Properties

Label 5766.2.a.ba.1.4
Level $5766$
Weight $2$
Character 5766.1
Self dual yes
Analytic conductor $46.042$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5766,2,Mod(1,5766)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5766.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5766.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,4,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.0417418055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.82709\) of defining polynomial
Character \(\chi\) \(=\) 5766.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +3.29456 q^{5} -1.00000 q^{6} +3.95630 q^{7} -1.00000 q^{8} +1.00000 q^{9} -3.29456 q^{10} +4.31592 q^{11} +1.00000 q^{12} -1.23607 q^{13} -3.95630 q^{14} +3.29456 q^{15} +1.00000 q^{16} -5.14866 q^{17} -1.00000 q^{18} -1.23607 q^{19} +3.29456 q^{20} +3.95630 q^{21} -4.31592 q^{22} +6.00000 q^{23} -1.00000 q^{24} +5.85410 q^{25} +1.23607 q^{26} +1.00000 q^{27} +3.95630 q^{28} +1.11442 q^{29} -3.29456 q^{30} -1.00000 q^{32} +4.31592 q^{33} +5.14866 q^{34} +13.0342 q^{35} +1.00000 q^{36} -1.02234 q^{37} +1.23607 q^{38} -1.23607 q^{39} -3.29456 q^{40} -12.4030 q^{41} -3.95630 q^{42} +1.85857 q^{43} +4.31592 q^{44} +3.29456 q^{45} -6.00000 q^{46} -1.37750 q^{47} +1.00000 q^{48} +8.65227 q^{49} -5.85410 q^{50} -5.14866 q^{51} -1.23607 q^{52} -6.85877 q^{53} -1.00000 q^{54} +14.2190 q^{55} -3.95630 q^{56} -1.23607 q^{57} -1.11442 q^{58} +7.99809 q^{59} +3.29456 q^{60} -11.0072 q^{61} +3.95630 q^{63} +1.00000 q^{64} -4.07230 q^{65} -4.31592 q^{66} +7.98489 q^{67} -5.14866 q^{68} +6.00000 q^{69} -13.0342 q^{70} +15.4071 q^{71} -1.00000 q^{72} -14.2071 q^{73} +1.02234 q^{74} +5.85410 q^{75} -1.23607 q^{76} +17.0751 q^{77} +1.23607 q^{78} +13.1401 q^{79} +3.29456 q^{80} +1.00000 q^{81} +12.4030 q^{82} +5.63184 q^{83} +3.95630 q^{84} -16.9625 q^{85} -1.85857 q^{86} +1.11442 q^{87} -4.31592 q^{88} -0.0629548 q^{89} -3.29456 q^{90} -4.89025 q^{91} +6.00000 q^{92} +1.37750 q^{94} -4.07230 q^{95} -1.00000 q^{96} +18.6504 q^{97} -8.65227 q^{98} +4.31592 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 4 q^{6} + 7 q^{7} - 4 q^{8} + 4 q^{9} + 9 q^{11} + 4 q^{12} + 4 q^{13} - 7 q^{14} + 4 q^{16} + 6 q^{17} - 4 q^{18} + 4 q^{19} + 7 q^{21} - 9 q^{22} + 24 q^{23} - 4 q^{24}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 3.29456 1.47337 0.736685 0.676236i \(-0.236390\pi\)
0.736685 + 0.676236i \(0.236390\pi\)
\(6\) −1.00000 −0.408248
\(7\) 3.95630 1.49534 0.747670 0.664071i \(-0.231173\pi\)
0.747670 + 0.664071i \(0.231173\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −3.29456 −1.04183
\(11\) 4.31592 1.30130 0.650650 0.759378i \(-0.274497\pi\)
0.650650 + 0.759378i \(0.274497\pi\)
\(12\) 1.00000 0.288675
\(13\) −1.23607 −0.342824 −0.171412 0.985199i \(-0.554833\pi\)
−0.171412 + 0.985199i \(0.554833\pi\)
\(14\) −3.95630 −1.05736
\(15\) 3.29456 0.850651
\(16\) 1.00000 0.250000
\(17\) −5.14866 −1.24873 −0.624367 0.781132i \(-0.714643\pi\)
−0.624367 + 0.781132i \(0.714643\pi\)
\(18\) −1.00000 −0.235702
\(19\) −1.23607 −0.283573 −0.141787 0.989897i \(-0.545285\pi\)
−0.141787 + 0.989897i \(0.545285\pi\)
\(20\) 3.29456 0.736685
\(21\) 3.95630 0.863334
\(22\) −4.31592 −0.920157
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) −1.00000 −0.204124
\(25\) 5.85410 1.17082
\(26\) 1.23607 0.242413
\(27\) 1.00000 0.192450
\(28\) 3.95630 0.747670
\(29\) 1.11442 0.206943 0.103471 0.994632i \(-0.467005\pi\)
0.103471 + 0.994632i \(0.467005\pi\)
\(30\) −3.29456 −0.601501
\(31\) 0 0
\(32\) −1.00000 −0.176777
\(33\) 4.31592 0.751305
\(34\) 5.14866 0.882988
\(35\) 13.0342 2.20319
\(36\) 1.00000 0.166667
\(37\) −1.02234 −0.168072 −0.0840359 0.996463i \(-0.526781\pi\)
−0.0840359 + 0.996463i \(0.526781\pi\)
\(38\) 1.23607 0.200517
\(39\) −1.23607 −0.197929
\(40\) −3.29456 −0.520915
\(41\) −12.4030 −1.93702 −0.968512 0.248969i \(-0.919908\pi\)
−0.968512 + 0.248969i \(0.919908\pi\)
\(42\) −3.95630 −0.610470
\(43\) 1.85857 0.283429 0.141715 0.989908i \(-0.454739\pi\)
0.141715 + 0.989908i \(0.454739\pi\)
\(44\) 4.31592 0.650650
\(45\) 3.29456 0.491123
\(46\) −6.00000 −0.884652
\(47\) −1.37750 −0.200929 −0.100464 0.994941i \(-0.532033\pi\)
−0.100464 + 0.994941i \(0.532033\pi\)
\(48\) 1.00000 0.144338
\(49\) 8.65227 1.23604
\(50\) −5.85410 −0.827895
\(51\) −5.14866 −0.720956
\(52\) −1.23607 −0.171412
\(53\) −6.85877 −0.942125 −0.471062 0.882100i \(-0.656129\pi\)
−0.471062 + 0.882100i \(0.656129\pi\)
\(54\) −1.00000 −0.136083
\(55\) 14.2190 1.91730
\(56\) −3.95630 −0.528682
\(57\) −1.23607 −0.163721
\(58\) −1.11442 −0.146331
\(59\) 7.99809 1.04126 0.520631 0.853782i \(-0.325697\pi\)
0.520631 + 0.853782i \(0.325697\pi\)
\(60\) 3.29456 0.425325
\(61\) −11.0072 −1.40933 −0.704665 0.709540i \(-0.748903\pi\)
−0.704665 + 0.709540i \(0.748903\pi\)
\(62\) 0 0
\(63\) 3.95630 0.498446
\(64\) 1.00000 0.125000
\(65\) −4.07230 −0.505106
\(66\) −4.31592 −0.531253
\(67\) 7.98489 0.975509 0.487755 0.872981i \(-0.337816\pi\)
0.487755 + 0.872981i \(0.337816\pi\)
\(68\) −5.14866 −0.624367
\(69\) 6.00000 0.722315
