Properties

Label 5766.2.a.bq.1.5
Level $5766$
Weight $2$
Character 5766.1
Self dual yes
Analytic conductor $46.042$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5766,2,Mod(1,5766)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5766.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5766.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,8,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.0417418055\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{32})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 20x^{4} - 16x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.66294\) of defining polynomial
Character \(\chi\) \(=\) 5766.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -0.751274 q^{5} +1.00000 q^{6} +2.15083 q^{7} +1.00000 q^{8} +1.00000 q^{9} -0.751274 q^{10} -5.68697 q^{11} +1.00000 q^{12} +6.01228 q^{13} +2.15083 q^{14} -0.751274 q^{15} +1.00000 q^{16} -6.09775 q^{17} +1.00000 q^{18} -7.42179 q^{19} -0.751274 q^{20} +2.15083 q^{21} -5.68697 q^{22} -7.47004 q^{23} +1.00000 q^{24} -4.43559 q^{25} +6.01228 q^{26} +1.00000 q^{27} +2.15083 q^{28} -4.66311 q^{29} -0.751274 q^{30} +1.00000 q^{32} -5.68697 q^{33} -6.09775 q^{34} -1.61587 q^{35} +1.00000 q^{36} -8.41741 q^{37} -7.42179 q^{38} +6.01228 q^{39} -0.751274 q^{40} +6.22351 q^{41} +2.15083 q^{42} -4.03338 q^{43} -5.68697 q^{44} -0.751274 q^{45} -7.47004 q^{46} -1.65729 q^{47} +1.00000 q^{48} -2.37392 q^{49} -4.43559 q^{50} -6.09775 q^{51} +6.01228 q^{52} +6.18421 q^{53} +1.00000 q^{54} +4.27248 q^{55} +2.15083 q^{56} -7.42179 q^{57} -4.66311 q^{58} -4.00401 q^{59} -0.751274 q^{60} +0.700300 q^{61} +2.15083 q^{63} +1.00000 q^{64} -4.51687 q^{65} -5.68697 q^{66} +0.954994 q^{67} -6.09775 q^{68} -7.47004 q^{69} -1.61587 q^{70} -1.14224 q^{71} +1.00000 q^{72} +12.3662 q^{73} -8.41741 q^{74} -4.43559 q^{75} -7.42179 q^{76} -12.2317 q^{77} +6.01228 q^{78} +0.854729 q^{79} -0.751274 q^{80} +1.00000 q^{81} +6.22351 q^{82} -7.94057 q^{83} +2.15083 q^{84} +4.58108 q^{85} -4.03338 q^{86} -4.66311 q^{87} -5.68697 q^{88} -16.7301 q^{89} -0.751274 q^{90} +12.9314 q^{91} -7.47004 q^{92} -1.65729 q^{94} +5.57580 q^{95} +1.00000 q^{96} +12.0701 q^{97} -2.37392 q^{98} -5.68697 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} + 8 q^{4} - 8 q^{5} + 8 q^{6} + 8 q^{8} + 8 q^{9} - 8 q^{10} - 24 q^{11} + 8 q^{12} - 8 q^{13} - 8 q^{15} + 8 q^{16} - 8 q^{17} + 8 q^{18} - 8 q^{19} - 8 q^{20} - 24 q^{22} - 32 q^{23}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −0.751274 −0.335980 −0.167990 0.985789i \(-0.553728\pi\)
−0.167990 + 0.985789i \(0.553728\pi\)
\(6\) 1.00000 0.408248
\(7\) 2.15083 0.812938 0.406469 0.913665i \(-0.366760\pi\)
0.406469 + 0.913665i \(0.366760\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −0.751274 −0.237574
\(11\) −5.68697 −1.71469 −0.857343 0.514745i \(-0.827887\pi\)
−0.857343 + 0.514745i \(0.827887\pi\)
\(12\) 1.00000 0.288675
\(13\) 6.01228 1.66751 0.833753 0.552138i \(-0.186188\pi\)
0.833753 + 0.552138i \(0.186188\pi\)
\(14\) 2.15083 0.574834
\(15\) −0.751274 −0.193978
\(16\) 1.00000 0.250000
\(17\) −6.09775 −1.47892 −0.739460 0.673200i \(-0.764919\pi\)
−0.739460 + 0.673200i \(0.764919\pi\)
\(18\) 1.00000 0.235702
\(19\) −7.42179 −1.70268 −0.851338 0.524618i \(-0.824208\pi\)
−0.851338 + 0.524618i \(0.824208\pi\)
\(20\) −0.751274 −0.167990
\(21\) 2.15083 0.469350
\(22\) −5.68697 −1.21247
\(23\) −7.47004 −1.55761 −0.778806 0.627265i \(-0.784174\pi\)
−0.778806 + 0.627265i \(0.784174\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.43559 −0.887117
\(26\) 6.01228 1.17910
\(27\) 1.00000 0.192450
\(28\) 2.15083 0.406469
\(29\) −4.66311 −0.865917 −0.432959 0.901414i \(-0.642530\pi\)
−0.432959 + 0.901414i \(0.642530\pi\)
\(30\) −0.751274 −0.137163
\(31\) 0 0
\(32\) 1.00000 0.176777
\(33\) −5.68697 −0.989975
\(34\) −6.09775 −1.04575
\(35\) −1.61587 −0.273131
\(36\) 1.00000 0.166667
\(37\) −8.41741 −1.38381 −0.691907 0.721986i \(-0.743229\pi\)
−0.691907 + 0.721986i \(0.743229\pi\)
\(38\) −7.42179 −1.20397
\(39\) 6.01228 0.962735
\(40\) −0.751274 −0.118787
\(41\) 6.22351 0.971949 0.485975 0.873973i \(-0.338465\pi\)
0.485975 + 0.873973i \(0.338465\pi\)
\(42\) 2.15083 0.331881
\(43\) −4.03338 −0.615084 −0.307542 0.951534i \(-0.599506\pi\)
−0.307542 + 0.951534i \(0.599506\pi\)
\(44\) −5.68697 −0.857343
\(45\) −0.751274 −0.111993
\(46\) −7.47004 −1.10140
\(47\) −1.65729 −0.241740 −0.120870 0.992668i \(-0.538568\pi\)
−0.120870 + 0.992668i \(0.538568\pi\)
\(48\) 1.00000 0.144338
\(49\) −2.37392 −0.339132
\(50\) −4.43559 −0.627287
\(51\) −6.09775 −0.853855
\(52\) 6.01228 0.833753
\(53\) 6.18421 0.849467 0.424733 0.905318i \(-0.360368\pi\)
0.424733 + 0.905318i \(0.360368\pi\)
\(54\) 1.00000 0.136083
\(55\) 4.27248 0.576101
\(56\) 2.15083 0.287417
\(57\) −7.42179 −0.983040
\(58\) −4.66311 −0.612296
\(59\) −4.00401 −0.521278 −0.260639 0.965436i \(-0.583933\pi\)
−0.260639 + 0.965436i \(0.583933\pi\)
\(60\) −0.751274 −0.0969891
\(61\) 0.700300 0.0896642 0.0448321 0.998995i \(-0.485725\pi\)
0.0448321 + 0.998995i \(0.485725\pi\)
\(62\) 0 0
\(63\) 2.15083 0.270979
