\(512\) −0.369770 −0.0163417
\(513\) −30.2882 −1.33726
\(514\) −40.2631 −1.77593
\(515\) 35.2227 1.55210
\(516\) 2.52691 0.111241
\(517\) 6.33332 0.278539
\(518\) −13.4275 −0.589971
\(519\) 24.8698 1.09166
\(520\) 1.95113 0.0855626
\(521\) 29.0991 1.27485 0.637427 0.770511i \(-0.279999\pi\)
0.637427 + 0.770511i \(0.279999\pi\)
\(522\) −6.85965 −0.300239
\(523\) −18.7217 −0.818641 −0.409320 0.912391i \(-0.634234\pi\)
−0.409320 + 0.912391i \(0.634234\pi\)
\(524\) 9.78668 0.427533
\(525\) 14.8337 0.647397
\(526\) 23.1969 1.01143
\(527\) −7.53893 −0.328401
\(528\) −7.42796 −0.323260
\(529\) 0 0
\(530\) 61.8263 2.68556
\(531\) 0.862120 0.0374128
\(532\) 4.98397 0.216082
\(533\) −3.14008 −0.136012
\(534\) −38.7666 −1.67760
\(535\) −23.3761 −1.01064
\(536\) −14.0861 −0.608429
\(537\) 36.2134 1.56272
\(538\) −6.84624 −0.295162
\(539\) 5.49406 0.236646
\(540\) 15.3038 0.658570
\(541\) 6.35560 0.273248 0.136624 0.990623i \(-0.456375\pi\)
0.136624 + 0.990623i \(0.456375\pi\)
\(542\) −39.5029 −1.69680
\(543\) 16.8122 0.721479
\(544\) 9.39910 0.402983
\(545\) −1.78825 −0.0766002
\(546\) −0.800223 −0.0342464
\(547\) −5.81838 −0.248776 −0.124388 0.992234i \(-0.539697\pi\)
−0.124388 + 0.992234i \(0.539697\pi\)
\(548\) −11.9640 −0.511075
\(549\) −9.38523 −0.400552
\(550\) −13.3390 −0.568779
\(551\) −30.1527 −1.28455
\(552\) 0 0
\(553\) −4.34957 −0.184962
\(554\) −14.0439 −0.596666
\(555\) −35.8031 −1.51976
\(556\) −10.0819 −0.427567
\(557\) 7.56062 0.320354 0.160177 0.987088i \(-0.448794\pi\)
0.160177 + 0.987088i \(0.448794\pi\)
\(558\) −3.99216 −0.169002
\(559\) 0.582431 0.0246342
\(560\) 21.8870 0.924895
\(561\) −3.48054 −0.146949
\(562\) 9.43936 0.398175
\(563\) −14.4117 −0.607382 −0.303691 0.952771i \(-0.598219\pi\)
−0.303691 + 0.952771i \(0.598219\pi\)
\(564\) 7.17992 0.302329
\(565\) −23.4009 −0.984483
\(566\) 41.4189 1.74097
\(567\) 7.65616 0.321528
\(568\) −14.8615 −0.623576
\(569\) 7.66093 0.321163 0.160581 0.987023i \(-0.448663\pi\)
0.160581 + 0.987023i \(0.448663\pi\)
\(570\) 48.5455 2.03335
\(571\) 35.0411 1.46643 0.733213 0.679999i \(-0.238020\pi\)
0.733213 + 0.679999i \(0.238020\pi\)
\(572\) 0.196987 0.00823644
\(573\) 5.26258 0.219847
\(574\) −24.4722 −1.02145
\(575\) 0 0
\(576\) −2.31883 −0.0966178
\(577\) −41.6118 −1.73232 −0.866161 0.499766i \(-0.833419\pi\)
−0.866161 + 0.499766i \(0.833419\pi\)
\(578\) −19.3216 −0.803673
\(579\) −32.7789 −1.36225
\(580\) 15.2353 0.632613
\(581\) −11.1530 −0.462706
\(582\) 11.0674 0.458760
\(583\) −10.3180 −0.427327
\(584\) −18.0611 −0.747374
\(585\) 0.696835 0.0288106