\(70\) −13.0342 −1.55789
\(71\) 15.4071 1.82848 0.914241 0.405170i \(-0.132788\pi\)
0.914241 + 0.405170i \(0.132788\pi\)
\(72\) −1.00000 −0.117851
\(73\) −14.2071 −1.66282 −0.831410 0.555659i \(-0.812466\pi\)
−0.831410 + 0.555659i \(0.812466\pi\)
\(74\) 1.02234 0.118845
\(75\) 5.85410 0.675973
\(76\) −1.23607 −0.141787
\(77\) 17.0751 1.94588
\(78\) 1.23607 0.139957
\(79\) 13.1401 1.47838 0.739190 0.673497i \(-0.235209\pi\)
0.739190 + 0.673497i \(0.235209\pi\)
\(80\) 3.29456 0.368343
\(81\) 1.00000 0.111111
\(82\) 12.4030 1.36968
\(83\) 5.63184 0.618175 0.309087 0.951034i \(-0.399976\pi\)
0.309087 + 0.951034i \(0.399976\pi\)
\(84\) 3.95630 0.431667
\(85\) −16.9625 −1.83985
\(86\) −1.85857 −0.200415
\(87\) 1.11442 0.119478
\(88\) −4.31592 −0.460079
\(89\) −0.0629548 −0.00667319 −0.00333660 0.999994i \(-0.501062\pi\)
−0.00333660 + 0.999994i \(0.501062\pi\)
\(90\) −3.29456 −0.347277
\(91\) −4.89025 −0.512637
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) 1.37750 0.142078
\(95\) −4.07230 −0.417809
\(96\) −1.00000 −0.102062
\(97\) 18.6504 1.89366 0.946829 0.321738i \(-0.104267\pi\)
0.946829 + 0.321738i \(0.104267\pi\)
\(98\) −8.65227 −0.874011
\(99\) 4.31592 0.433766
\(100\) 5.85410 0.585410
\(101\) 12.2825 1.22216 0.611079 0.791570i \(-0.290736\pi\)
0.611079 + 0.791570i \(0.290736\pi\)
\(102\) 5.14866 0.509793
\(103\) 4.00723 0.394844 0.197422 0.980319i \(-0.436743\pi\)
0.197422 + 0.980319i \(0.436743\pi\)
\(104\) 1.23607 0.121206
\(105\) 13.0342 1.27201
\(106\) 6.85877 0.666183
\(107\) 12.8327 1.24059 0.620294 0.784370i \(-0.287013\pi\)
0.620294 + 0.784370i \(0.287013\pi\)
\(108\) 1.00000 0.0962250
\(109\) 3.42218 0.327785 0.163893 0.986478i \(-0.447595\pi\)
0.163893 + 0.986478i \(0.447595\pi\)
\(110\) −14.2190 −1.35573
\(111\) −1.02234 −0.0970363
\(112\) 3.95630 0.373835
\(113\) 6.95320 0.654102 0.327051 0.945007i \(-0.393945\pi\)
0.327051 + 0.945007i \(0.393945\pi\)
\(114\) 1.23607 0.115768
\(115\) 19.7673 1.84331
\(116\) 1.11442 0.103471
\(117\) −1.23607 −0.114275
\(118\) −7.99809 −0.736284
\(119\) −20.3696 −1.86728
\(120\) −3.29456 −0.300750
\(121\) 7.62717 0.693379
\(122\) 11.0072 0.996547
\(123\) −12.4030 −1.11834
\(124\) 0 0
\(125\) 2.81389 0.251682
\(126\) −3.95630 −0.352455
\(127\) −16.5969 −1.47274 −0.736370 0.676579i \(-0.763462\pi\)
−0.736370 + 0.676579i \(0.763462\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.85857 0.163638
\(130\) 4.07230 0.357164
\(131\) −16.0028 −1.39817 −0.699084 0.715040i \(-0.746409\pi\)
−0.699084 + 0.715040i \(0.746409\pi\)
\(132\) 4.31592 0.375653
\(133\) −4.89025 −0.424038
\(134\) −7.98489 −0.689789
\(135\) 3.29456 0.283550
\(136\) 5.14866 0.441494
\(137\) −2.85686 −0.244078 −0.122039 0.992525i \(-0.538943\pi\)
−0.122039 + 0.992525i \(0.538943\pi\)
\(138\) −6.00000 −0.510754
\(139\) −16.6074 −1.40862 −0.704310 0.709892i \(-0.748744\pi\)
−0.704310 + 0.709892i \(0.748744\pi\)
\(140\) 13.0342 1.10159
\(141\) −1.37750 −0.116006
\(142\) −15.4071 −1.29293
\(143\) −5.33477 −0.446116
\(144\) 1.00000 0.0833333
\(145\) 3.67152 0.304903
\(146\) 14.2071 1.17579
\(147\) 8.65227 0.713627
\(148\) −1.02234 −0.0840359
\(149\) −5.21904 −0.427561 −0.213780 0.976882i \(-0.568578\pi\)
−0.213780 + 0.976882i \(0.568578\pi\)
\(150\) −5.85410 −0.477985
\(151\) 15.9563 1.29850 0.649252 0.760573i \(-0.275082\pi\)
0.649252 + 0.760573i \(0.275082\pi\)
\(152\) 1.23607 0.100258
\(153\) −5.14866 −0.416244
\(154\) −17.0751 −1.37595
\(155\) 0 0
\(156\) −1.23607 −0.0989646
\(157\) 1.86986 0.149231 0.0746156 0.997212i \(-0.476227\pi\)
0.0746156 + 0.997212i \(0.476227\pi\)
\(158\) −13.1401 −1.04537
\(159\) −6.85877 −0.543936
\(160\) −3.29456 −0.260458
\(161\) 23.7378 1.87080
\(162\) −1.00000 −0.0785674
\(163\) 4.49854 0.352353 0.176177 0.984359i \(-0.443627\pi\)
0.176177 + 0.984359i \(0.443627\pi\)
\(164\) −12.4030 −0.968512
\(165\) 14.2190 1.10695
\(166\) −5.63184 −0.437116
\(167\) −21.9332 −1.69724 −0.848622 0.529000i \(-0.822567\pi\)
−0.848622 + 0.529000i \(0.822567\pi\)
\(168\) −3.95630 −0.305235
\(169\) −11.4721 −0.882472
\(170\) 16.9625 1.30097
\(171\) −1.23607 −0.0945245
\(172\) 1.85857 0.141715
\(173\) 15.4211 1.17244 0.586221 0.810151i \(-0.300615\pi\)
0.586221 + 0.810151i \(0.300615\pi\)
\(174\) −1.11442 −0.0844840
\(175\) 23.1606 1.75077
\(176\) 4.31592 0.325325
\(177\) 7.99809 0.601173
\(178\) 0.0629548 0.00471866
\(179\) 13.6340 1.01905 0.509526 0.860455i \(-0.329821\pi\)
0.509526 + 0.860455i \(0.329821\pi\)
\(180\) 3.29456 0.245562
\(181\) −12.6972 −0.943772 −0.471886 0.881660i \(-0.656427\pi\)
−0.471886 + 0.881660i \(0.656427\pi\)
\(182\) 4.89025 0.362489
\(183\) −11.0072 −0.813678
\(184\) −6.00000 −0.442326
\(185\) −3.36816 −0.247632
\(186\) 0 0
\(187\) −22.2212 −1.62498
\(188\) −1.37750 −0.100464
\(189\) 3.95630 0.287778
\(190\) 4.07230 0.295435
\(191\) −1.50341 −0.108783 −0.0543914 0.998520i \(-0.517322\pi\)
−0.0543914 + 0.998520i \(0.517322\pi\)
\(192\) 1.00000 0.0721688
\(193\) −26.8943 −1.93589 −0.967946 0.251160i \(-0.919188\pi\)
−0.967946 + 0.251160i \(0.919188\pi\)
\(194\) −18.6504 −1.33902
\(195\) −4.07230 −0.291623