\(64\) 1.00000 0.125000
\(65\) −4.51687 −0.560249
\(66\) −5.68697 −0.700018
\(67\) 0.954994 0.116671 0.0583355 0.998297i \(-0.481421\pi\)
0.0583355 + 0.998297i \(0.481421\pi\)
\(68\) −6.09775 −0.739460
\(69\) −7.47004 −0.899287
\(70\) −1.61587 −0.193133
\(71\) −1.14224 −0.135559 −0.0677793 0.997700i \(-0.521591\pi\)
−0.0677793 + 0.997700i \(0.521591\pi\)
\(72\) 1.00000 0.117851
\(73\) 12.3662 1.44735 0.723675 0.690141i \(-0.242452\pi\)
0.723675 + 0.690141i \(0.242452\pi\)
\(74\) −8.41741 −0.978505
\(75\) −4.43559 −0.512177
\(76\) −7.42179 −0.851338
\(77\) −12.2317 −1.39393
\(78\) 6.01228 0.680757
\(79\) 0.854729 0.0961645 0.0480822 0.998843i \(-0.484689\pi\)
0.0480822 + 0.998843i \(0.484689\pi\)
\(80\) −0.751274 −0.0839950
\(81\) 1.00000 0.111111
\(82\) 6.22351 0.687272
\(83\) −7.94057 −0.871591 −0.435795 0.900046i \(-0.643533\pi\)
−0.435795 + 0.900046i \(0.643533\pi\)
\(84\) 2.15083 0.234675
\(85\) 4.58108 0.496888
\(86\) −4.03338 −0.434930
\(87\) −4.66311 −0.499937
\(88\) −5.68697 −0.606233
\(89\) −16.7301 −1.77339 −0.886694 0.462357i \(-0.847004\pi\)
−0.886694 + 0.462357i \(0.847004\pi\)
\(90\) −0.751274 −0.0791913
\(91\) 12.9314 1.35558
\(92\) −7.47004 −0.778806
\(93\) 0 0
\(94\) −1.65729 −0.170936
\(95\) 5.57580 0.572065
\(96\) 1.00000 0.102062
\(97\) 12.0701 1.22554 0.612768 0.790263i \(-0.290056\pi\)
0.612768 + 0.790263i \(0.290056\pi\)
\(98\) −2.37392 −0.239802
\(99\) −5.68697 −0.571562
\(100\) −4.43559 −0.443559
\(101\) 3.34152 0.332494 0.166247 0.986084i \(-0.446835\pi\)
0.166247 + 0.986084i \(0.446835\pi\)
\(102\) −6.09775 −0.603767
\(103\) −7.63419 −0.752219 −0.376109 0.926575i \(-0.622738\pi\)
−0.376109 + 0.926575i \(0.622738\pi\)
\(104\) 6.01228 0.589552
\(105\) −1.61587 −0.157692
\(106\) 6.18421 0.600664
\(107\) 8.91054 0.861414 0.430707 0.902492i \(-0.358264\pi\)
0.430707 + 0.902492i \(0.358264\pi\)
\(108\) 1.00000 0.0962250
\(109\) 15.2239 1.45818 0.729092 0.684416i \(-0.239943\pi\)
0.729092 + 0.684416i \(0.239943\pi\)
\(110\) 4.27248 0.407365
\(111\) −8.41741 −0.798946
\(112\) 2.15083 0.203235
\(113\) 4.51057 0.424319 0.212159 0.977235i \(-0.431950\pi\)
0.212159 + 0.977235i \(0.431950\pi\)
\(114\) −7.42179 −0.695114
\(115\) 5.61205 0.523326
\(116\) −4.66311 −0.432959
\(117\) 6.01228 0.555835
\(118\) −4.00401 −0.368599
\(119\) −13.1152 −1.20227
\(120\) −0.751274 −0.0685817
\(121\) 21.3417 1.94015
\(122\) 0.700300 0.0634022
\(123\) 6.22351 0.561155
\(124\) 0 0
\(125\) 7.08871 0.634034
\(126\) 2.15083 0.191611
\(127\) 17.4675 1.54999 0.774996 0.631966i \(-0.217752\pi\)
0.774996 + 0.631966i \(0.217752\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.03338 −0.355119
\(130\) −4.51687 −0.396156
\(131\) −7.02828 −0.614063 −0.307032 0.951699i \(-0.599336\pi\)
−0.307032 + 0.951699i \(0.599336\pi\)
\(132\) −5.68697 −0.494987
\(133\) −15.9630 −1.38417
\(134\) 0.954994 0.0824989
\(135\) −0.751274 −0.0646594
\(136\) −6.09775 −0.522877
\(137\) 14.5750 1.24522 0.622611 0.782531i \(-0.286072\pi\)
0.622611 + 0.782531i \(0.286072\pi\)
\(138\) −7.47004 −0.635892
\(139\) 8.84440 0.750172 0.375086 0.926990i \(-0.377613\pi\)
0.375086 + 0.926990i \(0.377613\pi\)
\(140\) −1.61587 −0.136566
\(141\) −1.65729 −0.139569
\(142\) −1.14224 −0.0958544
\(143\) −34.1917 −2.85925
\(144\) 1.00000 0.0833333
\(145\) 3.50327 0.290931
\(146\) 12.3662 1.02343
\(147\) −2.37392 −0.195798
\(148\) −8.41741 −0.691907
\(149\) −5.30142 −0.434309 −0.217154 0.976137i \(-0.569678\pi\)
−0.217154 + 0.976137i \(0.569678\pi\)
\(150\) −4.43559 −0.362164
\(151\) −12.7103 −1.03435 −0.517174 0.855881i \(-0.673016\pi\)
−0.517174 + 0.855881i \(0.673016\pi\)
\(152\) −7.42179 −0.601987
\(153\) −6.09775 −0.492974
\(154\) −12.2317 −0.985660
\(155\) 0 0
\(156\) 6.01228 0.481368
\(157\) 6.11876 0.488330 0.244165 0.969734i \(-0.421486\pi\)
0.244165 + 0.969734i \(0.421486\pi\)
\(158\) 0.854729 0.0679986
\(159\) 6.18421 0.490440
\(160\) −0.751274 −0.0593935
\(161\) −16.0668 −1.26624
\(162\) 1.00000 0.0785674
\(163\) 6.58485 0.515765 0.257883 0.966176i \(-0.416975\pi\)
0.257883 + 0.966176i \(0.416975\pi\)
\(164\) 6.22351 0.485975
\(165\) 4.27248 0.332612
\(166\) −7.94057 −0.616308
\(167\) 0.600030 0.0464318 0.0232159 0.999730i \(-0.492609\pi\)
0.0232159 + 0.999730i \(0.492609\pi\)
\(168\) 2.15083 0.165940
\(169\) 23.1475 1.78058
\(170\) 4.58108 0.351353
\(171\) −7.42179 −0.567559
\(172\) −4.03338 −0.307542
\(173\) −6.62535 −0.503716 −0.251858 0.967764i \(-0.581042\pi\)
−0.251858 + 0.967764i \(0.581042\pi\)
\(174\) −4.66311 −0.353509
\(175\) −9.54020 −0.721172
\(176\) −5.68697 −0.428672
\(177\) −4.00401 −0.300960
\(178\) −16.7301 −1.25397
\(179\) 12.7907 0.956025 0.478013 0.878353i \(-0.341357\pi\)
0.478013 + 0.878353i \(0.341357\pi\)
\(180\) −0.751274 −0.0559967
\(181\) 5.50316 0.409046 0.204523 0.978862i \(-0.434436\pi\)
0.204523 + 0.978862i \(0.434436\pi\)
\(182\) 12.9314 0.958539
\(183\) 0.700300 0.0517677
\(184\) −7.47004 −0.550699
\(185\) 6.32379 0.464934
\(186\) 0 0
\(187\) 34.6777 2.53589
\(188\) −1.65729 −0.120870
\(189\) 2.15083 0.156450
\(190\) 5.57580 0.404511
