Properties

Label 576.4.k.c.145.3
Level $576$
Weight $4$
Character 576.145
Analytic conductor $33.985$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(145,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.145"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 145.3
Character \(\chi\) \(=\) 576.145
Dual form 576.4.k.c.433.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.32567 + 8.32567i) q^{5} +22.1273i q^{7} +(-45.7813 + 45.7813i) q^{11} +(-55.7501 - 55.7501i) q^{13} +17.9113 q^{17} +(-44.2772 - 44.2772i) q^{19} -95.3934i q^{23} -13.6336i q^{25} +(137.497 + 137.497i) q^{29} +183.312 q^{31} +(-184.224 - 184.224i) q^{35} +(252.877 - 252.877i) q^{37} +158.116i q^{41} +(7.72872 - 7.72872i) q^{43} -32.9266 q^{47} -146.615 q^{49} +(212.424 - 212.424i) q^{53} -762.320i q^{55} +(-117.228 + 117.228i) q^{59} +(-172.590 - 172.590i) q^{61} +928.314 q^{65} +(-605.683 - 605.683i) q^{67} -443.271i q^{71} -703.319i q^{73} +(-1013.01 - 1013.01i) q^{77} -705.456 q^{79} +(170.914 + 170.914i) q^{83} +(-149.123 + 149.123i) q^{85} +1557.12i q^{89} +(1233.60 - 1233.60i) q^{91} +737.275 q^{95} +892.331 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{19} - 744 q^{31} - 16 q^{37} + 376 q^{43} - 1176 q^{49} - 912 q^{61} - 1440 q^{67} + 328 q^{79} - 240 q^{85} + 104 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −8.32567 + 8.32567i −0.744671 + 0.744671i −0.973473 0.228802i \(-0.926519\pi\)
0.228802 + 0.973473i \(0.426519\pi\)
\(6\) 0 0
\(7\) 22.1273i 1.19476i 0.801959 + 0.597380i \(0.203791\pi\)
−0.801959 + 0.597380i \(0.796209\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −45.7813 + 45.7813i −1.25487 + 1.25487i −0.301360 + 0.953511i \(0.597440\pi\)
−0.953511 + 0.301360i \(0.902560\pi\)
\(12\) 0 0
\(13\) −55.7501 55.7501i −1.18941 1.18941i −0.977232 0.212175i \(-0.931945\pi\)
−0.212175 0.977232i \(-0.568055\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.9113 0.255537 0.127768 0.991804i \(-0.459219\pi\)
0.127768 + 0.991804i \(0.459219\pi\)
\(18\) 0 0
\(19\) −44.2772 44.2772i −0.534626 0.534626i 0.387320 0.921946i \(-0.373401\pi\)
−0.921946 + 0.387320i \(0.873401\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 95.3934i 0.864822i −0.901677 0.432411i \(-0.857663\pi\)
0.901677 0.432411i \(-0.142337\pi\)
\(24\) 0 0
\(25\) 13.6336i 0.109069i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 137.497 + 137.497i 0.880434 + 0.880434i 0.993579 0.113145i \(-0.0360924\pi\)
−0.113145 + 0.993579i \(0.536092\pi\)
\(30\) 0 0
\(31\) 183.312 1.06206 0.531029 0.847354i \(-0.321806\pi\)
0.531029 + 0.847354i \(0.321806\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −184.224 184.224i −0.889702 0.889702i
\(36\) 0 0
\(37\) 252.877 252.877i 1.12359 1.12359i 0.132390 0.991198i \(-0.457735\pi\)
0.991198 0.132390i \(-0.0422651\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 158.116i 0.602282i 0.953580 + 0.301141i \(0.0973674\pi\)
−0.953580 + 0.301141i \(0.902633\pi\)
\(42\) 0 0
\(43\) 7.72872 7.72872i 0.0274097 0.0274097i −0.693269 0.720679i \(-0.743830\pi\)
0.720679 + 0.693269i \(0.243830\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −32.9266 −0.102188 −0.0510941 0.998694i \(-0.516271\pi\)
−0.0510941 + 0.998694i \(0.516271\pi\)
\(48\) 0 0
\(49\) −146.615 −0.427450
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 212.424 212.424i 0.550542 0.550542i −0.376056 0.926597i \(-0.622720\pi\)
0.926597 + 0.376056i \(0.122720\pi\)
\(54\) 0 0
\(55\) 762.320i 1.86893i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −117.228 + 117.228i −0.258675 + 0.258675i −0.824515 0.565840i \(-0.808552\pi\)
0.565840 + 0.824515i \(0.308552\pi\)
\(60\) 0 0
\(61\) −172.590 172.590i −0.362261 0.362261i 0.502384 0.864645i \(-0.332456\pi\)
−0.864645 + 0.502384i \(0.832456\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 928.314 1.77143
\(66\) 0 0
\(67\) −605.683 605.683i −1.10442 1.10442i −0.993871 0.110547i \(-0.964740\pi\)
−0.110547 0.993871i \(-0.535260\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 443.271i 0.740937i −0.928845 0.370469i \(-0.879197\pi\)
0.928845 0.370469i \(-0.120803\pi\)
\(72\) 0 0
\(73\) 703.319i 1.12763i −0.825900 0.563817i \(-0.809332\pi\)
0.825900 0.563817i \(-0.190668\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1013.01 1013.01i −1.49927 1.49927i
\(78\) 0 0
\(79\) −705.456 −1.00468 −0.502342 0.864669i \(-0.667528\pi\)
−0.502342 + 0.864669i \(0.667528\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 170.914 + 170.914i 0.226027 + 0.226027i 0.811031 0.585004i \(-0.198907\pi\)