\(196\) 8.65227 0.618019
\(197\) 5.82453 0.414981 0.207490 0.978237i \(-0.433470\pi\)
0.207490 + 0.978237i \(0.433470\pi\)
\(198\) −4.31592 −0.306719
\(199\) −4.06447 −0.288122 −0.144061 0.989569i \(-0.546016\pi\)
−0.144061 + 0.989569i \(0.546016\pi\)
\(200\) −5.85410 −0.413948
\(201\) 7.98489 0.563210
\(202\) −12.2825 −0.864196
\(203\) 4.40898 0.309450
\(204\) −5.14866 −0.360478
\(205\) −40.8624 −2.85395
\(206\) −4.00723 −0.279197
\(207\) 6.00000 0.417029
\(208\) −1.23607 −0.0857059
\(209\) −5.33477 −0.369014
\(210\) −13.0342 −0.899448
\(211\) −11.3197 −0.779277 −0.389639 0.920968i \(-0.627400\pi\)
−0.389639 + 0.920968i \(0.627400\pi\)
\(212\) −6.85877 −0.471062
\(213\) 15.4071 1.05567
\(214\) −12.8327 −0.877228
\(215\) 6.12316 0.417596
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −3.42218 −0.231779
\(219\) −14.2071 −0.960030
\(220\) 14.2190 0.958648
\(221\) 6.36409 0.428095
\(222\) 1.02234 0.0686150
\(223\) −2.43038 −0.162751 −0.0813753 0.996684i \(-0.525931\pi\)
−0.0813753 + 0.996684i \(0.525931\pi\)
\(224\) −3.95630 −0.264341
\(225\) 5.85410 0.390273
\(226\) −6.95320 −0.462520
\(227\) −0.717714 −0.0476363 −0.0238182 0.999716i \(-0.507582\pi\)
−0.0238182 + 0.999716i \(0.507582\pi\)
\(228\) −1.23607 −0.0818606
\(229\) −20.1893 −1.33414 −0.667072 0.744993i \(-0.732453\pi\)
−0.667072 + 0.744993i \(0.732453\pi\)
\(230\) −19.7673 −1.30342
\(231\) 17.0751 1.12346
\(232\) −1.11442 −0.0731653
\(233\) −3.52209 −0.230740 −0.115370 0.993323i \(-0.536805\pi\)
−0.115370 + 0.993323i \(0.536805\pi\)
\(234\) 1.23607 0.0808043
\(235\) −4.53825 −0.296043
\(236\) 7.99809 0.520631
\(237\) 13.1401 0.853543
\(238\) 20.3696 1.32037
\(239\) 4.33452 0.280377 0.140189 0.990125i \(-0.455229\pi\)
0.140189 + 0.990125i \(0.455229\pi\)
\(240\) 3.29456 0.212663
\(241\) 1.86889 0.120386 0.0601928 0.998187i \(-0.480828\pi\)
0.0601928 + 0.998187i \(0.480828\pi\)
\(242\) −7.62717 −0.490293
\(243\) 1.00000 0.0641500
\(244\) −11.0072 −0.704665
\(245\) 28.5054 1.82114
\(246\) 12.4030 0.790786
\(247\) 1.52786 0.0972157
\(248\) 0 0
\(249\) 5.63184 0.356903
\(250\) −2.81389 −0.177966
\(251\) 12.1125 0.764535 0.382267 0.924052i \(-0.375143\pi\)
0.382267 + 0.924052i \(0.375143\pi\)
\(252\) 3.95630 0.249223
\(253\) 25.8955 1.62804
\(254\) 16.5969 1.04138
\(255\) −16.9625 −1.06224
\(256\) 1.00000 0.0625000
\(257\) 9.77116 0.609508 0.304754 0.952431i \(-0.401426\pi\)
0.304754 + 0.952431i \(0.401426\pi\)
\(258\) −1.85857 −0.115709
\(259\) −4.04468 −0.251324
\(260\) −4.07230 −0.252553
\(261\) 1.11442 0.0689809
\(262\) 16.0028 0.988654
\(263\) −7.07636 −0.436347 −0.218174 0.975910i \(-0.570010\pi\)
−0.218174 + 0.975910i \(0.570010\pi\)
\(264\) −4.31592 −0.265627
\(265\) −22.5966 −1.38810
\(266\) 4.89025 0.299840
\(267\) −0.0629548 −0.00385277
\(268\) 7.98489 0.487755
\(269\) 6.40049 0.390245 0.195122 0.980779i \(-0.437490\pi\)
0.195122 + 0.980779i \(0.437490\pi\)
\(270\) −3.29456 −0.200500
\(271\) 11.5011 0.698644 0.349322 0.937003i \(-0.386412\pi\)
0.349322 + 0.937003i \(0.386412\pi\)
\(272\) −5.14866 −0.312183
\(273\) −4.89025 −0.295971
\(274\) 2.85686 0.172589
\(275\) 25.2658 1.52359
\(276\) 6.00000 0.361158
\(277\) −25.9251 −1.55769 −0.778844 0.627218i \(-0.784194\pi\)
−0.778844 + 0.627218i \(0.784194\pi\)
\(278\) 16.6074 0.996045
\(279\) 0 0
\(280\) −13.0342 −0.778945
\(281\) 8.69480 0.518688 0.259344 0.965785i \(-0.416494\pi\)
0.259344 + 0.965785i \(0.416494\pi\)
\(282\) 1.37750 0.0820289
\(283\) −25.3411 −1.50637 −0.753186 0.657808i \(-0.771484\pi\)
−0.753186 + 0.657808i \(0.771484\pi\)
\(284\) 15.4071 0.914241
\(285\) −4.07230 −0.241222
\(286\) 5.33477 0.315452
\(287\) −49.0699 −2.89651
\(288\) −1.00000 −0.0589256
\(289\) 9.50868 0.559334
\(290\) −3.67152 −0.215599
\(291\) 18.6504 1.09330
\(292\) −14.2071 −0.831410
\(293\) −10.3562 −0.605016 −0.302508 0.953147i \(-0.597824\pi\)
−0.302508 + 0.953147i \(0.597824\pi\)
\(294\) −8.65227 −0.504611
\(295\) 26.3502 1.53417
\(296\) 1.02234 0.0594223
\(297\) 4.31592 0.250435
\(298\) 5.21904 0.302331
\(299\) −7.41641 −0.428902
\(300\) 5.85410 0.337987
\(301\) 7.35304 0.423822
\(302\) −15.9563 −0.918182
\(303\) 12.2825 0.705613
\(304\) −1.23607 −0.0708934
\(305\) −36.2639 −2.07647
\(306\) 5.14866 0.294329
\(307\) 11.9942 0.684547 0.342273 0.939600i \(-0.388803\pi\)
0.342273 + 0.939600i \(0.388803\pi\)
\(308\) 17.0751 0.972942
\(309\) 4.00723 0.227963
\(310\) 0 0
\(311\) −18.8141 −1.06685 −0.533426 0.845847i \(-0.679096\pi\)
−0.533426 + 0.845847i \(0.679096\pi\)
\(312\) 1.23607 0.0699786
\(313\) 9.34200 0.528041 0.264020 0.964517i \(-0.414951\pi\)
0.264020 + 0.964517i \(0.414951\pi\)
\(314\) −1.86986 −0.105522
\(315\) 13.0342 0.734396
\(316\) 13.1401 0.739190
\(317\) −19.8475 −1.11475 −0.557374 0.830262i \(-0.688191\pi\)
−0.557374 + 0.830262i \(0.688191\pi\)
\(318\) 6.85877 0.384621
\(319\) 4.80975 0.269294
\(320\) 3.29456 0.184171
\(321\) 12.8327 0.716254
\(322\) −23.7378 −1.32285
\(323\) 6.36409 0.354108
\(324\) 1.00000 0.0555556
\(325\) −7.23607 −0.401385
\(326\) −4.49854 −0.249151
\(327\) 3.42218 0.189247
\(328\) 12.4030 0.684841
