Properties

Label 5819.2.a.h
Level $5819$
Weight $2$
Character orbit 5819.a
Self dual yes
Analytic conductor $46.465$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5819,2,Mod(1,5819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5819.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5819 = 11 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5819.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-1,-1,5,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.4649489362\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 11x^{7} + 11x^{6} + 35x^{5} - 30x^{4} - 35x^{3} + 16x^{2} + 10x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{4} q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{5} - \beta_{2} - 1) q^{5} + ( - \beta_{8} + \beta_{4} - \beta_{2} - 1) q^{6} + (\beta_{6} - \beta_1) q^{7} - \beta_{3} q^{8} + (\beta_{5} + \beta_{4} + \beta_1 + 1) q^{9}+ \cdots + (\beta_{5} + \beta_{4} + \beta_1 + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - q^{2} - q^{3} + 5 q^{4} - 2 q^{5} - 3 q^{6} - q^{7} + 3 q^{8} + 8 q^{9} + 9 q^{11} - 7 q^{12} + 8 q^{13} + 16 q^{14} - 10 q^{15} + q^{16} - 13 q^{17} - 22 q^{18} - 7 q^{19} - 30 q^{20} - 4 q^{21}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - x^{8} - 11x^{7} + 11x^{6} + 35x^{5} - 30x^{4} - 35x^{3} + 16x^{2} + 10x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{7} - 10\nu^{5} + \nu^{4} + 26\nu^{3} - 3\nu^{2} - 13\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{8} + \nu^{7} - 9\nu^{6} - 8\nu^{5} + 19\nu^{4} + 17\nu^{3} - 2\nu^{2} - 6\nu - 1 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\nu^{8} + 10\nu^{6} - \nu^{5} - 27\nu^{4} + 2\nu^{3} + 18\nu^{2} + 4\nu - 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\nu^{8} - \nu^{7} + 10\nu^{6} + 8\nu^{5} - 28\nu^{4} - 16\nu^{3} + 21\nu^{2} + 4\nu - 4 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( -\nu^{8} + \nu^{7} + 10\nu^{6} - 11\nu^{5} - 25\nu^{4} + 29\nu^{3} + 9\nu^{2} - 13\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{8} - \beta_{6} - \beta_{4} - \beta_{3} + 6\beta_{2} + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{7} + \beta_{6} - \beta_{4} + 8\beta_{3} + 19\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{8} + \beta_{7} - 9\beta_{6} + \beta_{5} - 9\beta_{4} - 10\beta_{3} + 35\beta_{2} - 2\beta _1 + 74 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -\beta_{8} - 10\beta_{7} + 11\beta_{6} - 8\beta_{4} + 55\beta_{3} - 3\beta_{2} + 99\beta _1 - 25 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 63\beta_{8} + 11\beta_{7} - 65\beta_{6} + 10\beta_{5} - 62\beta_{4} - 79\beta_{3} + 206\beta_{2} - 27\beta _1 + 416 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.32903
1.79859
1.74483
0.750662
0.0898052
−0.536892
−0.822125
−1.80127
−2.55264
−2.32903 2.21751 3.42439 −4.23025 −5.16466 −4.78391 −3.31746 1.91737 9.85239
1.2 −1.79859 −1.32341 1.23493 4.13566 2.38027 0.907060 1.37605 −1.24859 −7.43836
1.3 −1.74483 −3.07887 1.04444 −1.70017 5.37211 −1.49607 1.66729 6.47943 2.96652
1.4 −0.750662 2.38297 −1.43651 −1.87437 −1.78881 4.11774 2.57965 2.67857 1.40702
1.5 −0.0898052 1.17282 −1.99194 3.53340 −0.105326 −1.58572 0.358496 −1.62448 −0.317318
1.6 0.536892 −2.60739 −1.71175 0.983758 −1.39989 −0.697853 −1.99281 3.79849 0.528172
1.7 0.822125 1.82868 −1.32411 −0.670767 1.50340 −2.49149 −2.73283 0.344072 −0.551455
1.8 1.80127 −0.356052 1.24457 1.18345 −0.641345 4.77750 −1.36074 −2.87323 2.13170
1.9 2.55264 −1.23627 4.51597 −3.36070 −3.15576 0.252760 6.42236 −1.47163 −8.57866
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5819.2.a.h 9
23.b odd 2 1 5819.2.a.i yes 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5819.2.a.h 9 1.a even 1 1 trivial
5819.2.a.i yes 9 23.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5819))\):

\( T_{2}^{9} + T_{2}^{8} - 11T_{2}^{7} - 11T_{2}^{6} + 35T_{2}^{5} + 30T_{2}^{4} - 35T_{2}^{3} - 16T_{2}^{2} + 10T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{9} + 2T_{5}^{8} - 32T_{5}^{7} - 64T_{5}^{6} + 286T_{5}^{5} + 577T_{5}^{4} - 574T_{5}^{3} - 1113T_{5}^{2} + 393T_{5} + 517 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} + T^{8} - 11 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{9} + T^{8} + \cdots + 53 \) Copy content Toggle raw display
$5$ \( T^{9} + 2 T^{8} + \cdots + 517 \) Copy content Toggle raw display
$7$ \( T^{9} + T^{8} + \cdots + 89 \) Copy content Toggle raw display
$11$ \( (T - 1)^{9} \) Copy content Toggle raw display
$13$ \( T^{9} - 8 T^{8} + \cdots - 539 \) Copy content Toggle raw display
$17$ \( T^{9} + 13 T^{8} + \cdots - 29375 \) Copy content Toggle raw display
$19$ \( T^{9} + 7 T^{8} + \cdots + 1399 \) Copy content Toggle raw display
$23$ \( T^{9} \) Copy content Toggle raw display
$29$ \( T^{9} - 3 T^{8} + \cdots + 831569 \) Copy content Toggle raw display
$31$ \( T^{9} + 6 T^{8} + \cdots + 333467 \) Copy content Toggle raw display
$37$ \( T^{9} + 27 T^{8} + \cdots + 1316935 \) Copy content Toggle raw display
$41$ \( T^{9} - T^{8} + \cdots - 14441017 \) Copy content Toggle raw display
$43$ \( T^{9} + 11 T^{8} + \cdots + 668115 \) Copy content Toggle raw display
$47$ \( T^{9} + 8 T^{8} + \cdots + 202069 \) Copy content Toggle raw display
$53$ \( T^{9} - 8 T^{8} + \cdots - 34337 \) Copy content Toggle raw display
$59$ \( T^{9} + 16 T^{8} + \cdots - 614395 \) Copy content Toggle raw display
$61$ \( T^{9} + 34 T^{8} + \cdots + 7555975 \) Copy content Toggle raw display
$67$ \( T^{9} + 8 T^{8} + \cdots - 34027609 \) Copy content Toggle raw display
$71$ \( T^{9} - 349 T^{7} + \cdots + 36881525 \) Copy content Toggle raw display
$73$ \( T^{9} + 17 T^{8} + \cdots - 44575 \) Copy content Toggle raw display
$79$ \( T^{9} + 7 T^{8} + \cdots + 252589 \) Copy content Toggle raw display
$83$ \( T^{9} + 14 T^{8} + \cdots + 56735 \) Copy content Toggle raw display
$89$ \( T^{9} - T^{8} + \cdots + 31475 \) Copy content Toggle raw display
$97$ \( T^{9} + 2 T^{8} + \cdots + 558573841 \) Copy content Toggle raw display
show more
show less