Properties

Label 5780.2.c.h.5201.6
Level 57805780
Weight 22
Character 5780.5201
Analytic conductor 46.15446.154
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5780,2,Mod(5201,5780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5780.5201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5780, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: N N == 5780=225172 5780 = 2^{2} \cdot 5 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5780.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-4,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 46.153532368346.1535323683
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12+6x1016x9+9x872x7+114x6144x5+391x4484x3++121 x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 5201.6
Root 0.411629+1.88205i-0.411629 + 1.88205i of defining polynomial
Character χ\chi == 5780.5201
Dual form 5780.2.c.h.5201.7

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q0.111711iq3+1.00000iq5+2.79103iq7+2.98752q9+1.22301iq11+3.40173q13+0.111711q153.42309q19+0.311790q219.54005iq231.00000q250.668874iq2710.0141iq297.98033iq31+0.136625q332.79103q355.71862iq370.380012iq3911.6497iq417.49527q43+2.98752iq458.61396q470.789873q49+3.58108q531.22301q55+0.382398iq57+4.23376q5910.8514iq61+8.33827iq63+3.40173iq65+11.1125q671.06573q69+0.376703iq719.86263iq73+0.111711iq753.41348q77+14.4999iq79+8.88784q811.52005q831.11869q874.28461q89+9.49436iq910.891494q933.42309iq95+2.55960iq97+3.65378iq99+O(q100)q-0.111711i q^{3} +1.00000i q^{5} +2.79103i q^{7} +2.98752 q^{9} +1.22301i q^{11} +3.40173 q^{13} +0.111711 q^{15} -3.42309 q^{19} +0.311790 q^{21} -9.54005i q^{23} -1.00000 q^{25} -0.668874i q^{27} -10.0141i q^{29} -7.98033i q^{31} +0.136625 q^{33} -2.79103 q^{35} -5.71862i q^{37} -0.380012i q^{39} -11.6497i q^{41} -7.49527 q^{43} +2.98752i q^{45} -8.61396 q^{47} -0.789873 q^{49} +3.58108 q^{53} -1.22301 q^{55} +0.382398i q^{57} +4.23376 q^{59} -10.8514i q^{61} +8.33827i q^{63} +3.40173i q^{65} +11.1125 q^{67} -1.06573 q^{69} +0.376703i q^{71} -9.86263i q^{73} +0.111711i q^{75} -3.41348 q^{77} +14.4999i q^{79} +8.88784 q^{81} -1.52005 q^{83} -1.11869 q^{87} -4.28461 q^{89} +9.49436i q^{91} -0.891494 q^{93} -3.42309i q^{95} +2.55960i q^{97} +3.65378i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q4q916q1324q1916q2112q2548q338q35+8q43+8q4744q49+16q5316q55+32q6732q69+48q77+4q8116q83++24q93+O(q100) 12 q - 4 q^{9} - 16 q^{13} - 24 q^{19} - 16 q^{21} - 12 q^{25} - 48 q^{33} - 8 q^{35} + 8 q^{43} + 8 q^{47} - 44 q^{49} + 16 q^{53} - 16 q^{55} + 32 q^{67} - 32 q^{69} + 48 q^{77} + 4 q^{81} - 16 q^{83}+ \cdots + 24 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/5780Z)×\left(\mathbb{Z}/5780\mathbb{Z}\right)^\times.

nn 581581 11571157 28912891
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 0.111711i − 0.0644966i −0.999480 0.0322483i 0.989733π-0.989733\pi
0.999480 0.0322483i 0.0102667π-0.0102667\pi
44 0 0
55 1.00000i 0.447214i
66 0 0
77 2.79103i 1.05491i 0.849582 + 0.527456i 0.176854π0.176854\pi
−0.849582 + 0.527456i 0.823146π0.823146\pi
88 0 0
99 2.98752 0.995840
1010 0 0
1111 1.22301i 0.368753i 0.982856 + 0.184376i 0.0590265π0.0590265\pi
−0.982856 + 0.184376i 0.940973π0.940973\pi
1212 0 0
1313 3.40173 0.943471 0.471736 0.881740i 0.343628π-0.343628\pi
0.471736 + 0.881740i 0.343628π0.343628\pi
1414 0 0
1515 0.111711 0.0288437
1616 0 0
1717 0 0
1818 0 0
1919 −3.42309 −0.785311 −0.392656 0.919686i 0.628444π-0.628444\pi
−0.392656 + 0.919686i 0.628444π0.628444\pi
2020 0 0
2121 0.311790 0.0680382
2222 0 0
2323 − 9.54005i − 1.98924i −0.103599 0.994619i 0.533036π-0.533036\pi
0.103599 0.994619i 0.466964π-0.466964\pi
2424 0 0
2525 −1.00000 −0.200000
2626 0 0
2727 − 0.668874i − 0.128725i
2828 0 0
2929 − 10.0141i − 1.85958i −0.368095 0.929788i 0.619990π-0.619990\pi
0.368095 0.929788i 0.380010π-0.380010\pi
3030 0 0
3131 − 7.98033i − 1.43331i −0.697428 0.716655i 0.745672π-0.745672\pi
0.697428 0.716655i 0.254328π-0.254328\pi
3232 0 0
3333 0.136625 0.0237833
3434 0 0
3535 −2.79103 −0.471771
3636 0 0
3737 − 5.71862i − 0.940135i −0.882631 0.470067i 0.844230π-0.844230\pi
0.882631 0.470067i 0.155770π-0.155770\pi
3838 0 0
3939 − 0.380012i − 0.0608507i
4040 0 0
4141 − 11.6497i − 1.81937i −0.415298 0.909685i 0.636323π-0.636323\pi
0.415298 0.909685i 0.363677π-0.363677\pi
4242 0 0
4343 −7.49527 −1.14302 −0.571509 0.820596i 0.693642π-0.693642\pi
−0.571509 + 0.820596i 0.693642π0.693642\pi
4444 0 0
4545 2.98752i 0.445353i
4646 0 0
4747 −8.61396 −1.25648 −0.628238 0.778021i 0.716223π-0.716223\pi