\(329\) −5.44980 −0.300457
\(330\) −14.2190 −0.782733
\(331\) −7.06702 −0.388439 −0.194219 0.980958i \(-0.562217\pi\)
−0.194219 + 0.980958i \(0.562217\pi\)
\(332\) 5.63184 0.309087
\(333\) −1.02234 −0.0560239
\(334\) 21.9332 1.20013
\(335\) 26.3067 1.43729
\(336\) 3.95630 0.215834
\(337\) 4.13354 0.225169 0.112584 0.993642i \(-0.464087\pi\)
0.112584 + 0.993642i \(0.464087\pi\)
\(338\) 11.4721 0.624002
\(339\) 6.95320 0.377646
\(340\) −16.9625 −0.919923
\(341\) 0 0
\(342\) 1.23607 0.0668389
\(343\) 6.53687 0.352958
\(344\) −1.85857 −0.100207
\(345\) 19.7673 1.06424
\(346\) −15.4211 −0.829042
\(347\) −5.03071 −0.270062 −0.135031 0.990841i \(-0.543113\pi\)
−0.135031 + 0.990841i \(0.543113\pi\)
\(348\) 1.11442 0.0597392
\(349\) −1.17627 −0.0629644 −0.0314822 0.999504i \(-0.510023\pi\)
−0.0314822 + 0.999504i \(0.510023\pi\)
\(350\) −23.1606 −1.23798
\(351\) −1.23607 −0.0659764
\(352\) −4.31592 −0.230039
\(353\) 13.9277 0.741297 0.370648 0.928773i \(-0.379135\pi\)
0.370648 + 0.928773i \(0.379135\pi\)
\(354\) −7.99809 −0.425094
\(355\) 50.7595 2.69403
\(356\) −0.0629548 −0.00333660
\(357\) −20.3696 −1.07807
\(358\) −13.6340 −0.720579
\(359\) 14.6707 0.774293 0.387146 0.922018i \(-0.373461\pi\)
0.387146 + 0.922018i \(0.373461\pi\)
\(360\) −3.29456 −0.173638
\(361\) −17.4721 −0.919586
\(362\) 12.6972 0.667348
\(363\) 7.62717 0.400323
\(364\) −4.89025 −0.256319
\(365\) −46.8062 −2.44995
\(366\) 11.0072 0.575357
\(367\) −8.42981 −0.440032 −0.220016 0.975496i \(-0.570611\pi\)
−0.220016 + 0.975496i \(0.570611\pi\)
\(368\) 6.00000 0.312772
\(369\) −12.4030 −0.645674
\(370\) 3.36816 0.175102
\(371\) −27.1353 −1.40880
\(372\) 0 0
\(373\) −13.4530 −0.696568 −0.348284 0.937389i \(-0.613235\pi\)
−0.348284 + 0.937389i \(0.613235\pi\)
\(374\) 22.2212 1.14903
\(375\) 2.81389 0.145309
\(376\) 1.37750 0.0710391
\(377\) −1.37750 −0.0709448
\(378\) −3.95630 −0.203490
\(379\) 27.2392 1.39919 0.699593 0.714542i \(-0.253365\pi\)
0.699593 + 0.714542i \(0.253365\pi\)
\(380\) −4.07230 −0.208904
\(381\) −16.5969 −0.850287
\(382\) 1.50341 0.0769211
\(383\) 5.14866 0.263084 0.131542 0.991311i \(-0.458007\pi\)
0.131542 + 0.991311i \(0.458007\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 56.2547 2.86701
\(386\) 26.8943 1.36888
\(387\) 1.85857 0.0944763
\(388\) 18.6504 0.946829
\(389\) −19.8971 −1.00882 −0.504411 0.863464i \(-0.668290\pi\)
−0.504411 + 0.863464i \(0.668290\pi\)
\(390\) 4.07230 0.206209
\(391\) −30.8920 −1.56227
\(392\) −8.65227 −0.437006
\(393\) −16.0028 −0.807232
\(394\) −5.82453 −0.293436
\(395\) 43.2909 2.17820
\(396\) 4.31592 0.216883
\(397\) −18.4625 −0.926608 −0.463304 0.886199i \(-0.653336\pi\)
−0.463304 + 0.886199i \(0.653336\pi\)
\(398\) 4.06447 0.203733
\(399\) −4.89025 −0.244819
\(400\) 5.85410 0.292705
\(401\) 26.1916 1.30795 0.653974 0.756517i \(-0.273101\pi\)
0.653974 + 0.756517i \(0.273101\pi\)
\(402\) −7.98489 −0.398250
\(403\) 0 0
\(404\) 12.2825 0.611079
\(405\) 3.29456 0.163708
\(406\) −4.40898 −0.218814
\(407\) −4.41234 −0.218712
\(408\) 5.14866 0.254897
\(409\) −10.7892 −0.533493 −0.266747 0.963767i \(-0.585949\pi\)
−0.266747 + 0.963767i \(0.585949\pi\)
\(410\) 40.8624 2.01805
\(411\) −2.85686 −0.140919
\(412\) 4.00723 0.197422
\(413\) 31.6428 1.55704
\(414\) −6.00000 −0.294884
\(415\) 18.5544 0.910801
\(416\) 1.23607 0.0606032
\(417\) −16.6074 −0.813267
\(418\) 5.33477 0.260932
\(419\) −26.3857 −1.28903 −0.644513 0.764593i \(-0.722940\pi\)
−0.644513 + 0.764593i \(0.722940\pi\)
\(420\) 13.0342 0.636006
\(421\) −5.86173 −0.285683 −0.142842 0.989746i \(-0.545624\pi\)
−0.142842 + 0.989746i \(0.545624\pi\)
\(422\) 11.3197 0.551032
\(423\) −1.37750 −0.0669763
\(424\) 6.85877 0.333091
\(425\) −30.1408 −1.46204
\(426\) −15.4071 −0.746475
\(427\) −43.5478 −2.10743
\(428\) 12.8327 0.620294
\(429\) −5.33477 −0.257565
\(430\) −6.12316 −0.295285
\(431\) 6.78839 0.326985 0.163493 0.986545i \(-0.447724\pi\)
0.163493 + 0.986545i \(0.447724\pi\)
\(432\) 1.00000 0.0481125
\(433\) −18.5244 −0.890228 −0.445114 0.895474i \(-0.646837\pi\)
−0.445114 + 0.895474i \(0.646837\pi\)
\(434\) 0 0
\(435\) 3.67152 0.176036
\(436\) 3.42218 0.163893
\(437\) −7.41641 −0.354775
\(438\) 14.2071 0.678844
\(439\) 31.2074 1.48945 0.744723 0.667374i \(-0.232582\pi\)
0.744723 + 0.667374i \(0.232582\pi\)
\(440\) −14.2190 −0.677866
\(441\) 8.65227 0.412013
\(442\) −6.36409 −0.302709
\(443\) 23.4192 1.11268 0.556339 0.830955i \(-0.312206\pi\)
0.556339 + 0.830955i \(0.312206\pi\)
\(444\) −1.02234 −0.0485181
\(445\) −0.207408 −0.00983208
\(446\) 2.43038 0.115082
\(447\) −5.21904 −0.246852
\(448\) 3.95630 0.186917
\(449\) −5.59700 −0.264139 −0.132069 0.991240i \(-0.542162\pi\)
−0.132069 + 0.991240i \(0.542162\pi\)
\(450\) −5.85410 −0.275965
\(451\) −53.5304 −2.52065
\(452\) 6.95320 0.327051
\(453\) 15.9563 0.749692
\(454\) 0.717714 0.0336840
\(455\) −16.1112 −0.755305
\(456\) 1.23607 0.0578842
\(457\) −30.2879 −1.41681 −0.708404 0.705808i \(-0.750584\pi\)
−0.708404 + 0.705808i \(0.750584\pi\)
\(458\) 20.1893 0.943383
\(459\) −5.14866 −0.240319
\(460\) 19.7673 0.921657