\(586\) 21.4010 0.884069
\(587\) 1.89646 0.0782752 0.0391376 0.999234i \(-0.487539\pi\)
0.0391376 + 0.999234i \(0.487539\pi\)
\(588\) 6.22848 0.256858
\(589\) −17.5482 −0.723061
\(590\) −6.99465 −0.287965
\(591\) −27.9003 −1.14766
\(592\) −32.5684 −1.33855
\(593\) 20.6381 0.847504 0.423752 0.905778i \(-0.360713\pi\)
0.423752 + 0.905778i \(0.360713\pi\)
\(594\) −9.32971 −0.382803
\(595\) 10.2557 0.420442
\(596\) 11.1069 0.454957
\(597\) −24.4419 −1.00034
\(598\) 0 0
\(599\) 37.7532 1.54256 0.771278 0.636499i \(-0.219618\pi\)
0.771278 + 0.636499i \(0.219618\pi\)
\(600\) 24.9967 1.02049
\(601\) −28.1039 −1.14638 −0.573190 0.819422i \(-0.694294\pi\)
−0.573190 + 0.819422i \(0.694294\pi\)
\(602\) 4.53918 0.185003
\(603\) −5.03080 −0.204870
\(604\) 5.40336 0.219860
\(605\) 3.61083 0.146801
\(606\) 7.34441 0.298346
\(607\) −31.7222 −1.28756 −0.643782 0.765209i \(-0.722636\pi\)
−0.643782 + 0.765209i \(0.722636\pi\)
\(608\) 21.8781 0.887274
\(609\) 10.3287 0.418541
\(610\) 76.1453 3.08303
\(611\) 1.65491 0.0669504
\(612\) 1.28863 0.0520899
\(613\) 33.9107 1.36964 0.684820 0.728712i \(-0.259881\pi\)
0.684820 + 0.728712i \(0.259881\pi\)
\(614\) 38.2068 1.54190
\(615\) −65.2528 −2.63125
\(616\) −2.53769 −0.102247
\(617\) −41.8698 −1.68562 −0.842808 0.538215i \(-0.819099\pi\)
−0.842808 + 0.538215i \(0.819099\pi\)
\(618\) −24.3433 −0.979233
\(619\) −39.9272 −1.60481 −0.802405 0.596779i \(-0.796447\pi\)
−0.802405 + 0.596779i \(0.796447\pi\)
\(620\) 8.86662 0.356092
\(621\) 0 0
\(622\) −48.4826 −1.94397
\(623\) −19.0632 −0.763752
\(624\) −1.94094 −0.0776997
\(625\) −0.579475 −0.0231790
\(626\) 54.5729 2.18117
\(627\) −8.10159 −0.323546
\(628\) −16.2856 −0.649865
\(629\) −15.2607 −0.608483
\(630\) 5.43078 0.216368
\(631\) −10.1103 −0.402485 −0.201243 0.979541i \(-0.564498\pi\)
−0.201243 + 0.979541i \(0.564498\pi\)
\(632\) −7.32957 −0.291555
\(633\) 10.5261 0.418377
\(634\) 14.8931 0.591480
\(635\) −58.3492 −2.31552
\(636\) −11.6972 −0.463825
\(637\) 1.43561 0.0568809
\(638\) −9.28798 −0.367715
\(639\) −5.30773 −0.209970
\(640\) 48.1405 1.90292
\(641\) 4.22253 0.166780 0.0833899 0.996517i \(-0.473425\pi\)
0.0833899 + 0.996517i \(0.473425\pi\)
\(642\) 16.1559 0.637621
\(643\) 19.7176 0.777587 0.388793 0.921325i \(-0.372892\pi\)
0.388793 + 0.921325i \(0.372892\pi\)
\(644\) 0 0
\(645\) 12.1033 0.476566
\(646\) 20.6920 0.814114
\(647\) 2.48402 0.0976567 0.0488284 0.998807i \(-0.484451\pi\)
0.0488284 + 0.998807i \(0.484451\pi\)
\(648\) 12.9016 0.506822
\(649\) 1.16731 0.0458210
\(650\) −3.48552 −0.136713
\(651\) 6.01109 0.235593