−0.628238 + 0.778021i 0.716223π0.716223\pi
4848 0 0
4949 −0.789873 −0.112839
5050 0 0
5151 0 0
5252 0 0
5353 3.58108 0.491899 0.245949 0.969283i 0.420900π-0.420900\pi
0.245949 + 0.969283i 0.420900π0.420900\pi
5454 0 0
5555 −1.22301 −0.164911
5656 0 0
5757 0.382398i 0.0506499i
5858 0 0
5959 4.23376 0.551189 0.275594 0.961274i 0.411125π-0.411125\pi
0.275594 + 0.961274i 0.411125π0.411125\pi
6060 0 0
6161 − 10.8514i − 1.38938i −0.719307 0.694692i 0.755541π-0.755541\pi
0.719307 0.694692i 0.244459π-0.244459\pi
6262 0 0
6363 8.33827i 1.05052i
6464 0 0
6565 3.40173i 0.421933i
6666 0 0
6767 11.1125 1.35760 0.678802 0.734322i 0.262500π-0.262500\pi
0.678802 + 0.734322i 0.262500π0.262500\pi
6868 0 0
6969 −1.06573 −0.128299
7070 0 0
7171 0.376703i 0.0447064i 0.999750 + 0.0223532i 0.00711584π0.00711584\pi
−0.999750 + 0.0223532i 0.992884π0.992884\pi
7272 0 0
7373 − 9.86263i − 1.15433i −0.816626 0.577167i 0.804158π-0.804158\pi
0.816626 0.577167i 0.195842π-0.195842\pi
7474 0 0
7575 0.111711i 0.0128993i
7676 0 0
7777 −3.41348 −0.389002
7878 0 0
7979 14.4999i 1.63136i 0.578502 + 0.815681i 0.303637π0.303637\pi
−0.578502 + 0.815681i 0.696363π0.696363\pi
8080 0 0
8181 8.88784 0.987538
8282 0 0
8383 −1.52005 −0.166848 −0.0834238 0.996514i 0.526586π-0.526586\pi
−0.0834238 + 0.996514i 0.526586π0.526586\pi
8484 0 0
8585 0 0
8686 0 0
8787 −1.11869 −0.119936
8888 0 0
8989 −4.28461 −0.454168 −0.227084 0.973875i 0.572919π-0.572919\pi
−0.227084 + 0.973875i 0.572919π0.572919\pi
9090 0 0
9191 9.49436i 0.995279i
9292 0 0
9393 −0.891494 −0.0924436
9494 0 0
9595 − 3.42309i − 0.351202i
9696 0 0
9797 2.55960i 0.259888i 0.991521 + 0.129944i 0.0414798π0.0414798\pi
−0.991521 + 0.129944i 0.958520π0.958520\pi
9898 0 0
9999 3.65378i 0.367219i
100100 0 0
101101 2.83260 0.281855 0.140927 0.990020i 0.454992π-0.454992\pi
0.140927 + 0.990020i 0.454992π0.454992\pi
102102 0 0
103103 5.02114 0.494748 0.247374 0.968920i 0.420432π-0.420432\pi
0.247374 + 0.968920i 0.420432π0.420432\pi
104104 0 0
105105 0.311790i 0.0304276i
106106 0 0
107107 − 0.626391i − 0.0605555i −0.999542 0.0302777i 0.990361π-0.990361\pi
0.999542 0.0302777i 0.00963917π-0.00963917\pi
108108 0 0
109109 14.1635i 1.35662i 0.734776 + 0.678309i 0.237287π0.237287\pi
−0.734776 + 0.678309i 0.762713π0.762713\pi
110110 0 0
111111 −0.638834 −0.0606355
112112 0 0
113113 10.0727i 0.947558i 0.880644 + 0.473779i 0.157110π0.157110\pi
−0.880644 + 0.473779i 0.842890π0.842890\pi
114114 0 0
115115 9.54005 0.889614
116116 0 0
117117 10.1628 0.939547
118118 0 0
119119 0 0
120120 0 0
121121 9.50424 0.864021
122122 0 0
123123 −1.30140 −0.117343
124124 0 0
125125 − 1.00000i − 0.0894427i
126126 0 0
127127 15.7863 1.40081 0.700403 0.713748i 0.253004π-0.253004\pi
0.700403 + 0.713748i 0.253004π0.253004\pi
128128 0 0
129129 0.837307i 0.0737208i
130130 0 0
131131 − 11.6233i − 1.01554i −0.861494 0.507768i 0.830471π-0.830471\pi
0.861494 0.507768i 0.169529π-0.169529\pi
132132 0 0
133133 − 9.55397i − 0.828434i
134134 0 0
135135 0.668874 0.0575675
136136 0 0
137137 3.40173 0.290630 0.145315 0.989385i 0.453580π-0.453580\pi
0.145315 + 0.989385i 0.453580π0.453580\pi
138138 0 0
139139 − 7.73558i − 0.656124i −0.944656 0.328062i 0.893605π-0.893605\pi
0.944656 0.328062i 0.106395π-0.106395\pi
140140 0 0
141141 0.962277i 0.0810384i
142142 0 0
143143 4.16037i 0.347908i
144144 0 0
145145 10.0141 0.831628
146146 0 0
147147 0.0882378i 0.00727773i
148148 0 0
149149 −4.56165 −0.373705 −0.186853 0.982388i 0.559829π-0.559829\pi
−0.186853 + 0.982388i 0.559829π0.559829\pi
150150 0 0
151151 −12.7622 −1.03857 −0.519285 0.854601i 0.673802π-0.673802\pi
−0.519285 + 0.854601i 0.673802π0.673802\pi
152152 0 0
153153 0 0
154154 0 0
155155 7.98033 0.640996
156156 0 0
157157 −22.4488 −1.79161 −0.895803 0.444452i 0.853399π-0.853399\pi
−0.895803 + 0.444452i 0.853399π0.853399\pi
158158 0 0
159159 − 0.400047i − 0.0317258i
160160 0 0
161161 26.6266 2.09847
162162 0 0
163163 2.85862i 0.223904i 0.993714 + 0.111952i 0.0357104π0.0357104\pi
−0.993714 + 0.111952i 0.964290π0.964290\pi
164164 0 0
165165 0.136625i 0.0106362i
166166 0 0
167167 0.0654903i 0.00506779i 0.999997 + 0.00253390i 0.000806565π0.000806565\pi
−0.999997 + 0.00253390i 0.999193π0.999193\pi
168168 0 0
169169 −1.42820 −0.109862
170170 0 0
171171 −10.2266 −0.782045
172172 0 0
173173 − 14.5329i − 1.10492i −0.833541 0.552458i 0.813690π-0.813690\pi
0.833541 0.552458i 0.186310π-0.186310\pi
174174 0 0
175175 − 2.79103i − 0.210982i
176176 0 0
177177 − 0.472959i − 0.0355498i
178178 0 0
179179 −21.5967 −1.61421 −0.807105 0.590408i 0.798967π-0.798967\pi
