Properties

Label 5819.2.a.m
Level $5819$
Weight $2$
Character orbit 5819.a
Self dual yes
Analytic conductor $46.465$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,4,16,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 26 x^{16} - 2 x^{15} + 275 x^{14} + 48 x^{13} - 1521 x^{12} - 434 x^{11} + 4680 x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{11} q^{3} + (\beta_{2} + 1) q^{4} - \beta_{14} q^{5} + (\beta_{10} - \beta_{9}) q^{6} - \beta_{7} q^{7} + (\beta_{6} + \beta_{5} + \beta_1) q^{8} + (\beta_{13} - \beta_{4} + 1) q^{9}+ \cdots + (\beta_{13} - \beta_{4} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{3} + 16 q^{4} + 8 q^{5} - 6 q^{6} + 8 q^{7} + 6 q^{8} + 18 q^{9} + 12 q^{10} + 18 q^{11} + 6 q^{12} + 4 q^{13} + 8 q^{14} + 8 q^{15} + 12 q^{16} + 8 q^{17} - 6 q^{18} + 28 q^{19} - 8 q^{20}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - 26 x^{16} - 2 x^{15} + 275 x^{14} + 48 x^{13} - 1521 x^{12} - 434 x^{11} + 4680 x^{10} + \cdots + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 328565 \nu^{17} + 2987085 \nu^{16} + 6798802 \nu^{15} - 74806734 \nu^{14} - 49662910 \nu^{13} + \cdots + 80782880 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 984466 \nu^{17} - 380825 \nu^{16} + 23362110 \nu^{15} + 8866189 \nu^{14} - 220021595 \nu^{13} + \cdots - 1708753 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 1708753 \nu^{17} + 984466 \nu^{16} + 44808403 \nu^{15} - 19944604 \nu^{14} - 478773264 \nu^{13} + \cdots - 4156670 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 1708753 \nu^{17} - 984466 \nu^{16} - 44808403 \nu^{15} + 19944604 \nu^{14} + 478773264 \nu^{13} + \cdots + 4156670 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2438491 \nu^{17} + 792919 \nu^{16} - 63051704 \nu^{15} - 22546430 \nu^{14} + 660638610 \nu^{13} + \cdots - 30337775 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 3356951 \nu^{17} + 2126298 \nu^{16} - 87007460 \nu^{15} - 59091504 \nu^{14} + 912564442 \nu^{13} + \cdots - 5197969 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 4031929 \nu^{17} + 447948 \nu^{16} - 106536316 \nu^{15} - 19863881 \nu^{14} + 1149371424 \nu^{13} + \cdots + 91405616 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 4686441 \nu^{17} + 176628 \nu^{16} - 124918594 \nu^{15} - 14492291 \nu^{14} + 1358800014 \nu^{13} + \cdots + 98659328 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 7253712 \nu^{17} + 654512 \nu^{16} + 188325192 \nu^{15} - 3874854 \nu^{14} - 1989399210 \nu^{13} + \cdots - 35457028 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 8765642 \nu^{17} + 1231060 \nu^{16} + 229002906 \nu^{15} - 15576181 \nu^{14} - 2439736042 \nu^{13} + \cdots - 84822899 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 9563456 \nu^{17} - 385571 \nu^{16} - 247977222 \nu^{15} - 7939320 \nu^{14} + 2617183371 \nu^{13} + \cdots + 110208007 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 11002028 \nu^{17} - 2007514 \nu^{16} - 284424442 \nu^{15} + 31402566 \nu^{14} + 2989568132 \nu^{13} + \cdots + 89594943 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 13293155 \nu^{17} - 1834850 \nu^{16} - 348268130 \nu^{15} + 20000541 \nu^{14} + 3720004421 \nu^{13} + \cdots + 122423289 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 14272726 \nu^{17} + 1950452 \nu^{16} + 370325372 \nu^{15} - 24703438 \nu^{14} + \cdots - 96308443 ) / 15441383 