Properties

Label 1700.2.o.d.1101.4
Level $1700$
Weight $2$
Character 1700.1101
Analytic conductor $13.575$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1700,2,Mod(701,1700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1700.701"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1700, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1700.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5745683436\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 6 x^{10} - 16 x^{9} + 9 x^{8} - 72 x^{7} + 114 x^{6} - 144 x^{5} + 391 x^{4} - 484 x^{3} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1101.4
Root \(-0.411629 - 1.88205i\) of defining polynomial
Character \(\chi\) \(=\) 1700.1101
Dual form 1700.2.o.d.701.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0789919 + 0.0789919i) q^{3} +(-1.97356 + 1.97356i) q^{7} -2.98752i q^{9} +(-0.864802 + 0.864802i) q^{11} +3.40173 q^{13} +(-3.98802 + 1.04677i) q^{17} -3.42309i q^{19} -0.311790 q^{21} +(-6.74584 + 6.74584i) q^{23} +(0.472965 - 0.472965i) q^{27} +(7.08106 + 7.08106i) q^{29} +(-5.64295 - 5.64295i) q^{31} -0.136625 q^{33} +(4.04367 + 4.04367i) q^{37} +(0.268709 + 0.268709i) q^{39} +(-8.23755 + 8.23755i) q^{41} -7.49527i q^{43} -8.61396 q^{47} -0.789873i q^{49} +(-0.397707 - 0.232335i) q^{51} -3.58108i q^{53} +(0.270396 - 0.270396i) q^{57} -4.23376i q^{59} +(-7.67312 + 7.67312i) q^{61} +(5.89605 + 5.89605i) q^{63} -11.1125 q^{67} -1.06573 q^{69} +(0.266369 + 0.266369i) q^{71} +(-6.97393 - 6.97393i) q^{73} -3.41348i q^{77} +(-10.2529 + 10.2529i) q^{79} -8.88784 q^{81} +1.52005i q^{83} +1.11869i q^{87} +4.28461 q^{89} +(-6.71352 + 6.71352i) q^{91} -0.891494i q^{93} +(1.80991 + 1.80991i) q^{97} +(2.58361 + 2.58361i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 12 q^{11} - 16 q^{13} + 4 q^{17} + 16 q^{21} - 12 q^{23} + 20 q^{27} + 4 q^{29} - 8 q^{31} + 48 q^{33} + 20 q^{37} + 36 q^{39} + 8 q^{41} + 8 q^{47} + 24 q^{51} - 8 q^{61} - 4 q^{63} - 32 q^{67}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(851\) \(1601\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0789919 + 0.0789919i 0.0456060 + 0.0456060i 0.729542 0.683936i \(-0.239733\pi\)
−0.683936 + 0.729542i \(0.739733\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.97356 + 1.97356i −0.745935 + 0.745935i −0.973713 0.227778i \(-0.926854\pi\)
0.227778 + 0.973713i \(0.426854\pi\)
\(8\) 0 0
\(9\) 2.98752i 0.995840i
\(10\) 0 0
\(11\) −0.864802 + 0.864802i −0.260748 + 0.260748i −0.825358 0.564610i \(-0.809027\pi\)
0.564610 + 0.825358i \(0.309027\pi\)
\(12\) 0 0
\(13\) 3.40173 0.943471 0.471736 0.881740i \(-0.343628\pi\)
0.471736 + 0.881740i \(0.343628\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.98802 + 1.04677i −0.967236 + 0.253879i
\(18\) 0 0
\(19\) 3.42309i 0.785311i −0.919686 0.392656i \(-0.871556\pi\)
0.919686 0.392656i \(-0.128444\pi\)
\(20\) 0 0
\(21\) −0.311790 −0.0680382
\(22\) 0 0
\(23\) −6.74584 + 6.74584i −1.40660 + 1.40660i −0.630047 + 0.776557i \(0.716964\pi\)
−0.776557 + 0.630047i \(0.783036\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0.472965 0.472965i 0.0910222 0.0910222i
\(28\) 0 0
\(29\) 7.08106 + 7.08106i 1.31492 + 1.31492i 0.917742 + 0.397178i \(0.130010\pi\)
0.397178 + 0.917742i \(0.369990\pi\)
\(30\) 0 0
\(31\) −5.64295 5.64295i −1.01350 1.01350i −0.999908 0.0135959i \(-0.995672\pi\)
−0.0135959 0.999908i \(-0.504328\pi\)
\(32\) 0 0
\(33\) −0.136625 −0.0237833
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.04367 + 4.04367i 0.664776 + 0.664776i 0.956502 0.291726i \(-0.0942296\pi\)
−0.291726 + 0.956502i \(0.594230\pi\)
\(38\) 0 0
\(39\) 0.268709 + 0.268709i 0.0430279 + 0.0430279i
\(40\) 0 0
\(41\) −8.23755 + 8.23755i −1.28649 + 1.28649i −0.349584 + 0.936905i \(0.613677\pi\)
−0.936905 + 0.349584i \(0.886323\pi\)
\(42\) 0 0
\(43\) 7.49527i 1.14302i −0.820596 0.571509i \(-0.806358\pi\)
0.820596 0.571509i \(-0.193642\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.61396 −1.25648 −0.628238 0.778021i \(-0.716223\pi\)
−0.628238 + 0.778021i \(0.716223\pi\)
\(48\) 0 0
\(49\) 0.789873i 0.112839i
\(50\) 0 0
\(51\) −0.397707 0.232335i −0.0556901 0.0325334i
\(52\) 0 0
\(53\) 3.58108i 0.491899i −0.969283 0.245949i \(-0.920900\pi\)
0.969283 0.245949i \(-0.0790997\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.270396 0.270396i 0.0358149 0.0358149i
\(58\) 0 0
\(59\) 4.23376i 0.551189i −0.961274 0.275594i \(-0.911125\pi\)
0.961274 0.275594i \(-0.0888747\pi\)
\(60\) 0 0
\(61\) −7.67312 + 7.67312i −0.982443 + 0.982443i −0.999849 0.0174058i \(-0.994459\pi\)
0.0174058 + 0.999849i \(0.494459\pi\)
\(62\) 0 0
\(63\) 5.89605 + 5.89605i 0.742832 + 0.742832i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −11.1125 −1.35760 −0.678802 0.734322i \(-0.737500\pi\)
−0.678802 + 0.734322i \(0.737500\pi\)
\(68\) 0 0
\(69\) −1.06573 −0.128299