−0.585004 + 0.811031i \(0.698907\pi\)
\(84\) 0 0
\(85\) −149.123 + 149.123i −0.190291 + 0.190291i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1557.12i 1.85455i 0.374382 + 0.927275i \(0.377855\pi\)
−0.374382 + 0.927275i \(0.622145\pi\)
\(90\) 0 0
\(91\) 1233.60 1233.60i 1.42106 1.42106i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 737.275 0.796241
\(96\) 0 0
\(97\) 892.331 0.934046 0.467023 0.884245i \(-0.345327\pi\)
0.467023 + 0.884245i \(0.345327\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −473.141 + 473.141i −0.466132 + 0.466132i −0.900659 0.434527i \(-0.856916\pi\)
0.434527 + 0.900659i \(0.356916\pi\)
\(102\) 0 0
\(103\) 226.421i 0.216601i −0.994118 0.108300i \(-0.965459\pi\)
0.994118 0.108300i \(-0.0345409\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1226.93 + 1226.93i −1.10852 + 1.10852i −0.115173 + 0.993345i \(0.536742\pi\)
−0.993345 + 0.115173i \(0.963258\pi\)
\(108\) 0 0
\(109\) −726.070 726.070i −0.638026 0.638026i 0.312042 0.950068i \(-0.398987\pi\)
−0.950068 + 0.312042i \(0.898987\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1239.16 −1.03160 −0.515798 0.856710i \(-0.672504\pi\)
−0.515798 + 0.856710i \(0.672504\pi\)
\(114\) 0 0
\(115\) 794.214 + 794.214i 0.644007 + 0.644007i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 396.328i 0.305305i
\(120\) 0 0
\(121\) 2860.85i 2.14940i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −927.200 927.200i −0.663450 0.663450i
\(126\) 0 0
\(127\) 358.889 0.250758 0.125379 0.992109i \(-0.459985\pi\)
0.125379 + 0.992109i \(0.459985\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −33.2573 33.2573i −0.0221810 0.0221810i 0.695929 0.718110i \(-0.254993\pi\)
−0.718110 + 0.695929i \(0.754993\pi\)
\(132\) 0 0
\(133\) 979.734 979.734i 0.638749 0.638749i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1266.67i 0.789917i −0.918699 0.394959i \(-0.870759\pi\)
0.918699 0.394959i \(-0.129241\pi\)
\(138\) 0 0
\(139\) −947.159 + 947.159i −0.577964 + 0.577964i −0.934342 0.356378i \(-0.884012\pi\)
0.356378 + 0.934342i \(0.384012\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5104.62 2.98510
\(144\) 0 0
\(145\) −2289.51 −1.31127
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1432.23 1432.23i 0.787467 0.787467i −0.193611 0.981078i \(-0.562020\pi\)
0.981078 + 0.193611i \(0.0620200\pi\)
\(150\) 0 0
\(151\) 1445.01i 0.778763i −0.921077 0.389382i \(-0.872689\pi\)
0.921077 0.389382i \(-0.127311\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1526.19 + 1526.19i −0.790883 + 0.790883i
\(156\) 0 0
\(157\) 1073.11 + 1073.11i 0.545498 + 0.545498i 0.925136 0.379637i \(-0.123951\pi\)
−0.379637 + 0.925136i \(0.623951\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2110.79 1.03325
\(162\) 0 0
\(163\) −481.558 481.558i −0.231402 0.231402i 0.581876 0.813278i \(-0.302319\pi\)
−0.813278 + 0.581876i \(0.802319\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4153.21i 1.92446i −0.272236 0.962230i \(-0.587763\pi\)
0.272236 0.962230i \(-0.412237\pi\)
\(168\) 0 0
\(169\) 4019.14i 1.82938i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2892.19 2892.19i −1.27103 1.27103i −0.945546 0.325489i \(-0.894471\pi\)
−0.325489 0.945546i \(-0.605529\pi\)
\(174\) 0 0
\(175\) 301.674 0.130311
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 835.310 + 835.310i 0.348793 + 0.348793i 0.859660 0.510867i \(-0.170675\pi\)
−0.510867 + 0.859660i \(0.670675\pi\)
\(180\) 0 0
\(181\) −1014.37 + 1014.37i −0.416562 + 0.416562i −0.884017 0.467455i \(-0.845171\pi\)
0.467455 + 0.884017i \(0.345171\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4210.74i 1.67341i
\(186\) 0 0
\(187\) −820.002 + 820.002i −0.320666 + 0.320666i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −254.976 −0.0965937 −0.0482968 0.998833i \(-0.515379\pi\)
−0.0482968 + 0.998833i \(0.515379\pi\)
\(192\) 0 0
\(193\) 1997.33 0.744927 0.372463 0.928047i \(-0.378513\pi\)
0.372463 + 0.928047i \(0.378513\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1178.13 + 1178.13i −0.426081 + 0.426081i −0.887291 0.461210i \(-0.847415\pi\)
0.461210 + 0.887291i \(0.347415\pi\)
\(198\) 0 0
\(199\) 3489.67i 1.24310i 0.783375 + 0.621549i \(0.213496\pi\)
−0.783375 + 0.621549i \(0.786504\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3042.43 + 3042.43i −1.05191 + 1.05191i
\(204\) 0 0
\(205\) −1316.42 1316.42i −0.448501 0.448501i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4054.14 1.34177