\(461\) 17.1561 0.799039 0.399519 0.916725i \(-0.369177\pi\)
0.399519 + 0.916725i \(0.369177\pi\)
\(462\) −17.0751 −0.794404
\(463\) 7.55377 0.351054 0.175527 0.984475i \(-0.443837\pi\)
0.175527 + 0.984475i \(0.443837\pi\)
\(464\) 1.11442 0.0517357
\(465\) 0 0
\(466\) 3.52209 0.163158
\(467\) 0.890953 0.0412284 0.0206142 0.999788i \(-0.493438\pi\)
0.0206142 + 0.999788i \(0.493438\pi\)
\(468\) −1.23607 −0.0571373
\(469\) 31.5906 1.45872
\(470\) 4.53825 0.209334
\(471\) 1.86986 0.0861587
\(472\) −7.99809 −0.368142
\(473\) 8.02143 0.368826
\(474\) −13.1401 −0.603546
\(475\) −7.23607 −0.332014
\(476\) −20.3696 −0.933640
\(477\) −6.85877 −0.314042
\(478\) −4.33452 −0.198257
\(479\) −29.0644 −1.32799 −0.663993 0.747738i \(-0.731140\pi\)
−0.663993 + 0.747738i \(0.731140\pi\)
\(480\) −3.29456 −0.150375
\(481\) 1.26368 0.0576190
\(482\) −1.86889 −0.0851254
\(483\) 23.7378 1.08011
\(484\) 7.62717 0.346690
\(485\) 61.4447 2.79006
\(486\) −1.00000 −0.0453609
\(487\) −18.2901 −0.828803 −0.414402 0.910094i \(-0.636009\pi\)
−0.414402 + 0.910094i \(0.636009\pi\)
\(488\) 11.0072 0.498274
\(489\) 4.49854 0.203431
\(490\) −28.5054 −1.28774
\(491\) 29.1074 1.31360 0.656799 0.754066i \(-0.271910\pi\)
0.656799 + 0.754066i \(0.271910\pi\)
\(492\) −12.4030 −0.559170
\(493\) −5.73777 −0.258416
\(494\) −1.52786 −0.0687419
\(495\) 14.2190 0.639098
\(496\) 0 0
\(497\) 60.9549 2.73420
\(498\) −5.63184 −0.252369
\(499\) −14.3902 −0.644196 −0.322098 0.946706i \(-0.604388\pi\)
−0.322098 + 0.946706i \(0.604388\pi\)
\(500\) 2.81389 0.125841
\(501\) −21.9332 −0.979904
\(502\) −12.1125 −0.540608
\(503\) −18.6412 −0.831169 −0.415585 0.909555i \(-0.636423\pi\)
−0.415585 + 0.909555i \(0.636423\pi\)
\(504\) −3.95630 −0.176227
\(505\) 40.4655 1.80069
\(506\) −25.8955 −1.15120
\(507\) −11.4721 −0.509495
\(508\) −16.5969 −0.736370
\(509\) −25.1112 −1.11303 −0.556517 0.830836i \(-0.687863\pi\)
−0.556517 + 0.830836i \(0.687863\pi\)
\(510\) 16.9625 0.751114
\(511\) −56.2077 −2.48648
\(512\) −1.00000 −0.0441942
\(513\) −1.23607 −0.0545737
\(514\) −9.77116 −0.430987
\(515\) 13.2020 0.581751
\(516\) 1.85857 0.0818189
\(517\) −5.94518 −0.261469
\(518\) 4.04468 0.177713
\(519\) 15.4211 0.676910
\(520\) 4.07230 0.178582
\(521\) 14.8569 0.650891 0.325445 0.945561i \(-0.394486\pi\)
0.325445 + 0.945561i \(0.394486\pi\)
\(522\) −1.11442 −0.0487769
\(523\) −0.170999 −0.00747726 −0.00373863 0.999993i \(-0.501190\pi\)
−0.00373863 + 0.999993i \(0.501190\pi\)
\(524\) −16.0028 −0.699084
\(525\) 23.1606 1.01081
\(526\) 7.07636 0.308544
\(527\) 0 0
\(528\) 4.31592 0.187826
\(529\) 13.0000 0.565217
\(530\) 22.5966 0.981534
\(531\) 7.99809 0.347088
\(532\) −4.89025 −0.212019
\(533\) 15.3310 0.664057
\(534\) 0.0629548 0.00272432
\(535\) 42.2782 1.82785
\(536\) −7.98489 −0.344895
\(537\) 13.6340 0.588350
\(538\) −6.40049 −0.275945
\(539\) 37.3425 1.60846
\(540\) 3.29456 0.141775
\(541\) −4.19479 −0.180348 −0.0901741 0.995926i \(-0.528742\pi\)
−0.0901741 + 0.995926i \(0.528742\pi\)
\(542\) −11.5011 −0.494016
\(543\) −12.6972 −0.544887
\(544\) 5.14866 0.220747
\(545\) 11.2746 0.482949
\(546\) 4.89025 0.209283
\(547\) 17.0827 0.730403 0.365201 0.930929i \(-0.381000\pi\)
0.365201 + 0.930929i \(0.381000\pi\)
\(548\) −2.85686 −0.122039
\(549\) −11.0072 −0.469777
\(550\) −25.2658 −1.07734
\(551\) −1.37750 −0.0586835
\(552\) −6.00000 −0.255377
\(553\) 51.9862 2.21068
\(554\) 25.9251 1.10145
\(555\) −3.36816 −0.142970
\(556\) −16.6074 −0.704310
\(557\) 9.28660 0.393486 0.196743 0.980455i \(-0.436964\pi\)
0.196743 + 0.980455i \(0.436964\pi\)
\(558\) 0 0
\(559\) −2.29732 −0.0971661
\(560\) 13.0342 0.550797
\(561\) −22.2212 −0.938180
\(562\) −8.69480 −0.366768
\(563\) 16.1662 0.681324 0.340662 0.940186i \(-0.389349\pi\)
0.340662 + 0.940186i \(0.389349\pi\)
\(564\) −1.37750 −0.0580032
\(565\) 22.9077 0.963735
\(566\) 25.3411 1.06517
\(567\) 3.95630 0.166149
\(568\) −15.4071 −0.646466
\(569\) 13.1701 0.552119 0.276059 0.961141i \(-0.410971\pi\)
0.276059 + 0.961141i \(0.410971\pi\)
\(570\) 4.07230 0.170570
\(571\) 8.35093 0.349476 0.174738 0.984615i \(-0.444092\pi\)
0.174738 + 0.984615i \(0.444092\pi\)
\(572\) −5.33477 −0.223058
\(573\) −1.50341 −0.0628058
\(574\) 49.0699 2.04814
\(575\) 35.1246 1.46480
\(576\) 1.00000 0.0416667
\(577\) 3.31780 0.138122 0.0690610 0.997612i \(-0.478000\pi\)
0.0690610 + 0.997612i \(0.478000\pi\)
\(578\) −9.50868 −0.395509
\(579\) −26.8943 −1.11769
\(580\) 3.67152 0.152452
\(581\) 22.2812 0.924381
\(582\) −18.6504 −0.773082
\(583\) −29.6019 −1.22599
\(584\) 14.2071 0.587896
\(585\) −4.07230 −0.168369
\(586\) 10.3562 0.427811
\(587\) −7.18343 −0.296492 −0.148246 0.988951i \(-0.547363\pi\)
−0.148246 + 0.988951i \(0.547363\pi\)
\(588\) 8.65227 0.356814
\(589\) 0 0
\(590\) −26.3502 −1.08482
\(591\) 5.82453 0.239589
\(592\) −1.02234 −0.0420179
\(593\) 34.1999 1.40442 0.702211 0.711969i \(-0.252196\pi\)
0.702211 + 0.711969i \(0.252196\pi\)
\(594\) −4.31592 −0.177084
\(595\) −67.1088 −2.75119
\(596\) −5.21904 −0.213780
\(597\) −4.06447 −0.166348
\(598\) 7.41641 0.303279
\(599\) 12.1150 0.495006 0.247503 0.968887i \(-0.420390\pi\)