\(70\) 0 0
\(71\) 0.266369 + 0.266369i 0.0316122 + 0.0316122i 0.722736 0.691124i \(-0.242884\pi\)
−0.691124 + 0.722736i \(0.742884\pi\)
\(72\) 0 0
\(73\) −6.97393 6.97393i −0.816237 0.816237i 0.169324 0.985561i \(-0.445842\pi\)
−0.985561 + 0.169324i \(0.945842\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.41348i 0.389002i
\(78\) 0 0
\(79\) −10.2529 + 10.2529i −1.15355 + 1.15355i −0.167710 + 0.985836i \(0.553637\pi\)
−0.985836 + 0.167710i \(0.946363\pi\)
\(80\) 0 0
\(81\) −8.88784 −0.987538
\(82\) 0 0
\(83\) 1.52005i 0.166848i 0.996514 + 0.0834238i \(0.0265855\pi\)
−0.996514 + 0.0834238i \(0.973414\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.11869i 0.119936i
\(88\) 0 0
\(89\) 4.28461 0.454168 0.227084 0.973875i \(-0.427081\pi\)
0.227084 + 0.973875i \(0.427081\pi\)
\(90\) 0 0
\(91\) −6.71352 + 6.71352i −0.703769 + 0.703769i
\(92\) 0 0
\(93\) 0.891494i 0.0924436i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.80991 + 1.80991i 0.183769 + 0.183769i 0.792996 0.609227i \(-0.208520\pi\)
−0.609227 + 0.792996i \(0.708520\pi\)
\(98\) 0 0
\(99\) 2.58361 + 2.58361i 0.259663 + 0.259663i
\(100\) 0 0
\(101\) 2.83260 0.281855 0.140927 0.990020i \(-0.454992\pi\)
0.140927 + 0.990020i \(0.454992\pi\)
\(102\) 0 0
\(103\) −5.02114 −0.494748 −0.247374 0.968920i \(-0.579568\pi\)
−0.247374 + 0.968920i \(0.579568\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.442925 0.442925i −0.0428192 0.0428192i 0.685373 0.728192i \(-0.259639\pi\)
−0.728192 + 0.685373i \(0.759639\pi\)
\(108\) 0 0
\(109\) 10.0151 10.0151i 0.959274 0.959274i −0.0399281 0.999203i \(-0.512713\pi\)
0.999203 + 0.0399281i \(0.0127129\pi\)
\(110\) 0 0
\(111\) 0.638834i 0.0606355i
\(112\) 0 0
\(113\) 7.12246 7.12246i 0.670024 0.670024i −0.287697 0.957721i \(-0.592890\pi\)
0.957721 + 0.287697i \(0.0928896\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.1628i 0.939547i
\(118\) 0 0
\(119\) 5.80473 9.93645i 0.532119 0.910873i
\(120\) 0 0
\(121\) 9.50424i 0.864021i
\(122\) 0 0
\(123\) −1.30140 −0.117343
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15.7863i 1.40081i 0.713748 + 0.700403i \(0.246996\pi\)
−0.713748 + 0.700403i \(0.753004\pi\)
\(128\) 0 0
\(129\) 0.592065 0.592065i 0.0521284 0.0521284i
\(130\) 0 0
\(131\) 8.21894 + 8.21894i 0.718092 + 0.718092i 0.968214 0.250122i \(-0.0804707\pi\)
−0.250122 + 0.968214i \(0.580471\pi\)
\(132\) 0 0
\(133\) 6.75568 + 6.75568i 0.585792 + 0.585792i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.40173 −0.290630 −0.145315 0.989385i \(-0.546420\pi\)
−0.145315 + 0.989385i \(0.546420\pi\)
\(138\) 0 0
\(139\) −5.46988 5.46988i −0.463950 0.463950i 0.435998 0.899948i \(-0.356395\pi\)
−0.899948 + 0.435998i \(0.856395\pi\)
\(140\) 0 0
\(141\) −0.680433 0.680433i −0.0573028 0.0573028i
\(142\) 0 0
\(143\) −2.94183 + 2.94183i −0.246008 + 0.246008i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.0623936 0.0623936i 0.00514613 0.00514613i
\(148\) 0 0
\(149\) 4.56165 0.373705 0.186853 0.982388i \(-0.440171\pi\)
0.186853 + 0.982388i \(0.440171\pi\)
\(150\) 0 0
\(151\) 12.7622i 1.03857i −0.854601 0.519285i \(-0.826198\pi\)
0.854601 0.519285i \(-0.173802\pi\)
\(152\) 0 0
\(153\) 3.12724 + 11.9143i 0.252823 + 0.963213i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −22.4488 −1.79161 −0.895803 0.444452i \(-0.853399\pi\)
−0.895803 + 0.444452i \(0.853399\pi\)
\(158\) 0 0
\(159\) 0.282876 0.282876i 0.0224335 0.0224335i
\(160\) 0 0
\(161\) 26.6266i 2.09847i
\(162\) 0 0
\(163\) −2.02135 + 2.02135i −0.158324 + 0.158324i −0.781824 0.623499i \(-0.785710\pi\)
0.623499 + 0.781824i \(0.285710\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −0.0463087 0.0463087i −0.00358347 0.00358347i 0.705313 0.708896i \(-0.250807\pi\)
−0.708896 + 0.705313i \(0.750807\pi\)
\(168\) 0 0
\(169\) −1.42820 −0.109862
\(170\) 0 0
\(171\) −10.2266 −0.782045
\(172\) 0 0
\(173\) 10.2763 + 10.2763i 0.781294 + 0.781294i 0.980049 0.198755i \(-0.0636899\pi\)
−0.198755 + 0.980049i \(0.563690\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.334433 0.334433i 0.0251375 0.0251375i
\(178\) 0 0
\(179\) 21.5967i 1.61421i 0.590408 + 0.807105i \(0.298967\pi\)
−0.590408 + 0.807105i \(0.701033\pi\)
\(180\) 0 0
\(181\) −2.58484 + 2.58484i −0.192130 + 0.192130i −0.796616 0.604486i \(-0.793379\pi\)
0.604486 + 0.796616i \(0.293379\pi\)
\(182\) 0 0
\(183\) −1.21223 −0.0896105
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.54360 4.35409i 0.186006 0.318403i
\(188\) 0 0
\(189\) 1.86685i 0.135793i
\(190\) 0 0
\(191\) 22.8681 1.65468 0.827340 0.561702i \(-0.189853\pi\)
0.827340 + 0.561702i \(0.189853\pi\)
\(192\) 0 0
\(193\) 5.09713 5.09713i 0.366899 0.366899i −0.499446 0.866345i \(-0.666463\pi\)
0.866345 + 0.499446i \(0.166463\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.3698 + 11.3698i −0.810065 + 0.810065i −0.984643 0.174578i \(-0.944144\pi\)