\(210\) 0 0
\(211\) −2270.28 2270.28i −0.740723 0.740723i 0.231994 0.972717i \(-0.425475\pi\)
−0.972717 + 0.231994i \(0.925475\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 128.694i 0.0408224i
\(216\) 0 0
\(217\) 4056.19i 1.26890i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −998.556 998.556i −0.303937 0.303937i
\(222\) 0 0
\(223\) 1179.40 0.354164 0.177082 0.984196i \(-0.443334\pi\)
0.177082 + 0.984196i \(0.443334\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4086.16 4086.16i −1.19475 1.19475i −0.975718 0.219031i \(-0.929710\pi\)
−0.219031 0.975718i \(-0.570290\pi\)
\(228\) 0 0
\(229\) −119.993 + 119.993i −0.0346262 + 0.0346262i −0.724208 0.689582i \(-0.757794\pi\)
0.689582 + 0.724208i \(0.257794\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6392.44i 1.79735i 0.438615 + 0.898675i \(0.355469\pi\)
−0.438615 + 0.898675i \(0.644531\pi\)
\(234\) 0 0
\(235\) 274.136 274.136i 0.0760965 0.0760965i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1600.52 −0.433176 −0.216588 0.976263i \(-0.569493\pi\)
−0.216588 + 0.976263i \(0.569493\pi\)
\(240\) 0 0
\(241\) 2393.18 0.639660 0.319830 0.947475i \(-0.396374\pi\)
0.319830 + 0.947475i \(0.396374\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1220.67 1220.67i 0.318310 0.318310i
\(246\) 0 0
\(247\) 4936.92i 1.27178i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2510.04 2510.04i 0.631203 0.631203i −0.317166 0.948370i \(-0.602731\pi\)
0.948370 + 0.317166i \(0.102731\pi\)
\(252\) 0 0
\(253\) 4367.23 + 4367.23i 1.08524 + 1.08524i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 73.9839 0.0179571 0.00897857 0.999960i \(-0.497142\pi\)
0.00897857 + 0.999960i \(0.497142\pi\)
\(258\) 0 0
\(259\) 5595.48 + 5595.48i 1.34242 + 1.34242i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1071.81i 0.251295i 0.992075 + 0.125648i \(0.0401008\pi\)
−0.992075 + 0.125648i \(0.959899\pi\)
\(264\) 0 0
\(265\) 3537.15i 0.819944i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1609.09 + 1609.09i 0.364715 + 0.364715i 0.865545 0.500831i \(-0.166972\pi\)
−0.500831 + 0.865545i \(0.666972\pi\)
\(270\) 0 0
\(271\) 2940.80 0.659192 0.329596 0.944122i \(-0.393087\pi\)
0.329596 + 0.944122i \(0.393087\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 624.163 + 624.163i 0.136867 + 0.136867i
\(276\) 0 0
\(277\) −3121.22 + 3121.22i −0.677026 + 0.677026i −0.959326 0.282300i \(-0.908903\pi\)
0.282300 + 0.959326i \(0.408903\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2063.45i 0.438062i −0.975718 0.219031i \(-0.929710\pi\)
0.975718 0.219031i \(-0.0702895\pi\)
\(282\) 0 0
\(283\) −4484.94 + 4484.94i −0.942056 + 0.942056i −0.998411 0.0563547i \(-0.982052\pi\)
0.0563547 + 0.998411i \(0.482052\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3498.67 −0.719582
\(288\) 0 0
\(289\) −4592.19 −0.934701
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3574.93 3574.93i 0.712798 0.712798i −0.254322 0.967120i \(-0.581852\pi\)
0.967120 + 0.254322i \(0.0818523\pi\)
\(294\) 0 0
\(295\) 1952.01i 0.385256i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5318.19 + 5318.19i −1.02863 + 1.02863i
\(300\) 0 0
\(301\) 171.015 + 171.015i 0.0327480 + 0.0327480i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2873.86 0.539530
\(306\) 0 0
\(307\) 2829.72 + 2829.72i 0.526060 + 0.526060i 0.919395 0.393335i \(-0.128679\pi\)
−0.393335 + 0.919395i \(0.628679\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2337.80i 0.426252i −0.977025 0.213126i \(-0.931636\pi\)
0.977025 0.213126i \(-0.0683644\pi\)
\(312\) 0 0
\(313\) 7096.67i 1.28156i −0.767726 0.640778i \(-0.778612\pi\)
0.767726 0.640778i \(-0.221388\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1067.67 1067.67i −0.189169 0.189169i 0.606168 0.795337i \(-0.292706\pi\)
−0.795337 + 0.606168i \(0.792706\pi\)
\(318\) 0 0
\(319\) −12589.6 −2.20966
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −793.062 793.062i −0.136617 0.136617i
\(324\) 0 0
\(325\) −760.074 + 760.074i −0.129727 + 0.129727i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 728.576i 0.122090i
\(330\) 0 0
\(331\) −893.933 + 893.933i −0.148444 + 0.148444i −0.777423 0.628979i \(-0.783473\pi\)
0.628979 + 0.777423i \(0.283473\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10085.4 1.64486
\(336\) 0 0
\(337\) −6414.33 −1.03683 −0.518414 0.855130i \(-0.673477\pi\)