\(652\) −6.99704 −0.274025
\(653\) 16.0793 0.629232 0.314616 0.949219i \(-0.398124\pi\)
0.314616 + 0.949219i \(0.398124\pi\)
\(654\) 1.23591 0.0483278
\(655\) 46.8757 1.83158
\(656\) −59.3573 −2.31751
\(657\) −6.45043 −0.251655
\(658\) 12.8975 0.502798
\(659\) 34.5728 1.34677 0.673383 0.739294i \(-0.264841\pi\)
0.673383 + 0.739294i \(0.264841\pi\)
\(660\) 4.09351 0.159340
\(661\) 1.72585 0.0671276 0.0335638 0.999437i \(-0.489314\pi\)
0.0335638 + 0.999437i \(0.489314\pi\)
\(662\) 38.4290 1.49359
\(663\) −0.909472 −0.0353210
\(664\) −18.7943 −0.729360
\(665\) 23.8719 0.925713
\(666\) −8.08113 −0.313138
\(667\) 0 0
\(668\) 8.67240 0.335545
\(669\) −4.69347 −0.181460
\(670\) 40.8164 1.57688
\(671\) −12.7076 −0.490573
\(672\) −7.49428 −0.289098
\(673\) 28.7328 1.10757 0.553785 0.832660i \(-0.313183\pi\)
0.553785 + 0.832660i \(0.313183\pi\)
\(674\) 6.53938 0.251887
\(675\) 45.1908 1.73939
\(676\) −9.74880 −0.374954
\(677\) −28.2216 −1.08464 −0.542321 0.840171i \(-0.682454\pi\)
−0.542321 + 0.840171i \(0.682454\pi\)
\(678\) 16.1730 0.621120
\(679\) 5.44233 0.208858
\(680\) 17.2821 0.662738
\(681\) 29.8859 1.14523
\(682\) −5.40540 −0.206983
\(683\) −42.9010 −1.64156 −0.820780 0.571244i \(-0.806461\pi\)
−0.820780 + 0.571244i \(0.806461\pi\)
\(684\) 2.99952 0.114690
\(685\) −57.3043 −2.18948
\(686\) 25.4436 0.971441
\(687\) −32.1581 −1.22691
\(688\) 11.0098 0.419743
\(689\) −2.69611 −0.102713
\(690\) 0 0
\(691\) −30.2650 −1.15133 −0.575667 0.817684i \(-0.695257\pi\)
−0.575667 + 0.817684i \(0.695257\pi\)
\(692\) −12.4673 −0.473937
\(693\) −0.906325 −0.0344284
\(694\) 44.6508 1.69492
\(695\) −48.2896 −1.83173
\(696\) 17.4052 0.659742
\(697\) −27.8133 −1.05350
\(698\) 15.9615 0.604152
\(699\) −13.9118 −0.526192
\(700\) −7.43621 −0.281062
\(701\) −5.81299 −0.219553 −0.109777 0.993956i \(-0.535014\pi\)
−0.109777 + 0.993956i \(0.535014\pi\)
\(702\) −2.43787 −0.0920115
\(703\) −35.5220 −1.33974
\(704\) −3.13970 −0.118332
\(705\) 34.3900 1.29520
\(706\) 4.25742 0.160230
\(707\) 3.61157 0.135827
\(708\) 1.32335 0.0497347
\(709\) −27.6343 −1.03783 −0.518914 0.854827i \(-0.673663\pi\)
−0.518914 + 0.854827i \(0.673663\pi\)
\(710\) 43.0632 1.61613
\(711\) −2.61772 −0.0981721
\(712\) −32.1239 −1.20390
\(713\) 0 0
\(714\) −7.08797 −0.265261
\(715\) 0.943517 0.0352855
\(716\) −18.1539 −0.678444
\(717\) −20.1378 −0.752061
\(718\) 21.1715 0.790113
\(719\) 0.140300 0.00523232 0.00261616 0.999997i \(-0.499167\pi\)
0.00261616 + 0.999997i \(0.499167\pi\)
\(720\) 13.1724 0.490905
\(721\) −11.9707 −0.445811
\(722\) 16.6342 0.619059