0.174578 + 0.984643i \(0.444144\pi\)
\(198\) 0 0
\(199\) −7.48293 7.48293i −0.530451 0.530451i 0.390255 0.920707i \(-0.372387\pi\)
−0.920707 + 0.390255i \(0.872387\pi\)
\(200\) 0 0
\(201\) −0.877794 0.877794i −0.0619148 0.0619148i
\(202\) 0 0
\(203\) −27.9498 −1.96169
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 20.1533 + 20.1533i 1.40075 + 1.40075i
\(208\) 0 0
\(209\) 2.96030 + 2.96030i 0.204768 + 0.204768i
\(210\) 0 0
\(211\) −3.45096 + 3.45096i −0.237574 + 0.237574i −0.815845 0.578271i \(-0.803728\pi\)
0.578271 + 0.815845i \(0.303728\pi\)
\(212\) 0 0
\(213\) 0.0420820i 0.00288341i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 22.2734 1.51202
\(218\) 0 0
\(219\) 1.10177i 0.0744505i
\(220\) 0 0
\(221\) −13.5662 + 3.56083i −0.912559 + 0.239527i
\(222\) 0 0
\(223\) 8.91984i 0.597317i 0.954360 + 0.298658i \(0.0965391\pi\)
−0.954360 + 0.298658i \(0.903461\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.14513 9.14513i 0.606984 0.606984i −0.335173 0.942157i \(-0.608795\pi\)
0.942157 + 0.335173i \(0.108795\pi\)
\(228\) 0 0
\(229\) 13.9331i 0.920726i −0.887731 0.460363i \(-0.847719\pi\)
0.887731 0.460363i \(-0.152281\pi\)
\(230\) 0 0
\(231\) 0.269637 0.269637i 0.0177408 0.0177408i
\(232\) 0 0
\(233\) −11.0316 11.0316i −0.722702 0.722702i 0.246452 0.969155i \(-0.420735\pi\)
−0.969155 + 0.246452i \(0.920735\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.61980 −0.105217
\(238\) 0 0
\(239\) 14.8296 0.959246 0.479623 0.877475i \(-0.340773\pi\)
0.479623 + 0.877475i \(0.340773\pi\)
\(240\) 0 0
\(241\) 0.224326 + 0.224326i 0.0144501 + 0.0144501i 0.714295 0.699845i \(-0.246748\pi\)
−0.699845 + 0.714295i \(0.746748\pi\)
\(242\) 0 0
\(243\) −2.12096 2.12096i −0.136060 0.136060i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 11.6445i 0.740919i
\(248\) 0 0
\(249\) −0.120072 + 0.120072i −0.00760925 + 0.00760925i
\(250\) 0 0
\(251\) −6.74154 −0.425522 −0.212761 0.977104i \(-0.568246\pi\)
−0.212761 + 0.977104i \(0.568246\pi\)
\(252\) 0 0
\(253\) 11.6676i 0.733537i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.80913i 0.299985i −0.988687 0.149993i \(-0.952075\pi\)
0.988687 0.149993i \(-0.0479250\pi\)
\(258\) 0 0
\(259\) −15.9609 −0.991759
\(260\) 0 0
\(261\) 21.1548 21.1548i 1.30945 1.30945i
\(262\) 0 0
\(263\) 6.06324i 0.373876i −0.982372 0.186938i \(-0.940144\pi\)
0.982372 0.186938i \(-0.0598563\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.338449 + 0.338449i 0.0207128 + 0.0207128i
\(268\) 0 0
\(269\) −12.1126 12.1126i −0.738517 0.738517i 0.233774 0.972291i \(-0.424892\pi\)
−0.972291 + 0.233774i \(0.924892\pi\)
\(270\) 0 0
\(271\) 26.0008 1.57944 0.789719 0.613468i \(-0.210226\pi\)
0.789719 + 0.613468i \(0.210226\pi\)
\(272\) 0 0
\(273\) −1.06063 −0.0641921
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 4.51774 + 4.51774i 0.271445 + 0.271445i 0.829682 0.558237i \(-0.188522\pi\)
−0.558237 + 0.829682i \(0.688522\pi\)
\(278\) 0 0
\(279\) −16.8584 + 16.8584i −1.00929 + 1.00929i
\(280\) 0 0
\(281\) 1.36275i 0.0812946i 0.999174 + 0.0406473i \(0.0129420\pi\)
−0.999174 + 0.0406473i \(0.987058\pi\)
\(282\) 0 0
\(283\) 17.6020 17.6020i 1.04633 1.04633i 0.0474589 0.998873i \(-0.484888\pi\)
0.998873 0.0474589i \(-0.0151123\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 32.5146i 1.91928i
\(288\) 0 0
\(289\) 14.8086 8.34906i 0.871091 0.491121i
\(290\) 0 0
\(291\) 0.285936i 0.0167619i
\(292\) 0 0
\(293\) 13.2673 0.775081 0.387541 0.921853i \(-0.373325\pi\)
0.387541 + 0.921853i \(0.373325\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0.818043i 0.0474676i
\(298\) 0 0
\(299\) −22.9475 + 22.9475i −1.32709 + 1.32709i
\(300\) 0 0
\(301\) 14.7924 + 14.7924i 0.852618 + 0.852618i
\(302\) 0 0
\(303\) 0.223753 + 0.223753i 0.0128543 + 0.0128543i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 20.9807 1.19743 0.598717 0.800960i \(-0.295677\pi\)
0.598717 + 0.800960i \(0.295677\pi\)
\(308\) 0 0
\(309\) −0.396629 0.396629i −0.0225635 0.0225635i
\(310\) 0 0
\(311\) −0.507265 0.507265i −0.0287644 0.0287644i 0.692578 0.721343i \(-0.256475\pi\)
−0.721343 + 0.692578i \(0.756475\pi\)
\(312\) 0 0
\(313\) −7.50076 + 7.50076i −0.423968 + 0.423968i −0.886567 0.462599i \(-0.846917\pi\)
0.462599 + 0.886567i \(0.346917\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.0951 15.0951i 0.847823 0.847823i −0.142038 0.989861i \(-0.545365\pi\)
0.989861 + 0.142038i \(0.0453655\pi\)
\(318\) 0 0
\(319\) −12.2474 −0.685724
\(320\) 0 0
\(321\) 0.0699749i 0.00390562i
\(322\) 0 0
\(323\) 3.58319 + 13.6514i 0.199374 + 0.759582i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.58223 0.0874973
\(328\) 0 0
\(329\) 17.0002 17.0002i 0.937250 0.937250i
\(330\) 0 0
\(331\) 12.4420i 0.683872i 0.939723 + 0.341936i \(0.111083\pi\)
−0.939723 + 0.341936i \(0.888917\pi\)
\(332\) 0 0