−0.518414 + 0.855130i \(0.673477\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8392.25 + 8392.25i −1.33274 + 1.33274i
\(342\) 0 0
\(343\) 4345.45i 0.684059i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3075.69 3075.69i 0.475826 0.475826i −0.427968 0.903794i \(-0.640770\pi\)
0.903794 + 0.427968i \(0.140770\pi\)
\(348\) 0 0
\(349\) 318.660 + 318.660i 0.0488753 + 0.0488753i 0.731122 0.682247i \(-0.238997\pi\)
−0.682247 + 0.731122i \(0.738997\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3794.30 −0.572097 −0.286049 0.958215i \(-0.592342\pi\)
−0.286049 + 0.958215i \(0.592342\pi\)
\(354\) 0 0
\(355\) 3690.53 + 3690.53i 0.551754 + 0.551754i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10917.1i 1.60497i −0.596673 0.802485i \(-0.703511\pi\)
0.596673 0.802485i \(-0.296489\pi\)
\(360\) 0 0
\(361\) 2938.05i 0.428350i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5855.60 + 5855.60i 0.839716 + 0.839716i
\(366\) 0 0
\(367\) 9008.05 1.28124 0.640622 0.767857i \(-0.278677\pi\)
0.640622 + 0.767857i \(0.278677\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4700.36 + 4700.36i 0.657765 + 0.657765i
\(372\) 0 0
\(373\) −2003.29 + 2003.29i −0.278087 + 0.278087i −0.832345 0.554258i \(-0.813002\pi\)
0.554258 + 0.832345i \(0.313002\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15331.0i 2.09439i
\(378\) 0 0
\(379\) 7231.62 7231.62i 0.980114 0.980114i −0.0196920 0.999806i \(-0.506269\pi\)
0.999806 + 0.0196920i \(0.00626857\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 328.058 0.0437676 0.0218838 0.999761i \(-0.493034\pi\)
0.0218838 + 0.999761i \(0.493034\pi\)
\(384\) 0 0
\(385\) 16868.0 2.23292
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6549.83 6549.83i 0.853701 0.853701i −0.136886 0.990587i \(-0.543709\pi\)
0.990587 + 0.136886i \(0.0437093\pi\)
\(390\) 0 0
\(391\) 1708.62i 0.220994i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5873.40 5873.40i 0.748159 0.748159i
\(396\) 0 0
\(397\) 3107.99 + 3107.99i 0.392911 + 0.392911i 0.875724 0.482813i \(-0.160385\pi\)
−0.482813 + 0.875724i \(0.660385\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9538.29 −1.18783 −0.593915 0.804528i \(-0.702418\pi\)
−0.593915 + 0.804528i \(0.702418\pi\)
\(402\) 0 0
\(403\) −10219.7 10219.7i −1.26322 1.26322i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 23154.1i 2.81991i
\(408\) 0 0
\(409\) 10394.6i 1.25668i 0.777939 + 0.628339i \(0.216265\pi\)
−0.777939 + 0.628339i \(0.783735\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2593.94 2593.94i −0.309055 0.309055i
\(414\) 0 0
\(415\) −2845.94 −0.336631
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2148.02 + 2148.02i 0.250448 + 0.250448i 0.821154 0.570706i \(-0.193330\pi\)
−0.570706 + 0.821154i \(0.693330\pi\)
\(420\) 0 0
\(421\) 1345.70 1345.70i 0.155785 0.155785i −0.624911 0.780696i \(-0.714865\pi\)
0.780696 + 0.624911i \(0.214865\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 244.195i 0.0278711i
\(426\) 0 0
\(427\) 3818.95 3818.95i 0.432815 0.432815i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13119.7 −1.46625 −0.733123 0.680096i \(-0.761938\pi\)
−0.733123 + 0.680096i \(0.761938\pi\)
\(432\) 0 0
\(433\) 5191.00 0.576129 0.288064 0.957611i \(-0.406988\pi\)
0.288064 + 0.957611i \(0.406988\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4223.76 + 4223.76i −0.462356 + 0.462356i
\(438\) 0 0
\(439\) 14051.6i 1.52767i −0.645412 0.763835i \(-0.723314\pi\)
0.645412 0.763835i \(-0.276686\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4070.57 4070.57i 0.436566 0.436566i −0.454289 0.890855i \(-0.650106\pi\)
0.890855 + 0.454289i \(0.150106\pi\)
\(444\) 0 0
\(445\) −12964.1 12964.1i −1.38103 1.38103i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −18158.9 −1.90862 −0.954310 0.298817i \(-0.903408\pi\)
−0.954310 + 0.298817i \(0.903408\pi\)
\(450\) 0 0
\(451\) −7238.74 7238.74i −0.755785 0.755785i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 20541.0i 2.11644i
\(456\) 0 0
\(457\) 7489.80i 0.766648i −0.923614 0.383324i \(-0.874779\pi\)
0.923614 0.383324i \(-0.125221\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3672.25 + 3672.25i 0.371006 + 0.371006i 0.867844 0.496838i \(-0.165506\pi\)
−0.496838 + 0.867844i \(0.665506\pi\)
\(462\) 0 0
\(463\) −1134.54 −0.113880 −0.0569401 0.998378i \(-0.518134\pi\)
−0.0569401 + 0.998378i \(0.518134\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4263.91 + 4263.91i 0.422506 + 0.422506i 0.886066 0.463560i \(-0.153428\pi\)
−0.463560 + 0.886066i \(0.653428\pi\)