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 27105813 \nu^{17} - 4885552 \nu^{16} - 704855985 \nu^{15} + 69618017 \nu^{14} + 7461970829 \nu^{13} + \cdots + 194187329 ) / 15441383 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{5} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{16} - \beta_{15} + \beta_{14} + \beta_{12} - \beta_{8} + \beta_{7} + 2\beta_{4} + \beta_{3} + 6\beta_{2} + \beta _1 + 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{16} - \beta_{13} - 2 \beta_{12} + \beta_{8} - \beta_{7} + 10 \beta_{6} + 8 \beta_{5} - 2 \beta_{4} + \cdots - 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{17} - 11 \beta_{16} - 12 \beta_{15} + 9 \beta_{14} - \beta_{13} + 10 \beta_{12} - 2 \beta_{11} + \cdots + 95 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 14 \beta_{16} + \beta_{14} - 12 \beta_{13} - 24 \beta_{12} - 2 \beta_{11} - \beta_{10} + \beta_{9} + \cdots - 40 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 11 \beta_{17} - 97 \beta_{16} - 105 \beta_{15} + 65 \beta_{14} - 10 \beta_{13} + 82 \beta_{12} + \cdots + 595 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - \beta_{17} + 147 \beta_{16} + 8 \beta_{15} + 17 \beta_{14} - 106 \beta_{13} - 217 \beta_{12} + \cdots - 398 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 89 \beta_{17} - 793 \beta_{16} - 827 \beta_{15} + 435 \beta_{14} - 66 \beta_{13} + 638 \beta_{12} + \cdots + 3869 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 19 \beta_{17} + 1365 \beta_{16} + 164 \beta_{15} + 185 \beta_{14} - 842 \beta_{13} - 1781 \beta_{12} + \cdots - 3538 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 650 \beta_{17} - 6249 \beta_{16} - 6225 \beta_{15} + 2815 \beta_{14} - 329 \beta_{13} + 4878 \beta_{12} + \cdots + 25897 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 235 \beta_{17} + 11826 \beta_{16} + 2162 \beta_{15} + 1654 \beta_{14} - 6380 \beta_{13} + \cdots - 29710 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 4568 \beta_{17} - 48236 \beta_{16} - 45840 \beta_{15} + 17942 \beta_{14} - 983 \beta_{13} + \cdots + 177341 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 2411 \beta_{17} + 98099 \beta_{16} + 23415 \beta_{15} + 13265 \beta_{14} - 47213 \beta_{13} + \cdots - 241403 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 31720 \beta_{17} - 367747 \beta_{16} - 333872 \beta_{15} + 113682 \beta_{14} + 3684 \beta_{13} + \cdots + 1236559 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 22349 \beta_{17} + 790691 \beta_{16} + 227257 \beta_{15} + 99427 \beta_{14} - 345054 \beta_{13} + \cdots - 1921101 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.73796
−2.33159
−1.92566
−1.82277
−1.56027
−1.30660
−0.693371
−0.542399
−0.169979
−0.110336
0.0580425
0.974917
1.01567
1.98706
2.00682
2.26251
2.36446
2.53145
−2.73796 0.200998 5.49642 −3.20428 −0.550325 −0.207965 −9.57305 −2.95960 8.77318
1.2 −2.33159 2.16091 3.43632 −0.751052 −5.03835 −3.40928 −3.34890 1.66952 1.75115
1.3 −1.92566 −2.85748 1.70816 2.48248 5.50252 1.99527 0.561991 5.16518 −4.78041
1.4 −1.82277 3.06090 1.32247 2.03363 −5.57929 4.14508 1.23497 6.36909 −3.70683
1.5 −1.56027 0.376498 0.434433 −1.07262 −0.587437 −1.19333 2.44270 −2.85825 1.67358
1.6 −1.30660 −2.02698 −0.292802 0.604117 2.64845 4.26811 2.99577 1.10866 −0.789338
1.7 −0.693371 2.51104 −1.51924 4.17000 −1.74108 −2.28893 2.44014 3.30530 −2.89136