\(333\) 12.0806 12.0806i 0.662010 0.662010i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.22692 7.22692i −0.393675 0.393675i 0.482320 0.875995i \(-0.339794\pi\)
−0.875995 + 0.482320i \(0.839794\pi\)
\(338\) 0 0
\(339\) 1.12523 0.0611142
\(340\) 0 0
\(341\) 9.76006 0.528537
\(342\) 0 0
\(343\) −12.2561 12.2561i −0.661765 0.661765i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.3917 + 12.3917i −0.665223 + 0.665223i −0.956606 0.291383i \(-0.905885\pi\)
0.291383 + 0.956606i \(0.405885\pi\)
\(348\) 0 0
\(349\) 20.4572i 1.09505i 0.836789 + 0.547525i \(0.184430\pi\)
−0.836789 + 0.547525i \(0.815570\pi\)
\(350\) 0 0
\(351\) 1.60890 1.60890i 0.0858769 0.0858769i
\(352\) 0 0
\(353\) 20.0292 1.06605 0.533023 0.846101i \(-0.321056\pi\)
0.533023 + 0.846101i \(0.321056\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.24342 0.326372i 0.0658090 0.0172734i
\(358\) 0 0
\(359\) 19.4670i 1.02743i 0.857961 + 0.513715i \(0.171731\pi\)
−0.857961 + 0.513715i \(0.828269\pi\)
\(360\) 0 0
\(361\) 7.28243 0.383286
\(362\) 0 0
\(363\) −0.750757 + 0.750757i −0.0394045 + 0.0394045i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.4806 16.4806i 0.860278 0.860278i −0.131092 0.991370i \(-0.541848\pi\)
0.991370 + 0.131092i \(0.0418484\pi\)
\(368\) 0 0
\(369\) 24.6098 + 24.6098i 1.28114 + 1.28114i
\(370\) 0 0
\(371\) 7.06747 + 7.06747i 0.366925 + 0.366925i
\(372\) 0 0
\(373\) 15.4630 0.800642 0.400321 0.916375i \(-0.368899\pi\)
0.400321 + 0.916375i \(0.368899\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0879 + 24.0879i 1.24059 + 1.24059i
\(378\) 0 0
\(379\) −5.34520 5.34520i −0.274564 0.274564i 0.556370 0.830935i \(-0.312194\pi\)
−0.830935 + 0.556370i \(0.812194\pi\)
\(380\) 0 0
\(381\) −1.24699 + 1.24699i −0.0638851 + 0.0638851i
\(382\) 0 0
\(383\) 10.1244i 0.517333i 0.965967 + 0.258666i \(0.0832830\pi\)
−0.965967 + 0.258666i \(0.916717\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −22.3923 −1.13826
\(388\) 0 0
\(389\) 12.6889i 0.643355i −0.946849 0.321677i \(-0.895753\pi\)
0.946849 0.321677i \(-0.104247\pi\)
\(390\) 0 0
\(391\) 19.8412 33.9638i 1.00341 1.71762i
\(392\) 0 0
\(393\) 1.29846i 0.0654986i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 16.5441 16.5441i 0.830323 0.830323i −0.157238 0.987561i \(-0.550259\pi\)
0.987561 + 0.157238i \(0.0502590\pi\)
\(398\) 0 0
\(399\) 1.06729i 0.0534312i
\(400\) 0 0
\(401\) 7.99397 7.99397i 0.399200 0.399200i −0.478751 0.877951i \(-0.658910\pi\)
0.877951 + 0.478751i \(0.158910\pi\)
\(402\) 0 0
\(403\) −19.1958 19.1958i −0.956211 0.956211i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.99395 −0.346677
\(408\) 0 0
\(409\) −21.1081 −1.04373 −0.521864 0.853029i \(-0.674763\pi\)
−0.521864 + 0.853029i \(0.674763\pi\)
\(410\) 0 0
\(411\) −0.268709 0.268709i −0.0132545 0.0132545i
\(412\) 0 0
\(413\) 8.35558 + 8.35558i 0.411151 + 0.411151i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.864153i 0.0423177i
\(418\) 0 0
\(419\) −14.2384 + 14.2384i −0.695589 + 0.695589i −0.963456 0.267867i \(-0.913681\pi\)
0.267867 + 0.963456i \(0.413681\pi\)
\(420\) 0 0
\(421\) 11.6969 0.570072 0.285036 0.958517i \(-0.407995\pi\)
0.285036 + 0.958517i \(0.407995\pi\)
\(422\) 0 0
\(423\) 25.7344i 1.25125i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 30.2867i 1.46568i
\(428\) 0 0
\(429\) −0.464761 −0.0224388
\(430\) 0 0
\(431\) 2.04736 2.04736i 0.0986177 0.0986177i −0.656077 0.754694i \(-0.727785\pi\)
0.754694 + 0.656077i \(0.227785\pi\)
\(432\) 0 0
\(433\) 19.7898i 0.951038i 0.879705 + 0.475519i \(0.157740\pi\)
−0.879705 + 0.475519i \(0.842260\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 23.0916 + 23.0916i 1.10462 + 1.10462i
\(438\) 0 0
\(439\) −25.0903 25.0903i −1.19749 1.19749i −0.974914 0.222580i \(-0.928552\pi\)
−0.222580 0.974914i \(-0.571448\pi\)
\(440\) 0 0
\(441\) −2.35976 −0.112370
\(442\) 0 0
\(443\) 14.7915 0.702763 0.351382 0.936232i \(-0.385712\pi\)
0.351382 + 0.936232i \(0.385712\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.360333 + 0.360333i 0.0170432 + 0.0170432i
\(448\) 0 0
\(449\) −12.2258 + 12.2258i −0.576973 + 0.576973i −0.934068 0.357095i \(-0.883767\pi\)
0.357095 + 0.934068i \(0.383767\pi\)
\(450\) 0 0
\(451\) 14.2477i 0.670898i
\(452\) 0 0
\(453\) 1.00811 1.00811i 0.0473650 0.0473650i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.94745i 0.231432i 0.993282 + 0.115716i \(0.0369163\pi\)
−0.993282 + 0.115716i \(0.963084\pi\)
\(458\) 0 0
\(459\) −1.39111 + 2.38128i −0.0649314 + 0.111149i
\(460\) 0 0
\(461\) 9.14971i 0.426145i −0.977036 0.213072i \(-0.931653\pi\)
0.977036 0.213072i \(-0.0683470\pi\)
\(462\) 0 0
\(463\) −9.60773 −0.446509 −0.223255 0.974760i \(-0.571668\pi\)
−0.223255 + 0.974760i \(0.571668\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.2164i 0.704132i 0.935975 + 0.352066i \(0.114521\pi\)