−0.807105 + 0.590408i 0.798967π0.798967\pi
180180 0 0
181181 3.65552i 0.271713i 0.990729 + 0.135856i 0.0433786π0.0433786\pi
−0.990729 + 0.135856i 0.956621π0.956621\pi
182182 0 0
183183 −1.21223 −0.0896105
184184 0 0
185185 5.71862 0.420441
186186 0 0
187187 0 0
188188 0 0
189189 1.86685 0.135793
190190 0 0
191191 −22.8681 −1.65468 −0.827340 0.561702i 0.810147π-0.810147\pi
−0.827340 + 0.561702i 0.810147π0.810147\pi
192192 0 0
193193 7.20843i 0.518874i 0.965760 + 0.259437i 0.0835370π0.0835370\pi
−0.965760 + 0.259437i 0.916463π0.916463\pi
194194 0 0
195195 0.380012 0.0272132
196196 0 0
197197 16.0793i 1.14560i 0.819693 + 0.572802i 0.194144π0.194144\pi
−0.819693 + 0.572802i 0.805856π0.805856\pi
198198 0 0
199199 10.5825i 0.750171i 0.926990 + 0.375086i 0.122387π0.122387\pi
−0.926990 + 0.375086i 0.877613π0.877613\pi
200200 0 0
201201 − 1.24139i − 0.0875608i
202202 0 0
203203 27.9498 1.96169
204204 0 0
205205 11.6497 0.813647
206206 0 0
207207 − 28.5011i − 1.98096i
208208 0 0
209209 − 4.18649i − 0.289586i
210210 0 0
211211 − 4.88039i − 0.335980i −0.985789 0.167990i 0.946272π-0.946272\pi
0.985789 0.167990i 0.0537277π-0.0537277\pi
212212 0 0
213213 0.0420820 0.00288341
214214 0 0
215215 − 7.49527i − 0.511173i
216216 0 0
217217 22.2734 1.51202
218218 0 0
219219 −1.10177 −0.0744505
220220 0 0
221221 0 0
222222 0 0
223223 −8.91984 −0.597317 −0.298658 0.954360i 0.596539π-0.596539\pi
−0.298658 + 0.954360i 0.596539π0.596539\pi
224224 0 0
225225 −2.98752 −0.199168
226226 0 0
227227 12.9332i 0.858405i 0.903208 + 0.429202i 0.141205π0.141205\pi
−0.903208 + 0.429202i 0.858795π0.858795\pi
228228 0 0
229229 13.9331 0.920726 0.460363 0.887731i 0.347719π-0.347719\pi
0.460363 + 0.887731i 0.347719π0.347719\pi
230230 0 0
231231 0.381324i 0.0250893i
232232 0 0
233233 − 15.6010i − 1.02206i −0.859564 0.511028i 0.829265π-0.829265\pi
0.859564 0.511028i 0.170735π-0.170735\pi
234234 0 0
235235 − 8.61396i − 0.561913i
236236 0 0
237237 1.61980 0.105217
238238 0 0
239239 14.8296 0.959246 0.479623 0.877475i 0.340773π-0.340773\pi
0.479623 + 0.877475i 0.340773π0.340773\pi
240240 0 0
241241 0.317246i 0.0204356i 0.999948 + 0.0102178i 0.00325248π0.00325248\pi
−0.999948 + 0.0102178i 0.996748π0.996748\pi
242242 0 0
243243 − 2.99949i − 0.192418i
244244 0 0
245245 − 0.789873i − 0.0504632i
246246 0 0
247247 −11.6445 −0.740919
248248 0 0
249249 0.169807i 0.0107611i
250250 0 0
251251 6.74154 0.425522 0.212761 0.977104i 0.431754π-0.431754\pi
0.212761 + 0.977104i 0.431754π0.431754\pi
252252 0 0
253253 11.6676 0.733537
254254 0 0
255255 0 0
256256 0 0
257257 4.80913 0.299985 0.149993 0.988687i 0.452075π-0.452075\pi
0.149993 + 0.988687i 0.452075π0.452075\pi
258258 0 0
259259 15.9609 0.991759
260260 0 0
261261 − 29.9174i − 1.85184i
262262 0 0
263263 −6.06324 −0.373876 −0.186938 0.982372i 0.559856π-0.559856\pi
−0.186938 + 0.982372i 0.559856π0.559856\pi
264264 0 0
265265 3.58108i 0.219984i
266266 0 0
267267 0.478640i 0.0292923i
268268 0 0
269269 − 17.1298i − 1.04442i −0.852817 0.522210i 0.825108π-0.825108\pi
0.852817 0.522210i 0.174892π-0.174892\pi
270270 0 0
271271 26.0008 1.57944 0.789719 0.613468i 0.210226π-0.210226\pi
0.789719 + 0.613468i 0.210226π0.210226\pi
272272 0 0
273273 1.06063 0.0641921
274274 0 0
275275 − 1.22301i − 0.0737505i
276276 0 0
277277 6.38905i 0.383881i 0.981407 + 0.191940i 0.0614780π0.0614780\pi
−0.981407 + 0.191940i 0.938522π0.938522\pi
278278 0 0
279279 − 23.8414i − 1.42735i
280280 0 0
281281 −1.36275 −0.0812946 −0.0406473 0.999174i 0.512942π-0.512942\pi
−0.0406473 + 0.999174i 0.512942π0.512942\pi
282282 0 0
283283 24.8930i 1.47974i 0.672751 + 0.739869i 0.265112π0.265112\pi
−0.672751 + 0.739869i 0.734888π0.734888\pi
284284 0 0
285285 −0.382398 −0.0226513
286286 0 0
287287 32.5146 1.91928
288288 0 0
289289 0 0
290290 0 0
291291 0.285936 0.0167619
292292 0 0
293293 13.2673 0.775081 0.387541 0.921853i 0.373325π-0.373325\pi
0.387541 + 0.921853i 0.373325π0.373325\pi
294294 0 0
295295 4.23376i 0.246499i
296296 0 0
297297 0.818043 0.0474676
298298 0 0
299299 − 32.4527i − 1.87679i
300300 0 0
301301 − 20.9196i − 1.20578i
302302 0 0
303303 − 0.316434i − 0.0181787i
304304 0 0
305305 10.8514 0.621351
306306 0 0
307307 −20.9807 −1.19743 −0.598717 0.800960i 0.704323π-0.704323\pi
−0.598717 + 0.800960i 0.704323π0.704323\pi
308308 0 0
309309 − 0.560919i − 0.0319096i
310310 0 0
311311 0.717381i 0.0406790i 0.999793 + 0.0203395i 0.00647471π0.00647471\pi
−0.999793 + 0.0203395i 0.993525π0.993525\pi
312312 0 0
313313 10.6077i 0.599582i 0.954005 + 0.299791i 0.0969169π0.0969169\pi