\(468\) 0 0
\(469\) 13402.1 13402.1i 1.31951 1.31951i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 707.661i 0.0687913i
\(474\) 0 0
\(475\) −603.658 + 603.658i −0.0583110 + 0.0583110i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −18470.1 −1.76184 −0.880920 0.473265i \(-0.843075\pi\)
−0.880920 + 0.473265i \(0.843075\pi\)
\(480\) 0 0
\(481\) −28195.8 −2.67281
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7429.25 + 7429.25i −0.695557 + 0.695557i
\(486\) 0 0
\(487\) 787.630i 0.0732873i 0.999328 + 0.0366437i \(0.0116667\pi\)
−0.999328 + 0.0366437i \(0.988333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13874.6 13874.6i 1.27526 1.27526i 0.331967 0.943291i \(-0.392288\pi\)
0.943291 0.331967i \(-0.107712\pi\)
\(492\) 0 0
\(493\) 2462.75 + 2462.75i 0.224983 + 0.224983i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9808.36 0.885242
\(498\) 0 0
\(499\) −4588.16 4588.16i −0.411612 0.411612i 0.470688 0.882300i \(-0.344006\pi\)
−0.882300 + 0.470688i \(0.844006\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13498.3i 1.19654i −0.801295 0.598270i \(-0.795855\pi\)
0.801295 0.598270i \(-0.204145\pi\)
\(504\) 0 0
\(505\) 7878.44i 0.694230i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4751.73 + 4751.73i 0.413785 + 0.413785i 0.883055 0.469270i \(-0.155483\pi\)
−0.469270 + 0.883055i \(0.655483\pi\)
\(510\) 0 0
\(511\) 15562.5 1.34725
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1885.10 + 1885.10i 0.161296 + 0.161296i
\(516\) 0 0
\(517\) 1507.42 1507.42i 0.128233 0.128233i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8402.51i 0.706566i −0.935517 0.353283i \(-0.885065\pi\)
0.935517 0.353283i \(-0.114935\pi\)
\(522\) 0 0
\(523\) −14961.2 + 14961.2i −1.25087 + 1.25087i −0.295544 + 0.955329i \(0.595501\pi\)
−0.955329 + 0.295544i \(0.904499\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3283.35 0.271395
\(528\) 0 0
\(529\) 3067.09 0.252083
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8814.97 8814.97i 0.716358 0.716358i
\(534\) 0 0
\(535\) 20430.0i 1.65096i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6712.24 6712.24i 0.536394 0.536394i
\(540\) 0 0
\(541\) −7348.43 7348.43i −0.583981 0.583981i 0.352014 0.935995i \(-0.385497\pi\)
−0.935995 + 0.352014i \(0.885497\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12090.0 0.950239
\(546\) 0 0
\(547\) 8665.46 + 8665.46i 0.677346 + 0.677346i 0.959399 0.282053i \(-0.0910154\pi\)
−0.282053 + 0.959399i \(0.591015\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12176.0i 0.941406i
\(552\) 0 0
\(553\) 15609.8i 1.20036i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9038.10 + 9038.10i 0.687534 + 0.687534i 0.961686 0.274152i \(-0.0883972\pi\)
−0.274152 + 0.961686i \(0.588397\pi\)
\(558\) 0 0
\(559\) −861.753 −0.0652027
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −11175.1 11175.1i −0.836545 0.836545i 0.151857 0.988402i \(-0.451475\pi\)
−0.988402 + 0.151857i \(0.951475\pi\)
\(564\) 0 0
\(565\) 10316.8 10316.8i 0.768199 0.768199i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12466.3i 0.918476i −0.888313 0.459238i \(-0.848123\pi\)
0.888313 0.459238i \(-0.151877\pi\)
\(570\) 0 0
\(571\) 16591.8 16591.8i 1.21602 1.21602i 0.247000 0.969016i \(-0.420555\pi\)
0.969016 0.247000i \(-0.0794446\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1300.55 −0.0943250
\(576\) 0 0
\(577\) 7047.00 0.508441 0.254221 0.967146i \(-0.418181\pi\)
0.254221 + 0.967146i \(0.418181\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3781.85 + 3781.85i −0.270048 + 0.270048i
\(582\) 0 0
\(583\) 19450.1i 1.38172i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −627.982 + 627.982i −0.0441560 + 0.0441560i −0.728840 0.684684i \(-0.759940\pi\)
0.684684 + 0.728840i \(0.259940\pi\)
\(588\) 0 0
\(589\) −8116.54 8116.54i −0.567804 0.567804i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3818.26 −0.264413 −0.132207 0.991222i \(-0.542206\pi\)
−0.132207 + 0.991222i \(0.542206\pi\)
\(594\) 0 0
\(595\) −3299.69 3299.69i −0.227352 0.227352i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8991.13i 0.613301i 0.951822 + 0.306651i \(0.0992083\pi\)
−0.951822 + 0.306651i \(0.900792\pi\)
\(600\) 0 0
\(601\) 7689.90i 0.521926i 0.965349 + 0.260963i \(0.0840400\pi\)
−0.965349 + 0.260963i \(0.915960\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23818.5 + 23818.5i 1.60059 + 1.60059i
\(606\) 0 0
\(607\) −12759.4 −0.853190 −0.426595 0.904443i \(-0.640287\pi\)
