Properties

Label 5766.2.a.ba.1.3
Level $5766$
Weight $2$
Character 5766.1
Self dual yes
Analytic conductor $46.042$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5766,2,Mod(1,5766)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5766.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5766.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,4,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.0417418055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.95630\) of defining polynomial
Character \(\chi\) \(=\) 5766.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +2.03615 q^{5} -1.00000 q^{6} +2.20906 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.03615 q^{10} -3.73968 q^{11} +1.00000 q^{12} +3.23607 q^{13} -2.20906 q^{14} +2.03615 q^{15} +1.00000 q^{16} +2.81795 q^{17} -1.00000 q^{18} +3.23607 q^{19} +2.03615 q^{20} +2.20906 q^{21} +3.73968 q^{22} +6.00000 q^{23} -1.00000 q^{24} -0.854102 q^{25} -3.23607 q^{26} +1.00000 q^{27} +2.20906 q^{28} +1.68408 q^{29} -2.03615 q^{30} -1.00000 q^{32} -3.73968 q^{33} -2.81795 q^{34} +4.49797 q^{35} +1.00000 q^{36} -9.56677 q^{37} -3.23607 q^{38} +3.23607 q^{39} -2.03615 q^{40} +4.84752 q^{41} -2.20906 q^{42} +4.21373 q^{43} -3.73968 q^{44} +2.03615 q^{45} -6.00000 q^{46} +5.44980 q^{47} +1.00000 q^{48} -2.12007 q^{49} +0.854102 q^{50} +2.81795 q^{51} +3.23607 q^{52} +11.3187 q^{53} -1.00000 q^{54} -7.61454 q^{55} -2.20906 q^{56} +3.23607 q^{57} -1.68408 q^{58} +4.79252 q^{59} +2.03615 q^{60} -5.39577 q^{61} +2.20906 q^{63} +1.00000 q^{64} +6.58911 q^{65} +3.73968 q^{66} -6.17100 q^{67} +2.81795 q^{68} +6.00000 q^{69} -4.49797 q^{70} +11.5128 q^{71} -1.00000 q^{72} -9.45426 q^{73} +9.56677 q^{74} -0.854102 q^{75} +3.23607 q^{76} -8.26117 q^{77} -3.23607 q^{78} -17.2461 q^{79} +2.03615 q^{80} +1.00000 q^{81} -4.84752 q^{82} -10.4794 q^{83} +2.20906 q^{84} +5.73777 q^{85} -4.21373 q^{86} +1.68408 q^{87} +3.73968 q^{88} -12.3400 q^{89} -2.03615 q^{90} +7.14866 q^{91} +6.00000 q^{92} -5.44980 q^{94} +6.58911 q^{95} -1.00000 q^{96} +4.67246 q^{97} +2.12007 q^{98} -3.73968 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 4 q^{6} + 7 q^{7} - 4 q^{8} + 4 q^{9} + 9 q^{11} + 4 q^{12} + 4 q^{13} - 7 q^{14} + 4 q^{16} + 6 q^{17} - 4 q^{18} + 4 q^{19} + 7 q^{21} - 9 q^{22} + 24 q^{23} - 4 q^{24}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 2.03615 0.910593 0.455296 0.890340i \(-0.349533\pi\)
0.455296 + 0.890340i \(0.349533\pi\)
\(6\) −1.00000 −0.408248
\(7\) 2.20906 0.834945 0.417473 0.908690i \(-0.362916\pi\)
0.417473 + 0.908690i \(0.362916\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −2.03615 −0.643886
\(11\) −3.73968 −1.12756 −0.563778 0.825926i \(-0.690653\pi\)
−0.563778 + 0.825926i \(0.690653\pi\)
\(12\) 1.00000 0.288675
\(13\) 3.23607 0.897524 0.448762 0.893651i \(-0.351865\pi\)
0.448762 + 0.893651i \(0.351865\pi\)
\(14\) −2.20906 −0.590395
\(15\) 2.03615 0.525731
\(16\) 1.00000 0.250000
\(17\) 2.81795 0.683454 0.341727 0.939799i \(-0.388988\pi\)
0.341727 + 0.939799i \(0.388988\pi\)
\(18\) −1.00000 −0.235702
\(19\) 3.23607 0.742405 0.371202 0.928552i \(-0.378946\pi\)
0.371202 + 0.928552i \(0.378946\pi\)
\(20\) 2.03615 0.455296
\(21\) 2.20906 0.482056
\(22\) 3.73968 0.797303
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) −1.00000 −0.204124
\(25\) −0.854102 −0.170820
\(26\) −3.23607 −0.634645
\(27\) 1.00000 0.192450
\(28\) 2.20906 0.417473
\(29\) 1.68408 0.312726 0.156363 0.987700i \(-0.450023\pi\)
0.156363 + 0.987700i \(0.450023\pi\)
\(30\) −2.03615 −0.371748
\(31\) 0 0
\(32\) −1.00000 −0.176777
\(33\) −3.73968 −0.650995
\(34\) −2.81795 −0.483275
\(35\) 4.49797 0.760295
\(36\) 1.00000 0.166667
\(37\) −9.56677 −1.57277 −0.786384 0.617738i \(-0.788049\pi\)
−0.786384 + 0.617738i \(0.788049\pi\)
\(38\) −3.23607 −0.524960
\(39\) 3.23607 0.518186
\(40\) −2.03615 −0.321943
\(41\) 4.84752 0.757056 0.378528 0.925590i \(-0.376430\pi\)
0.378528 + 0.925590i \(0.376430\pi\)
\(42\) −2.20906 −0.340865
\(43\) 4.21373 0.642587 0.321294 0.946980i \(-0.395882\pi\)
0.321294 + 0.946980i \(0.395882\pi\)
\(44\) −3.73968 −0.563778
\(45\) 2.03615 0.303531
\(46\) −6.00000 −0.884652
\(47\) 5.44980 0.794934 0.397467 0.917616i \(-0.369889\pi\)
0.397467 + 0.917616i \(0.369889\pi\)
\(48\) 1.00000 0.144338
\(49\) −2.12007 −0.302867
\(50\) 0.854102 0.120788
\(51\) 2.81795 0.394593
\(52\) 3.23607 0.448762
\(53\) 11.3187 1.55474 0.777370 0.629043i \(-0.216553\pi\)
0.777370 + 0.629043i \(0.216553\pi\)
\(54\) −1.00000 −0.136083
\(55\) −7.61454 −1.02674
\(56\) −2.20906 −0.295198
\(57\) 3.23607 0.428628
\(58\) −1.68408 −0.221130
\(59\) 4.79252 0.623933 0.311967 0.950093i \(-0.399012\pi\)
0.311967 + 0.950093i \(0.399012\pi\)
\(60\) 2.03615 0.262866
\(61\) −5.39577 −0.690858 −0.345429 0.938445i \(-0.612267\pi\)
−0.345429 + 0.938445i \(0.612267\pi\)
\(62\) 0 0
\(63\) 2.20906 0.278315
\(64\) 1.00000 0.125000
\(65\) 6.58911 0.817279
\(66\) 3.73968 0.460323
\(67\) −6.17100 −0.753908 −0.376954 0.926232i \(-0.623028\pi\)
−0.376954 + 0.926232i \(0.623028\pi\)
\(68\) 2.81795 0.341727
\(69\) 6.00000 0.722315