\(723\) 25.9987 0.966903
\(724\) −8.42802 −0.313225
\(725\) 44.9887 1.67084
\(726\) −2.49554 −0.0926183
\(727\) −1.23728 −0.0458882 −0.0229441 0.999737i \(-0.507304\pi\)
−0.0229441 + 0.999737i \(0.507304\pi\)
\(728\) −0.663104 −0.0245763
\(729\) 29.9714 1.11005
\(730\) 52.3344 1.93698
\(731\) 5.15888 0.190808
\(732\) −14.4063 −0.532473
\(733\) 11.2573 0.415798 0.207899 0.978150i \(-0.433338\pi\)
0.207899 + 0.978150i \(0.433338\pi\)
\(734\) 41.6738 1.53821
\(735\) 29.8328 1.10040
\(736\) 0 0
\(737\) −6.81171 −0.250913
\(738\) −14.7282 −0.542153
\(739\) 15.4480 0.568263 0.284132 0.958785i \(-0.408295\pi\)
0.284132 + 0.958785i \(0.408295\pi\)
\(740\) 17.9483 0.659792
\(741\) −2.11696 −0.0777685
\(742\) −21.0121 −0.771379
\(743\) 39.6903 1.45610 0.728048 0.685526i \(-0.240428\pi\)
0.728048 + 0.685526i \(0.240428\pi\)
\(744\) 10.1294 0.371363
\(745\) 53.1993 1.94907
\(746\) −22.6924 −0.830828
\(747\) −6.71229 −0.245590
\(748\) 1.74481 0.0637966
\(749\) 7.94453 0.290287
\(750\) −27.3762 −0.999639
\(751\) −46.4677 −1.69563 −0.847815 0.530292i \(-0.822082\pi\)
−0.847815 + 0.530292i \(0.822082\pi\)
\(752\) 31.2829 1.14077
\(753\) −30.6786 −1.11799
\(754\) −2.42697 −0.0883849
\(755\) 25.8807 0.941896
\(756\) −5.20110 −0.189162
\(757\) 23.2626 0.845494 0.422747 0.906248i \(-0.361066\pi\)
0.422747 + 0.906248i \(0.361066\pi\)
\(758\) 11.1303 0.404272
\(759\) 0 0
\(760\) 40.2272 1.45919
\(761\) 47.4948 1.72168 0.860842 0.508872i \(-0.169937\pi\)
0.860842 + 0.508872i \(0.169937\pi\)
\(762\) 40.3267 1.46088
\(763\) 0.607749 0.0220020
\(764\) −2.63815 −0.0954451
\(765\) 6.17221 0.223157
\(766\) −43.2181 −1.56153
\(767\) 0.305021 0.0110137
\(768\) −23.8282 −0.859826
\(769\) 2.72132 0.0981333 0.0490666 0.998796i \(-0.484375\pi\)
0.0490666 + 0.998796i \(0.484375\pi\)
\(770\) 7.35330 0.264994
\(771\) 36.4862 1.31402
\(772\) 16.4322 0.591409
\(773\) −11.0335 −0.396848 −0.198424 0.980116i \(-0.563582\pi\)
−0.198424 + 0.980116i \(0.563582\pi\)
\(774\) 2.73183 0.0981937
\(775\) 26.1824 0.940499
\(776\) 9.17102 0.329220
\(777\) 12.1679 0.436523
\(778\) 54.1572 1.94163
\(779\) −64.7404 −2.31956
\(780\) 1.06964 0.0382993
\(781\) −7.18668 −0.257160
\(782\) 0 0
\(783\) 31.4664 1.12452
\(784\) 27.1375 0.969196
\(785\) −78.0037 −2.78407
\(786\) −32.3970 −1.15556
\(787\) 23.3791 0.833374 0.416687 0.909050i \(-0.363191\pi\)
0.416687 + 0.909050i \(0.363191\pi\)
\(788\) 13.9865 0.498250
\(789\) −21.0209 −0.748363
\(790\) 21.2384 0.755627
\(791\) 7.95296 0.282775
\(792\) −1.52727 −0.0542692
\(793\) −3.32053 −0.117915
\(794\) −33.1389 −1.17606