−0.954005 + 0.299791i 0.903083π0.903083\pi
314314 0 0
315315 −8.33827 −0.469808
316316 0 0
317317 21.3476i 1.19900i 0.800373 + 0.599502i 0.204635π0.204635\pi
−0.800373 + 0.599502i 0.795365π0.795365\pi
318318 0 0
319319 12.2474 0.685724
320320 0 0
321321 −0.0699749 −0.00390562
322322 0 0
323323 0 0
324324 0 0
325325 −3.40173 −0.188694
326326 0 0
327327 1.58223 0.0874973
328328 0 0
329329 − 24.0419i − 1.32547i
330330 0 0
331331 −12.4420 −0.683872 −0.341936 0.939723i 0.611083π-0.611083\pi
−0.341936 + 0.939723i 0.611083π0.611083\pi
332332 0 0
333333 − 17.0845i − 0.936224i
334334 0 0
335335 11.1125i 0.607139i
336336 0 0
337337 10.2204i 0.556741i 0.960474 + 0.278371i 0.0897943π0.0897943\pi
−0.960474 + 0.278371i 0.910206π0.910206\pi
338338 0 0
339339 1.12523 0.0611142
340340 0 0
341341 9.76006 0.528537
342342 0 0
343343 17.3327i 0.935877i
344344 0 0
345345 − 1.06573i − 0.0573771i
346346 0 0
347347 17.5246i 0.940768i 0.882462 + 0.470384i 0.155885π0.155885\pi
−0.882462 + 0.470384i 0.844115π0.844115\pi
348348 0 0
349349 −20.4572 −1.09505 −0.547525 0.836789i 0.684430π-0.684430\pi
−0.547525 + 0.836789i 0.684430π0.684430\pi
350350 0 0
351351 − 2.27533i − 0.121448i
352352 0 0
353353 20.0292 1.06605 0.533023 0.846101i 0.321056π-0.321056\pi
0.533023 + 0.846101i 0.321056π0.321056\pi
354354 0 0
355355 −0.376703 −0.0199933
356356 0 0
357357 0 0
358358 0 0
359359 19.4670 1.02743 0.513715 0.857961i 0.328269π-0.328269\pi
0.513715 + 0.857961i 0.328269π0.328269\pi
360360 0 0
361361 −7.28243 −0.383286
362362 0 0
363363 − 1.06173i − 0.0557264i
364364 0 0
365365 9.86263 0.516234
366366 0 0
367367 − 23.3070i − 1.21662i −0.793701 0.608308i 0.791848π-0.791848\pi
0.793701 0.608308i 0.208152π-0.208152\pi
368368 0 0
369369 − 34.8036i − 1.81180i
370370 0 0
371371 9.99491i 0.518910i
372372 0 0
373373 −15.4630 −0.800642 −0.400321 0.916375i 0.631101π-0.631101\pi
−0.400321 + 0.916375i 0.631101π0.631101\pi
374374 0 0
375375 −0.111711 −0.00576875
376376 0 0
377377 − 34.0654i − 1.75446i
378378 0 0
379379 7.55925i 0.388293i 0.980973 + 0.194146i 0.0621937π0.0621937\pi
−0.980973 + 0.194146i 0.937806π0.937806\pi
380380 0 0
381381 − 1.76351i − 0.0903472i
382382 0 0
383383 10.1244 0.517333 0.258666 0.965967i 0.416717π-0.416717\pi
0.258666 + 0.965967i 0.416717π0.416717\pi
384384 0 0
385385 − 3.41348i − 0.173967i
386386 0 0
387387 −22.3923 −1.13826
388388 0 0
389389 −12.6889 −0.643355 −0.321677 0.946849i 0.604247π-0.604247\pi
−0.321677 + 0.946849i 0.604247π0.604247\pi
390390 0 0
391391 0 0
392392 0 0
393393 −1.29846 −0.0654986
394394 0 0
395395 −14.4999 −0.729567
396396 0 0
397397 23.3968i 1.17425i 0.809495 + 0.587127i 0.199741π0.199741\pi
−0.809495 + 0.587127i 0.800259π0.800259\pi
398398 0 0
399399 −1.06729 −0.0534312
400400 0 0
401401 11.3052i 0.564554i 0.959333 + 0.282277i 0.0910897π0.0910897\pi
−0.959333 + 0.282277i 0.908910π0.908910\pi
402402 0 0
403403 − 27.1470i − 1.35229i
404404 0 0
405405 8.88784i 0.441640i
406406 0 0
407407 6.99395 0.346677
408408 0 0
409409 −21.1081 −1.04373 −0.521864 0.853029i 0.674763π-0.674763\pi
−0.521864 + 0.853029i 0.674763π0.674763\pi
410410 0 0
411411 − 0.380012i − 0.0187446i
412412 0 0
413413 11.8166i 0.581456i
414414 0 0
415415 − 1.52005i − 0.0746165i
416416 0 0
417417 −0.864153 −0.0423177
418418 0 0
419419 20.1361i 0.983712i 0.870677 + 0.491856i 0.163681π0.163681\pi
−0.870677 + 0.491856i 0.836319π0.836319\pi
420420 0 0
421421 −11.6969 −0.570072 −0.285036 0.958517i 0.592005π-0.592005\pi
−0.285036 + 0.958517i 0.592005π0.592005\pi
422422 0 0
423423 −25.7344 −1.25125
424424 0 0
425425 0 0
426426 0 0
427427 30.2867 1.46568
428428 0 0
429429 0.464761 0.0224388
430430 0 0
431431 − 2.89540i − 0.139466i −0.997566 0.0697332i 0.977785π-0.977785\pi
0.997566 0.0697332i 0.0222148π-0.0222148\pi
432432 0 0
433433 19.7898 0.951038 0.475519 0.879705i 0.342260π-0.342260\pi
0.475519 + 0.879705i 0.342260π0.342260\pi
434434 0 0
435435 − 1.11869i − 0.0536372i
436436 0 0
437437 32.6565i 1.56217i
438438 0 0
439439 − 35.4830i − 1.69351i −0.531981 0.846756i 0.678552π-0.678552\pi
0.531981 0.846756i 0.321448π-0.321448\pi
440440 0 0
441441 −2.35976 −0.112370
442442 0 0
443443 −14.7915 −0.702763 −0.351382 0.936232i 0.614288π-0.614288\pi
−0.351382 + 0.936232i 0.614288π0.614288\pi
444444 0 0
445445 − 4.28461i − 0.203110i
446446 0 0
447447 0.509588i 0.0241027i
448448 0 0
449449 − 17.2899i − 0.815963i −0.912990 0.407981i 0.866233π-0.866233\pi
0.912990 0.407981i 0.133767π-0.133767\pi
450450 0 0
451451 14.2477 0.670898
452452 0 0
453453 1.42568i 0.0669842i