\(70\) −4.49797 −0.537610
\(71\) 11.5128 1.36631 0.683156 0.730272i \(-0.260607\pi\)
0.683156 + 0.730272i \(0.260607\pi\)
\(72\) −1.00000 −0.117851
\(73\) −9.45426 −1.10654 −0.553269 0.833003i \(-0.686620\pi\)
−0.553269 + 0.833003i \(0.686620\pi\)
\(74\) 9.56677 1.11211
\(75\) −0.854102 −0.0986232
\(76\) 3.23607 0.371202
\(77\) −8.26117 −0.941448
\(78\) −3.23607 −0.366413
\(79\) −17.2461 −1.94033 −0.970166 0.242440i \(-0.922052\pi\)
−0.970166 + 0.242440i \(0.922052\pi\)
\(80\) 2.03615 0.227648
\(81\) 1.00000 0.111111
\(82\) −4.84752 −0.535319
\(83\) −10.4794 −1.15026 −0.575130 0.818062i \(-0.695048\pi\)
−0.575130 + 0.818062i \(0.695048\pi\)
\(84\) 2.20906 0.241028
\(85\) 5.73777 0.622349
\(86\) −4.21373 −0.454378
\(87\) 1.68408 0.180552
\(88\) 3.73968 0.398651
\(89\) −12.3400 −1.30804 −0.654021 0.756476i \(-0.726919\pi\)
−0.654021 + 0.756476i \(0.726919\pi\)
\(90\) −2.03615 −0.214629
\(91\) 7.14866 0.749383
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) −5.44980 −0.562103
\(95\) 6.58911 0.676029
\(96\) −1.00000 −0.102062
\(97\) 4.67246 0.474416 0.237208 0.971459i \(-0.423768\pi\)
0.237208 + 0.971459i \(0.423768\pi\)
\(98\) 2.12007 0.214159
\(99\) −3.73968 −0.375852
\(100\) −0.854102 −0.0854102
\(101\) −5.11718 −0.509179 −0.254589 0.967049i \(-0.581940\pi\)
−0.254589 + 0.967049i \(0.581940\pi\)
\(102\) −2.81795 −0.279019
\(103\) −1.60423 −0.158069 −0.0790346 0.996872i \(-0.525184\pi\)
−0.0790346 + 0.996872i \(0.525184\pi\)
\(104\) −3.23607 −0.317323
\(105\) 4.49797 0.438957
\(106\) −11.3187 −1.09937
\(107\) 12.9217 1.24919 0.624595 0.780949i \(-0.285264\pi\)
0.624595 + 0.780949i \(0.285264\pi\)
\(108\) 1.00000 0.0962250
\(109\) 13.6837 1.31067 0.655333 0.755340i \(-0.272528\pi\)
0.655333 + 0.755340i \(0.272528\pi\)
\(110\) 7.61454 0.726018
\(111\) −9.56677 −0.908038
\(112\) 2.20906 0.208736
\(113\) 7.19139 0.676509 0.338254 0.941055i \(-0.390164\pi\)
0.338254 + 0.941055i \(0.390164\pi\)
\(114\) −3.23607 −0.303086
\(115\) 12.2169 1.13923
\(116\) 1.68408 0.156363
\(117\) 3.23607 0.299175
\(118\) −4.79252 −0.441187
\(119\) 6.22502 0.570647
\(120\) −2.03615 −0.185874
\(121\) 2.98522 0.271383
\(122\) 5.39577 0.488510
\(123\) 4.84752 0.437086
\(124\) 0 0
\(125\) −11.9198 −1.06614
\(126\) −2.20906 −0.196798
\(127\) 16.3568 1.45143 0.725715 0.687996i \(-0.241509\pi\)
0.725715 + 0.687996i \(0.241509\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.21373 0.370998
\(130\) −6.58911 −0.577903
\(131\) −1.32794 −0.116023 −0.0580115 0.998316i \(-0.518476\pi\)
−0.0580115 + 0.998316i \(0.518476\pi\)
\(132\) −3.73968 −0.325497
\(133\) 7.14866 0.619867
\(134\) 6.17100 0.533093
\(135\) 2.03615 0.175244
\(136\) −2.81795 −0.241638
\(137\) 18.5262 1.58280 0.791398 0.611301i \(-0.209353\pi\)
0.791398 + 0.611301i \(0.209353\pi\)
\(138\) −6.00000 −0.510754
\(139\) −9.27880 −0.787017 −0.393509 0.919321i \(-0.628739\pi\)
−0.393509 + 0.919321i \(0.628739\pi\)
\(140\) 4.49797 0.380148
\(141\) 5.44980 0.458956
\(142\) −11.5128 −0.966129
\(143\) −12.1019 −1.01201
\(144\) 1.00000 0.0833333
\(145\) 3.42903 0.284766
\(146\) 9.45426 0.782440
\(147\) −2.12007 −0.174860
\(148\) −9.56677 −0.786384
\(149\) 16.6145 1.36112 0.680558 0.732694i \(-0.261737\pi\)
0.680558 + 0.732694i \(0.261737\pi\)
\(150\) 0.854102 0.0697371
\(151\) 14.2091 1.15632 0.578158 0.815925i \(-0.303772\pi\)
0.578158 + 0.815925i \(0.303772\pi\)
\(152\) −3.23607 −0.262480
\(153\) 2.81795 0.227818
\(154\) 8.26117 0.665704
\(155\) 0 0
\(156\) 3.23607 0.259093
\(157\) 11.9698 0.955292 0.477646 0.878552i \(-0.341490\pi\)
0.477646 + 0.878552i \(0.341490\pi\)
\(158\) 17.2461 1.37202
\(159\) 11.3187 0.897630
\(160\) −2.03615 −0.160972
\(161\) 13.2543 1.04459
\(162\) −1.00000 −0.0785674
\(163\) 17.4549 1.36717 0.683587 0.729869i \(-0.260419\pi\)
0.683587 + 0.729869i \(0.260419\pi\)
\(164\) 4.84752 0.378528
\(165\) −7.61454 −0.592791
\(166\) 10.4794 0.813356
\(167\) −3.24500 −0.251106 −0.125553 0.992087i \(-0.540070\pi\)
−0.125553 + 0.992087i \(0.540070\pi\)
\(168\) −2.20906 −0.170432
\(169\) −2.52786 −0.194451
\(170\) −5.73777 −0.440067
\(171\) 3.23607 0.247468
\(172\) 4.21373 0.321294
\(173\) −22.8810 −1.73961 −0.869805 0.493396i \(-0.835755\pi\)
−0.869805 + 0.493396i \(0.835755\pi\)
\(174\) −1.68408 −0.127670
\(175\) −1.88676 −0.142626
\(176\) −3.73968 −0.281889
\(177\) 4.79252 0.360228
\(178\) 12.3400 0.924925
\(179\) 7.67343 0.573539 0.286770 0.958000i \(-0.407419\pi\)
0.286770 + 0.958000i \(0.407419\pi\)
\(180\) 2.03615 0.151765
\(181\) 1.51893 0.112901 0.0564506 0.998405i \(-0.482022\pi\)
0.0564506 + 0.998405i \(0.482022\pi\)
\(182\) −7.14866 −0.529894
\(183\) −5.39577 −0.398867
\(184\) −6.00000 −0.442326
\(185\) −19.4794 −1.43215
\(186\) 0 0
\(187\) −10.5383 −0.770633
\(188\) 5.44980 0.397467
\(189\) 2.20906 0.160685
\(190\) −6.58911 −0.478024
\(191\) −19.2303 −1.39146 −0.695728 0.718306i \(-0.744918\pi\)
−0.695728 + 0.718306i \(0.744918\pi\)
\(192\) 1.00000 0.0721688
\(193\) 21.9927 1.58307 0.791534 0.611125i \(-0.209283\pi\)
0.791534 + 0.611125i \(0.209283\pi\)
\(194\) −4.67246 −0.335463
\(195\) 6.58911 0.471856