\(191\) 7.76885 0.562134 0.281067 0.959688i \(-0.409312\pi\)
0.281067 + 0.959688i \(0.409312\pi\)
\(192\) 1.00000 0.0721688
\(193\) −12.7079 −0.914732 −0.457366 0.889279i \(-0.651207\pi\)
−0.457366 + 0.889279i \(0.651207\pi\)
\(194\) 12.0701 0.866585
\(195\) −4.51687 −0.323460
\(196\) −2.37392 −0.169566
\(197\) −7.29092 −0.519456 −0.259728 0.965682i \(-0.583633\pi\)
−0.259728 + 0.965682i \(0.583633\pi\)
\(198\) −5.68697 −0.404156
\(199\) −14.3844 −1.01968 −0.509841 0.860268i \(-0.670296\pi\)
−0.509841 + 0.860268i \(0.670296\pi\)
\(200\) −4.43559 −0.313643
\(201\) 0.954994 0.0673601
\(202\) 3.34152 0.235109
\(203\) −10.0296 −0.703937
\(204\) −6.09775 −0.426928
\(205\) −4.67557 −0.326556
\(206\) −7.63419 −0.531899
\(207\) −7.47004 −0.519204
\(208\) 6.01228 0.416877
\(209\) 42.2075 2.91956
\(210\) −1.61587 −0.111505
\(211\) 3.00269 0.206713 0.103357 0.994644i \(-0.467042\pi\)
0.103357 + 0.994644i \(0.467042\pi\)
\(212\) 6.18421 0.424733
\(213\) −1.14224 −0.0782648
\(214\) 8.91054 0.609112
\(215\) 3.03017 0.206656
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 15.2239 1.03109
\(219\) 12.3662 0.835628
\(220\) 4.27248 0.288050
\(221\) −36.6614 −2.46611
\(222\) −8.41741 −0.564940
\(223\) −26.6551 −1.78496 −0.892479 0.451088i \(-0.851036\pi\)
−0.892479 + 0.451088i \(0.851036\pi\)
\(224\) 2.15083 0.143709
\(225\) −4.43559 −0.295706
\(226\) 4.51057 0.300039
\(227\) 9.93774 0.659591 0.329795 0.944052i \(-0.393020\pi\)
0.329795 + 0.944052i \(0.393020\pi\)
\(228\) −7.42179 −0.491520
\(229\) −5.56427 −0.367697 −0.183849 0.982955i \(-0.558856\pi\)
−0.183849 + 0.982955i \(0.558856\pi\)
\(230\) 5.61205 0.370048
\(231\) −12.2317 −0.804788
\(232\) −4.66311 −0.306148
\(233\) 7.71215 0.505240 0.252620 0.967566i \(-0.418708\pi\)
0.252620 + 0.967566i \(0.418708\pi\)
\(234\) 6.01228 0.393035
\(235\) 1.24508 0.0812199
\(236\) −4.00401 −0.260639
\(237\) 0.854729 0.0555206
\(238\) −13.1152 −0.850134
\(239\) −23.3850 −1.51265 −0.756326 0.654195i \(-0.773008\pi\)
−0.756326 + 0.654195i \(0.773008\pi\)
\(240\) −0.751274 −0.0484945
\(241\) −19.0910 −1.22976 −0.614880 0.788620i \(-0.710796\pi\)
−0.614880 + 0.788620i \(0.710796\pi\)
\(242\) 21.3417 1.37189
\(243\) 1.00000 0.0641500
\(244\) 0.700300 0.0448321
\(245\) 1.78347 0.113941
\(246\) 6.22351 0.396797
\(247\) −44.6219 −2.83922
\(248\) 0 0
\(249\) −7.94057 −0.503213
\(250\) 7.08871 0.448330
\(251\) −0.507765 −0.0320499 −0.0160249 0.999872i \(-0.505101\pi\)
−0.0160249 + 0.999872i \(0.505101\pi\)
\(252\) 2.15083 0.135490
\(253\) 42.4819 2.67082
\(254\) 17.4675 1.09601
\(255\) 4.58108 0.286878
\(256\) 1.00000 0.0625000
\(257\) 8.06669 0.503186 0.251593 0.967833i \(-0.419046\pi\)
0.251593 + 0.967833i \(0.419046\pi\)
\(258\) −4.03338 −0.251107
\(259\) −18.1044 −1.12496
\(260\) −4.51687 −0.280124
\(261\) −4.66311 −0.288639
\(262\) −7.02828 −0.434208
\(263\) −28.5497 −1.76045 −0.880224 0.474558i \(-0.842608\pi\)
−0.880224 + 0.474558i \(0.842608\pi\)
\(264\) −5.68697 −0.350009
\(265\) −4.64604 −0.285404
\(266\) −15.9630 −0.978756
\(267\) −16.7301 −1.02387
\(268\) 0.954994 0.0583355
\(269\) −5.95702 −0.363206 −0.181603 0.983372i \(-0.558129\pi\)
−0.181603 + 0.983372i \(0.558129\pi\)
\(270\) −0.751274 −0.0457211
\(271\) 20.8051 1.26382 0.631908 0.775043i \(-0.282272\pi\)
0.631908 + 0.775043i \(0.282272\pi\)
\(272\) −6.09775 −0.369730
\(273\) 12.9314 0.782644
\(274\) 14.5750 0.880505
\(275\) 25.2251 1.52113
\(276\) −7.47004 −0.449644
\(277\) 7.30945 0.439182 0.219591 0.975592i \(-0.429528\pi\)
0.219591 + 0.975592i \(0.429528\pi\)
\(278\) 8.84440 0.530452
\(279\) 0 0
\(280\) −1.61587 −0.0965664
\(281\) −1.45043 −0.0865255 −0.0432627 0.999064i \(-0.513775\pi\)
−0.0432627 + 0.999064i \(0.513775\pi\)
\(282\) −1.65729 −0.0986900
\(283\) −16.1751 −0.961508 −0.480754 0.876855i \(-0.659637\pi\)
−0.480754 + 0.876855i \(0.659637\pi\)
\(284\) −1.14224 −0.0677793
\(285\) 5.57580 0.330282
\(286\) −34.1917 −2.02180
\(287\) 13.3857 0.790135
\(288\) 1.00000 0.0589256
\(289\) 20.1825 1.18721
\(290\) 3.50327 0.205719
\(291\) 12.0701 0.707563
\(292\) 12.3662 0.723675
\(293\) 13.3584 0.780404 0.390202 0.920729i \(-0.372405\pi\)
0.390202 + 0.920729i \(0.372405\pi\)
\(294\) −2.37392 −0.138450
\(295\) 3.00811 0.175139
\(296\) −8.41741 −0.489252
\(297\) −5.68697 −0.329992
\(298\) −5.30142 −0.307103
\(299\) −44.9120 −2.59733
\(300\) −4.43559 −0.256089
\(301\) −8.67512 −0.500025
\(302\) −12.7103 −0.731394
\(303\) 3.34152 0.191966
\(304\) −7.42179 −0.425669
\(305\) −0.526117 −0.0301254
\(306\) −6.09775 −0.348585
\(307\) 5.52892 0.315552 0.157776 0.987475i \(-0.449568\pi\)
0.157776 + 0.987475i \(0.449568\pi\)
\(308\) −12.2317 −0.696967
\(309\) −7.63419 −0.434294
\(310\) 0 0
\(311\) −23.6415 −1.34059 −0.670294 0.742095i \(-0.733832\pi\)
−0.670294 + 0.742095i \(0.733832\pi\)
\(312\) 6.01228 0.340378
\(313\) −4.42885 −0.250333 −0.125167 0.992136i \(-0.539947\pi\)
−0.125167 + 0.992136i \(0.539947\pi\)
\(314\) 6.11876 0.345302
\(315\) −1.61587 −0.0910437
\(316\) 0.854729 0.0480822
\(317\) 10.2298 0.574563 0.287281 0.957846i \(-0.407249\pi\)
0.287281 + 0.957846i \(0.407249\pi\)