\(795\) −56.0267 −1.98706
\(796\) 12.2528 0.434291
\(797\) 2.29001 0.0811165 0.0405582 0.999177i \(-0.487086\pi\)
0.0405582 + 0.999177i \(0.487086\pi\)
\(798\) −16.4985 −0.584041
\(799\) 14.6583 0.518575
\(800\) −32.6427 −1.15409
\(801\) −11.4729 −0.405375
\(802\) −15.5341 −0.548528
\(803\) −8.73391 −0.308213
\(804\) −7.72227 −0.272343
\(805\) 0 0
\(806\) −1.41244 −0.0497511
\(807\) 6.20403 0.218392
\(808\) 6.08594 0.214103
\(809\) 21.0789 0.741093 0.370546 0.928814i \(-0.379170\pi\)
0.370546 + 0.928814i \(0.379170\pi\)
\(810\) −37.3840 −1.31354
\(811\) 1.57138 0.0551787 0.0275893 0.999619i \(-0.491217\pi\)
0.0275893 + 0.999619i \(0.491217\pi\)
\(812\) −5.17784 −0.181706
\(813\) 35.7974 1.25547
\(814\) −10.9419 −0.383513
\(815\) −33.5140 −1.17394
\(816\) −17.1919 −0.601835
\(817\) 12.0082 0.420115
\(818\) 2.38630 0.0834350
\(819\) −0.236824 −0.00827531
\(820\) 32.7115 1.14234
\(821\) −11.5678 −0.403718 −0.201859 0.979415i \(-0.564698\pi\)
−0.201859 + 0.979415i \(0.564698\pi\)
\(822\) 39.6045 1.38137
\(823\) −47.2465 −1.64691 −0.823454 0.567383i \(-0.807956\pi\)
−0.823454 + 0.567383i \(0.807956\pi\)
\(824\) −20.1721 −0.702728
\(825\) 12.0878 0.420843
\(826\) 2.37718 0.0827127
\(827\) −34.2977 −1.19265 −0.596325 0.802743i \(-0.703373\pi\)
−0.596325 + 0.802743i \(0.703373\pi\)
\(828\) 0 0
\(829\) 5.77394 0.200537 0.100269 0.994960i \(-0.468030\pi\)
0.100269 + 0.994960i \(0.468030\pi\)
\(830\) 54.4589 1.89030
\(831\) 12.7265 0.441477
\(832\) −0.820410 −0.0284426
\(833\) 12.7159 0.440580
\(834\) 33.3743 1.15566
\(835\) 41.5386 1.43750
\(836\) 4.06136 0.140465
\(837\) 18.3127 0.632980
\(838\) −2.63659 −0.0910794
\(839\) −16.3933 −0.565959 −0.282979 0.959126i \(-0.591323\pi\)
−0.282979 + 0.959126i \(0.591323\pi\)
\(840\) −13.7797 −0.475445
\(841\) 2.32563 0.0801940
\(842\) 15.3733 0.529797
\(843\) −8.55390 −0.294612
\(844\) −5.27680 −0.181635
\(845\) −46.6943 −1.60633
\(846\) 7.76217 0.266869
\(847\) −1.22717 −0.0421659
\(848\) −50.9648 −1.75014
\(849\) −37.5336 −1.28815
\(850\) −30.8730 −1.05893
\(851\) 0 0
\(852\) −8.14735 −0.279124
\(853\) 20.2698 0.694024 0.347012 0.937861i \(-0.387196\pi\)
0.347012 + 0.937861i \(0.387196\pi\)
\(854\) −25.8785 −0.885545
\(855\) 14.3669 0.491339
\(856\) 13.3875 0.457577
\(857\) 33.6350 1.14895 0.574474 0.818523i \(-0.305207\pi\)
0.574474 + 0.818523i \(0.305207\pi\)
\(858\) −0.652090 −0.0222620
\(859\) −3.47103 −0.118430 −0.0592150 0.998245i \(-0.518860\pi\)
−0.0592150 + 0.998245i \(0.518860\pi\)
\(860\) −6.06742 −0.206897
\(861\) 22.1766 0.755777
\(862\) 16.0316 0.546038