\(196\) −2.12007 −0.151433
\(197\) −3.81665 −0.271925 −0.135962 0.990714i \(-0.543413\pi\)
−0.135962 + 0.990714i \(0.543413\pi\)
\(198\) 3.73968 0.265768
\(199\) −23.8400 −1.68997 −0.844985 0.534790i \(-0.820391\pi\)
−0.844985 + 0.534790i \(0.820391\pi\)
\(200\) 0.854102 0.0603941
\(201\) −6.17100 −0.435269
\(202\) 5.11718 0.360044
\(203\) 3.72023 0.261109
\(204\) 2.81795 0.197296
\(205\) 9.87027 0.689370
\(206\) 1.60423 0.111772
\(207\) 6.00000 0.417029
\(208\) 3.23607 0.224381
\(209\) −12.1019 −0.837103
\(210\) −4.49797 −0.310389
\(211\) −3.93086 −0.270612 −0.135306 0.990804i \(-0.543202\pi\)
−0.135306 + 0.990804i \(0.543202\pi\)
\(212\) 11.3187 0.777370
\(213\) 11.5128 0.788841
\(214\) −12.9217 −0.883311
\(215\) 8.57977 0.585136
\(216\) −1.00000 −0.0680414
\(217\) 0 0
\(218\) −13.6837 −0.926780
\(219\) −9.45426 −0.638860
\(220\) −7.61454 −0.513372
\(221\) 9.11909 0.613416
\(222\) 9.56677 0.642080
\(223\) −22.4221 −1.50150 −0.750748 0.660588i \(-0.770307\pi\)
−0.750748 + 0.660588i \(0.770307\pi\)
\(224\) −2.20906 −0.147599
\(225\) −0.854102 −0.0569401
\(226\) −7.19139 −0.478364
\(227\) −25.0625 −1.66346 −0.831728 0.555183i \(-0.812648\pi\)
−0.831728 + 0.555183i \(0.812648\pi\)
\(228\) 3.23607 0.214314
\(229\) −15.9553 −1.05436 −0.527179 0.849755i \(-0.676750\pi\)
−0.527179 + 0.849755i \(0.676750\pi\)
\(230\) −12.2169 −0.805558
\(231\) −8.26117 −0.543545
\(232\) −1.68408 −0.110565
\(233\) 24.6280 1.61344 0.806718 0.590937i \(-0.201242\pi\)
0.806718 + 0.590937i \(0.201242\pi\)
\(234\) −3.23607 −0.211548
\(235\) 11.0966 0.723862
\(236\) 4.79252 0.311967
\(237\) −17.2461 −1.12025
\(238\) −6.22502 −0.403508
\(239\) 4.15655 0.268865 0.134432 0.990923i \(-0.457079\pi\)
0.134432 + 0.990923i \(0.457079\pi\)
\(240\) 2.03615 0.131433
\(241\) −3.37283 −0.217263 −0.108632 0.994082i \(-0.534647\pi\)
−0.108632 + 0.994082i \(0.534647\pi\)
\(242\) −2.98522 −0.191897
\(243\) 1.00000 0.0641500
\(244\) −5.39577 −0.345429
\(245\) −4.31677 −0.275788
\(246\) −4.84752 −0.309067
\(247\) 10.4721 0.666326
\(248\) 0 0
\(249\) −10.4794 −0.664103
\(250\) 11.9198 0.753875
\(251\) 9.47660 0.598158 0.299079 0.954228i \(-0.403321\pi\)
0.299079 + 0.954228i \(0.403321\pi\)
\(252\) 2.20906 0.139158
\(253\) −22.4381 −1.41067
\(254\) −16.3568 −1.02632
\(255\) 5.73777 0.359313
\(256\) 1.00000 0.0625000
\(257\) 8.63184 0.538439 0.269220 0.963079i \(-0.413234\pi\)
0.269220 + 0.963079i \(0.413234\pi\)
\(258\) −4.21373 −0.262335
\(259\) −21.1335 −1.31317
\(260\) 6.58911 0.408639
\(261\) 1.68408 0.104242
\(262\) 1.32794 0.0820406
\(263\) −9.77116 −0.602515 −0.301258 0.953543i \(-0.597406\pi\)
−0.301258 + 0.953543i \(0.597406\pi\)
\(264\) 3.73968 0.230161
\(265\) 23.0465 1.41574
\(266\) −7.14866 −0.438312
\(267\) −12.3400 −0.755198
\(268\) −6.17100 −0.376954
\(269\) 10.7699 0.656649 0.328325 0.944565i \(-0.393516\pi\)
0.328325 + 0.944565i \(0.393516\pi\)
\(270\) −2.03615 −0.123916
\(271\) −14.1446 −0.859225 −0.429613 0.903013i \(-0.641350\pi\)
−0.429613 + 0.903013i \(0.641350\pi\)
\(272\) 2.81795 0.170864
\(273\) 7.14866 0.432656
\(274\) −18.5262 −1.11921
\(275\) 3.19407 0.192610
\(276\) 6.00000 0.361158
\(277\) 19.4755 1.17017 0.585086 0.810971i \(-0.301061\pi\)
0.585086 + 0.810971i \(0.301061\pi\)
\(278\) 9.27880 0.556505
\(279\) 0 0
\(280\) −4.49797 −0.268805
\(281\) 4.86068 0.289964 0.144982 0.989434i \(-0.453688\pi\)
0.144982 + 0.989434i \(0.453688\pi\)
\(282\) −5.44980 −0.324531
\(283\) 5.82713 0.346387 0.173194 0.984888i \(-0.444591\pi\)
0.173194 + 0.984888i \(0.444591\pi\)
\(284\) 11.5128 0.683156
\(285\) 6.58911 0.390305
\(286\) 12.1019 0.715598
\(287\) 10.7085 0.632100
\(288\) −1.00000 −0.0589256
\(289\) −9.05913 −0.532890
\(290\) −3.42903 −0.201360
\(291\) 4.67246 0.273904
\(292\) −9.45426 −0.553269
\(293\) 6.65613 0.388856 0.194428 0.980917i \(-0.437715\pi\)
0.194428 + 0.980917i \(0.437715\pi\)
\(294\) 2.12007 0.123645
\(295\) 9.75829 0.568149
\(296\) 9.56677 0.556057
\(297\) −3.73968 −0.216998
\(298\) −16.6145 −0.962455
\(299\) 19.4164 1.12288
\(300\) −0.854102 −0.0493116
\(301\) 9.30836 0.536525
\(302\) −14.2091 −0.817639
\(303\) −5.11718 −0.293974
\(304\) 3.23607 0.185601
\(305\) −10.9866 −0.629090
\(306\) −2.81795 −0.161092
\(307\) −25.1002 −1.43254 −0.716271 0.697822i \(-0.754152\pi\)
−0.716271 + 0.697822i \(0.754152\pi\)
\(308\) −8.26117 −0.470724
\(309\) −1.60423 −0.0912613
\(310\) 0 0
\(311\) −11.0255 −0.625199 −0.312599 0.949885i \(-0.601200\pi\)
−0.312599 + 0.949885i \(0.601200\pi\)
\(312\) −3.23607 −0.183206
\(313\) 10.4976 0.593361 0.296681 0.954977i \(-0.404120\pi\)
0.296681 + 0.954977i \(0.404120\pi\)
\(314\) −11.9698 −0.675493
\(315\) 4.49797 0.253432
\(316\) −17.2461 −0.970166
\(317\) −21.4030 −1.20211 −0.601056 0.799207i \(-0.705253\pi\)
−0.601056 + 0.799207i \(0.705253\pi\)
\(318\) −11.3187 −0.634720
\(319\) −6.29792 −0.352616
\(320\) 2.03615 0.113824
\(321\) 12.9217 0.721220
\(322\) −13.2543 −0.738636
\(323\) 9.11909 0.507400
\(324\) 1.00000 0.0555556
\(325\) −2.76393 −0.153315
\(326\) −17.4549 −0.966738
\(327\) 13.6837 0.756713
\(328\) −4.84752 −0.267660