\(318\) 6.18421 0.346793
\(319\) 26.5190 1.48478
\(320\) −0.751274 −0.0419975
\(321\) 8.91054 0.497338
\(322\) −16.0668 −0.895368
\(323\) 45.2562 2.51812
\(324\) 1.00000 0.0555556
\(325\) −26.6680 −1.47927
\(326\) 6.58485 0.364701
\(327\) 15.2239 0.841883
\(328\) 6.22351 0.343636
\(329\) −3.56455 −0.196520
\(330\) 4.27248 0.235192
\(331\) 16.0944 0.884628 0.442314 0.896860i \(-0.354158\pi\)
0.442314 + 0.896860i \(0.354158\pi\)
\(332\) −7.94057 −0.435795
\(333\) −8.41741 −0.461271
\(334\) 0.600030 0.0328322
\(335\) −0.717462 −0.0391992
\(336\) 2.15083 0.117338
\(337\) −24.4117 −1.32979 −0.664895 0.746937i \(-0.731524\pi\)
−0.664895 + 0.746937i \(0.731524\pi\)
\(338\) 23.1475 1.25906
\(339\) 4.51057 0.244981
\(340\) 4.58108 0.248444
\(341\) 0 0
\(342\) −7.42179 −0.401325
\(343\) −20.1617 −1.08863
\(344\) −4.03338 −0.217465
\(345\) 5.61205 0.302143
\(346\) −6.62535 −0.356181
\(347\) −12.3738 −0.664260 −0.332130 0.943234i \(-0.607767\pi\)
−0.332130 + 0.943234i \(0.607767\pi\)
\(348\) −4.66311 −0.249969
\(349\) −14.9115 −0.798192 −0.399096 0.916909i \(-0.630676\pi\)
−0.399096 + 0.916909i \(0.630676\pi\)
\(350\) −9.54020 −0.509945
\(351\) 6.01228 0.320912
\(352\) −5.68697 −0.303117
\(353\) −21.4153 −1.13982 −0.569911 0.821706i \(-0.693022\pi\)
−0.569911 + 0.821706i \(0.693022\pi\)
\(354\) −4.00401 −0.212811
\(355\) 0.858133 0.0455450
\(356\) −16.7301 −0.886694
\(357\) −13.1152 −0.694132
\(358\) 12.7907 0.676012
\(359\) −7.54031 −0.397962 −0.198981 0.980003i \(-0.563763\pi\)
−0.198981 + 0.980003i \(0.563763\pi\)
\(360\) −0.751274 −0.0395956
\(361\) 36.0830 1.89910
\(362\) 5.50316 0.289240
\(363\) 21.3417 1.12015
\(364\) 12.9314 0.677790
\(365\) −9.29038 −0.486281
\(366\) 0.700300 0.0366053
\(367\) −24.9142 −1.30051 −0.650256 0.759715i \(-0.725339\pi\)
−0.650256 + 0.759715i \(0.725339\pi\)
\(368\) −7.47004 −0.389403
\(369\) 6.22351 0.323983
\(370\) 6.32379 0.328758
\(371\) 13.3012 0.690564
\(372\) 0 0
\(373\) −7.90324 −0.409214 −0.204607 0.978844i \(-0.565592\pi\)
−0.204607 + 0.978844i \(0.565592\pi\)
\(374\) 34.6777 1.79314
\(375\) 7.08871 0.366060
\(376\) −1.65729 −0.0854681
\(377\) −28.0359 −1.44392
\(378\) 2.15083 0.110627
\(379\) −7.71253 −0.396166 −0.198083 0.980185i \(-0.563472\pi\)
−0.198083 + 0.980185i \(0.563472\pi\)
\(380\) 5.57580 0.286033
\(381\) 17.4675 0.894888
\(382\) 7.76885 0.397489
\(383\) 1.71607 0.0876870 0.0438435 0.999038i \(-0.486040\pi\)
0.0438435 + 0.999038i \(0.486040\pi\)
\(384\) 1.00000 0.0510310
\(385\) 9.18938 0.468334
\(386\) −12.7079 −0.646813
\(387\) −4.03338 −0.205028
\(388\) 12.0701 0.612768
\(389\) 10.9949 0.557463 0.278732 0.960369i \(-0.410086\pi\)
0.278732 + 0.960369i \(0.410086\pi\)
\(390\) −4.51687 −0.228721
\(391\) 45.5504 2.30358
\(392\) −2.37392 −0.119901
\(393\) −7.02828 −0.354530
\(394\) −7.29092 −0.367311
\(395\) −0.642136 −0.0323094
\(396\) −5.68697 −0.285781
\(397\) −15.9396 −0.799985 −0.399992 0.916518i \(-0.630987\pi\)
−0.399992 + 0.916518i \(0.630987\pi\)
\(398\) −14.3844 −0.721025
\(399\) −15.9630 −0.799151
\(400\) −4.43559 −0.221779
\(401\) 7.77012 0.388021 0.194011 0.980999i \(-0.437850\pi\)
0.194011 + 0.980999i \(0.437850\pi\)
\(402\) 0.954994 0.0476308
\(403\) 0 0
\(404\) 3.34152 0.166247
\(405\) −0.751274 −0.0373311
\(406\) −10.0296 −0.497759
\(407\) 47.8696 2.37281
\(408\) −6.09775 −0.301883
\(409\) −17.2489 −0.852904 −0.426452 0.904510i \(-0.640237\pi\)
−0.426452 + 0.904510i \(0.640237\pi\)
\(410\) −4.67557 −0.230910
\(411\) 14.5750 0.718929
\(412\) −7.63419 −0.376109
\(413\) −8.61195 −0.423767
\(414\) −7.47004 −0.367133
\(415\) 5.96555 0.292837
\(416\) 6.01228 0.294776
\(417\) 8.84440 0.433112
\(418\) 42.2075 2.06444
\(419\) 21.2911 1.04014 0.520070 0.854124i \(-0.325906\pi\)
0.520070 + 0.854124i \(0.325906\pi\)
\(420\) −1.61587 −0.0788461
\(421\) −24.7251 −1.20503 −0.602515 0.798108i \(-0.705834\pi\)
−0.602515 + 0.798108i \(0.705834\pi\)
\(422\) 3.00269 0.146169
\(423\) −1.65729 −0.0805801
\(424\) 6.18421 0.300332
\(425\) 27.0471 1.31198
\(426\) −1.14224 −0.0553415
\(427\) 1.50623 0.0728915
\(428\) 8.91054 0.430707
\(429\) −34.1917 −1.65079
\(430\) 3.03017 0.146128
\(431\) 2.93778 0.141508 0.0707539 0.997494i \(-0.477460\pi\)
0.0707539 + 0.997494i \(0.477460\pi\)
\(432\) 1.00000 0.0481125
\(433\) 5.35403 0.257298 0.128649 0.991690i \(-0.458936\pi\)
0.128649 + 0.991690i \(0.458936\pi\)
\(434\) 0 0
\(435\) 3.50327 0.167969
\(436\) 15.2239 0.729092
\(437\) 55.4411 2.65211
\(438\) 12.3662 0.590878
\(439\) 13.7938 0.658342 0.329171 0.944270i \(-0.393231\pi\)
0.329171 + 0.944270i \(0.393231\pi\)
\(440\) 4.27248 0.203682
\(441\) −2.37392 −0.113044
\(442\) −36.6614 −1.74380
\(443\) 23.7488 1.12834 0.564169 0.825659i \(-0.309196\pi\)
0.564169 + 0.825659i \(0.309196\pi\)
\(444\) −8.41741 −0.399473
\(445\) 12.5689 0.595823
\(446\) −26.6551 −1.26216
\(447\) −5.30142 −0.250748
\(448\) 2.15083 0.101617
\(449\) 11.3692 0.536546 0.268273 0.963343i \(-0.413547\pi\)
0.268273 + 0.963343i \(0.413547\pi\)
\(450\) −4.43559 −0.209096
\(451\) −35.3929 −1.66659
\(452\) 4.51057 0.212159
\(453\) −12.7103 −0.597181
\(454\) 9.93774 0.466401