1.8 −0.542399 1.05221 −1.70580 −1.58565 −0.570719 −3.07693 2.01002 −1.89285 0.860056
1.9 −0.169979 0.193934 −1.97111 2.49566 −0.0329647 1.42197 0.675003 −2.96239 −0.424208
1.10 −0.110336 −2.45131 −1.98783 −1.83126 0.270467 1.29692 0.439999 3.00894 0.202053
1.11 0.0580425 2.73846 −1.99663 −2.50598 0.158947 3.34211 −0.231975 4.49914 −0.145454
1.12 0.974917 1.12173 −1.04954 −0.457847 1.09360 −4.56202 −2.97304 −1.74171 −0.446362
1.13 1.01567 −1.32280 −0.968420 3.69433 −1.34353 0.310386 −3.01493 −1.25020 3.75221
1.14 1.98706 −3.40891 1.94840 −0.261295 −6.77370 −2.94073 −0.102524 8.62066 −0.519209
1.15 2.00682 −1.31486 2.02733 1.49710 −2.63870 0.0253913 0.0548547 −1.27113 3.00441
1.16 2.26251 1.80997 3.11895 1.61936 4.09508 3.02973 2.53162 0.275996 3.66383
1.17 2.36446 2.21586 3.59066 4.15771 5.23930 1.17054 3.76104 1.91003 9.83074
1.18 2.53145 −0.0601502 4.40823 −3.08441 −0.152267 4.67368 6.09630 −2.99638 −7.80801
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.18
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5819.2.a.m yes 18
23.b odd 2 1 5819.2.a.l 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5819.2.a.l 18 23.b odd 2 1
5819.2.a.m yes 18 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5819))\):

\( T_{2}^{18} - 26 T_{2}^{16} - 2 T_{2}^{15} + 275 T_{2}^{14} + 48 T_{2}^{13} - 1521 T_{2}^{12} - 434 T_{2}^{11} + \cdots + 1 \) Copy content Toggle raw display
\( T_{5}^{18} - 8 T_{5}^{17} - 20 T_{5}^{16} + 280 T_{5}^{15} - 23 T_{5}^{14} - 3880 T_{5}^{13} + \cdots - 8192 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} - 26 T^{16} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{18} - 4 T^{17} + \cdots - 16 \) Copy content Toggle raw display
$5$ \( T^{18} - 8 T^{17} + \cdots - 8192 \) Copy content Toggle raw display
$7$ \( T^{18} - 8 T^{17} + \cdots - 2272 \) Copy content Toggle raw display
$11$ \( (T - 1)^{18} \) Copy content Toggle raw display
$13$ \( T^{18} - 4 T^{17} + \cdots + 53518076 \) Copy content Toggle raw display
$17$ \( T^{18} - 8 T^{17} + \cdots - 712072 \) Copy content Toggle raw display
$19$ \( T^{18} + \cdots + 6036527168 \) Copy content Toggle raw display
$23$ \( T^{18} \) Copy content Toggle raw display
$29$ \( T^{18} + \cdots - 207306514696 \) Copy content Toggle raw display
$31$ \( T^{18} + \cdots - 33347852897168 \) Copy content Toggle raw display
$37$ \( T^{18} + \cdots + 151151247608 \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots - 576752708 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots - 1251666440768 \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots - 39102918747136 \) Copy content Toggle raw display
$53$ \( T^{18} + \cdots + 242919386508344 \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots - 17963460657152 \) Copy content Toggle raw display
$61$ \( T^{18} + \cdots - 8621466201352 \) Copy content Toggle raw display
$67$ \( T^{18} + \cdots + 11353501349888 \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots + 2812021378576 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots + 61809600133832 \) Copy content Toggle raw display
$79$ \( T^{18} + \cdots - 16\!\cdots\!92 \) Copy content Toggle raw display
$83$ \( T^{18} + \cdots + 685990631699168 \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots - 25\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots + 163661738744 \) Copy content Toggle raw display
show more
show less