\(329\) 12.0389 0.663726
\(330\) 7.61454 0.419167
\(331\) −32.7003 −1.79737 −0.898686 0.438593i \(-0.855477\pi\)
−0.898686 + 0.438593i \(0.855477\pi\)
\(332\) −10.4794 −0.575130
\(333\) −9.56677 −0.524256
\(334\) 3.24500 0.177559
\(335\) −12.5651 −0.686503
\(336\) 2.20906 0.120514
\(337\) −17.9890 −0.979921 −0.489960 0.871745i \(-0.662989\pi\)
−0.489960 + 0.871745i \(0.662989\pi\)
\(338\) 2.52786 0.137498
\(339\) 7.19139 0.390583
\(340\) 5.73777 0.311174
\(341\) 0 0
\(342\) −3.23607 −0.174987
\(343\) −20.1467 −1.08782
\(344\) −4.21373 −0.227189
\(345\) 12.2169 0.657735
\(346\) 22.8810 1.23009
\(347\) 24.7050 1.32623 0.663117 0.748516i \(-0.269233\pi\)
0.663117 + 0.748516i \(0.269233\pi\)
\(348\) 1.68408 0.0902761
\(349\) 34.5406 1.84892 0.924458 0.381283i \(-0.124518\pi\)
0.924458 + 0.381283i \(0.124518\pi\)
\(350\) 1.88676 0.100852
\(351\) 3.23607 0.172729
\(352\) 3.73968 0.199326
\(353\) 24.5891 1.30875 0.654373 0.756172i \(-0.272933\pi\)
0.654373 + 0.756172i \(0.272933\pi\)
\(354\) −4.79252 −0.254720
\(355\) 23.4417 1.24415
\(356\) −12.3400 −0.654021
\(357\) 6.22502 0.329463
\(358\) −7.67343 −0.405553
\(359\) −21.4460 −1.13188 −0.565938 0.824448i \(-0.691486\pi\)
−0.565938 + 0.824448i \(0.691486\pi\)
\(360\) −2.03615 −0.107314
\(361\) −8.52786 −0.448835
\(362\) −1.51893 −0.0798333
\(363\) 2.98522 0.156683
\(364\) 7.14866 0.374692
\(365\) −19.2503 −1.00761
\(366\) 5.39577 0.282042
\(367\) −8.78708 −0.458682 −0.229341 0.973346i \(-0.573657\pi\)
−0.229341 + 0.973346i \(0.573657\pi\)
\(368\) 6.00000 0.312772
\(369\) 4.84752 0.252352
\(370\) 19.4794 1.01268
\(371\) 25.0036 1.29812
\(372\) 0 0
\(373\) 23.0034 1.19107 0.595536 0.803329i \(-0.296940\pi\)
0.595536 + 0.803329i \(0.296940\pi\)
\(374\) 10.5383 0.544920
\(375\) −11.9198 −0.615537
\(376\) −5.44980 −0.281052
\(377\) 5.44980 0.280679
\(378\) −2.20906 −0.113622
\(379\) 3.79943 0.195164 0.0975819 0.995227i \(-0.468889\pi\)
0.0975819 + 0.995227i \(0.468889\pi\)
\(380\) 6.58911 0.338014
\(381\) 16.3568 0.837983
\(382\) 19.2303 0.983907
\(383\) −2.81795 −0.143991 −0.0719954 0.997405i \(-0.522937\pi\)
−0.0719954 + 0.997405i \(0.522937\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −16.8210 −0.857276
\(386\) −21.9927 −1.11940
\(387\) 4.21373 0.214196
\(388\) 4.67246 0.237208
\(389\) −6.53956 −0.331569 −0.165784 0.986162i \(-0.553016\pi\)
−0.165784 + 0.986162i \(0.553016\pi\)
\(390\) −6.58911 −0.333653
\(391\) 16.9077 0.855060
\(392\) 2.12007 0.107080
\(393\) −1.32794 −0.0669859
\(394\) 3.81665 0.192280
\(395\) −35.1155 −1.76685
\(396\) −3.73968 −0.187926
\(397\) 33.9872 1.70577 0.852886 0.522098i \(-0.174850\pi\)
0.852886 + 0.522098i \(0.174850\pi\)
\(398\) 23.8400 1.19499
\(399\) 7.14866 0.357881
\(400\) −0.854102 −0.0427051
\(401\) 11.5757 0.578063 0.289032 0.957320i \(-0.406667\pi\)
0.289032 + 0.957320i \(0.406667\pi\)
\(402\) 6.17100 0.307781
\(403\) 0 0
\(404\) −5.11718 −0.254589
\(405\) 2.03615 0.101177
\(406\) −3.72023 −0.184632
\(407\) 35.7767 1.77338
\(408\) −2.81795 −0.139510
\(409\) 11.4016 0.563774 0.281887 0.959448i \(-0.409040\pi\)
0.281887 + 0.959448i \(0.409040\pi\)
\(410\) −9.87027 −0.487458
\(411\) 18.5262 0.913828
\(412\) −1.60423 −0.0790346
\(413\) 10.5870 0.520950
\(414\) −6.00000 −0.294884
\(415\) −21.3375 −1.04742
\(416\) −3.23607 −0.158661
\(417\) −9.27880 −0.454385
\(418\) 12.1019 0.591921
\(419\) −29.2886 −1.43084 −0.715420 0.698694i \(-0.753765\pi\)
−0.715420 + 0.698694i \(0.753765\pi\)
\(420\) 4.49797 0.219478
\(421\) 10.7508 0.523961 0.261980 0.965073i \(-0.415624\pi\)
0.261980 + 0.965073i \(0.415624\pi\)
\(422\) 3.93086 0.191351
\(423\) 5.44980 0.264978
\(424\) −11.3187 −0.549684
\(425\) −2.40682 −0.116748
\(426\) −11.5128 −0.557795
\(427\) −11.9196 −0.576828
\(428\) 12.9217 0.624595
\(429\) −12.1019 −0.584283
\(430\) −8.57977 −0.413753
\(431\) 2.47791 0.119357 0.0596783 0.998218i \(-0.480993\pi\)
0.0596783 + 0.998218i \(0.480993\pi\)
\(432\) 1.00000 0.0481125
\(433\) −16.7647 −0.805662 −0.402831 0.915274i \(-0.631974\pi\)
−0.402831 + 0.915274i \(0.631974\pi\)
\(434\) 0 0
\(435\) 3.42903 0.164410
\(436\) 13.6837 0.655333
\(437\) 19.4164 0.928813
\(438\) 9.45426 0.451742
\(439\) 5.92185 0.282635 0.141317 0.989964i \(-0.454866\pi\)
0.141317 + 0.989964i \(0.454866\pi\)
\(440\) 7.61454 0.363009
\(441\) −2.12007 −0.100956
\(442\) −9.11909 −0.433751
\(443\) −18.0885 −0.859409 −0.429704 0.902970i \(-0.641382\pi\)
−0.429704 + 0.902970i \(0.641382\pi\)
\(444\) −9.56677 −0.454019
\(445\) −25.1262 −1.19109
\(446\) 22.4221 1.06172
\(447\) 16.6145 0.785841
\(448\) 2.20906 0.104368
\(449\) −22.8475 −1.07824 −0.539121 0.842229i \(-0.681243\pi\)
−0.539121 + 0.842229i \(0.681243\pi\)
\(450\) 0.854102 0.0402628
\(451\) −18.1282 −0.853623
\(452\) 7.19139 0.338254
\(453\) 14.2091 0.667600
\(454\) 25.0625 1.17624
\(455\) 14.5557 0.682383
\(456\) −3.23607 −0.151543
\(457\) 40.3888 1.88931 0.944654 0.328069i \(-0.106398\pi\)
0.944654 + 0.328069i \(0.106398\pi\)
\(458\) 15.9553 0.745543
\(459\) 2.81795 0.131531
\(460\) 12.2169 0.569615
\(461\) −16.9546 −0.789654 −0.394827 0.918755i \(-0.629195\pi\)