\(455\) −9.71503 −0.455448
\(456\) −7.42179 −0.347557
\(457\) 38.4430 1.79829 0.899144 0.437652i \(-0.144190\pi\)
0.899144 + 0.437652i \(0.144190\pi\)
\(458\) −5.56427 −0.260001
\(459\) −6.09775 −0.284618
\(460\) 5.61205 0.261663
\(461\) 7.95968 0.370719 0.185360 0.982671i \(-0.440655\pi\)
0.185360 + 0.982671i \(0.440655\pi\)
\(462\) −12.2317 −0.569071
\(463\) 25.2360 1.17281 0.586407 0.810016i \(-0.300542\pi\)
0.586407 + 0.810016i \(0.300542\pi\)
\(464\) −4.66311 −0.216479
\(465\) 0 0
\(466\) 7.71215 0.357258
\(467\) −22.8647 −1.05805 −0.529026 0.848606i \(-0.677442\pi\)
−0.529026 + 0.848606i \(0.677442\pi\)
\(468\) 6.01228 0.277918
\(469\) 2.05403 0.0948463
\(470\) 1.24508 0.0574311
\(471\) 6.11876 0.281938
\(472\) −4.00401 −0.184300
\(473\) 22.9377 1.05468
\(474\) 0.854729 0.0392590
\(475\) 32.9200 1.51047
\(476\) −13.1152 −0.601136
\(477\) 6.18421 0.283156
\(478\) −23.3850 −1.06961
\(479\) −5.23181 −0.239047 −0.119524 0.992831i \(-0.538137\pi\)
−0.119524 + 0.992831i \(0.538137\pi\)
\(480\) −0.751274 −0.0342908
\(481\) −50.6078 −2.30752
\(482\) −19.0910 −0.869572
\(483\) −16.0668 −0.731065
\(484\) 21.3417 0.970075
\(485\) −9.06798 −0.411756
\(486\) 1.00000 0.0453609
\(487\) −10.0505 −0.455434 −0.227717 0.973727i \(-0.573126\pi\)
−0.227717 + 0.973727i \(0.573126\pi\)
\(488\) 0.700300 0.0317011
\(489\) 6.58485 0.297777
\(490\) 1.78347 0.0805688
\(491\) −1.93361 −0.0872626 −0.0436313 0.999048i \(-0.513893\pi\)
−0.0436313 + 0.999048i \(0.513893\pi\)
\(492\) 6.22351 0.280578
\(493\) 28.4344 1.28062
\(494\) −44.6219 −2.00763
\(495\) 4.27248 0.192034
\(496\) 0 0
\(497\) −2.45676 −0.110201
\(498\) −7.94057 −0.355825
\(499\) −25.8445 −1.15696 −0.578479 0.815698i \(-0.696353\pi\)
−0.578479 + 0.815698i \(0.696353\pi\)
\(500\) 7.08871 0.317017
\(501\) 0.600030 0.0268074
\(502\) −0.507765 −0.0226627
\(503\) −14.8350 −0.661462 −0.330731 0.943725i \(-0.607295\pi\)
−0.330731 + 0.943725i \(0.607295\pi\)
\(504\) 2.15083 0.0958057
\(505\) −2.51040 −0.111711
\(506\) 42.4819 1.88855
\(507\) 23.1475 1.02802
\(508\) 17.4675 0.774996
\(509\) −14.3163 −0.634559 −0.317280 0.948332i \(-0.602769\pi\)
−0.317280 + 0.948332i \(0.602769\pi\)
\(510\) 4.58108 0.202854
\(511\) 26.5975 1.17661
\(512\) 1.00000 0.0441942
\(513\) −7.42179 −0.327680
\(514\) 8.06669 0.355806
\(515\) 5.73537 0.252730
\(516\) −4.03338 −0.177560
\(517\) 9.42495 0.414509
\(518\) −18.1044 −0.795464
\(519\) −6.62535 −0.290821
\(520\) −4.51687 −0.198078
\(521\) 14.0969 0.617595 0.308797 0.951128i \(-0.400074\pi\)
0.308797 + 0.951128i \(0.400074\pi\)
\(522\) −4.66311 −0.204099
\(523\) −21.6079 −0.944849 −0.472424 0.881371i \(-0.656621\pi\)
−0.472424 + 0.881371i \(0.656621\pi\)
\(524\) −7.02828 −0.307032
\(525\) −9.54020 −0.416369
\(526\) −28.5497 −1.24482
\(527\) 0 0
\(528\) −5.68697 −0.247494
\(529\) 32.8015 1.42615
\(530\) −4.64604 −0.201811
\(531\) −4.00401 −0.173759
\(532\) −15.9630 −0.692085
\(533\) 37.4175 1.62073
\(534\) −16.7301 −0.723983
\(535\) −6.69426 −0.289418
\(536\) 0.954994 0.0412494
\(537\) 12.7907 0.551962
\(538\) −5.95702 −0.256826
\(539\) 13.5004 0.581504
\(540\) −0.751274 −0.0323297
\(541\) −29.0379 −1.24844 −0.624219 0.781250i \(-0.714583\pi\)
−0.624219 + 0.781250i \(0.714583\pi\)
\(542\) 20.8051 0.893654
\(543\) 5.50316 0.236163
\(544\) −6.09775 −0.261439
\(545\) −11.4373 −0.489921
\(546\) 12.9314 0.553413
\(547\) −18.1224 −0.774860 −0.387430 0.921899i \(-0.626637\pi\)
−0.387430 + 0.921899i \(0.626637\pi\)
\(548\) 14.5750 0.622611
\(549\) 0.700300 0.0298881
\(550\) 25.2251 1.07560
\(551\) 34.6086 1.47438
\(552\) −7.47004 −0.317946
\(553\) 1.83838 0.0781758
\(554\) 7.30945 0.310549
\(555\) 6.32379 0.268430
\(556\) 8.84440 0.375086
\(557\) −17.8513 −0.756385 −0.378193 0.925727i \(-0.623454\pi\)
−0.378193 + 0.925727i \(0.623454\pi\)
\(558\) 0 0
\(559\) −24.2498 −1.02566
\(560\) −1.61587 −0.0682828
\(561\) 34.6777 1.46409
\(562\) −1.45043 −0.0611828
\(563\) −27.9746 −1.17899 −0.589494 0.807773i \(-0.700673\pi\)
−0.589494 + 0.807773i \(0.700673\pi\)
\(564\) −1.65729 −0.0697844
\(565\) −3.38868 −0.142563
\(566\) −16.1751 −0.679889
\(567\) 2.15083 0.0903265
\(568\) −1.14224 −0.0479272
\(569\) −43.7405 −1.83370 −0.916849 0.399235i \(-0.869276\pi\)
−0.916849 + 0.399235i \(0.869276\pi\)
\(570\) 5.57580 0.233545
\(571\) −0.970320 −0.0406066 −0.0203033 0.999794i \(-0.506463\pi\)
−0.0203033 + 0.999794i \(0.506463\pi\)
\(572\) −34.1917 −1.42963
\(573\) 7.76885 0.324548
\(574\) 13.3857 0.558710
\(575\) 33.1340 1.38178
\(576\) 1.00000 0.0416667
\(577\) −22.4113 −0.932995 −0.466497 0.884523i \(-0.654484\pi\)
−0.466497 + 0.884523i \(0.654484\pi\)
\(578\) 20.1825 0.839482
\(579\) −12.7079 −0.528121
\(580\) 3.50327 0.145465
\(581\) −17.0788 −0.708549
\(582\) 12.0701 0.500323
\(583\) −35.1694 −1.45657
\(584\) 12.3662 0.511715
\(585\) −4.51687 −0.186750
\(586\) 13.3584 0.551829
\(587\) 27.9297 1.15278 0.576392 0.817174i \(-0.304460\pi\)
0.576392 + 0.817174i \(0.304460\pi\)
\(588\) −2.37392 −0.0978989
\(589\) 0 0
\(590\) 3.00811 0.123842
\(591\) −7.29092 −0.299908
\(592\) −8.41741 −0.345954