−0.935975 + 0.352066i \(0.885479\pi\)
\(468\) 0 0
\(469\) 21.9311 21.9311i 1.01268 1.01268i
\(470\) 0 0
\(471\) −1.77327 1.77327i −0.0817079 0.0817079i
\(472\) 0 0
\(473\) 6.48192 + 6.48192i 0.298039 + 0.298039i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10.6985 −0.489853
\(478\) 0 0
\(479\) 11.1721 + 11.1721i 0.510466 + 0.510466i 0.914669 0.404203i \(-0.132451\pi\)
−0.404203 + 0.914669i \(0.632451\pi\)
\(480\) 0 0
\(481\) 13.7555 + 13.7555i 0.627197 + 0.627197i
\(482\) 0 0
\(483\) 2.10329 2.10329i 0.0957028 0.0957028i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.29075 + 8.29075i −0.375690 + 0.375690i −0.869545 0.493855i \(-0.835588\pi\)
0.493855 + 0.869545i \(0.335588\pi\)
\(488\) 0 0
\(489\) −0.319340 −0.0144411
\(490\) 0 0
\(491\) 6.73370i 0.303888i −0.988389 0.151944i \(-0.951447\pi\)
0.988389 0.151944i \(-0.0485533\pi\)
\(492\) 0 0
\(493\) −35.6516 20.8271i −1.60567 0.938008i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.05139 −0.0471613
\(498\) 0 0
\(499\) 19.5901 19.5901i 0.876972 0.876972i −0.116248 0.993220i \(-0.537087\pi\)
0.993220 + 0.116248i \(0.0370868\pi\)
\(500\) 0 0
\(501\) 0.00731601i 0.000326855i
\(502\) 0 0
\(503\) 7.00563 7.00563i 0.312366 0.312366i −0.533460 0.845825i \(-0.679108\pi\)
0.845825 + 0.533460i \(0.179108\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.112817 0.112817i −0.00501036 0.00501036i
\(508\) 0 0
\(509\) 10.2748 0.455423 0.227712 0.973729i \(-0.426876\pi\)
0.227712 + 0.973729i \(0.426876\pi\)
\(510\) 0 0
\(511\) 27.5269 1.21772
\(512\) 0 0
\(513\) −1.61900 1.61900i −0.0714808 0.0714808i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 7.44937 7.44937i 0.327623 0.327623i
\(518\) 0 0
\(519\) 1.62349i 0.0712633i
\(520\) 0 0
\(521\) −6.83069 + 6.83069i −0.299258 + 0.299258i −0.840723 0.541465i \(-0.817870\pi\)
0.541465 + 0.840723i \(0.317870\pi\)
\(522\) 0 0
\(523\) −8.21602 −0.359262 −0.179631 0.983734i \(-0.557490\pi\)
−0.179631 + 0.983734i \(0.557490\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.4110 + 16.5973i 1.23760 + 0.722990i
\(528\) 0 0
\(529\) 68.0126i 2.95707i
\(530\) 0 0
\(531\) −12.6484 −0.548896
\(532\) 0 0
\(533\) −28.0220 + 28.0220i −1.21377 + 1.21377i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.70596 + 1.70596i −0.0736176 + 0.0736176i
\(538\) 0 0
\(539\) 0.683084 + 0.683084i 0.0294225 + 0.0294225i
\(540\) 0 0
\(541\) −24.1876 24.1876i −1.03991 1.03991i −0.999170 0.0407372i \(-0.987029\pi\)
−0.0407372 0.999170i \(-0.512971\pi\)
\(542\) 0 0
\(543\) −0.408363 −0.0175245
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −15.8269 15.8269i −0.676711 0.676711i 0.282544 0.959254i \(-0.408822\pi\)
−0.959254 + 0.282544i \(0.908822\pi\)
\(548\) 0 0
\(549\) 22.9236 + 22.9236i 0.978356 + 0.978356i
\(550\) 0 0
\(551\) 24.2391 24.2391i 1.03262 1.03262i
\(552\) 0 0
\(553\) 40.4696i 1.72094i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.3875 1.11807 0.559036 0.829143i \(-0.311171\pi\)
0.559036 + 0.829143i \(0.311171\pi\)
\(558\) 0 0
\(559\) 25.4969i 1.07840i
\(560\) 0 0
\(561\) 0.544861 0.143014i 0.0230041 0.00603807i
\(562\) 0 0
\(563\) 3.35687i 0.141475i 0.997495 + 0.0707376i \(0.0225353\pi\)
−0.997495 + 0.0707376i \(0.977465\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 17.5407 17.5407i 0.736639 0.736639i
\(568\) 0 0
\(569\) 42.4229i 1.77846i 0.457458 + 0.889231i \(0.348760\pi\)
−0.457458 + 0.889231i \(0.651240\pi\)
\(570\) 0 0
\(571\) −9.57415 + 9.57415i −0.400666 + 0.400666i −0.878468 0.477802i \(-0.841434\pi\)
0.477802 + 0.878468i \(0.341434\pi\)
\(572\) 0 0
\(573\) 1.80640 + 1.80640i 0.0754632 + 0.0754632i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −20.7010 −0.861792 −0.430896 0.902402i \(-0.641802\pi\)
−0.430896 + 0.902402i \(0.641802\pi\)
\(578\) 0 0
\(579\) 0.805263 0.0334656
\(580\) 0 0
\(581\) −2.99992 2.99992i −0.124458 0.124458i
\(582\) 0 0
\(583\) 3.09692 + 3.09692i 0.128261 + 0.128261i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 33.1051i 1.36639i 0.730235 + 0.683197i \(0.239411\pi\)
−0.730235 + 0.683197i \(0.760589\pi\)
\(588\) 0 0
\(589\) −19.3163 + 19.3163i −0.795916 + 0.795916i
\(590\) 0 0
\(591\) −1.79624 −0.0738876
\(592\) 0 0
\(593\) 11.1110i 0.456276i −0.973629 0.228138i \(-0.926736\pi\)
0.973629 0.228138i \(-0.0732637\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.18218i 0.0483835i
\(598\) 0 0
\(599\) −38.6224 −1.57807 −0.789034 0.614349i \(-0.789419\pi\)
−0.789034 + 0.614349i \(0.789419\pi\)
\(600\) 0 0
\(601\) −10.5195 + 10.5195i −0.429099 + 0.429099i −0.888321 0.459223i \(-0.848128\pi\)
0.459223 + 0.888321i \(0.348128\pi\)
\(602\) 0 0
\(603\) 33.1987i 1.35196i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 22.2976 + 22.2976i 0.905031 + 0.905031i 0.995866 0.0908348i \(-0.0289535\pi\)
−0.0908348 + 0.995866i \(0.528954\pi\)
\(608\) 0 0