\(863\) 43.7807 1.49031 0.745157 0.666890i \(-0.232375\pi\)
0.745157 + 0.666890i \(0.232375\pi\)
\(864\) −22.8312 −0.776735
\(865\) −59.7153 −2.03038
\(866\) −9.68200 −0.329008
\(867\) 17.5091 0.594642
\(868\) −3.01338 −0.102281
\(869\) −3.54440 −0.120236
\(870\) −50.4338 −1.70987
\(871\) −1.77991 −0.0603101
\(872\) 1.02413 0.0346815
\(873\) 3.27538 0.110855
\(874\) 0 0
\(875\) −13.4621 −0.455102
\(876\) −9.90141 −0.334538
\(877\) −24.3526 −0.822329 −0.411164 0.911561i \(-0.634878\pi\)
−0.411164 + 0.911561i \(0.634878\pi\)
\(878\) −55.0847 −1.85902
\(879\) −19.3935 −0.654127
\(880\) 17.8354 0.601231
\(881\) −37.4048 −1.26020 −0.630099 0.776514i \(-0.716986\pi\)
−0.630099 + 0.776514i \(0.716986\pi\)
\(882\) 6.73357 0.226731
\(883\) 34.5573 1.16295 0.581474 0.813565i \(-0.302476\pi\)
0.581474 + 0.813565i \(0.302476\pi\)
\(884\) 0.455923 0.0153343
\(885\) 6.33852 0.213067
\(886\) −17.5596 −0.589928
\(887\) 12.6855 0.425938 0.212969 0.977059i \(-0.431687\pi\)
0.212969 + 0.977059i \(0.431687\pi\)
\(888\) 20.5045 0.688087
\(889\) 19.8304 0.665090
\(890\) 93.0833 3.12016
\(891\) 6.23889 0.209011
\(892\) 2.35286 0.0787794
\(893\) 34.1199 1.14178
\(894\) −36.7675 −1.22969
\(895\) −86.9526 −2.90650
\(896\) −16.3609 −0.546579
\(897\) 0 0
\(898\) 59.1215 1.97291
\(899\) 18.2308 0.608031
\(900\) −4.47537 −0.149179
\(901\) −23.8808 −0.795583
\(902\) −19.9421 −0.663998
\(903\) −4.11338 −0.136885
\(904\) 13.4017 0.445735
\(905\) −40.3680 −1.34188
\(906\) −17.8869 −0.594251
\(907\) 24.0158 0.797432 0.398716 0.917074i \(-0.369456\pi\)
0.398716 + 0.917074i \(0.369456\pi\)
\(908\) −14.9819 −0.497193
\(909\) 2.17356 0.0720926
\(910\) 1.92143 0.0636948
\(911\) −11.6748 −0.386803 −0.193401 0.981120i \(-0.561952\pi\)
−0.193401 + 0.981120i \(0.561952\pi\)
\(912\) −40.0171 −1.32510
\(913\) −9.08846 −0.300784
\(914\) −5.29318 −0.175083
\(915\) −69.0025 −2.28115
\(916\) 16.1210 0.532652
\(917\) −15.9310 −0.526089
\(918\) −21.5934 −0.712690
\(919\) 37.0295 1.22149 0.610745 0.791827i \(-0.290870\pi\)
0.610745 + 0.791827i \(0.290870\pi\)
\(920\) 0 0
\(921\) −34.6228 −1.14086
\(922\) −18.3025 −0.602760
\(923\) −1.87789 −0.0618116
\(924\) −1.39121 −0.0457674
\(925\) 52.9997 1.74262
\(926\) 58.7041 1.92914
\(927\) −7.20436 −0.236622
\(928\) −22.7291 −0.746120
\(929\) 57.6308 1.89080 0.945402 0.325906i \(-0.105669\pi\)
0.945402 + 0.325906i \(0.105669\pi\)
\(930\) −29.3513 −0.962469
\(931\) 29.5985 0.970053
\(932\) 6.97403 0.228442
\(933\) 43.9347 1.43836
\(934\) −27.2826 −0.892715
\(935\) 8.35720 0.273310
\(936\) −0.399079 −0.0130443