0.247503 + 0.968887i \(0.420390\pi\)
\(600\) −5.85410 −0.238993
\(601\) 8.56522 0.349383 0.174691 0.984623i \(-0.444107\pi\)
0.174691 + 0.984623i \(0.444107\pi\)
\(602\) −7.35304 −0.299688
\(603\) 7.98489 0.325170
\(604\) 15.9563 0.649252
\(605\) 25.1281 1.02160
\(606\) −12.2825 −0.498944
\(607\) 1.12696 0.0457421 0.0228710 0.999738i \(-0.492719\pi\)
0.0228710 + 0.999738i \(0.492719\pi\)
\(608\) 1.23607 0.0501292
\(609\) 4.40898 0.178661
\(610\) 36.2639 1.46828
\(611\) 1.70268 0.0688832
\(612\) −5.14866 −0.208122
\(613\) 31.8458 1.28624 0.643120 0.765765i \(-0.277640\pi\)
0.643120 + 0.765765i \(0.277640\pi\)
\(614\) −11.9942 −0.484048
\(615\) −40.8624 −1.64773
\(616\) −17.0751 −0.687974
\(617\) −42.5745 −1.71399 −0.856993 0.515328i \(-0.827670\pi\)
−0.856993 + 0.515328i \(0.827670\pi\)
\(618\) −4.00723 −0.161194
\(619\) −22.6218 −0.909249 −0.454624 0.890683i \(-0.650226\pi\)
−0.454624 + 0.890683i \(0.650226\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 18.8141 0.754378
\(623\) −0.249068 −0.00997869
\(624\) −1.23607 −0.0494823
\(625\) −20.0000 −0.800000
\(626\) −9.34200 −0.373381
\(627\) −5.33477 −0.213050
\(628\) 1.86986 0.0746156
\(629\) 5.26368 0.209877
\(630\) −13.0342 −0.519296
\(631\) 11.4923 0.457501 0.228750 0.973485i \(-0.426536\pi\)
0.228750 + 0.973485i \(0.426536\pi\)
\(632\) −13.1401 −0.522686
\(633\) −11.3197 −0.449916
\(634\) 19.8475 0.788246
\(635\) −54.6796 −2.16989
\(636\) −6.85877 −0.271968
\(637\) −10.6948 −0.423743
\(638\) −4.80975 −0.190420
\(639\) 15.4071 0.609494
\(640\) −3.29456 −0.130229
\(641\) 21.4202 0.846048 0.423024 0.906118i \(-0.360969\pi\)
0.423024 + 0.906118i \(0.360969\pi\)
\(642\) −12.8327 −0.506468
\(643\) 14.0691 0.554833 0.277416 0.960750i \(-0.410522\pi\)
0.277416 + 0.960750i \(0.410522\pi\)
\(644\) 23.7378 0.935399
\(645\) 6.12316 0.241099
\(646\) −6.36409 −0.250392
\(647\) 11.2587 0.442623 0.221312 0.975203i \(-0.428966\pi\)
0.221312 + 0.975203i \(0.428966\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 34.5191 1.35499
\(650\) 7.23607 0.283822
\(651\) 0 0
\(652\) 4.49854 0.176177
\(653\) −38.7882 −1.51790 −0.758949 0.651150i \(-0.774287\pi\)
−0.758949 + 0.651150i \(0.774287\pi\)
\(654\) −3.42218 −0.133818
\(655\) −52.7220 −2.06002
\(656\) −12.4030 −0.484256
\(657\) −14.2071 −0.554274
\(658\) 5.44980 0.212455
\(659\) 15.9953 0.623090 0.311545 0.950231i \(-0.399154\pi\)
0.311545 + 0.950231i \(0.399154\pi\)
\(660\) 14.2190 0.553476
\(661\) 5.30284 0.206257 0.103128 0.994668i \(-0.467115\pi\)
0.103128 + 0.994668i \(0.467115\pi\)
\(662\) 7.06702 0.274668
\(663\) 6.36409 0.247161
\(664\) −5.63184 −0.218558
\(665\) −16.1112 −0.624766
\(666\) 1.02234 0.0396149
\(667\) 6.68652 0.258903
\(668\) −21.9332 −0.848622
\(669\) −2.43038 −0.0939641
\(670\) −26.3067 −1.01631
\(671\) −47.5063 −1.83396
\(672\) −3.95630 −0.152617
\(673\) −16.1964 −0.624327 −0.312163 0.950028i \(-0.601054\pi\)
−0.312163 + 0.950028i \(0.601054\pi\)
\(674\) −4.13354 −0.159218
\(675\) 5.85410 0.225324
\(676\) −11.4721 −0.441236
\(677\) −0.408443 −0.0156977 −0.00784886 0.999969i \(-0.502498\pi\)
−0.00784886 + 0.999969i \(0.502498\pi\)
\(678\) −6.95320 −0.267036
\(679\) 73.7863 2.83166
\(680\) 16.9625 0.650484
\(681\) −0.717714 −0.0275028
\(682\) 0 0
\(683\) −6.73225 −0.257602 −0.128801 0.991670i \(-0.541113\pi\)
−0.128801 + 0.991670i \(0.541113\pi\)
\(684\) −1.23607 −0.0472622
\(685\) −9.41209 −0.359618
\(686\) −6.53687 −0.249579
\(687\) −20.1893 −0.770269
\(688\) 1.85857 0.0708573
\(689\) 8.47791 0.322983
\(690\) −19.7673 −0.752530
\(691\) 3.84150 0.146138 0.0730688 0.997327i \(-0.476721\pi\)
0.0730688 + 0.997327i \(0.476721\pi\)
\(692\) 15.4211 0.586221
\(693\) 17.0751 0.648628
\(694\) 5.03071 0.190963
\(695\) −54.7140 −2.07542
\(696\) −1.11442 −0.0422420
\(697\) 63.8588 2.41882
\(698\) 1.17627 0.0445226
\(699\) −3.52209 −0.133218
\(700\) 23.1606 0.875387
\(701\) −3.18611 −0.120338 −0.0601689 0.998188i \(-0.519164\pi\)
−0.0601689 + 0.998188i \(0.519164\pi\)
\(702\) 1.23607 0.0466524
\(703\) 1.26368 0.0476607
\(704\) 4.31592 0.162662
\(705\) −4.53825 −0.170920
\(706\) −13.9277 −0.524176
\(707\) 48.5933 1.82754
\(708\) 7.99809 0.300587
\(709\) −34.9373 −1.31210 −0.656049 0.754718i \(-0.727773\pi\)
−0.656049 + 0.754718i \(0.727773\pi\)
\(710\) −50.7595 −1.90497
\(711\) 13.1401 0.492793
\(712\) 0.0629548 0.00235933
\(713\) 0 0
\(714\) 20.3696 0.762314
\(715\) −17.5757 −0.657294
\(716\) 13.6340 0.509526
\(717\) 4.33452 0.161876
\(718\) −14.6707 −0.547508
\(719\) 31.1021 1.15991 0.579956 0.814647i \(-0.303070\pi\)
0.579956 + 0.814647i \(0.303070\pi\)
\(720\) 3.29456 0.122781
\(721\) 15.8538 0.590425
\(722\) 17.4721 0.650246
\(723\) 1.86889 0.0695046
\(724\) −12.6972 −0.471886
\(725\) 6.52393 0.242293
\(726\) −7.62717 −0.283071
\(727\) −50.4824 −1.87229 −0.936145 0.351614i \(-0.885633\pi\)
−0.936145 + 0.351614i \(0.885633\pi\)
\(728\) 4.89025 0.181245
\(729\) 1.00000 0.0370370
\(730\) 46.8062 1.73238
\(731\) −9.56913 −0.353927
\(732\) −11.0072 −0.406839
\(733\) 33.1088 1.22290 0.611451 0.791282i \(-0.290586\pi\)