454454 0 0
455455 −9.49436 −0.445102
456456 0 0
457457 −4.94745 −0.231432 −0.115716 0.993282i 0.536916π-0.536916\pi
−0.115716 + 0.993282i 0.536916π0.536916\pi
458458 0 0
459459 0 0
460460 0 0
461461 −9.14971 −0.426145 −0.213072 0.977036i 0.568347π-0.568347\pi
−0.213072 + 0.977036i 0.568347π0.568347\pi
462462 0 0
463463 −9.60773 −0.446509 −0.223255 0.974760i 0.571668π-0.571668\pi
−0.223255 + 0.974760i 0.571668π0.571668\pi
464464 0 0
465465 − 0.891494i − 0.0413420i
466466 0 0
467467 15.2164 0.704132 0.352066 0.935975i 0.385479π-0.385479\pi
0.352066 + 0.935975i 0.385479π0.385479\pi
468468 0 0
469469 31.0153i 1.43215i
470470 0 0
471471 2.50778i 0.115552i
472472 0 0
473473 − 9.16682i − 0.421491i
474474 0 0
475475 3.42309 0.157062
476476 0 0
477477 10.6985 0.489853
478478 0 0
479479 15.7997i 0.721907i 0.932584 + 0.360954i 0.117549π0.117549\pi
−0.932584 + 0.360954i 0.882451π0.882451\pi
480480 0 0
481481 − 19.4532i − 0.886990i
482482 0 0
483483 − 2.97450i − 0.135344i
484484 0 0
485485 −2.55960 −0.116225
486486 0 0
487487 − 11.7249i − 0.531306i −0.964069 0.265653i 0.914412π-0.914412\pi
0.964069 0.265653i 0.0855875π-0.0855875\pi
488488 0 0
489489 0.319340 0.0144411
490490 0 0
491491 −6.73370 −0.303888 −0.151944 0.988389i 0.548553π-0.548553\pi
−0.151944 + 0.988389i 0.548553π0.548553\pi
492492 0 0
493493 0 0
494494 0 0
495495 −3.65378 −0.164225
496496 0 0
497497 −1.05139 −0.0471613
498498 0 0
499499 − 27.7045i − 1.24023i −0.784513 0.620113i 0.787087π-0.787087\pi
0.784513 0.620113i 0.212913π-0.212913\pi
500500 0 0
501501 0.00731601 0.000326855 0
502502 0 0
503503 − 9.90746i − 0.441752i −0.975302 0.220876i 0.929108π-0.929108\pi
0.975302 0.220876i 0.0708916π-0.0708916\pi
504504 0 0
505505 2.83260i 0.126049i
506506 0 0
507507 0.159547i 0.00708572i
508508 0 0
509509 10.2748 0.455423 0.227712 0.973729i 0.426876π-0.426876\pi
0.227712 + 0.973729i 0.426876π0.426876\pi
510510 0 0
511511 27.5269 1.21772
512512 0 0
513513 2.28962i 0.101089i
514514 0 0
515515 5.02114i 0.221258i
516516 0 0
517517 − 10.5350i − 0.463329i
518518 0 0
519519 −1.62349 −0.0712633
520520 0 0
521521 9.66006i 0.423215i 0.977355 + 0.211607i 0.0678698π0.0678698\pi
−0.977355 + 0.211607i 0.932130π0.932130\pi
522522 0 0
523523 −8.21602 −0.359262 −0.179631 0.983734i 0.557490π-0.557490\pi
−0.179631 + 0.983734i 0.557490π0.557490\pi
524524 0 0
525525 −0.311790 −0.0136076
526526 0 0
527527 0 0
528528 0 0
529529 −68.0126 −2.95707
530530 0 0
531531 12.6484 0.548896
532532 0 0
533533 − 39.6290i − 1.71652i
534534 0 0
535535 0.626391 0.0270812
536536 0 0
537537 2.41259i 0.104111i
538538 0 0
539539 − 0.966026i − 0.0416097i
540540 0 0
541541 − 34.2065i − 1.47065i −0.677714 0.735325i 0.737029π-0.737029\pi
0.677714 0.735325i 0.262971π-0.262971\pi
542542 0 0
543543 0.408363 0.0175245
544544 0 0
545545 −14.1635 −0.606698
546546 0 0
547547 22.3827i 0.957013i 0.878084 + 0.478507i 0.158822π0.158822\pi
−0.878084 + 0.478507i 0.841178π0.841178\pi
548548 0 0
549549 − 32.4189i − 1.38360i
550550 0 0
551551 34.2793i 1.46035i
552552 0 0
553553 −40.4696 −1.72094
554554 0 0
555555 − 0.638834i − 0.0271170i
556556 0 0
557557 26.3875 1.11807 0.559036 0.829143i 0.311171π-0.311171\pi
0.559036 + 0.829143i 0.311171π0.311171\pi
558558 0 0
559559 −25.4969 −1.07840
560560 0 0
561561 0 0
562562 0 0
563563 −3.35687 −0.141475 −0.0707376 0.997495i 0.522535π-0.522535\pi
−0.0707376 + 0.997495i 0.522535π0.522535\pi
564564 0 0
565565 −10.0727 −0.423761
566566 0 0
567567 24.8063i 1.04177i
568568 0 0
569569 −42.4229 −1.77846 −0.889231 0.457458i 0.848760π-0.848760\pi
−0.889231 + 0.457458i 0.848760π0.848760\pi
570570 0 0
571571 − 13.5399i − 0.566627i −0.959027 0.283313i 0.908566π-0.908566\pi
0.959027 0.283313i 0.0914337π-0.0914337\pi
572572 0 0
573573 2.55463i 0.106721i
574574 0 0
575575 9.54005i 0.397848i
576576 0 0
577577 20.7010 0.861792 0.430896 0.902402i 0.358198π-0.358198\pi
0.430896 + 0.902402i 0.358198π0.358198\pi
578578 0 0
579579 0.805263 0.0334656
580580 0 0
581581 − 4.24252i − 0.176010i
582582 0 0
583583 4.37971i 0.181389i
584584 0 0
585585 10.1628i 0.420178i
586586 0 0
587587 33.1051 1.36639 0.683197 0.730235i 0.260589π-0.260589\pi
0.683197 + 0.730235i 0.260589π0.260589\pi
588588 0 0
589589 27.3174i 1.12560i
590590 0 0
591591 1.79624 0.0738876
592592 0 0
593593 11.1110 0.456276 0.228138 0.973629i 0.426736π-0.426736\pi
0.228138 + 0.973629i 0.426736π0.426736\pi
594594 0 0
595595 0 0
596596 0 0
597597 1.18218 0.0483835
598598 0 0
599599 38.6224 1.57807 0.789034 0.614349i 0.210581π-0.210581\pi