−0.394827 + 0.918755i \(0.629195\pi\)
\(462\) 8.26117 0.384344
\(463\) −34.9904 −1.62614 −0.813071 0.582164i \(-0.802206\pi\)
−0.813071 + 0.582164i \(0.802206\pi\)
\(464\) 1.68408 0.0781814
\(465\) 0 0
\(466\) −24.6280 −1.14087
\(467\) 41.7085 1.93004 0.965020 0.262176i \(-0.0844401\pi\)
0.965020 + 0.262176i \(0.0844401\pi\)
\(468\) 3.23607 0.149587
\(469\) −13.6321 −0.629471
\(470\) −11.0966 −0.511847
\(471\) 11.9698 0.551538
\(472\) −4.79252 −0.220594
\(473\) −15.7580 −0.724554
\(474\) 17.2461 0.792138
\(475\) −2.76393 −0.126818
\(476\) 6.22502 0.285323
\(477\) 11.3187 0.518247
\(478\) −4.15655 −0.190116
\(479\) 1.36434 0.0623382 0.0311691 0.999514i \(-0.490077\pi\)
0.0311691 + 0.999514i \(0.490077\pi\)
\(480\) −2.03615 −0.0929370
\(481\) −30.9587 −1.41160
\(482\) 3.37283 0.153628
\(483\) 13.2543 0.603093
\(484\) 2.98522 0.135692
\(485\) 9.51381 0.432000
\(486\) −1.00000 −0.0453609
\(487\) −7.96832 −0.361079 −0.180539 0.983568i \(-0.557784\pi\)
−0.180539 + 0.983568i \(0.557784\pi\)
\(488\) 5.39577 0.244255
\(489\) 17.4549 0.789338
\(490\) 4.31677 0.195012
\(491\) −7.97068 −0.359712 −0.179856 0.983693i \(-0.557563\pi\)
−0.179856 + 0.983693i \(0.557563\pi\)
\(492\) 4.84752 0.218543
\(493\) 4.74566 0.213734
\(494\) −10.4721 −0.471164
\(495\) −7.61454 −0.342248
\(496\) 0 0
\(497\) 25.4323 1.14080
\(498\) 10.4794 0.469591
\(499\) 27.3981 1.22651 0.613254 0.789885i \(-0.289860\pi\)
0.613254 + 0.789885i \(0.289860\pi\)
\(500\) −11.9198 −0.533070
\(501\) −3.24500 −0.144976
\(502\) −9.47660 −0.422961
\(503\) 20.4085 0.909971 0.454985 0.890499i \(-0.349644\pi\)
0.454985 + 0.890499i \(0.349644\pi\)
\(504\) −2.20906 −0.0983992
\(505\) −10.4193 −0.463654
\(506\) 22.4381 0.997495
\(507\) −2.52786 −0.112266
\(508\) 16.3568 0.725715
\(509\) 5.55573 0.246253 0.123127 0.992391i \(-0.460708\pi\)
0.123127 + 0.992391i \(0.460708\pi\)
\(510\) −5.73777 −0.254073
\(511\) −20.8850 −0.923898
\(512\) −1.00000 −0.0441942
\(513\) 3.23607 0.142876
\(514\) −8.63184 −0.380734
\(515\) −3.26644 −0.143937
\(516\) 4.21373 0.185499
\(517\) −20.3805 −0.896333
\(518\) 21.1335 0.928555
\(519\) −22.8810 −1.00436
\(520\) −6.58911 −0.288952
\(521\) −6.52616 −0.285916 −0.142958 0.989729i \(-0.545661\pi\)
−0.142958 + 0.989729i \(0.545661\pi\)
\(522\) −1.68408 −0.0737102
\(523\) −0.748818 −0.0327435 −0.0163718 0.999866i \(-0.505212\pi\)
−0.0163718 + 0.999866i \(0.505212\pi\)
\(524\) −1.32794 −0.0580115
\(525\) −1.88676 −0.0823450
\(526\) 9.77116 0.426043
\(527\) 0 0
\(528\) −3.73968 −0.162749
\(529\) 13.0000 0.565217
\(530\) −23.0465 −1.00108
\(531\) 4.79252 0.207978
\(532\) 7.14866 0.309934
\(533\) 15.6869 0.679475
\(534\) 12.3400 0.534006
\(535\) 26.3105 1.13750
\(536\) 6.17100 0.266547
\(537\) 7.67343 0.331133
\(538\) −10.7699 −0.464321
\(539\) 7.92838 0.341499
\(540\) 2.03615 0.0876219
\(541\) 29.3888 1.26352 0.631761 0.775163i \(-0.282332\pi\)
0.631761 + 0.775163i \(0.282332\pi\)
\(542\) 14.1446 0.607564
\(543\) 1.51893 0.0651836
\(544\) −2.81795 −0.120819
\(545\) 27.8621 1.19348
\(546\) −7.14866 −0.305934
\(547\) −18.1578 −0.776373 −0.388187 0.921581i \(-0.626898\pi\)
−0.388187 + 0.921581i \(0.626898\pi\)
\(548\) 18.5262 0.791398
\(549\) −5.39577 −0.230286
\(550\) −3.19407 −0.136196
\(551\) 5.44980 0.232169
\(552\) −6.00000 −0.255377
\(553\) −38.0975 −1.62007
\(554\) −19.4755 −0.827437
\(555\) −19.4794 −0.826853
\(556\) −9.27880 −0.393509
\(557\) 5.24309 0.222157 0.111078 0.993812i \(-0.464570\pi\)
0.111078 + 0.993812i \(0.464570\pi\)
\(558\) 0 0
\(559\) 13.6359 0.576737
\(560\) 4.49797 0.190074
\(561\) −10.5383 −0.444925
\(562\) −4.86068 −0.205036
\(563\) −5.00874 −0.211093 −0.105547 0.994414i \(-0.533659\pi\)
−0.105547 + 0.994414i \(0.533659\pi\)
\(564\) 5.44980 0.229478
\(565\) 14.6427 0.616024
\(566\) −5.82713 −0.244933
\(567\) 2.20906 0.0927717
\(568\) −11.5128 −0.483064
\(569\) −18.5760 −0.778744 −0.389372 0.921081i \(-0.627308\pi\)
−0.389372 + 0.921081i \(0.627308\pi\)
\(570\) −6.58911 −0.275988
\(571\) 27.6333 1.15642 0.578209 0.815889i \(-0.303752\pi\)
0.578209 + 0.815889i \(0.303752\pi\)
\(572\) −12.1019 −0.506004
\(573\) −19.2303 −0.803357
\(574\) −10.7085 −0.446962
\(575\) −5.12461 −0.213711
\(576\) 1.00000 0.0416667
\(577\) 42.9277 1.78710 0.893552 0.448961i \(-0.148206\pi\)
0.893552 + 0.448961i \(0.148206\pi\)
\(578\) 9.05913 0.376810
\(579\) 21.9927 0.913985
\(580\) 3.42903 0.142383
\(581\) −23.1495 −0.960403
\(582\) −4.67246 −0.193680
\(583\) −42.3283 −1.75306
\(584\) 9.45426 0.391220
\(585\) 6.58911 0.272426
\(586\) −6.65613 −0.274962
\(587\) 17.1627 0.708379 0.354190 0.935174i \(-0.384757\pi\)
0.354190 + 0.935174i \(0.384757\pi\)
\(588\) −2.12007 −0.0874301
\(589\) 0 0
\(590\) −9.75829 −0.401742
\(591\) −3.81665 −0.156996
\(592\) −9.56677 −0.393192
\(593\) 12.3319 0.506411 0.253205 0.967413i \(-0.418515\pi\)
0.253205 + 0.967413i \(0.418515\pi\)
\(594\) 3.73968 0.153441
\(595\) 12.6751 0.519627
\(596\) 16.6145 0.680558
\(597\) −23.8400 −0.975705
\(598\) −19.4164 −0.793996
\(599\) −12.1408 −0.496058 −0.248029 0.968753i \(-0.579783\pi\)
−0.248029 + 0.968753i \(0.579783\pi\)