\(937\) 13.8380 0.452066 0.226033 0.974120i \(-0.427424\pi\)
0.226033 + 0.974120i \(0.427424\pi\)
\(938\) −13.8718 −0.452929
\(939\) −49.4537 −1.61386
\(940\) −17.2398 −0.562302
\(941\) 4.13711 0.134866 0.0674329 0.997724i \(-0.478519\pi\)
0.0674329 + 0.997724i \(0.478519\pi\)
\(942\) 53.9105 1.75650
\(943\) 0 0
\(944\) 5.76585 0.187662
\(945\) −24.9119 −0.810385
\(946\) 3.69891 0.120262
\(947\) −37.6578 −1.22371 −0.611857 0.790968i \(-0.709577\pi\)
−0.611857 + 0.790968i \(0.709577\pi\)
\(948\) −4.01820 −0.130505
\(949\) −2.28219 −0.0740829
\(950\) −71.8624 −2.33152
\(951\) −13.4961 −0.437640
\(952\) −5.87344 −0.190359
\(953\) 3.53082 0.114374 0.0571872 0.998363i \(-0.481787\pi\)
0.0571872 + 0.998363i \(0.481787\pi\)
\(954\) −12.6458 −0.409423
\(955\) −12.6361 −0.408894
\(956\) 10.0952 0.326501
\(957\) 8.41673 0.272074
\(958\) 28.8137 0.930929
\(959\) 19.4753 0.628889
\(960\) −17.0486 −0.550241
\(961\) −20.3901 −0.657745
\(962\) −2.85913 −0.0921822
\(963\) 4.78129 0.154075
\(964\) −13.0333 −0.419774
\(965\) 78.7061 2.53364
\(966\) 0 0
\(967\) −40.5667 −1.30454 −0.652268 0.757989i \(-0.726182\pi\)
−0.652268 + 0.757989i \(0.726182\pi\)
\(968\) −2.06793 −0.0664658
\(969\) −18.7510 −0.602368
\(970\) −26.5742 −0.853246
\(971\) 27.8461 0.893625 0.446812 0.894628i \(-0.352559\pi\)
0.446812 + 0.894628i \(0.352559\pi\)
\(972\) −5.64203 −0.180968
\(973\) 16.4116 0.526131
\(974\) −6.06244 −0.194253
\(975\) 3.15856 0.101155
\(976\) −62.7683 −2.00916
\(977\) −8.54673 −0.273434 −0.136717 0.990610i \(-0.543655\pi\)
−0.136717 + 0.990610i \(0.543655\pi\)
\(978\) 23.1624 0.740653
\(979\) −15.5343 −0.496480
\(980\) −14.9553 −0.477730
\(981\) 0.365764 0.0116780
\(982\) −20.8587 −0.665628
\(983\) 53.4892 1.70604 0.853020 0.521878i \(-0.174768\pi\)
0.853020 + 0.521878i \(0.174768\pi\)
\(984\) 37.3704 1.19132
\(985\) 66.9919 2.13454
\(986\) −21.4969 −0.684599
\(987\) −11.6877 −0.372023
\(988\) 1.06124 0.0337626
\(989\) 0 0
\(990\) 4.42547 0.140651
\(991\) −37.9262 −1.20476 −0.602382 0.798208i \(-0.705782\pi\)
−0.602382 + 0.798208i \(0.705782\pi\)
\(992\) −13.2278 −0.419984
\(993\) −34.8242 −1.10511
\(994\) −14.6354 −0.464205
\(995\) 58.6880 1.86053
\(996\) −10.3034 −0.326474
\(997\) −41.4058 −1.31134 −0.655668 0.755049i \(-0.727613\pi\)
−0.655668 + 0.755049i \(0.727613\pi\)
\(998\) −24.8812 −0.787601
\(999\) 37.0695 1.17283
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5819.2.a.o.1.14 yes 18
23.22 odd 2 5819.2.a.n.1.14 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5819.2.a.n.1.14 18 23.22 odd 2
5819.2.a.o.1.14 yes 18 1.1 even 1 trivial