\(593\) −37.8271 −1.55337 −0.776687 0.629886i \(-0.783101\pi\)
−0.776687 + 0.629886i \(0.783101\pi\)
\(594\) −5.68697 −0.233339
\(595\) 9.85314 0.403939
\(596\) −5.30142 −0.217154
\(597\) −14.3844 −0.588714
\(598\) −44.9120 −1.83659
\(599\) −1.90972 −0.0780290 −0.0390145 0.999239i \(-0.512422\pi\)
−0.0390145 + 0.999239i \(0.512422\pi\)
\(600\) −4.43559 −0.181082
\(601\) 33.8567 1.38104 0.690522 0.723311i \(-0.257381\pi\)
0.690522 + 0.723311i \(0.257381\pi\)
\(602\) −8.67512 −0.353571
\(603\) 0.954994 0.0388903
\(604\) −12.7103 −0.517174
\(605\) −16.0334 −0.651852
\(606\) 3.34152 0.135740
\(607\) 30.4002 1.23391 0.616953 0.787000i \(-0.288367\pi\)
0.616953 + 0.787000i \(0.288367\pi\)
\(608\) −7.42179 −0.300993
\(609\) −10.0296 −0.406418
\(610\) −0.526117 −0.0213019
\(611\) −9.96407 −0.403103
\(612\) −6.09775 −0.246487
\(613\) 37.9600 1.53319 0.766595 0.642131i \(-0.221950\pi\)
0.766595 + 0.642131i \(0.221950\pi\)
\(614\) 5.52892 0.223129
\(615\) −4.67557 −0.188537
\(616\) −12.2317 −0.492830
\(617\) −34.5175 −1.38962 −0.694812 0.719191i \(-0.744512\pi\)
−0.694812 + 0.719191i \(0.744512\pi\)
\(618\) −7.63419 −0.307092
\(619\) 4.30055 0.172854 0.0864268 0.996258i \(-0.472455\pi\)
0.0864268 + 0.996258i \(0.472455\pi\)
\(620\) 0 0
\(621\) −7.47004 −0.299762
\(622\) −23.6415 −0.947939
\(623\) −35.9837 −1.44165
\(624\) 6.01228 0.240684
\(625\) 16.8524 0.674095
\(626\) −4.42885 −0.177012
\(627\) 42.2075 1.68561
\(628\) 6.11876 0.244165
\(629\) 51.3273 2.04655
\(630\) −1.61587 −0.0643776
\(631\) 35.2840 1.40463 0.702317 0.711864i \(-0.252149\pi\)
0.702317 + 0.711864i \(0.252149\pi\)
\(632\) 0.854729 0.0339993
\(633\) 3.00269 0.119346
\(634\) 10.2298 0.406277
\(635\) −13.1229 −0.520766
\(636\) 6.18421 0.245220
\(637\) −14.2727 −0.565504
\(638\) 26.5190 1.04990
\(639\) −1.14224 −0.0451862
\(640\) −0.751274 −0.0296967
\(641\) −45.7834 −1.80833 −0.904167 0.427179i \(-0.859507\pi\)
−0.904167 + 0.427179i \(0.859507\pi\)
\(642\) 8.91054 0.351671
\(643\) 18.2754 0.720711 0.360356 0.932815i \(-0.382655\pi\)
0.360356 + 0.932815i \(0.382655\pi\)
\(644\) −16.0668 −0.633121
\(645\) 3.03017 0.119313
\(646\) 45.2562 1.78058
\(647\) −32.7165 −1.28622 −0.643109 0.765774i \(-0.722356\pi\)
−0.643109 + 0.765774i \(0.722356\pi\)
\(648\) 1.00000 0.0392837
\(649\) 22.7707 0.893828
\(650\) −26.6680 −1.04600
\(651\) 0 0
\(652\) 6.58485 0.257883
\(653\) −13.5375 −0.529763 −0.264882 0.964281i \(-0.585333\pi\)
−0.264882 + 0.964281i \(0.585333\pi\)
\(654\) 15.2239 0.595301
\(655\) 5.28016 0.206313
\(656\) 6.22351 0.242987
\(657\) 12.3662 0.482450
\(658\) −3.56455 −0.138961
\(659\) −5.43174 −0.211591 −0.105795 0.994388i \(-0.533739\pi\)
−0.105795 + 0.994388i \(0.533739\pi\)
\(660\) 4.27248 0.166306
\(661\) −45.6612 −1.77601 −0.888007 0.459829i \(-0.847911\pi\)
−0.888007 + 0.459829i \(0.847911\pi\)
\(662\) 16.0944 0.625527
\(663\) −36.6614 −1.42381
\(664\) −7.94057 −0.308154
\(665\) 11.9926 0.465054
\(666\) −8.41741 −0.326168
\(667\) 34.8336 1.34876
\(668\) 0.600030 0.0232159
\(669\) −26.6551 −1.03055
\(670\) −0.717462 −0.0277180
\(671\) −3.98259 −0.153746
\(672\) 2.15083 0.0829702
\(673\) −37.7992 −1.45705 −0.728526 0.685018i \(-0.759794\pi\)
−0.728526 + 0.685018i \(0.759794\pi\)
\(674\) −24.4117 −0.940304
\(675\) −4.43559 −0.170726
\(676\) 23.1475 0.890288
\(677\) 33.6195 1.29210 0.646051 0.763294i \(-0.276419\pi\)
0.646051 + 0.763294i \(0.276419\pi\)
\(678\) 4.51057 0.173227
\(679\) 25.9608 0.996285
\(680\) 4.58108 0.175676
\(681\) 9.93774 0.380815
\(682\) 0 0
\(683\) 3.30089 0.126305 0.0631526 0.998004i \(-0.479885\pi\)
0.0631526 + 0.998004i \(0.479885\pi\)
\(684\) −7.42179 −0.283779
\(685\) −10.9498 −0.418370
\(686\) −20.1617 −0.769778
\(687\) −5.56427 −0.212290
\(688\) −4.03338 −0.153771
\(689\) 37.1812 1.41649
\(690\) 5.61205 0.213647
\(691\) −12.7597 −0.485403 −0.242701 0.970101i \(-0.578034\pi\)
−0.242701 + 0.970101i \(0.578034\pi\)
\(692\) −6.62535 −0.251858
\(693\) −12.2317 −0.464645
\(694\) −12.3738 −0.469703
\(695\) −6.64457 −0.252043
\(696\) −4.66311 −0.176755
\(697\) −37.9494 −1.43744
\(698\) −14.9115 −0.564407
\(699\) 7.71215 0.291700
\(700\) −9.54020 −0.360586
\(701\) −24.2415 −0.915590 −0.457795 0.889058i \(-0.651361\pi\)
−0.457795 + 0.889058i \(0.651361\pi\)
\(702\) 6.01228 0.226919
\(703\) 62.4723 2.35619
\(704\) −5.68697 −0.214336
\(705\) 1.24508 0.0468923
\(706\) −21.4153 −0.805976
\(707\) 7.18706 0.270297
\(708\) −4.00401 −0.150480
\(709\) 46.3882 1.74215 0.871073 0.491153i \(-0.163425\pi\)
0.871073 + 0.491153i \(0.163425\pi\)
\(710\) 0.858133 0.0322052
\(711\) 0.854729 0.0320548
\(712\) −16.7301 −0.626987
\(713\) 0 0
\(714\) −13.1152 −0.490825
\(715\) 25.6873 0.960651
\(716\) 12.7907 0.478013
\(717\) −23.3850 −0.873330
\(718\) −7.54031 −0.281402
\(719\) 20.8442 0.777359 0.388680 0.921373i \(-0.372931\pi\)
0.388680 + 0.921373i \(0.372931\pi\)
\(720\) −0.751274 −0.0279983
\(721\) −16.4199 −0.611507
\(722\) 36.0830 1.34287
\(723\) −19.0910 −0.710003
\(724\) 5.50316 0.204523
\(725\) 20.6836 0.768170
\(726\) 21.3417 0.792063
\(727\) 19.3813 0.718812 0.359406 0.933181i \(-0.382979\pi\)