\(600\) 0.854102 0.0348686
\(601\) −37.4721 −1.52852 −0.764260 0.644908i \(-0.776896\pi\)
−0.764260 + 0.644908i \(0.776896\pi\)
\(602\) −9.30836 −0.379381
\(603\) −6.17100 −0.251303
\(604\) 14.2091 0.578158
\(605\) 6.07834 0.247120
\(606\) 5.11718 0.207871
\(607\) −12.7319 −0.516770 −0.258385 0.966042i \(-0.583190\pi\)
−0.258385 + 0.966042i \(0.583190\pi\)
\(608\) −3.23607 −0.131240
\(609\) 3.72023 0.150751
\(610\) 10.9866 0.444834
\(611\) 17.6359 0.713472
\(612\) 2.81795 0.113909
\(613\) 9.66311 0.390290 0.195145 0.980774i \(-0.437482\pi\)
0.195145 + 0.980774i \(0.437482\pi\)
\(614\) 25.1002 1.01296
\(615\) 9.87027 0.398008
\(616\) 8.26117 0.332852
\(617\) 49.1279 1.97781 0.988907 0.148539i \(-0.0474571\pi\)
0.988907 + 0.148539i \(0.0474571\pi\)
\(618\) 1.60423 0.0645315
\(619\) −4.07034 −0.163601 −0.0818004 0.996649i \(-0.526067\pi\)
−0.0818004 + 0.996649i \(0.526067\pi\)
\(620\) 0 0
\(621\) 6.00000 0.240772
\(622\) 11.0255 0.442082
\(623\) −27.2599 −1.09214
\(624\) 3.23607 0.129546
\(625\) −20.0000 −0.800000
\(626\) −10.4976 −0.419570
\(627\) −12.1019 −0.483302
\(628\) 11.9698 0.477646
\(629\) −26.9587 −1.07491
\(630\) −4.49797 −0.179203
\(631\) 45.4017 1.80741 0.903707 0.428151i \(-0.140835\pi\)
0.903707 + 0.428151i \(0.140835\pi\)
\(632\) 17.2461 0.686011
\(633\) −3.93086 −0.156238
\(634\) 21.4030 0.850022
\(635\) 33.3048 1.32166
\(636\) 11.3187 0.448815
\(637\) −6.86068 −0.271830
\(638\) 6.29792 0.249337
\(639\) 11.5128 0.455437
\(640\) −2.03615 −0.0804858
\(641\) 0.998546 0.0394402 0.0197201 0.999806i \(-0.493722\pi\)
0.0197201 + 0.999806i \(0.493722\pi\)
\(642\) −12.9217 −0.509980
\(643\) 22.3754 0.882399 0.441200 0.897409i \(-0.354553\pi\)
0.441200 + 0.897409i \(0.354553\pi\)
\(644\) 13.2543 0.522294
\(645\) 8.57977 0.337828
\(646\) −9.11909 −0.358786
\(647\) 22.2760 0.875761 0.437880 0.899033i \(-0.355729\pi\)
0.437880 + 0.899033i \(0.355729\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −17.9225 −0.703520
\(650\) 2.76393 0.108410
\(651\) 0 0
\(652\) 17.4549 0.683587
\(653\) 4.48863 0.175654 0.0878269 0.996136i \(-0.472008\pi\)
0.0878269 + 0.996136i \(0.472008\pi\)
\(654\) −13.6837 −0.535077
\(655\) −2.70389 −0.105650
\(656\) 4.84752 0.189264
\(657\) −9.45426 −0.368846
\(658\) −12.0389 −0.469326
\(659\) 27.4646 1.06987 0.534934 0.844894i \(-0.320336\pi\)
0.534934 + 0.844894i \(0.320336\pi\)
\(660\) −7.61454 −0.296396
\(661\) 19.5189 0.759198 0.379599 0.925151i \(-0.376062\pi\)
0.379599 + 0.925151i \(0.376062\pi\)
\(662\) 32.7003 1.27093
\(663\) 9.11909 0.354156
\(664\) 10.4794 0.406678
\(665\) 14.5557 0.564447
\(666\) 9.56677 0.370705
\(667\) 10.1045 0.391247
\(668\) −3.24500 −0.125553
\(669\) −22.4221 −0.866889
\(670\) 12.5651 0.485431
\(671\) 20.1785 0.778981
\(672\) −2.20906 −0.0852162
\(673\) −23.3333 −0.899431 −0.449716 0.893172i \(-0.648475\pi\)
−0.449716 + 0.893172i \(0.648475\pi\)
\(674\) 17.9890 0.692909
\(675\) −0.854102 −0.0328744
\(676\) −2.52786 −0.0972255
\(677\) −7.56291 −0.290666 −0.145333 0.989383i \(-0.546425\pi\)
−0.145333 + 0.989383i \(0.546425\pi\)
\(678\) −7.19139 −0.276184
\(679\) 10.3217 0.396111
\(680\) −5.73777 −0.220033
\(681\) −25.0625 −0.960397
\(682\) 0 0
\(683\) −25.5985 −0.979498 −0.489749 0.871864i \(-0.662912\pi\)
−0.489749 + 0.871864i \(0.662912\pi\)
\(684\) 3.23607 0.123734
\(685\) 37.7220 1.44128
\(686\) 20.1467 0.769206
\(687\) −15.9553 −0.608733
\(688\) 4.21373 0.160647
\(689\) 36.6280 1.39542
\(690\) −12.2169 −0.465089
\(691\) −38.6425 −1.47003 −0.735015 0.678051i \(-0.762825\pi\)
−0.735015 + 0.678051i \(0.762825\pi\)
\(692\) −22.8810 −0.869805
\(693\) −8.26117 −0.313816
\(694\) −24.7050 −0.937788
\(695\) −18.8930 −0.716652
\(696\) −1.68408 −0.0638349
\(697\) 13.6601 0.517413
\(698\) −34.5406 −1.30738
\(699\) 24.6280 0.931517
\(700\) −1.88676 −0.0713128
\(701\) −17.9198 −0.676822 −0.338411 0.940998i \(-0.609889\pi\)
−0.338411 + 0.940998i \(0.609889\pi\)
\(702\) −3.23607 −0.122138
\(703\) −30.9587 −1.16763
\(704\) −3.73968 −0.140945
\(705\) 11.0966 0.417922
\(706\) −24.5891 −0.925423
\(707\) −11.3041 −0.425136
\(708\) 4.79252 0.180114
\(709\) −29.6053 −1.11185 −0.555925 0.831233i \(-0.687636\pi\)
−0.555925 + 0.831233i \(0.687636\pi\)
\(710\) −23.4417 −0.879750
\(711\) −17.2461 −0.646778
\(712\) 12.3400 0.462463
\(713\) 0 0
\(714\) −6.22502 −0.232966
\(715\) −24.6412 −0.921528
\(716\) 7.67343 0.286770
\(717\) 4.15655 0.155229
\(718\) 21.4460 0.800357
\(719\) 30.3188 1.13070 0.565349 0.824852i \(-0.308741\pi\)
0.565349 + 0.824852i \(0.308741\pi\)
\(720\) 2.03615 0.0758827
\(721\) −3.54383 −0.131979
\(722\) 8.52786 0.317374
\(723\) −3.37283 −0.125437
\(724\) 1.51893 0.0564506
\(725\) −1.43838 −0.0534199
\(726\) −2.98522 −0.110792
\(727\) −11.2147 −0.415931 −0.207966 0.978136i \(-0.566684\pi\)
−0.207966 + 0.978136i \(0.566684\pi\)
\(728\) −7.14866 −0.264947
\(729\) 1.00000 0.0370370
\(730\) 19.2503 0.712485
\(731\) 11.8741 0.439179
\(732\) −5.39577 −0.199434
\(733\) −46.6751 −1.72398 −0.861991 0.506923i \(-0.830783\pi\)
−0.861991 + 0.506923i \(0.830783\pi\)
\(734\) 8.78708 0.324337