−0.426595 + 0.904443i \(0.640287\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1835.66 + 1835.66i 0.121543 + 0.121543i
\(612\) 0 0
\(613\) −8199.74 + 8199.74i −0.540268 + 0.540268i −0.923608 0.383339i \(-0.874774\pi\)
0.383339 + 0.923608i \(0.374774\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13433.2i 0.876501i −0.898853 0.438250i \(-0.855598\pi\)
0.898853 0.438250i \(-0.144402\pi\)
\(618\) 0 0
\(619\) 10658.0 10658.0i 0.692055 0.692055i −0.270628 0.962684i \(-0.587231\pi\)
0.962684 + 0.270628i \(0.0872315\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −34454.9 −2.21574
\(624\) 0 0
\(625\) 17143.3 1.09717
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4529.35 4529.35i 0.287118 0.287118i
\(630\) 0 0
\(631\) 11689.5i 0.737483i −0.929532 0.368741i \(-0.879789\pi\)
0.929532 0.368741i \(-0.120211\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2988.00 + 2988.00i −0.186732 + 0.186732i
\(636\) 0 0
\(637\) 8173.82 + 8173.82i 0.508412 + 0.508412i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −20613.2 −1.27016 −0.635080 0.772447i \(-0.719033\pi\)
−0.635080 + 0.772447i \(0.719033\pi\)
\(642\) 0 0
\(643\) −8915.69 8915.69i −0.546813 0.546813i 0.378705 0.925517i \(-0.376370\pi\)
−0.925517 + 0.378705i \(0.876370\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17814.8i 1.08249i 0.840864 + 0.541246i \(0.182047\pi\)
−0.840864 + 0.541246i \(0.817953\pi\)
\(648\) 0 0
\(649\) 10733.7i 0.649208i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8326.29 + 8326.29i 0.498978 + 0.498978i 0.911120 0.412142i \(-0.135219\pi\)
−0.412142 + 0.911120i \(0.635219\pi\)
\(654\) 0 0
\(655\) 553.779 0.0330350
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3581.86 3581.86i −0.211729 0.211729i 0.593273 0.805002i \(-0.297836\pi\)
−0.805002 + 0.593273i \(0.797836\pi\)
\(660\) 0 0
\(661\) −18328.8 + 18328.8i −1.07853 + 1.07853i −0.0818862 + 0.996642i \(0.526094\pi\)
−0.996642 + 0.0818862i \(0.973906\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16313.9i 0.951316i
\(666\) 0 0
\(667\) 13116.3 13116.3i 0.761418 0.761418i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 15802.8 0.909181
\(672\) 0 0
\(673\) −3149.76 −0.180408 −0.0902038 0.995923i \(-0.528752\pi\)
−0.0902038 + 0.995923i \(0.528752\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5943.48 + 5943.48i −0.337410 + 0.337410i −0.855392 0.517982i \(-0.826684\pi\)
0.517982 + 0.855392i \(0.326684\pi\)
\(678\) 0 0
\(679\) 19744.8i 1.11596i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1617.17 + 1617.17i −0.0905991 + 0.0905991i −0.750954 0.660355i \(-0.770406\pi\)
0.660355 + 0.750954i \(0.270406\pi\)
\(684\) 0 0
\(685\) 10545.9 + 10545.9i 0.588228 + 0.588228i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −23685.3 −1.30964
\(690\) 0 0
\(691\) 18016.0 + 18016.0i 0.991838 + 0.991838i 0.999967 0.00812867i \(-0.00258746\pi\)
−0.00812867 + 0.999967i \(0.502587\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15771.5i 0.860786i
\(696\) 0 0
\(697\) 2832.06i 0.153905i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5447.99 + 5447.99i 0.293534 + 0.293534i 0.838475 0.544940i \(-0.183448\pi\)
−0.544940 + 0.838475i \(0.683448\pi\)
\(702\) 0 0
\(703\) −22393.4 −1.20140
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10469.3 10469.3i −0.556916 0.556916i
\(708\) 0 0
\(709\) −6461.24 + 6461.24i −0.342252 + 0.342252i −0.857214 0.514961i \(-0.827806\pi\)
0.514961 + 0.857214i \(0.327806\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 17486.8i 0.918491i
\(714\) 0 0
\(715\) −42499.4 + 42499.4i −2.22292 + 2.22292i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2418.70 −0.125455 −0.0627277 0.998031i \(-0.519980\pi\)
−0.0627277 + 0.998031i \(0.519980\pi\)
\(720\) 0 0
\(721\) 5010.07 0.258786
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1874.58 1874.58i 0.0960278 0.0960278i
\(726\) 0 0
\(727\) 11249.9i 0.573912i −0.957944 0.286956i \(-0.907357\pi\)
0.957944 0.286956i \(-0.0926433\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 138.431 138.431i 0.00700420 0.00700420i
\(732\) 0 0
\(733\) 8269.64 + 8269.64i 0.416707 + 0.416707i 0.884067 0.467360i \(-0.154795\pi\)
−0.467360 + 0.884067i \(0.654795\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 55457.9 2.77180
\(738\) 0 0
\(739\) 12570.8 + 12570.8i 0.625745 + 0.625745i 0.946994 0.321250i \(-0.104103\pi\)
−0.321250 + 0.946994i \(0.604103\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14713.9i 0.726516i 0.931689 + 0.363258i \(0.118336\pi\)