0.359406 + 0.933181i \(0.382979\pi\)
\(728\) 12.9314 0.479270
\(729\) 1.00000 0.0370370
\(730\) −9.29038 −0.343852
\(731\) 24.5945 0.909661
\(732\) 0.700300 0.0258838
\(733\) −31.9590 −1.18043 −0.590217 0.807245i \(-0.700958\pi\)
−0.590217 + 0.807245i \(0.700958\pi\)
\(734\) −24.9142 −0.919601
\(735\) 1.78347 0.0657841
\(736\) −7.47004 −0.275349
\(737\) −5.43102 −0.200054
\(738\) 6.22351 0.229091
\(739\) 51.0194 1.87678 0.938389 0.345581i \(-0.112318\pi\)
0.938389 + 0.345581i \(0.112318\pi\)
\(740\) 6.32379 0.232467
\(741\) −44.6219 −1.63923
\(742\) 13.3012 0.488302
\(743\) −0.344545 −0.0126401 −0.00632006 0.999980i \(-0.502012\pi\)
−0.00632006 + 0.999980i \(0.502012\pi\)
\(744\) 0 0
\(745\) 3.98282 0.145919
\(746\) −7.90324 −0.289358
\(747\) −7.94057 −0.290530
\(748\) 34.6777 1.26794
\(749\) 19.1651 0.700277
\(750\) 7.08871 0.258843
\(751\) 11.9122 0.434682 0.217341 0.976096i \(-0.430262\pi\)
0.217341 + 0.976096i \(0.430262\pi\)
\(752\) −1.65729 −0.0604350
\(753\) −0.507765 −0.0185040
\(754\) −28.0359 −1.02101
\(755\) 9.54890 0.347520
\(756\) 2.15083 0.0782250
\(757\) 3.87670 0.140901 0.0704506 0.997515i \(-0.477556\pi\)
0.0704506 + 0.997515i \(0.477556\pi\)
\(758\) −7.71253 −0.280132
\(759\) 42.4819 1.54200
\(760\) 5.57580 0.202256
\(761\) −1.65209 −0.0598881 −0.0299441 0.999552i \(-0.509533\pi\)
−0.0299441 + 0.999552i \(0.509533\pi\)
\(762\) 17.4675 0.632782
\(763\) 32.7440 1.18541
\(764\) 7.76885 0.281067
\(765\) 4.58108 0.165629
\(766\) 1.71607 0.0620040
\(767\) −24.0732 −0.869234
\(768\) 1.00000 0.0360844
\(769\) 20.1841 0.727856 0.363928 0.931427i \(-0.381435\pi\)
0.363928 + 0.931427i \(0.381435\pi\)
\(770\) 9.18938 0.331162
\(771\) 8.06669 0.290515
\(772\) −12.7079 −0.457366
\(773\) 18.7958 0.676038 0.338019 0.941139i \(-0.390243\pi\)
0.338019 + 0.941139i \(0.390243\pi\)
\(774\) −4.03338 −0.144977
\(775\) 0 0
\(776\) 12.0701 0.433292
\(777\) −18.1044 −0.649493
\(778\) 10.9949 0.394186
\(779\) −46.1896 −1.65491
\(780\) −4.51687 −0.161730
\(781\) 6.49587 0.232440
\(782\) 45.5504 1.62888
\(783\) −4.66311 −0.166646
\(784\) −2.37392 −0.0847829
\(785\) −4.59687 −0.164069
\(786\) −7.02828 −0.250690
\(787\) −33.9613 −1.21059 −0.605295 0.796001i \(-0.706945\pi\)
−0.605295 + 0.796001i \(0.706945\pi\)
\(788\) −7.29092 −0.259728
\(789\) −28.5497 −1.01640
\(790\) −0.642136 −0.0228462
\(791\) 9.70148 0.344945
\(792\) −5.68697 −0.202078
\(793\) 4.21040 0.149516
\(794\) −15.9396 −0.565675
\(795\) −4.64604 −0.164778
\(796\) −14.3844 −0.509841
\(797\) 29.9531 1.06099 0.530497 0.847687i \(-0.322005\pi\)
0.530497 + 0.847687i \(0.322005\pi\)
\(798\) −15.9630 −0.565085
\(799\) 10.1057 0.357515
\(800\) −4.43559 −0.156822
\(801\) −16.7301 −0.591129
\(802\) 7.77012 0.274372
\(803\) −70.3260 −2.48175
\(804\) 0.954994 0.0336800
\(805\) 12.0706 0.425432
\(806\) 0 0
\(807\) −5.95702 −0.209697
\(808\) 3.34152 0.117554
\(809\) 30.5439 1.07387 0.536933 0.843625i \(-0.319583\pi\)
0.536933 + 0.843625i \(0.319583\pi\)
\(810\) −0.751274 −0.0263971
\(811\) 17.1184 0.601108 0.300554 0.953765i \(-0.402829\pi\)
0.300554 + 0.953765i \(0.402829\pi\)
\(812\) −10.0296 −0.351969
\(813\) 20.8051 0.729665
\(814\) 47.8696 1.67783
\(815\) −4.94703 −0.173287
\(816\) −6.09775 −0.213464
\(817\) 29.9349 1.04729
\(818\) −17.2489 −0.603094
\(819\) 12.9314 0.451860
\(820\) −4.67557 −0.163278
\(821\) 8.21225 0.286610 0.143305 0.989679i \(-0.454227\pi\)
0.143305 + 0.989679i \(0.454227\pi\)
\(822\) 14.5750 0.508360
\(823\) 4.18314 0.145815 0.0729075 0.997339i \(-0.476772\pi\)
0.0729075 + 0.997339i \(0.476772\pi\)
\(824\) −7.63419 −0.265949
\(825\) 25.2251 0.878224
\(826\) −8.61195 −0.299648
\(827\) 41.0330 1.42686 0.713429 0.700727i \(-0.247141\pi\)
0.713429 + 0.700727i \(0.247141\pi\)
\(828\) −7.47004 −0.259602
\(829\) 4.22708 0.146813 0.0734064 0.997302i \(-0.476613\pi\)
0.0734064 + 0.997302i \(0.476613\pi\)
\(830\) 5.96555 0.207067
\(831\) 7.30945 0.253562
\(832\) 6.01228 0.208438
\(833\) 14.4756 0.501549
\(834\) 8.84440 0.306257
\(835\) −0.450788 −0.0156001
\(836\) 42.2075 1.45978
\(837\) 0 0
\(838\) 21.2911 0.735490
\(839\) 29.2909 1.01124 0.505618 0.862758i \(-0.331265\pi\)
0.505618 + 0.862758i \(0.331265\pi\)
\(840\) −1.61587 −0.0557526
\(841\) −7.25544 −0.250188
\(842\) −24.7251 −0.852084
\(843\) −1.45043 −0.0499555
\(844\) 3.00269 0.103357
\(845\) −17.3901 −0.598238
\(846\) −1.65729 −0.0569787
\(847\) 45.9023 1.57722
\(848\) 6.18421 0.212367
\(849\) −16.1751 −0.555127
\(850\) 27.0471 0.927707
\(851\) 62.8784 2.15545
\(852\) −1.14224 −0.0391324
\(853\) −32.6951 −1.11946 −0.559730 0.828675i \(-0.689095\pi\)
−0.559730 + 0.828675i \(0.689095\pi\)
\(854\) 1.50623 0.0515420
\(855\) 5.57580 0.190688
\(856\) 8.91054 0.304556
\(857\) −5.07748 −0.173444 −0.0867218 0.996233i \(-0.527639\pi\)
−0.0867218 + 0.996233i \(0.527639\pi\)
\(858\) −34.1917 −1.16728
\(859\) 2.28083 0.0778211 0.0389105 0.999243i \(-0.487611\pi\)
0.0389105 + 0.999243i \(0.487611\pi\)
\(860\) 3.03017 0.103328
\(861\) 13.3857 0.456185
\(862\) 2.93778 0.100061
\(863\) −31.4897 −1.07192 −0.535961 0.844243i \(-0.680051\pi\)