\(609\) −2.20780 2.20780i −0.0894648 0.0894648i
\(610\) 0 0
\(611\) −29.3024 −1.18545
\(612\) 0 0
\(613\) −4.65730 −0.188107 −0.0940533 0.995567i \(-0.529982\pi\)
−0.0940533 + 0.995567i \(0.529982\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −29.1461 29.1461i −1.17338 1.17338i −0.981399 0.191978i \(-0.938510\pi\)
−0.191978 0.981399i \(-0.561490\pi\)
\(618\) 0 0
\(619\) 6.07033 6.07033i 0.243987 0.243987i −0.574510 0.818497i \(-0.694807\pi\)
0.818497 + 0.574510i \(0.194807\pi\)
\(620\) 0 0
\(621\) 6.38109i 0.256064i
\(622\) 0 0
\(623\) −8.45594 + 8.45594i −0.338780 + 0.338780i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.467679i 0.0186773i
\(628\) 0 0
\(629\) −20.3590 11.8934i −0.811767 0.474223i
\(630\) 0 0
\(631\) 17.3123i 0.689192i 0.938751 + 0.344596i \(0.111984\pi\)
−0.938751 + 0.344596i \(0.888016\pi\)
\(632\) 0 0
\(633\) −0.545195 −0.0216696
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.68694i 0.106460i
\(638\) 0 0
\(639\) 0.795784 0.795784i 0.0314807 0.0314807i
\(640\) 0 0
\(641\) −11.0134 11.0134i −0.435002 0.435002i 0.455324 0.890326i \(-0.349524\pi\)
−0.890326 + 0.455324i \(0.849524\pi\)
\(642\) 0 0
\(643\) −7.87307 7.87307i −0.310484 0.310484i 0.534613 0.845097i \(-0.320457\pi\)
−0.845097 + 0.534613i \(0.820457\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −15.7228 −0.618129 −0.309064 0.951041i \(-0.600016\pi\)
−0.309064 + 0.951041i \(0.600016\pi\)
\(648\) 0 0
\(649\) 3.66136 + 3.66136i 0.143721 + 0.143721i
\(650\) 0 0
\(651\) 1.75942 + 1.75942i 0.0689570 + 0.0689570i
\(652\) 0 0
\(653\) 18.7020 18.7020i 0.731866 0.731866i −0.239123 0.970989i \(-0.576860\pi\)
0.970989 + 0.239123i \(0.0768600\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −20.8348 + 20.8348i −0.812842 + 0.812842i
\(658\) 0 0
\(659\) 31.7204 1.23565 0.617826 0.786315i \(-0.288014\pi\)
0.617826 + 0.786315i \(0.288014\pi\)
\(660\) 0 0
\(661\) 41.6769i 1.62105i 0.585707 + 0.810523i \(0.300817\pi\)
−0.585707 + 0.810523i \(0.699183\pi\)
\(662\) 0 0
\(663\) −1.35289 0.790341i −0.0525420 0.0306943i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −95.5353 −3.69914
\(668\) 0 0
\(669\) −0.704595 + 0.704595i −0.0272412 + 0.0272412i
\(670\) 0 0
\(671\) 13.2715i 0.512339i
\(672\) 0 0
\(673\) 1.85204 1.85204i 0.0713907 0.0713907i −0.670510 0.741901i \(-0.733925\pi\)
0.741901 + 0.670510i \(0.233925\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.46007 8.46007i −0.325147 0.325147i 0.525591 0.850738i \(-0.323844\pi\)
−0.850738 + 0.525591i \(0.823844\pi\)
\(678\) 0 0
\(679\) −7.14393 −0.274159
\(680\) 0 0
\(681\) 1.44478 0.0553642
\(682\) 0 0
\(683\) 14.2066 + 14.2066i 0.543599 + 0.543599i 0.924582 0.380983i \(-0.124414\pi\)
−0.380983 + 0.924582i \(0.624414\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.10060 1.10060i 0.0419906 0.0419906i
\(688\) 0 0
\(689\) 12.1819i 0.464092i
\(690\) 0 0
\(691\) −14.9314 + 14.9314i −0.568017 + 0.568017i −0.931572 0.363556i \(-0.881563\pi\)
0.363556 + 0.931572i \(0.381563\pi\)
\(692\) 0 0
\(693\) −10.1978 −0.387383
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 24.2287 41.4743i 0.917727 1.57095i
\(698\) 0 0
\(699\) 1.74281i 0.0659191i
\(700\) 0 0
\(701\) −35.6241 −1.34551 −0.672753 0.739868i \(-0.734888\pi\)
−0.672753 + 0.739868i \(0.734888\pi\)
\(702\) 0 0
\(703\) 13.8419 13.8419i 0.522056 0.522056i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.59031 + 5.59031i −0.210245 + 0.210245i
\(708\) 0 0
\(709\) 27.4579 + 27.4579i 1.03120 + 1.03120i 0.999497 + 0.0317069i \(0.0100943\pi\)
0.0317069 + 0.999497i \(0.489906\pi\)
\(710\) 0 0
\(711\) 30.6309 + 30.6309i 1.14875 + 1.14875i
\(712\) 0 0
\(713\) 76.1328 2.85120
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.17142 + 1.17142i 0.0437473 + 0.0437473i
\(718\) 0 0
\(719\) −7.29926 7.29926i −0.272217 0.272217i 0.557775 0.829992i \(-0.311655\pi\)
−0.829992 + 0.557775i \(0.811655\pi\)
\(720\) 0 0
\(721\) 9.90953 9.90953i 0.369050 0.369050i
\(722\) 0 0
\(723\) 0.0354399i 0.00131802i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 36.4252 1.35094 0.675468 0.737389i \(-0.263941\pi\)
0.675468 + 0.737389i \(0.263941\pi\)
\(728\) 0 0
\(729\) 26.3284i 0.975128i
\(730\) 0 0
\(731\) 7.84581 + 29.8913i 0.290188 + 1.10557i
\(732\) 0 0
\(733\) 33.2356i 1.22759i −0.789467 0.613793i \(-0.789643\pi\)
0.789467 0.613793i \(-0.210357\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.61008 9.61008i 0.353992 0.353992i
\(738\) 0 0
\(739\) 11.8455i 0.435745i 0.975977 + 0.217872i \(0.0699116\pi\)
−0.975977 + 0.217872i \(0.930088\pi\)
\(740\) 0 0
\(741\) 0.919817 0.919817i 0.0337903 0.0337903i
\(742\) 0 0
\(743\) −12.4200 12.4200i −0.455645 0.455645i 0.441578 0.897223i \(-0.354419\pi\)
−0.897223 + 0.441578i \(0.854419\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.54119 0.166154
\(748\) 0 0
\(749\) 1.74828 0.0638807
\(750\) 0 0