−0.931689 + 0.363258i \(0.881664\pi\)
\(744\) 0 0
\(745\) 23848.5i 1.17281i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −27148.5 27148.5i −1.32441 1.32441i
\(750\) 0 0
\(751\) 1198.79 0.0582482 0.0291241 0.999576i \(-0.490728\pi\)
0.0291241 + 0.999576i \(0.490728\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12030.7 + 12030.7i 0.579922 + 0.579922i
\(756\) 0 0
\(757\) 7771.96 7771.96i 0.373153 0.373153i −0.495471 0.868624i \(-0.665005\pi\)
0.868624 + 0.495471i \(0.165005\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23565.6i 1.12254i 0.827633 + 0.561270i \(0.189687\pi\)
−0.827633 + 0.561270i \(0.810313\pi\)
\(762\) 0 0
\(763\) 16065.9 16065.9i 0.762288 0.762288i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13071.0 0.615341
\(768\) 0 0
\(769\) −38356.7 −1.79867 −0.899335 0.437260i \(-0.855949\pi\)
−0.899335 + 0.437260i \(0.855949\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −15175.4 + 15175.4i −0.706110 + 0.706110i −0.965715 0.259605i \(-0.916408\pi\)
0.259605 + 0.965715i \(0.416408\pi\)
\(774\) 0 0
\(775\) 2499.20i 0.115837i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7000.93 7000.93i 0.321995 0.321995i
\(780\) 0 0
\(781\) 20293.5 + 20293.5i 0.929780 + 0.929780i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −17868.7 −0.812433
\(786\) 0 0
\(787\) −23673.2 23673.2i −1.07225 1.07225i −0.997178 0.0750671i \(-0.976083\pi\)
−0.0750671 0.997178i \(-0.523917\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 27419.2i 1.23251i
\(792\) 0 0
\(793\) 19243.8i 0.861751i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25228.1 25228.1i −1.12124 1.12124i −0.991556 0.129681i \(-0.958605\pi\)
−0.129681 0.991556i \(-0.541395\pi\)
\(798\) 0 0
\(799\) −589.758 −0.0261128
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 32198.8 + 32198.8i 1.41503 + 1.41503i
\(804\) 0 0
\(805\) −17573.8 + 17573.8i −0.769434 + 0.769434i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12860.4i 0.558896i 0.960161 + 0.279448i \(0.0901514\pi\)
−0.960161 + 0.279448i \(0.909849\pi\)
\(810\) 0 0
\(811\) −12943.3 + 12943.3i −0.560421 + 0.560421i −0.929427 0.369006i \(-0.879698\pi\)
0.369006 + 0.929427i \(0.379698\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8018.59 0.344637
\(816\) 0 0
\(817\) −684.413 −0.0293079
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5296.51 5296.51i 0.225152 0.225152i −0.585512 0.810664i \(-0.699107\pi\)
0.810664 + 0.585512i \(0.199107\pi\)
\(822\) 0 0
\(823\) 11716.4i 0.496242i 0.968729 + 0.248121i \(0.0798130\pi\)
−0.968729 + 0.248121i \(0.920187\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18597.5 + 18597.5i −0.781980 + 0.781980i −0.980165 0.198185i \(-0.936495\pi\)
0.198185 + 0.980165i \(0.436495\pi\)
\(828\) 0 0
\(829\) −9219.95 9219.95i −0.386275 0.386275i 0.487081 0.873357i \(-0.338061\pi\)
−0.873357 + 0.487081i \(0.838061\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2626.07 −0.109229
\(834\) 0 0
\(835\) 34578.3 + 34578.3i 1.43309 + 1.43309i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12228.0i 0.503166i 0.967836 + 0.251583i \(0.0809511\pi\)
−0.967836 + 0.251583i \(0.919049\pi\)
\(840\) 0 0
\(841\) 13421.9i 0.550327i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −33462.1 33462.1i −1.36228 1.36228i
\(846\) 0 0
\(847\) 63302.7 2.56801
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −24122.8 24122.8i −0.971703 0.971703i
\(852\) 0 0
\(853\) 24926.0 24926.0i 1.00053 1.00053i 0.000527142 1.00000i \(-0.499832\pi\)
1.00000 0.000527142i \(-0.000167794\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15047.4i 0.599779i 0.953974 + 0.299889i \(0.0969498\pi\)
−0.953974 + 0.299889i \(0.903050\pi\)
\(858\) 0 0
\(859\) −28014.3 + 28014.3i −1.11273 + 1.11273i −0.119951 + 0.992780i \(0.538274\pi\)
−0.992780 + 0.119951i \(0.961726\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14011.6 0.552676 0.276338 0.961061i \(-0.410879\pi\)
0.276338 + 0.961061i \(0.410879\pi\)
\(864\) 0 0
\(865\) 48158.8 1.89300
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 32296.7 32296.7i 1.26075 1.26075i
\(870\) 0 0
\(871\) 67533.8i 2.62721i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 20516.4 20516.4i 0.792664 0.792664i
\(876\) 0 0
\(877\) −11314.7 11314.7i −0.435657 0.435657i 0.454890 0.890548i \(-0.349678\pi\)
−0.890548 + 0.454890i \(0.849678\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16205.5 0.619723 0.309862 0.950782i \(-0.399717\pi\)