0.611451 + 0.791282i \(0.290586\pi\)
\(734\) 8.42981 0.311150
\(735\) 28.5054 1.05144
\(736\) −6.00000 −0.221163
\(737\) 34.4621 1.26943
\(738\) 12.4030 0.456561
\(739\) 34.8417 1.28167 0.640837 0.767677i \(-0.278587\pi\)
0.640837 + 0.767677i \(0.278587\pi\)
\(740\) −3.36816 −0.123816
\(741\) 1.52786 0.0561275
\(742\) 27.1353 0.996169
\(743\) 3.17391 0.116440 0.0582198 0.998304i \(-0.481458\pi\)
0.0582198 + 0.998304i \(0.481458\pi\)
\(744\) 0 0
\(745\) −17.1944 −0.629955
\(746\) 13.4530 0.492548
\(747\) 5.63184 0.206058
\(748\) −22.2212 −0.812488
\(749\) 50.7701 1.85510
\(750\) −2.81389 −0.102749
\(751\) −15.3198 −0.559028 −0.279514 0.960142i \(-0.590173\pi\)
−0.279514 + 0.960142i \(0.590173\pi\)
\(752\) −1.37750 −0.0502322
\(753\) 12.1125 0.441404
\(754\) 1.37750 0.0501656
\(755\) 52.5689 1.91318
\(756\) 3.95630 0.143889
\(757\) 45.9062 1.66849 0.834244 0.551396i \(-0.185905\pi\)
0.834244 + 0.551396i \(0.185905\pi\)
\(758\) −27.2392 −0.989373
\(759\) 25.8955 0.939948
\(760\) 4.07230 0.147718
\(761\) 27.7258 1.00506 0.502530 0.864560i \(-0.332403\pi\)
0.502530 + 0.864560i \(0.332403\pi\)
\(762\) 16.5969 0.601244
\(763\) 13.5392 0.490150
\(764\) −1.50341 −0.0543914
\(765\) −16.9625 −0.613282
\(766\) −5.14866 −0.186029
\(767\) −9.88618 −0.356969
\(768\) 1.00000 0.0360844
\(769\) −34.4040 −1.24064 −0.620321 0.784348i \(-0.712998\pi\)
−0.620321 + 0.784348i \(0.712998\pi\)
\(770\) −56.2547 −2.02728
\(771\) 9.77116 0.351900
\(772\) −26.8943 −0.967946
\(773\) −8.93046 −0.321206 −0.160603 0.987019i \(-0.551344\pi\)
−0.160603 + 0.987019i \(0.551344\pi\)
\(774\) −1.85857 −0.0668049
\(775\) 0 0
\(776\) −18.6504 −0.669509
\(777\) −4.04468 −0.145102
\(778\) 19.8971 0.713345
\(779\) 15.3310 0.549288
\(780\) −4.07230 −0.145812
\(781\) 66.4957 2.37940
\(782\) 30.8920 1.10469
\(783\) 1.11442 0.0398261
\(784\) 8.65227 0.309010
\(785\) 6.16037 0.219873
\(786\) 16.0028 0.570800
\(787\) −44.6002 −1.58982 −0.794912 0.606725i \(-0.792483\pi\)
−0.794912 + 0.606725i \(0.792483\pi\)
\(788\) 5.82453 0.207490
\(789\) −7.07636 −0.251925
\(790\) −43.2909 −1.54022
\(791\) 27.5089 0.978105
\(792\) −4.31592 −0.153360
\(793\) 13.6057 0.483152
\(794\) 18.4625 0.655211
\(795\) −22.5966 −0.801419
\(796\) −4.06447 −0.144061
\(797\) 10.3874 0.367942 0.183971 0.982932i \(-0.441105\pi\)
0.183971 + 0.982932i \(0.441105\pi\)
\(798\) 4.89025 0.173113
\(799\) 7.09228 0.250907
\(800\) −5.85410 −0.206974
\(801\) −0.0629548 −0.00222440
\(802\) −26.1916 −0.924859
\(803\) −61.3169 −2.16383
\(804\) 7.98489 0.281605
\(805\) 78.2054 2.75638
\(806\) 0 0
\(807\) 6.40049 0.225308
\(808\) −12.2825 −0.432098
\(809\) −4.40561 −0.154893 −0.0774466 0.996997i \(-0.524677\pi\)
−0.0774466 + 0.996997i \(0.524677\pi\)
\(810\) −3.29456 −0.115759
\(811\) −23.5051 −0.825376 −0.412688 0.910872i \(-0.635410\pi\)
−0.412688 + 0.910872i \(0.635410\pi\)
\(812\) 4.40898 0.154725
\(813\) 11.5011 0.403362
\(814\) 4.41234 0.154652
\(815\) 14.8207 0.519147
\(816\) −5.14866 −0.180239
\(817\) −2.29732 −0.0803729
\(818\) 10.7892 0.377237
\(819\) −4.89025 −0.170879
\(820\) −40.8624 −1.42698
\(821\) 37.7359 1.31699 0.658495 0.752585i \(-0.271193\pi\)
0.658495 + 0.752585i \(0.271193\pi\)
\(822\) 2.85686 0.0996445
\(823\) 34.3828 1.19851 0.599255 0.800558i \(-0.295464\pi\)
0.599255 + 0.800558i \(0.295464\pi\)
\(824\) −4.00723 −0.139598
\(825\) 25.2658 0.879644
\(826\) −31.6428 −1.10099
\(827\) 29.3712 1.02134 0.510668 0.859778i \(-0.329398\pi\)
0.510668 + 0.859778i \(0.329398\pi\)
\(828\) 6.00000 0.208514
\(829\) −38.3902 −1.33335 −0.666674 0.745349i \(-0.732283\pi\)
−0.666674 + 0.745349i \(0.732283\pi\)
\(830\) −18.5544 −0.644033
\(831\) −25.9251 −0.899331
\(832\) −1.23607 −0.0428529
\(833\) −44.5476 −1.54348
\(834\) 16.6074 0.575067
\(835\) −72.2602 −2.50067
\(836\) −5.33477 −0.184507
\(837\) 0 0
\(838\) 26.3857 0.911479
\(839\) 27.6547 0.954747 0.477374 0.878700i \(-0.341589\pi\)
0.477374 + 0.878700i \(0.341589\pi\)
\(840\) −13.0342 −0.449724
\(841\) −27.7581 −0.957175
\(842\) 5.86173 0.202008
\(843\) 8.69480 0.299465
\(844\) −11.3197 −0.389639
\(845\) −37.7956 −1.30021
\(846\) 1.37750 0.0473594
\(847\) 30.1753 1.03684
\(848\) −6.85877 −0.235531
\(849\) −25.3411 −0.869704
\(850\) 30.1408 1.03382
\(851\) −6.13404 −0.210272
\(852\) 15.4071 0.527837
\(853\) −13.4460 −0.460381 −0.230191 0.973146i \(-0.573935\pi\)
−0.230191 + 0.973146i \(0.573935\pi\)
\(854\) 43.5478 1.49018
\(855\) −4.07230 −0.139270
\(856\) −12.8327 −0.438614
\(857\) −18.9143 −0.646100 −0.323050 0.946382i \(-0.604708\pi\)
−0.323050 + 0.946382i \(0.604708\pi\)
\(858\) 5.33477 0.182126
\(859\) −52.8713 −1.80395 −0.901973 0.431792i \(-0.857881\pi\)
−0.901973 + 0.431792i \(0.857881\pi\)
\(860\) 6.12316 0.208798
\(861\) −49.0699 −1.67230
\(862\) −6.78839 −0.231213
\(863\) 21.7499 0.740374 0.370187 0.928957i \(-0.379294\pi\)
0.370187 + 0.928957i \(0.379294\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 50.8056 1.72744
\(866\) 18.5244 0.629486
\(867\) 9.50868 0.322932
\(868\) 0 0
\(869\) 56.7117 1.92381
\(870\) −3.67152 −0.124476
\(871\) −9.86986 −0.334428
\(872\) −3.42218 −0.115890