\(751\) −11.8641 11.8641i −0.432927 0.432927i 0.456696 0.889623i \(-0.349033\pi\)
−0.889623 + 0.456696i \(0.849033\pi\)
\(752\) 0 0
\(753\) −0.532527 0.532527i −0.0194064 0.0194064i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 45.4038i 1.65023i 0.564966 + 0.825114i \(0.308889\pi\)
−0.564966 + 0.825114i \(0.691111\pi\)
\(758\) 0 0
\(759\) 0.921647 0.921647i 0.0334537 0.0334537i
\(760\) 0 0
\(761\) −8.72830 −0.316401 −0.158200 0.987407i \(-0.550569\pi\)
−0.158200 + 0.987407i \(0.550569\pi\)
\(762\) 0 0
\(763\) 39.5309i 1.43111i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.4021i 0.520031i
\(768\) 0 0
\(769\) −0.280789 −0.0101255 −0.00506276 0.999987i \(-0.501612\pi\)
−0.00506276 + 0.999987i \(0.501612\pi\)
\(770\) 0 0
\(771\) 0.379882 0.379882i 0.0136811 0.0136811i
\(772\) 0 0
\(773\) 14.6221i 0.525922i 0.964807 + 0.262961i \(0.0846990\pi\)
−0.964807 + 0.262961i \(0.915301\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.26078 1.26078i −0.0452301 0.0452301i
\(778\) 0 0
\(779\) 28.1979 + 28.1979i 1.01029 + 1.01029i
\(780\) 0 0
\(781\) −0.460713 −0.0164856
\(782\) 0 0
\(783\) 6.69819 0.239374
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 30.0405 + 30.0405i 1.07083 + 1.07083i 0.997293 + 0.0735341i \(0.0234278\pi\)
0.0735341 + 0.997293i \(0.476572\pi\)
\(788\) 0 0
\(789\) 0.478947 0.478947i 0.0170510 0.0170510i
\(790\) 0 0
\(791\) 28.1132i 0.999590i
\(792\) 0 0
\(793\) −26.1019 + 26.1019i −0.926906 + 0.926906i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.4840i 1.39860i −0.714831 0.699298i \(-0.753496\pi\)
0.714831 0.699298i \(-0.246504\pi\)
\(798\) 0 0
\(799\) 34.3526 9.01682i 1.21531 0.318992i
\(800\) 0 0
\(801\) 12.8004i 0.452279i
\(802\) 0 0
\(803\) 12.0621 0.425664
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.91359i 0.0673616i
\(808\) 0 0
\(809\) −22.5276 + 22.5276i −0.792030 + 0.792030i −0.981824 0.189794i \(-0.939218\pi\)
0.189794 + 0.981824i \(0.439218\pi\)
\(810\) 0 0
\(811\) −30.7078 30.7078i −1.07830 1.07830i −0.996662 0.0816334i \(-0.973986\pi\)
−0.0816334 0.996662i \(-0.526014\pi\)
\(812\) 0 0
\(813\) 2.05385 + 2.05385i 0.0720318 + 0.0720318i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −25.6570 −0.897625
\(818\) 0 0
\(819\) 20.0568 + 20.0568i 0.700841 + 0.700841i
\(820\) 0 0
\(821\) −6.72368 6.72368i −0.234658 0.234658i 0.579976 0.814634i \(-0.303062\pi\)
−0.814634 + 0.579976i \(0.803062\pi\)
\(822\) 0 0
\(823\) 15.5249 15.5249i 0.541165 0.541165i −0.382706 0.923870i \(-0.625008\pi\)
0.923870 + 0.382706i \(0.125008\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −27.8026 + 27.8026i −0.966791 + 0.966791i −0.999466 0.0326746i \(-0.989598\pi\)
0.0326746 + 0.999466i \(0.489598\pi\)
\(828\) 0 0
\(829\) −7.75039 −0.269182 −0.134591 0.990901i \(-0.542972\pi\)
−0.134591 + 0.990901i \(0.542972\pi\)
\(830\) 0 0
\(831\) 0.713729i 0.0247590i
\(832\) 0 0
\(833\) 0.826814 + 3.15003i 0.0286474 + 0.109142i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5.33784 −0.184503
\(838\) 0 0
\(839\) 8.10722 8.10722i 0.279892 0.279892i −0.553174 0.833066i \(-0.686583\pi\)
0.833066 + 0.553174i \(0.186583\pi\)
\(840\) 0 0
\(841\) 71.2827i 2.45803i
\(842\) 0 0
\(843\) −0.107646 + 0.107646i −0.00370752 + 0.00370752i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −18.7572 18.7572i −0.644504 0.644504i
\(848\) 0 0
\(849\) 2.78083 0.0954380
\(850\) 0 0
\(851\) −54.5559 −1.87015
\(852\) 0 0
\(853\) −19.5663 19.5663i −0.669936 0.669936i 0.287765 0.957701i \(-0.407088\pi\)
−0.957701 + 0.287765i \(0.907088\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.79301 + 3.79301i −0.129567 + 0.129567i −0.768916 0.639349i \(-0.779204\pi\)
0.639349 + 0.768916i \(0.279204\pi\)
\(858\) 0 0
\(859\) 8.60568i 0.293622i −0.989165 0.146811i \(-0.953099\pi\)
0.989165 0.146811i \(-0.0469009\pi\)
\(860\) 0 0
\(861\) 2.56839 2.56839i 0.0875304 0.0875304i
\(862\) 0 0
\(863\) −54.1029 −1.84168 −0.920841 0.389937i \(-0.872497\pi\)
−0.920841 + 0.389937i \(0.872497\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.82926 + 0.510247i 0.0621250 + 0.0173289i
\(868\) 0 0
\(869\) 17.7335i 0.601569i
\(870\) 0 0
\(871\) −37.8016 −1.28086
\(872\) 0 0
\(873\) 5.40715 5.40715i 0.183004 0.183004i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.1480 + 37.1480i −1.25440 + 1.25440i −0.300671 + 0.953728i \(0.597211\pi\)
−0.953728 + 0.300671i \(0.902789\pi\)
\(878\) 0 0
\(879\) 1.04801 + 1.04801i 0.0353483 + 0.0353483i
\(880\) 0 0
\(881\) −21.8952 21.8952i −0.737667 0.737667i 0.234459 0.972126i \(-0.424668\pi\)
−0.972126 + 0.234459i \(0.924668\pi\)
\(882\) 0 0
\(883\) −38.5522 −1.29739 −0.648693 0.761051i \(-0.724684\pi\)
−0.648693 + 0.761051i \(0.724684\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14.4598 14.4598i −0.485512 0.485512i 0.421375 0.906887i \(-0.361548\pi\)