0.789034 + 0.614349i 0.210581π0.210581\pi
600600 0 0
601601 14.8768i 0.606837i 0.952857 + 0.303419i 0.0981281π0.0981281\pi
−0.952857 + 0.303419i 0.901872π0.901872\pi
602602 0 0
603603 33.1987 1.35196
604604 0 0
605605 9.50424i 0.386402i
606606 0 0
607607 31.5336i 1.27991i 0.768414 + 0.639954i 0.221046π0.221046\pi
−0.768414 + 0.639954i 0.778954π0.778954\pi
608608 0 0
609609 − 3.12231i − 0.126522i
610610 0 0
611611 −29.3024 −1.18545
612612 0 0
613613 4.65730 0.188107 0.0940533 0.995567i 0.470018π-0.470018\pi
0.0940533 + 0.995567i 0.470018π0.470018\pi
614614 0 0
615615 − 1.30140i − 0.0524775i
616616 0 0
617617 − 41.2188i − 1.65941i −0.558205 0.829703i 0.688510π-0.688510\pi
0.558205 0.829703i 0.311490π-0.311490\pi
618618 0 0
619619 8.58475i 0.345050i 0.985005 + 0.172525i 0.0551926π0.0551926\pi
−0.985005 + 0.172525i 0.944807π0.944807\pi
620620 0 0
621621 −6.38109 −0.256064
622622 0 0
623623 − 11.9585i − 0.479107i
624624 0 0
625625 1.00000 0.0400000
626626 0 0
627627 −0.467679 −0.0186773
628628 0 0
629629 0 0
630630 0 0
631631 17.3123 0.689192 0.344596 0.938751i 0.388016π-0.388016\pi
0.344596 + 0.938751i 0.388016π0.388016\pi
632632 0 0
633633 −0.545195 −0.0216696
634634 0 0
635635 15.7863i 0.626459i
636636 0 0
637637 −2.68694 −0.106460
638638 0 0
639639 1.12541i 0.0445205i
640640 0 0
641641 15.5753i 0.615186i 0.951518 + 0.307593i 0.0995235π0.0995235\pi
−0.951518 + 0.307593i 0.900476π0.900476\pi
642642 0 0
643643 11.1342i 0.439090i 0.975602 + 0.219545i 0.0704573π0.0704573\pi
−0.975602 + 0.219545i 0.929543π0.929543\pi
644644 0 0
645645 −0.837307 −0.0329689
646646 0 0
647647 15.7228 0.618129 0.309064 0.951041i 0.399984π-0.399984\pi
0.309064 + 0.951041i 0.399984π0.399984\pi
648648 0 0
649649 5.17795i 0.203252i
650650 0 0
651651 − 2.48819i − 0.0975199i
652652 0 0
653653 − 26.4486i − 1.03501i −0.855679 0.517507i 0.826860π-0.826860\pi
0.855679 0.517507i 0.173140π-0.173140\pi
654654 0 0
655655 11.6233 0.454161
656656 0 0
657657 − 29.4648i − 1.14953i
658658 0 0
659659 −31.7204 −1.23565 −0.617826 0.786315i 0.711986π-0.711986\pi
−0.617826 + 0.786315i 0.711986π0.711986\pi
660660 0 0
661661 41.6769 1.62105 0.810523 0.585707i 0.199183π-0.199183\pi
0.810523 + 0.585707i 0.199183π0.199183\pi
662662 0 0
663663 0 0
664664 0 0
665665 9.55397 0.370487
666666 0 0
667667 −95.5353 −3.69914
668668 0 0
669669 0.996447i 0.0385249i
670670 0 0
671671 13.2715 0.512339
672672 0 0
673673 − 2.61917i − 0.100962i −0.998725 0.0504809i 0.983925π-0.983925\pi
0.998725 0.0504809i 0.0160754π-0.0160754\pi
674674 0 0
675675 0.668874i 0.0257450i
676676 0 0
677677 11.9643i 0.459827i 0.973211 + 0.229914i 0.0738443π0.0738443\pi
−0.973211 + 0.229914i 0.926156π0.926156\pi
678678 0 0
679679 −7.14393 −0.274159
680680 0 0
681681 1.44478 0.0553642
682682 0 0
683683 − 20.0911i − 0.768765i −0.923174 0.384382i 0.874414π-0.874414\pi
0.923174 0.384382i 0.125586π-0.125586\pi
684684 0 0
685685 3.40173i 0.129974i
686686 0 0
687687 − 1.55649i − 0.0593837i
688688 0 0
689689 12.1819 0.464092
690690 0 0
691691 21.1162i 0.803297i 0.915794 + 0.401649i 0.131563π0.131563\pi
−0.915794 + 0.401649i 0.868437π0.868437\pi
692692 0 0
693693 −10.1978 −0.387383
694694 0 0
695695 7.73558 0.293427
696696 0 0
697697 0 0
698698 0 0
699699 −1.74281 −0.0659191
700700 0 0
701701 35.6241 1.34551 0.672753 0.739868i 0.265112π-0.265112\pi
0.672753 + 0.739868i 0.265112π0.265112\pi
702702 0 0
703703 19.5754i 0.738298i
704704 0 0
705705 −0.962277 −0.0362415
706706 0 0
707707 7.90590i 0.297332i
708708 0 0
709709 − 38.8314i − 1.45834i −0.684331 0.729171i 0.739906π-0.739906\pi
0.684331 0.729171i 0.260094π-0.260094\pi
710710 0 0
711711 43.3186i 1.62458i
712712 0 0
713713 −76.1328 −2.85120
714714 0 0
715715 −4.16037 −0.155589
716716 0 0
717717 − 1.65663i − 0.0618681i
718718 0 0
719719 10.3227i 0.384972i 0.981300 + 0.192486i 0.0616551π0.0616551\pi
−0.981300 + 0.192486i 0.938345π0.938345\pi
720720 0 0
721721 14.0142i 0.521916i
722722 0 0
723723 0.0354399 0.00131802
724724 0 0
725725 10.0141i 0.371915i
726726 0 0
727727 36.4252 1.35094 0.675468 0.737389i 0.263941π-0.263941\pi
0.675468 + 0.737389i 0.263941π0.263941\pi
728728 0 0
729729 26.3284 0.975128
730730 0 0
731731 0 0
732732 0 0
733733 33.2356 1.22759 0.613793 0.789467i 0.289643π-0.289643\pi
0.613793 + 0.789467i 0.289643π0.289643\pi
734734 0 0
735735 −0.0882378 −0.00325470
736736 0 0
737737 13.5907i 0.500620i
738738 0 0
739739 −11.8455 −0.435745 −0.217872 0.975977i 0.569912π-0.569912\pi
−0.217872 + 0.975977i 0.569912π0.569912\pi
740740 0 0
741741 1.30082i 0.0477867i
742742 0 0