\(735\) −4.31677 −0.159226
\(736\) −6.00000 −0.221163
\(737\) 23.0776 0.850073
\(738\) −4.84752 −0.178440
\(739\) −0.697157 −0.0256453 −0.0128227 0.999918i \(-0.504082\pi\)
−0.0128227 + 0.999918i \(0.504082\pi\)
\(740\) −19.4794 −0.716076
\(741\) 10.4721 0.384704
\(742\) −25.0036 −0.917911
\(743\) −22.1610 −0.813008 −0.406504 0.913649i \(-0.633252\pi\)
−0.406504 + 0.913649i \(0.633252\pi\)
\(744\) 0 0
\(745\) 33.8297 1.23942
\(746\) −23.0034 −0.842215
\(747\) −10.4794 −0.383420
\(748\) −10.5383 −0.385317
\(749\) 28.5448 1.04301
\(750\) 11.9198 0.435250
\(751\) 40.0793 1.46251 0.731257 0.682102i \(-0.238934\pi\)
0.731257 + 0.682102i \(0.238934\pi\)
\(752\) 5.44980 0.198734
\(753\) 9.47660 0.345347
\(754\) −5.44980 −0.198470
\(755\) 28.9317 1.05293
\(756\) 2.20906 0.0803426
\(757\) −20.0615 −0.729147 −0.364574 0.931175i \(-0.618785\pi\)
−0.364574 + 0.931175i \(0.618785\pi\)
\(758\) −3.79943 −0.138002
\(759\) −22.4381 −0.814451
\(760\) −6.58911 −0.239012
\(761\) −15.8812 −0.575691 −0.287846 0.957677i \(-0.592939\pi\)
−0.287846 + 0.957677i \(0.592939\pi\)
\(762\) −16.3568 −0.592544
\(763\) 30.2282 1.09433
\(764\) −19.2303 −0.695728
\(765\) 5.73777 0.207450
\(766\) 2.81795 0.101817
\(767\) 15.5089 0.559995
\(768\) 1.00000 0.0360844
\(769\) −15.5129 −0.559410 −0.279705 0.960086i \(-0.590237\pi\)
−0.279705 + 0.960086i \(0.590237\pi\)
\(770\) 16.8210 0.606185
\(771\) 8.63184 0.310868
\(772\) 21.9927 0.791534
\(773\) −4.91706 −0.176854 −0.0884271 0.996083i \(-0.528184\pi\)
−0.0884271 + 0.996083i \(0.528184\pi\)
\(774\) −4.21373 −0.151459
\(775\) 0 0
\(776\) −4.67246 −0.167731
\(777\) −21.1335 −0.758162
\(778\) 6.53956 0.234454
\(779\) 15.6869 0.562042
\(780\) 6.58911 0.235928
\(781\) −43.0540 −1.54059
\(782\) −16.9077 −0.604619
\(783\) 1.68408 0.0601841
\(784\) −2.12007 −0.0757167
\(785\) 24.3722 0.869882
\(786\) 1.32794 0.0473662
\(787\) 16.6159 0.592294 0.296147 0.955142i \(-0.404298\pi\)
0.296147 + 0.955142i \(0.404298\pi\)
\(788\) −3.81665 −0.135962
\(789\) −9.77116 −0.347862
\(790\) 35.1155 1.24935
\(791\) 15.8862 0.564848
\(792\) 3.73968 0.132884
\(793\) −17.4611 −0.620061
\(794\) −33.9872 −1.20616
\(795\) 23.0465 0.817375
\(796\) −23.8400 −0.844985
\(797\) −44.2038 −1.56578 −0.782890 0.622161i \(-0.786255\pi\)
−0.782890 + 0.622161i \(0.786255\pi\)
\(798\) −7.14866 −0.253060
\(799\) 15.3573 0.543301
\(800\) 0.854102 0.0301971
\(801\) −12.3400 −0.436014
\(802\) −11.5757 −0.408752
\(803\) 35.3559 1.24768
\(804\) −6.17100 −0.217634
\(805\) 26.9878 0.951195
\(806\) 0 0
\(807\) 10.7699 0.379117
\(808\) 5.11718 0.180022
\(809\) −43.2171 −1.51943 −0.759717 0.650254i \(-0.774662\pi\)
−0.759717 + 0.650254i \(0.774662\pi\)
\(810\) −2.03615 −0.0715429
\(811\) −5.47123 −0.192121 −0.0960604 0.995376i \(-0.530624\pi\)
−0.0960604 + 0.995376i \(0.530624\pi\)
\(812\) 3.72023 0.130554
\(813\) −14.1446 −0.496074
\(814\) −35.7767 −1.25397
\(815\) 35.5408 1.24494
\(816\) 2.81795 0.0986481
\(817\) 13.6359 0.477060
\(818\) −11.4016 −0.398648
\(819\) 7.14866 0.249794
\(820\) 9.87027 0.344685
\(821\) 24.0469 0.839241 0.419621 0.907700i \(-0.362163\pi\)
0.419621 + 0.907700i \(0.362163\pi\)
\(822\) −18.5262 −0.646174
\(823\) 18.7385 0.653183 0.326592 0.945166i \(-0.394100\pi\)
0.326592 + 0.945166i \(0.394100\pi\)
\(824\) 1.60423 0.0558859
\(825\) 3.19407 0.111203
\(826\) −10.5870 −0.368367
\(827\) 37.7526 1.31279 0.656394 0.754419i \(-0.272081\pi\)
0.656394 + 0.754419i \(0.272081\pi\)
\(828\) 6.00000 0.208514
\(829\) 3.39813 0.118022 0.0590110 0.998257i \(-0.481205\pi\)
0.0590110 + 0.998257i \(0.481205\pi\)
\(830\) 21.3375 0.740637
\(831\) 19.4755 0.675599
\(832\) 3.23607 0.112190
\(833\) −5.97425 −0.206996
\(834\) 9.27880 0.321298
\(835\) −6.60730 −0.228655
\(836\) −12.1019 −0.418552
\(837\) 0 0
\(838\) 29.2886 1.01176
\(839\) −54.9417 −1.89680 −0.948400 0.317077i \(-0.897299\pi\)
−0.948400 + 0.317077i \(0.897299\pi\)
\(840\) −4.49797 −0.155195
\(841\) −26.1639 −0.902203
\(842\) −10.7508 −0.370496
\(843\) 4.86068 0.167411
\(844\) −3.93086 −0.135306
\(845\) −5.14710 −0.177066
\(846\) −5.44980 −0.187368
\(847\) 6.59451 0.226590
\(848\) 11.3187 0.388685
\(849\) 5.82713 0.199987
\(850\) 2.40682 0.0825533
\(851\) −57.4006 −1.96767
\(852\) 11.5128 0.394420
\(853\) 10.4539 0.357933 0.178967 0.983855i \(-0.442725\pi\)
0.178967 + 0.983855i \(0.442725\pi\)
\(854\) 11.9196 0.407879
\(855\) 6.58911 0.225343
\(856\) −12.9217 −0.441656
\(857\) −39.1580 −1.33761 −0.668806 0.743437i \(-0.733194\pi\)
−0.668806 + 0.743437i \(0.733194\pi\)
\(858\) 12.1019 0.413151
\(859\) −20.2654 −0.691446 −0.345723 0.938337i \(-0.612366\pi\)
−0.345723 + 0.938337i \(0.612366\pi\)
\(860\) 8.57977 0.292568
\(861\) 10.7085 0.364943
\(862\) −2.47791 −0.0843979
\(863\) 10.4255 0.354888 0.177444 0.984131i \(-0.443217\pi\)
0.177444 + 0.984131i \(0.443217\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −46.5891 −1.58408
\(866\) 16.7647 0.569689
\(867\) −9.05913 −0.307664
\(868\) 0 0
\(869\) 64.4947 2.18783
\(870\) −3.42903 −0.116255
\(871\) −19.9698 −0.676650
\(872\) −13.6837 −0.463390
\(873\) 4.67246 0.158139