−0.535961 + 0.844243i \(0.680051\pi\)
\(864\) 1.00000 0.0340207
\(865\) 4.97746 0.169239
\(866\) 5.35403 0.181937
\(867\) 20.1825 0.685434
\(868\) 0 0
\(869\) −4.86082 −0.164892
\(870\) 3.50327 0.118772
\(871\) 5.74169 0.194550
\(872\) 15.2239 0.515546
\(873\) 12.0701 0.408512
\(874\) 55.4411 1.87532
\(875\) 15.2466 0.515430
\(876\) 12.3662 0.417814
\(877\) −22.8243 −0.770722 −0.385361 0.922766i \(-0.625923\pi\)
−0.385361 + 0.922766i \(0.625923\pi\)
\(878\) 13.7938 0.465518
\(879\) 13.3584 0.450567
\(880\) 4.27248 0.144025
\(881\) 31.3885 1.05751 0.528753 0.848776i \(-0.322660\pi\)
0.528753 + 0.848776i \(0.322660\pi\)
\(882\) −2.37392 −0.0799341
\(883\) 34.3653 1.15648 0.578242 0.815865i \(-0.303739\pi\)
0.578242 + 0.815865i \(0.303739\pi\)
\(884\) −36.6614 −1.23305
\(885\) 3.00811 0.101117
\(886\) 23.7488 0.797856
\(887\) 33.8322 1.13597 0.567986 0.823038i \(-0.307723\pi\)
0.567986 + 0.823038i \(0.307723\pi\)
\(888\) −8.41741 −0.282470
\(889\) 37.5697 1.26005
\(890\) 12.5689 0.421310
\(891\) −5.68697 −0.190521
\(892\) −26.6551 −0.892479
\(893\) 12.3000 0.411605
\(894\) −5.30142 −0.177306
\(895\) −9.60936 −0.321206
\(896\) 2.15083 0.0718543
\(897\) −44.9120 −1.49957
\(898\) 11.3692 0.379395
\(899\) 0 0
\(900\) −4.43559 −0.147853
\(901\) −37.7098 −1.25629
\(902\) −35.3929 −1.17846
\(903\) −8.67512 −0.288690
\(904\) 4.51057 0.150019
\(905\) −4.13438 −0.137431
\(906\) −12.7103 −0.422270
\(907\) −34.8732 −1.15795 −0.578973 0.815347i \(-0.696546\pi\)
−0.578973 + 0.815347i \(0.696546\pi\)
\(908\) 9.93774 0.329795
\(909\) 3.34152 0.110831
\(910\) −9.71503 −0.322050
\(911\) 56.4474 1.87019 0.935093 0.354401i \(-0.115315\pi\)
0.935093 + 0.354401i \(0.115315\pi\)
\(912\) −7.42179 −0.245760
\(913\) 45.1578 1.49450
\(914\) 38.4430 1.27158
\(915\) −0.526117 −0.0173929
\(916\) −5.56427 −0.183849
\(917\) −15.1166 −0.499195
\(918\) −6.09775 −0.201256
\(919\) 14.8650 0.490351 0.245176 0.969479i \(-0.421154\pi\)
0.245176 + 0.969479i \(0.421154\pi\)
\(920\) 5.61205 0.185024
\(921\) 5.52892 0.182184
\(922\) 7.95968 0.262138
\(923\) −6.86745 −0.226045
\(924\) −12.2317 −0.402394
\(925\) 37.3362 1.22761
\(926\) 25.2360 0.829305
\(927\) −7.63419 −0.250740
\(928\) −4.66311 −0.153074
\(929\) 48.8104 1.60142 0.800708 0.599055i \(-0.204457\pi\)
0.800708 + 0.599055i \(0.204457\pi\)
\(930\) 0 0
\(931\) 17.6187 0.577431
\(932\) 7.71215 0.252620
\(933\) −23.6415 −0.773989
\(934\) −22.8647 −0.748155
\(935\) −26.0525 −0.852007
\(936\) 6.01228 0.196517
\(937\) −41.4262 −1.35334 −0.676668 0.736288i \(-0.736577\pi\)
−0.676668 + 0.736288i \(0.736577\pi\)
\(938\) 2.05403 0.0670665
\(939\) −4.42885 −0.144530
\(940\) 1.24508 0.0406099
\(941\) −23.8602 −0.777819 −0.388909 0.921276i \(-0.627148\pi\)
−0.388909 + 0.921276i \(0.627148\pi\)
\(942\) 6.11876 0.199360
\(943\) −46.4899 −1.51392
\(944\) −4.00401 −0.130319
\(945\) −1.61587 −0.0525641
\(946\) 22.9377 0.745769
\(947\) −54.8222 −1.78148 −0.890741 0.454511i \(-0.849814\pi\)
−0.890741 + 0.454511i \(0.849814\pi\)
\(948\) 0.854729 0.0277603
\(949\) 74.3488 2.41346
\(950\) 32.9200 1.06807
\(951\) 10.2298 0.331724
\(952\) −13.1152 −0.425067
\(953\) −19.1031 −0.618810 −0.309405 0.950930i \(-0.600130\pi\)
−0.309405 + 0.950930i \(0.600130\pi\)
\(954\) 6.18421 0.200221
\(955\) −5.83654 −0.188866
\(956\) −23.3850 −0.756326
\(957\) 26.5190 0.857236
\(958\) −5.23181 −0.169032
\(959\) 31.3483 1.01229
\(960\) −0.751274 −0.0242473
\(961\) 0 0
\(962\) −50.6078 −1.63166
\(963\) 8.91054 0.287138
\(964\) −19.0910 −0.614880
\(965\) 9.54709 0.307332
\(966\) −16.0668 −0.516941
\(967\) −30.4676 −0.979772 −0.489886 0.871787i \(-0.662962\pi\)
−0.489886 + 0.871787i \(0.662962\pi\)
\(968\) 21.3417 0.685947
\(969\) 45.2562 1.45384
\(970\) −9.06798 −0.291155
\(971\) 3.69377 0.118539 0.0592694 0.998242i \(-0.481123\pi\)
0.0592694 + 0.998242i \(0.481123\pi\)
\(972\) 1.00000 0.0320750
\(973\) 19.0228 0.609844
\(974\) −10.0505 −0.322040
\(975\) −26.6680 −0.854059
\(976\) 0.700300 0.0224161
\(977\) −3.45852 −0.110648 −0.0553239 0.998468i \(-0.517619\pi\)
−0.0553239 + 0.998468i \(0.517619\pi\)
\(978\) 6.58485 0.210560
\(979\) 95.1436 3.04080
\(980\) 1.78347 0.0569707
\(981\) 15.2239 0.486061
\(982\) −1.93361 −0.0617040
\(983\) 22.6215 0.721513 0.360757 0.932660i \(-0.382518\pi\)
0.360757 + 0.932660i \(0.382518\pi\)
\(984\) 6.22351 0.198398
\(985\) 5.47748 0.174527
\(986\) 28.4344 0.905537
\(987\) −3.56455 −0.113461
\(988\) −44.6219 −1.41961
\(989\) 30.1295 0.958062
\(990\) 4.27248 0.135788
\(991\) −4.09327 −0.130027 −0.0650136 0.997884i \(-0.520709\pi\)
−0.0650136 + 0.997884i \(0.520709\pi\)
\(992\) 0 0
\(993\) 16.0944 0.510740
\(994\) −2.45676 −0.0779237
\(995\) 10.8066 0.342593
\(996\) −7.94057 −0.251607
\(997\) −21.6220 −0.684777 −0.342388 0.939559i \(-0.611236\pi\)
−0.342388 + 0.939559i \(0.611236\pi\)
\(998\) −25.8445 −0.818092
\(999\) −8.41741 −0.266315
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5766.2.a.bq.1.5 yes 8
31.30 odd 2 5766.2.a.bo.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5766.2.a.bo.1.5 8 31.30 odd 2
5766.2.a.bq.1.5 yes 8 1.1 even 1 trivial