−0.906887 + 0.421375i \(0.861548\pi\)
\(888\) 0 0
\(889\) −31.1552 31.1552i −1.04491 1.04491i
\(890\) 0 0
\(891\) 7.68622 7.68622i 0.257498 0.257498i
\(892\) 0 0
\(893\) 29.4864i 0.986725i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −3.62534 −0.121046
\(898\) 0 0
\(899\) 79.9161i 2.66535i
\(900\) 0 0
\(901\) 3.74856 + 14.2814i 0.124883 + 0.475782i
\(902\) 0 0
\(903\) 2.33695i 0.0777689i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −2.10137 + 2.10137i −0.0697748 + 0.0697748i −0.741133 0.671358i \(-0.765711\pi\)
0.671358 + 0.741133i \(0.265711\pi\)
\(908\) 0 0
\(909\) 8.46246i 0.280682i
\(910\) 0 0
\(911\) −18.3384 + 18.3384i −0.607579 + 0.607579i −0.942313 0.334733i \(-0.891354\pi\)
0.334733 + 0.942313i \(0.391354\pi\)
\(912\) 0 0
\(913\) −1.31455 1.31455i −0.0435051 0.0435051i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −32.4411 −1.07130
\(918\) 0 0
\(919\) −13.2875 −0.438313 −0.219157 0.975690i \(-0.570331\pi\)
−0.219157 + 0.975690i \(0.570331\pi\)
\(920\) 0 0
\(921\) 1.65731 + 1.65731i 0.0546102 + 0.0546102i
\(922\) 0 0
\(923\) 0.906118 + 0.906118i 0.0298252 + 0.0298252i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 15.0008i 0.492690i
\(928\) 0 0
\(929\) 3.35997 3.35997i 0.110237 0.110237i −0.649837 0.760074i \(-0.725163\pi\)
0.760074 + 0.649837i \(0.225163\pi\)
\(930\) 0 0
\(931\) −2.70381 −0.0886138
\(932\) 0 0
\(933\) 0.0801396i 0.00262365i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 13.3082i 0.434759i −0.976087 0.217380i \(-0.930249\pi\)
0.976087 0.217380i \(-0.0697509\pi\)
\(938\) 0 0
\(939\) −1.18500 −0.0386710
\(940\) 0 0
\(941\) −3.04861 + 3.04861i −0.0993817 + 0.0993817i −0.755050 0.655668i \(-0.772387\pi\)
0.655668 + 0.755050i \(0.272387\pi\)
\(942\) 0 0
\(943\) 111.138i 3.61916i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.5353 + 38.5353i 1.25223 + 1.25223i 0.954719 + 0.297510i \(0.0961563\pi\)
0.297510 + 0.954719i \(0.403844\pi\)
\(948\) 0 0
\(949\) −23.7235 23.7235i −0.770096 0.770096i
\(950\) 0 0
\(951\) 2.38477 0.0773316
\(952\) 0 0
\(953\) −31.4405 −1.01846 −0.509229 0.860631i \(-0.670069\pi\)
−0.509229 + 0.860631i \(0.670069\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −0.967447 0.967447i −0.0312731 0.0312731i
\(958\) 0 0
\(959\) 6.71352 6.71352i 0.216791 0.216791i
\(960\) 0 0
\(961\) 32.6857i 1.05438i
\(962\) 0 0
\(963\) −1.32325 + 1.32325i −0.0426411 + 0.0426411i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 28.4642i 0.915347i −0.889120 0.457674i \(-0.848683\pi\)
0.889120 0.457674i \(-0.151317\pi\)
\(968\) 0 0
\(969\) −0.795303 + 1.36139i −0.0255488 + 0.0437341i
\(970\) 0 0
\(971\) 44.9224i 1.44163i −0.693128 0.720815i \(-0.743768\pi\)
0.693128 0.720815i \(-0.256232\pi\)
\(972\) 0 0
\(973\) 21.5903 0.692153
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 37.8272i 1.21020i 0.796150 + 0.605100i \(0.206867\pi\)
−0.796150 + 0.605100i \(0.793133\pi\)
\(978\) 0 0
\(979\) −3.70534 + 3.70534i −0.118423 + 0.118423i
\(980\) 0 0
\(981\) −29.9204 29.9204i −0.955284 0.955284i
\(982\) 0 0
\(983\) 26.7685 + 26.7685i 0.853783 + 0.853783i 0.990597 0.136814i \(-0.0436862\pi\)
−0.136814 + 0.990597i \(0.543686\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.68575 0.0854883
\(988\) 0 0
\(989\) 50.5619 + 50.5619i 1.60777 + 1.60777i
\(990\) 0 0
\(991\) −12.6185 12.6185i −0.400838 0.400838i 0.477690 0.878528i \(-0.341474\pi\)
−0.878528 + 0.477690i \(0.841474\pi\)
\(992\) 0 0
\(993\) −0.982814 + 0.982814i −0.0311887 + 0.0311887i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −36.3754 + 36.3754i −1.15202 + 1.15202i −0.165872 + 0.986147i \(0.553044\pi\)
−0.986147 + 0.165872i \(0.946956\pi\)
\(998\) 0 0
\(999\) 3.82503 0.121019
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1700.2.o.d.1101.4 12
5.2 odd 4 1700.2.m.c.149.4 12
5.3 odd 4 1700.2.m.f.149.3 12
5.4 even 2 340.2.o.a.81.3 yes 12
15.14 odd 2 3060.2.be.b.1441.6 12
17.4 even 4 inner 1700.2.o.d.701.4 12
20.19 odd 2 1360.2.bt.c.81.4 12
85.4 even 4 340.2.o.a.21.3 12
85.9 even 8 5780.2.c.h.5201.6 12
85.19 even 8 5780.2.a.n.1.4 6
85.38 odd 4 1700.2.m.c.1449.4 12
85.49 even 8 5780.2.a.m.1.3 6
85.59 even 8 5780.2.c.h.5201.7 12
85.72 odd 4 1700.2.m.f.1449.3 12
255.89 odd 4 3060.2.be.b.361.6 12
340.259 odd 4 1360.2.bt.c.1041.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.o.a.21.3 12 85.4 even 4
340.2.o.a.81.3 yes 12 5.4 even 2
1360.2.bt.c.81.4 12 20.19 odd 2
1360.2.bt.c.1041.4 12 340.259 odd 4
1700.2.m.c.149.4 12 5.2 odd 4
1700.2.m.c.1449.4 12 85.38 odd 4
1700.2.m.f.149.3 12 5.3 odd 4
1700.2.m.f.1449.3 12 85.72 odd 4
1700.2.o.d.701.4 12 17.4 even 4 inner
1700.2.o.d.1101.4 12 1.1 even 1 trivial
3060.2.be.b.361.6 12 255.89 odd 4
3060.2.be.b.1441.6 12 15.14 odd 2
5780.2.a.m.1.3 6 85.49 even 8
5780.2.a.n.1.4 6 85.19 even 8
5780.2.c.h.5201.6 12 85.9 even 8
5780.2.c.h.5201.7 12 85.59 even 8