743743 − 17.5645i − 0.644380i −0.946675 0.322190i 0.895581π-0.895581\pi
0.946675 0.322190i 0.104419π-0.104419\pi
744744 0 0
745745 − 4.56165i − 0.167126i
746746 0 0
747747 −4.54119 −0.166154
748748 0 0
749749 1.74828 0.0638807
750750 0 0
751751 − 16.7784i − 0.612251i −0.951991 0.306126i 0.900967π-0.900967\pi
0.951991 0.306126i 0.0990328π-0.0990328\pi
752752 0 0
753753 − 0.753107i − 0.0274447i
754754 0 0
755755 − 12.7622i − 0.464462i
756756 0 0
757757 45.4038 1.65023 0.825114 0.564966i 0.191111π-0.191111\pi
0.825114 + 0.564966i 0.191111π0.191111\pi
758758 0 0
759759 − 1.30341i − 0.0473106i
760760 0 0
761761 8.72830 0.316401 0.158200 0.987407i 0.449431π-0.449431\pi
0.158200 + 0.987407i 0.449431π0.449431\pi
762762 0 0
763763 −39.5309 −1.43111
764764 0 0
765765 0 0
766766 0 0
767767 14.4021 0.520031
768768 0 0
769769 0.280789 0.0101255 0.00506276 0.999987i 0.498388π-0.498388\pi
0.00506276 + 0.999987i 0.498388π0.498388\pi
770770 0 0
771771 − 0.537234i − 0.0193480i
772772 0 0
773773 14.6221 0.525922 0.262961 0.964807i 0.415301π-0.415301\pi
0.262961 + 0.964807i 0.415301π0.415301\pi
774774 0 0
775775 7.98033i 0.286662i
776776 0 0
777777 − 1.78301i − 0.0639651i
778778 0 0
779779 39.8779i 1.42877i
780780 0 0
781781 −0.460713 −0.0164856
782782 0 0
783783 −6.69819 −0.239374
784784 0 0
785785 − 22.4488i − 0.801230i
786786 0 0
787787 42.4836i 1.51438i 0.653196 + 0.757189i 0.273428π0.273428\pi
−0.653196 + 0.757189i 0.726572π0.726572\pi
788788 0 0
789789 0.677333i 0.0241137i
790790 0 0
791791 −28.1132 −0.999590
792792 0 0
793793 − 36.9137i − 1.31084i
794794 0 0
795795 0.400047 0.0141882
796796 0 0
797797 39.4840 1.39860 0.699298 0.714831i 0.253496π-0.253496\pi
0.699298 + 0.714831i 0.253496π0.253496\pi
798798 0 0
799799 0 0
800800 0 0
801801 −12.8004 −0.452279
802802 0 0
803803 12.0621 0.425664
804804 0 0
805805 26.6266i 0.938465i
806806 0 0
807807 −1.91359 −0.0673616
808808 0 0
809809 − 31.8589i − 1.12010i −0.828459 0.560050i 0.810782π-0.810782\pi
0.828459 0.560050i 0.189218π-0.189218\pi
810810 0 0
811811 43.4274i 1.52494i 0.647023 + 0.762470i 0.276014π0.276014\pi
−0.647023 + 0.762470i 0.723986π0.723986\pi
812812 0 0
813813 − 2.90459i − 0.101868i
814814 0 0
815815 −2.85862 −0.100133
816816 0 0
817817 25.6570 0.897625
818818 0 0
819819 28.3646i 0.991139i
820820 0 0
821821 9.50872i 0.331857i 0.986138 + 0.165928i 0.0530620π0.0530620\pi
−0.986138 + 0.165928i 0.946938π0.946938\pi
822822 0 0
823823 − 21.9555i − 0.765322i −0.923889 0.382661i 0.875008π-0.875008\pi
0.923889 0.382661i 0.124992π-0.124992\pi
824824 0 0
825825 −0.136625 −0.00475666
826826 0 0
827827 − 39.3188i − 1.36725i −0.729834 0.683625i 0.760402π-0.760402\pi
0.729834 0.683625i 0.239598π-0.239598\pi
828828 0 0
829829 7.75039 0.269182 0.134591 0.990901i 0.457028π-0.457028\pi
0.134591 + 0.990901i 0.457028π0.457028\pi
830830 0 0
831831 0.713729 0.0247590
832832 0 0
833833 0 0
834834 0 0
835835 −0.0654903 −0.00226639
836836 0 0
837837 −5.33784 −0.184503
838838 0 0
839839 − 11.4653i − 0.395827i −0.980219 0.197914i 0.936583π-0.936583\pi
0.980219 0.197914i 0.0634166π-0.0634166\pi
840840 0 0
841841 −71.2827 −2.45803
842842 0 0
843843 0.152234i 0.00524322i
844844 0 0
845845 − 1.42820i − 0.0491317i
846846 0 0
847847 26.5266i 0.911466i
848848 0 0
849849 2.78083 0.0954380
850850 0 0
851851 −54.5559 −1.87015
852852 0 0
853853 27.6709i 0.947432i 0.880678 + 0.473716i 0.157088π0.157088\pi
−0.880678 + 0.473716i 0.842912π0.842912\pi
854854 0 0
855855 − 10.2266i − 0.349741i
856856 0 0
857857 5.36413i 0.183235i 0.995794 + 0.0916176i 0.0292037π0.0292037\pi
−0.995794 + 0.0916176i 0.970796π0.970796\pi
858858 0 0
859859 8.60568 0.293622 0.146811 0.989165i 0.453099π-0.453099\pi
0.146811 + 0.989165i 0.453099π0.453099\pi
860860 0 0
861861 − 3.63225i − 0.123787i
862862 0 0
863863 −54.1029 −1.84168 −0.920841 0.389937i 0.872497π-0.872497\pi
−0.920841 + 0.389937i 0.872497π0.872497\pi
864864 0 0
865865 14.5329 0.494134
866866 0 0
867867 0 0
868868 0 0
869869 −17.7335 −0.601569
870870 0 0
871871 37.8016 1.28086
872872 0 0
873873 7.64686i 0.258807i
874874 0 0
875875 2.79103 0.0943542
876876 0 0
877877 52.5352i 1.77399i 0.461781 + 0.886994i 0.347211π0.347211\pi
−0.461781 + 0.886994i 0.652789π0.652789\pi
878878 0 0
879879 − 1.48210i − 0.0499901i
880880 0 0
881881 − 30.9645i − 1.04322i −0.853184 0.521610i 0.825332π-0.825332\pi
0.853184 0.521610i 0.174668π-0.174668\pi
882882 0 0
883883 38.5522 1.29739 0.648693 0.761051i 0.275316π-0.275316\pi
0.648693 + 0.761051i 0.275316π0.275316\pi
884884 0 0
885885 0.472959 0.0158983