\(874\) −19.4164 −0.656770
\(875\) −26.3316 −0.890169
\(876\) −9.45426 −0.319430
\(877\) 35.0950 1.18508 0.592538 0.805543i \(-0.298126\pi\)
0.592538 + 0.805543i \(0.298126\pi\)
\(878\) −5.92185 −0.199853
\(879\) 6.65613 0.224506
\(880\) −7.61454 −0.256686
\(881\) 45.3634 1.52833 0.764166 0.645019i \(-0.223151\pi\)
0.764166 + 0.645019i \(0.223151\pi\)
\(882\) 2.12007 0.0713864
\(883\) −9.48252 −0.319112 −0.159556 0.987189i \(-0.551006\pi\)
−0.159556 + 0.987189i \(0.551006\pi\)
\(884\) 9.11909 0.306708
\(885\) 9.75829 0.328021
\(886\) 18.0885 0.607694
\(887\) −6.38814 −0.214493 −0.107246 0.994232i \(-0.534203\pi\)
−0.107246 + 0.994232i \(0.534203\pi\)
\(888\) 9.56677 0.321040
\(889\) 36.1331 1.21186
\(890\) 25.1262 0.842231
\(891\) −3.73968 −0.125284
\(892\) −22.4221 −0.750748
\(893\) 17.6359 0.590163
\(894\) −16.6145 −0.555673
\(895\) 15.6242 0.522261
\(896\) −2.20906 −0.0737994
\(897\) 19.4164 0.648295
\(898\) 22.8475 0.762432
\(899\) 0 0
\(900\) −0.854102 −0.0284701
\(901\) 31.8955 1.06259
\(902\) 18.1282 0.603603
\(903\) 9.30836 0.309763
\(904\) −7.19139 −0.239182
\(905\) 3.09277 0.102807
\(906\) −14.2091 −0.472064
\(907\) 1.52525 0.0506451 0.0253226 0.999679i \(-0.491939\pi\)
0.0253226 + 0.999679i \(0.491939\pi\)
\(908\) −25.0625 −0.831728
\(909\) −5.11718 −0.169726
\(910\) −14.5557 −0.482518
\(911\) −59.7073 −1.97819 −0.989095 0.147276i \(-0.952949\pi\)
−0.989095 + 0.147276i \(0.952949\pi\)
\(912\) 3.23607 0.107157
\(913\) 39.1895 1.29698
\(914\) −40.3888 −1.33594
\(915\) −10.9866 −0.363206
\(916\) −15.9553 −0.527179
\(917\) −2.93350 −0.0968728
\(918\) −2.81795 −0.0930063
\(919\) −18.9313 −0.624485 −0.312243 0.950002i \(-0.601080\pi\)
−0.312243 + 0.950002i \(0.601080\pi\)
\(920\) −12.2169 −0.402779
\(921\) −25.1002 −0.827078
\(922\) 16.9546 0.558370
\(923\) 37.2560 1.22630
\(924\) −8.26117 −0.271773
\(925\) 8.17100 0.268661
\(926\) 34.9904 1.14986
\(927\) −1.60423 −0.0526897
\(928\) −1.68408 −0.0552826
\(929\) 19.1180 0.627242 0.313621 0.949548i \(-0.398458\pi\)
0.313621 + 0.949548i \(0.398458\pi\)
\(930\) 0 0
\(931\) −6.86068 −0.224850
\(932\) 24.6280 0.806718
\(933\) −11.0255 −0.360959
\(934\) −41.7085 −1.36474
\(935\) −21.4574 −0.701733
\(936\) −3.23607 −0.105774
\(937\) −55.6822 −1.81906 −0.909529 0.415641i \(-0.863557\pi\)
−0.909529 + 0.415641i \(0.863557\pi\)
\(938\) 13.6321 0.445103
\(939\) 10.4976 0.342577
\(940\) 11.0966 0.361931
\(941\) 1.44315 0.0470452 0.0235226 0.999723i \(-0.492512\pi\)
0.0235226 + 0.999723i \(0.492512\pi\)
\(942\) −11.9698 −0.389996
\(943\) 29.0851 0.947142
\(944\) 4.79252 0.155983
\(945\) 4.49797 0.146319
\(946\) 15.7580 0.512337
\(947\) −32.9694 −1.07136 −0.535680 0.844421i \(-0.679945\pi\)
−0.535680 + 0.844421i \(0.679945\pi\)
\(948\) −17.2461 −0.560126
\(949\) −30.5946 −0.993144
\(950\) 2.76393 0.0896738
\(951\) −21.4030 −0.694040
\(952\) −6.22502 −0.201754
\(953\) −25.7433 −0.833907 −0.416954 0.908928i \(-0.636902\pi\)
−0.416954 + 0.908928i \(0.636902\pi\)
\(954\) −11.3187 −0.366456
\(955\) −39.1557 −1.26705
\(956\) 4.15655 0.134432
\(957\) −6.29792 −0.203583
\(958\) −1.36434 −0.0440798
\(959\) 40.9253 1.32155
\(960\) 2.03615 0.0657164
\(961\) 0 0
\(962\) 30.9587 0.998149
\(963\) 12.9217 0.416397
\(964\) −3.37283 −0.108632
\(965\) 44.7804 1.44153
\(966\) −13.2543 −0.426451
\(967\) −23.3862 −0.752049 −0.376024 0.926610i \(-0.622709\pi\)
−0.376024 + 0.926610i \(0.622709\pi\)
\(968\) −2.98522 −0.0959485
\(969\) 9.11909 0.292947
\(970\) −9.51381 −0.305470
\(971\) 15.4458 0.495679 0.247840 0.968801i \(-0.420279\pi\)
0.247840 + 0.968801i \(0.420279\pi\)
\(972\) 1.00000 0.0320750
\(973\) −20.4974 −0.657116
\(974\) 7.96832 0.255321
\(975\) −2.76393 −0.0885167
\(976\) −5.39577 −0.172714
\(977\) 40.3620 1.29129 0.645647 0.763636i \(-0.276588\pi\)
0.645647 + 0.763636i \(0.276588\pi\)
\(978\) −17.4549 −0.558146
\(979\) 46.1478 1.47489
\(980\) −4.31677 −0.137894
\(981\) 13.6837 0.436888
\(982\) 7.97068 0.254355
\(983\) −12.6040 −0.402004 −0.201002 0.979591i \(-0.564420\pi\)
−0.201002 + 0.979591i \(0.564420\pi\)
\(984\) −4.84752 −0.154533
\(985\) −7.77126 −0.247613
\(986\) −4.74566 −0.151133
\(987\) 12.0389 0.383203
\(988\) 10.4721 0.333163
\(989\) 25.2824 0.803932
\(990\) 7.61454 0.242006
\(991\) −3.96872 −0.126070 −0.0630352 0.998011i \(-0.520078\pi\)
−0.0630352 + 0.998011i \(0.520078\pi\)
\(992\) 0 0
\(993\) −32.7003 −1.03771
\(994\) −25.4323 −0.806664
\(995\) −48.5417 −1.53888
\(996\) −10.4794 −0.332051
\(997\) −58.1122 −1.84043 −0.920217 0.391409i \(-0.871988\pi\)
−0.920217 + 0.391409i \(0.871988\pi\)
\(998\) −27.3981 −0.867273
\(999\) −9.56677 −0.302679
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5766.2.a.ba.1.3 4
31.10 even 15 186.2.m.d.7.1 8
31.28 even 15 186.2.m.d.133.1 yes 8
31.30 odd 2 5766.2.a.x.1.3 4
93.41 odd 30 558.2.ba.b.379.1 8
93.59 odd 30 558.2.ba.b.505.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.m.d.7.1 8 31.10 even 15
186.2.m.d.133.1 yes 8 31.28 even 15
558.2.ba.b.379.1 8 93.41 odd 30
558.2.ba.b.505.1 8 93.59 odd 30
5766.2.a.x.1.3 4 31.30 odd 2
5766.2.a.ba.1.3 4 1.1 even 1 trivial