\(873\) 18.6504 0.631219
\(874\) 7.41641 0.250864
\(875\) 11.1326 0.376349
\(876\) −14.2071 −0.480015
\(877\) 4.12973 0.139451 0.0697255 0.997566i \(-0.477788\pi\)
0.0697255 + 0.997566i \(0.477788\pi\)
\(878\) −31.2074 −1.05320
\(879\) −10.3562 −0.349306
\(880\) 14.2190 0.479324
\(881\) −55.1981 −1.85967 −0.929836 0.367975i \(-0.880051\pi\)
−0.929836 + 0.367975i \(0.880051\pi\)
\(882\) −8.65227 −0.291337
\(883\) −3.27693 −0.110277 −0.0551387 0.998479i \(-0.517560\pi\)
−0.0551387 + 0.998479i \(0.517560\pi\)
\(884\) 6.36409 0.214048
\(885\) 26.3502 0.885751
\(886\) −23.4192 −0.786782
\(887\) −50.5317 −1.69669 −0.848344 0.529446i \(-0.822400\pi\)
−0.848344 + 0.529446i \(0.822400\pi\)
\(888\) 1.02234 0.0343075
\(889\) −65.6624 −2.20225
\(890\) 0.207408 0.00695233
\(891\) 4.31592 0.144589
\(892\) −2.43038 −0.0813753
\(893\) 1.70268 0.0569781
\(894\) 5.21904 0.174551
\(895\) 44.9180 1.50144
\(896\) −3.95630 −0.132171
\(897\) −7.41641 −0.247627
\(898\) 5.59700 0.186774
\(899\) 0 0
\(900\) 5.85410 0.195137
\(901\) 35.3135 1.17646
\(902\) 53.5304 1.78237
\(903\) 7.35304 0.244694
\(904\) −6.95320 −0.231260
\(905\) −41.8315 −1.39053
\(906\) −15.9563 −0.530112
\(907\) 7.12038 0.236428 0.118214 0.992988i \(-0.462283\pi\)
0.118214 + 0.992988i \(0.462283\pi\)
\(908\) −0.717714 −0.0238182
\(909\) 12.2825 0.407386
\(910\) 16.1112 0.534081
\(911\) 23.8419 0.789918 0.394959 0.918699i \(-0.370759\pi\)
0.394959 + 0.918699i \(0.370759\pi\)
\(912\) −1.23607 −0.0409303
\(913\) 24.3066 0.804430
\(914\) 30.2879 1.00183
\(915\) −36.2639 −1.19885
\(916\) −20.1893 −0.667072
\(917\) −63.3116 −2.09073
\(918\) 5.14866 0.169931
\(919\) 5.04509 0.166422 0.0832111 0.996532i \(-0.473482\pi\)
0.0832111 + 0.996532i \(0.473482\pi\)
\(920\) −19.7673 −0.651710
\(921\) 11.9942 0.395223
\(922\) −17.1561 −0.565006
\(923\) −19.0442 −0.626847
\(924\) 17.0751 0.561728
\(925\) −5.98489 −0.196782
\(926\) −7.55377 −0.248232
\(927\) 4.00723 0.131615
\(928\) −1.11442 −0.0365826
\(929\) 28.3444 0.929948 0.464974 0.885324i \(-0.346064\pi\)
0.464974 + 0.885324i \(0.346064\pi\)
\(930\) 0 0
\(931\) −10.6948 −0.350508
\(932\) −3.52209 −0.115370
\(933\) −18.8141 −0.615947
\(934\) −0.890953 −0.0291529
\(935\) −73.2090 −2.39419
\(936\) 1.23607 0.0404021
\(937\) 7.00292 0.228775 0.114388 0.993436i \(-0.463509\pi\)
0.114388 + 0.993436i \(0.463509\pi\)
\(938\) −31.5906 −1.03147
\(939\) 9.34200 0.304865
\(940\) −4.53825 −0.148021
\(941\) −34.8873 −1.13729 −0.568646 0.822582i \(-0.692533\pi\)
−0.568646 + 0.822582i \(0.692533\pi\)
\(942\) −1.86986 −0.0609234
\(943\) −74.4180 −2.42338
\(944\) 7.99809 0.260316
\(945\) 13.0342 0.424004
\(946\) −8.02143 −0.260799
\(947\) 5.78326 0.187931 0.0939653 0.995575i \(-0.470046\pi\)
0.0939653 + 0.995575i \(0.470046\pi\)
\(948\) 13.1401 0.426771
\(949\) 17.5610 0.570054
\(950\) 7.23607 0.234769
\(951\) −19.8475 −0.643600
\(952\) 20.3696 0.660183
\(953\) 34.4512 1.11599 0.557993 0.829846i \(-0.311572\pi\)
0.557993 + 0.829846i \(0.311572\pi\)
\(954\) 6.85877 0.222061
\(955\) −4.95307 −0.160277
\(956\) 4.33452 0.140189
\(957\) 4.80975 0.155477
\(958\) 29.0644 0.939028
\(959\) −11.3026 −0.364980
\(960\) 3.29456 0.106331
\(961\) 0 0
\(962\) −1.26368 −0.0407428
\(963\) 12.8327 0.413529
\(964\) 1.86889 0.0601928
\(965\) −88.6047 −2.85228
\(966\) −23.7378 −0.763750
\(967\) 13.5465 0.435628 0.217814 0.975990i \(-0.430107\pi\)
0.217814 + 0.975990i \(0.430107\pi\)
\(968\) −7.62717 −0.245147
\(969\) 6.36409 0.204444
\(970\) −61.4447 −1.97287
\(971\) 44.6519 1.43295 0.716473 0.697615i \(-0.245755\pi\)
0.716473 + 0.697615i \(0.245755\pi\)
\(972\) 1.00000 0.0320750
\(973\) −65.7037 −2.10636
\(974\) 18.2901 0.586052
\(975\) −7.23607 −0.231740
\(976\) −11.0072 −0.352333
\(977\) −39.7779 −1.27261 −0.636304 0.771439i \(-0.719537\pi\)
−0.636304 + 0.771439i \(0.719537\pi\)
\(978\) −4.49854 −0.143848
\(979\) −0.271708 −0.00868382
\(980\) 28.5054 0.910572
\(981\) 3.42218 0.109262
\(982\) −29.1074 −0.928854
\(983\) 43.7565 1.39561 0.697807 0.716286i \(-0.254159\pi\)
0.697807 + 0.716286i \(0.254159\pi\)
\(984\) 12.4030 0.395393
\(985\) 19.1893 0.611421
\(986\) 5.73777 0.182728
\(987\) −5.44980 −0.173469
\(988\) 1.52786 0.0486078
\(989\) 11.1514 0.354594
\(990\) −14.2190 −0.451911
\(991\) −42.9432 −1.36414 −0.682068 0.731289i \(-0.738919\pi\)
−0.682068 + 0.731289i \(0.738919\pi\)
\(992\) 0 0
\(993\) −7.06702 −0.224265
\(994\) −60.9549 −1.93337
\(995\) −13.3906 −0.424511
\(996\) 5.63184 0.178452
\(997\) 43.0271 1.36268 0.681341 0.731966i \(-0.261397\pi\)
0.681341 + 0.731966i \(0.261397\pi\)
\(998\) 14.3902 0.455515
\(999\) −1.02234 −0.0323454
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5766.2.a.ba.1.4 4
31.7 even 15 186.2.m.d.49.1 yes 8
31.9 even 15 186.2.m.d.19.1 8
31.30 odd 2 5766.2.a.x.1.4 4
93.38 odd 30 558.2.ba.b.235.1 8
93.71 odd 30 558.2.ba.b.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.m.d.19.1 8 31.9 even 15
186.2.m.d.49.1 yes 8 31.7 even 15
558.2.ba.b.19.1 8 93.71 odd 30
558.2.ba.b.235.1 8 93.38 odd 30
5766.2.a.x.1.4 4 31.30 odd 2
5766.2.a.ba.1.4 4 1.1 even 1 trivial