886886 0 0
887887 20.4492i 0.686618i 0.939223 + 0.343309i 0.111548π0.111548\pi
−0.939223 + 0.343309i 0.888452π0.888452\pi
888888 0 0
889889 44.0600i 1.47773i
890890 0 0
891891 10.8700i 0.364157i
892892 0 0
893893 29.4864 0.986725
894894 0 0
895895 − 21.5967i − 0.721897i
896896 0 0
897897 −3.62534 −0.121046
898898 0 0
899899 −79.9161 −2.66535
900900 0 0
901901 0 0
902902 0 0
903903 −2.33695 −0.0777689
904904 0 0
905905 −3.65552 −0.121514
906906 0 0
907907 − 2.97178i − 0.0986765i −0.998782 0.0493382i 0.984289π-0.984289\pi
0.998782 0.0493382i 0.0157112π-0.0157112\pi
908908 0 0
909909 8.46246 0.280682
910910 0 0
911911 − 25.9345i − 0.859247i −0.903008 0.429623i 0.858646π-0.858646\pi
0.903008 0.429623i 0.141354π-0.141354\pi
912912 0 0
913913 − 1.85905i − 0.0615255i
914914 0 0
915915 − 1.21223i − 0.0400750i
916916 0 0
917917 32.4411 1.07130
918918 0 0
919919 −13.2875 −0.438313 −0.219157 0.975690i 0.570331π-0.570331\pi
−0.219157 + 0.975690i 0.570331π0.570331\pi
920920 0 0
921921 2.34379i 0.0772304i
922922 0 0
923923 1.28144i 0.0421792i
924924 0 0
925925 5.71862i 0.188027i
926926 0 0
927927 15.0008 0.492690
928928 0 0
929929 − 4.75171i − 0.155899i −0.996957 0.0779493i 0.975163π-0.975163\pi
0.996957 0.0779493i 0.0248372π-0.0248372\pi
930930 0 0
931931 2.70381 0.0886138
932932 0 0
933933 0.0801396 0.00262365
934934 0 0
935935 0 0
936936 0 0
937937 13.3082 0.434759 0.217380 0.976087i 0.430249π-0.430249\pi
0.217380 + 0.976087i 0.430249π0.430249\pi
938938 0 0
939939 1.18500 0.0386710
940940 0 0
941941 4.31138i 0.140547i 0.997528 + 0.0702735i 0.0223872π0.0223872\pi
−0.997528 + 0.0702735i 0.977613π0.977613\pi
942942 0 0
943943 −111.138 −3.61916
944944 0 0
945945 1.86685i 0.0607286i
946946 0 0
947947 54.4971i 1.77092i 0.464716 + 0.885460i 0.346156π0.346156\pi
−0.464716 + 0.885460i 0.653844π0.653844\pi
948948 0 0
949949 − 33.5500i − 1.08908i
950950 0 0
951951 2.38477 0.0773316
952952 0 0
953953 31.4405 1.01846 0.509229 0.860631i 0.329931π-0.329931\pi
0.509229 + 0.860631i 0.329931π0.329931\pi
954954 0 0
955955 − 22.8681i − 0.739995i
956956 0 0
957957 − 1.36818i − 0.0442268i
958958 0 0
959959 9.49436i 0.306589i
960960 0 0
961961 −32.6857 −1.05438
962962 0 0
963963 − 1.87135i − 0.0603036i
964964 0 0
965965 −7.20843 −0.232048
966966 0 0
967967 28.4642 0.915347 0.457674 0.889120i 0.348683π-0.348683\pi
0.457674 + 0.889120i 0.348683π0.348683\pi
968968 0 0
969969 0 0
970970 0 0
971971 −44.9224 −1.44163 −0.720815 0.693128i 0.756232π-0.756232\pi
−0.720815 + 0.693128i 0.756232π0.756232\pi
972972 0 0
973973 21.5903 0.692153
974974 0 0
975975 0.380012i 0.0121701i
976976 0 0
977977 37.8272 1.21020 0.605100 0.796150i 0.293133π-0.293133\pi
0.605100 + 0.796150i 0.293133π0.293133\pi
978978 0 0
979979 − 5.24014i − 0.167476i
980980 0 0
981981 42.3138i 1.35098i
982982 0 0
983983 − 37.8564i − 1.20743i −0.797200 0.603716i 0.793686π-0.793686\pi
0.797200 0.603716i 0.206314π-0.206314\pi
984984 0 0
985985 −16.0793 −0.512330
986986 0 0
987987 −2.68575 −0.0854883
988988 0 0
989989 71.5053i 2.27374i
990990 0 0
991991 17.8452i 0.566871i 0.958991 + 0.283436i 0.0914742π0.0914742\pi
−0.958991 + 0.283436i 0.908526π0.908526\pi
992992 0 0
993993 1.38991i 0.0441074i
994994 0 0
995995 −10.5825 −0.335487
996996 0 0
997997 − 51.4425i − 1.62920i −0.580022 0.814601i 0.696956π-0.696956\pi
0.580022 0.814601i 0.303044π-0.303044\pi
998998 0 0
999999 −3.82503 −0.121019
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5780.2.c.h.5201.6 12
17.2 even 8 340.2.o.a.81.3 yes 12
17.4 even 4 5780.2.a.n.1.4 6
17.8 even 8 340.2.o.a.21.3 12
17.13 even 4 5780.2.a.m.1.3 6
17.16 even 2 inner 5780.2.c.h.5201.7 12
51.2 odd 8 3060.2.be.b.1441.6 12
51.8 odd 8 3060.2.be.b.361.6 12
68.19 odd 8 1360.2.bt.c.81.4 12
68.59 odd 8 1360.2.bt.c.1041.4 12
85.2 odd 8 1700.2.m.f.149.3 12
85.8 odd 8 1700.2.m.f.1449.3 12
85.19 even 8 1700.2.o.d.1101.4 12
85.42 odd 8 1700.2.m.c.1449.4 12
85.53 odd 8 1700.2.m.c.149.4 12
85.59 even 8 1700.2.o.d.701.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.o.a.21.3 12 17.8 even 8
340.2.o.a.81.3 yes 12 17.2 even 8
1360.2.bt.c.81.4 12 68.19 odd 8
1360.2.bt.c.1041.4 12 68.59 odd 8
1700.2.m.c.149.4 12 85.53 odd 8
1700.2.m.c.1449.4 12 85.42 odd 8
1700.2.m.f.149.3 12 85.2 odd 8
1700.2.m.f.1449.3 12 85.8 odd 8
1700.2.o.d.701.4 12 85.59 even 8
1700.2.o.d.1101.4 12 85.19 even 8
3060.2.be.b.361.6 12 51.8 odd 8
3060.2.be.b.1441.6 12 51.2 odd 8
5780.2.a.m.1.3 6 17.13 even 4
5780.2.a.n.1.4 6 17.4 even 4
5780.2.c.h.5201.6 12 1.1 even 1 trivial
5780.2.c.h.5201.7 12 17.16 even 2 inner