0.309862 + 0.950782i \(0.399717\pi\)
\(882\) 0 0
\(883\) 4148.30 + 4148.30i 0.158099 + 0.158099i 0.781724 0.623625i \(-0.214341\pi\)
−0.623625 + 0.781724i \(0.714341\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17188.7i 0.650665i 0.945600 + 0.325333i \(0.105476\pi\)
−0.945600 + 0.325333i \(0.894524\pi\)
\(888\) 0 0
\(889\) 7941.24i 0.299596i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1457.90 + 1457.90i 0.0546324 + 0.0546324i
\(894\) 0 0
\(895\) −13909.0 −0.519472
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 25204.9 + 25204.9i 0.935072 + 0.935072i
\(900\) 0 0
\(901\) 3804.79 3804.79i 0.140684 0.140684i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16890.7i 0.620403i
\(906\) 0 0
\(907\) 14533.5 14533.5i 0.532059 0.532059i −0.389126 0.921185i \(-0.627223\pi\)
0.921185 + 0.389126i \(0.127223\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 47429.5 1.72493 0.862463 0.506120i \(-0.168921\pi\)
0.862463 + 0.506120i \(0.168921\pi\)
\(912\) 0 0
\(913\) −15649.3 −0.567268
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 735.893 735.893i 0.0265009 0.0265009i
\(918\) 0 0
\(919\) 17383.3i 0.623963i 0.950088 + 0.311982i \(0.100993\pi\)
−0.950088 + 0.311982i \(0.899007\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −24712.4 + 24712.4i −0.881276 + 0.881276i
\(924\) 0 0
\(925\) −3447.62 3447.62i −0.122548 0.122548i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6381.95 −0.225387 −0.112694 0.993630i \(-0.535948\pi\)
−0.112694 + 0.993630i \(0.535948\pi\)
\(930\) 0 0
\(931\) 6491.72 + 6491.72i 0.228526 + 0.228526i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 13654.1i 0.477580i
\(936\) 0 0
\(937\) 25340.8i 0.883508i 0.897136 + 0.441754i \(0.145644\pi\)
−0.897136 + 0.441754i \(0.854356\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6841.75 + 6841.75i 0.237019 + 0.237019i 0.815615 0.578596i \(-0.196399\pi\)
−0.578596 + 0.815615i \(0.696399\pi\)
\(942\) 0 0
\(943\) 15083.2 0.520866
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30955.9 30955.9i −1.06223 1.06223i −0.997931 0.0642999i \(-0.979519\pi\)
−0.0642999 0.997931i \(-0.520481\pi\)
\(948\) 0 0
\(949\) −39210.1 + 39210.1i −1.34122 + 1.34122i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38750.3i 1.31715i −0.752515 0.658576i \(-0.771159\pi\)
0.752515 0.658576i \(-0.228841\pi\)
\(954\) 0 0
\(955\) 2122.84 2122.84i 0.0719305 0.0719305i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 28027.9 0.943761
\(960\) 0 0
\(961\) 3812.25 0.127967
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16629.1 + 16629.1i −0.554725 + 0.554725i
\(966\) 0 0
\(967\) 2130.28i 0.0708430i 0.999372 + 0.0354215i \(0.0112774\pi\)
−0.999372 + 0.0354215i \(0.988723\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −29449.7 + 29449.7i −0.973313 + 0.973313i −0.999653 0.0263404i \(-0.991615\pi\)
0.0263404 + 0.999653i \(0.491615\pi\)
\(972\) 0 0
\(973\) −20958.0 20958.0i −0.690528 0.690528i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1913.67 −0.0626650 −0.0313325 0.999509i \(-0.509975\pi\)
−0.0313325 + 0.999509i \(0.509975\pi\)
\(978\) 0 0
\(979\) −71287.2 71287.2i −2.32722 2.32722i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 40958.4i 1.32896i −0.747305 0.664481i \(-0.768653\pi\)
0.747305 0.664481i \(-0.231347\pi\)
\(984\) 0 0
\(985\) 19617.4i 0.634580i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −737.269 737.269i −0.0237045 0.0237045i
\(990\) 0 0
\(991\) −53772.7 −1.72366 −0.861830 0.507197i \(-0.830682\pi\)
−0.861830 + 0.507197i \(0.830682\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −29053.9 29053.9i −0.925698 0.925698i
\(996\) 0 0
\(997\) 29569.4 29569.4i 0.939290 0.939290i −0.0589701 0.998260i \(-0.518782\pi\)
0.998260 + 0.0589701i \(0.0187817\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.k.c.145.3 24
3.2 odd 2 inner 576.4.k.c.145.10 24
4.3 odd 2 144.4.k.c.109.10 yes 24
12.11 even 2 144.4.k.c.109.3 yes 24
16.5 even 4 inner 576.4.k.c.433.3 24
16.11 odd 4 144.4.k.c.37.10 yes 24
48.5 odd 4 inner 576.4.k.c.433.10 24
48.11 even 4 144.4.k.c.37.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.k.c.37.3 24 48.11 even 4
144.4.k.c.37.10 yes 24 16.11 odd 4
144.4.k.c.109.3 yes 24 12.11 even 2
144.4.k.c.109.10 yes 24 4.3 odd 2
576.4.k.c.145.3 24 1.1 even 1 trivial
576.4.k.c.145.10 24 3.2 odd 2 inner
576.4.k.c.433.3 24 16.5 even 4 inner
576.4.k.c.433.10 24 48.5 odd 4 inner