Properties

Label 576.4.k.c.145.12
Level $576$
Weight $4$
Character 576.145
Analytic conductor $33.985$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(145,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.145"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 145.12
Character \(\chi\) \(=\) 576.145
Dual form 576.4.k.c.433.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(14.8202 - 14.8202i) q^{5} -10.4191i q^{7} +(23.1349 - 23.1349i) q^{11} +(7.26220 + 7.26220i) q^{13} +83.4233 q^{17} +(81.4449 + 81.4449i) q^{19} -86.6407i q^{23} -314.274i q^{25} +(37.1890 + 37.1890i) q^{29} -251.588 q^{31} +(-154.413 - 154.413i) q^{35} +(-102.360 + 102.360i) q^{37} +400.216i q^{41} +(332.983 - 332.983i) q^{43} -192.533 q^{47} +234.442 q^{49} +(-88.7392 + 88.7392i) q^{53} -685.726i q^{55} +(-528.529 + 528.529i) q^{59} +(-131.653 - 131.653i) q^{61} +215.254 q^{65} +(-480.467 - 480.467i) q^{67} -391.007i q^{71} -292.028i q^{73} +(-241.046 - 241.046i) q^{77} +805.236 q^{79} +(-232.313 - 232.313i) q^{83} +(1236.35 - 1236.35i) q^{85} +143.143i q^{89} +(75.6658 - 75.6658i) q^{91} +2414.05 q^{95} -733.540 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{19} - 744 q^{31} - 16 q^{37} + 376 q^{43} - 1176 q^{49} - 912 q^{61} - 1440 q^{67} + 328 q^{79} - 240 q^{85} + 104 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 14.8202 14.8202i 1.32555 1.32555i 0.416350 0.909204i \(-0.363309\pi\)
0.909204 0.416350i \(-0.136691\pi\)
\(6\) 0 0
\(7\) 10.4191i 0.562580i −0.959623 0.281290i \(-0.909238\pi\)
0.959623 0.281290i \(-0.0907623\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 23.1349 23.1349i 0.634131 0.634131i −0.314970 0.949102i \(-0.601995\pi\)
0.949102 + 0.314970i \(0.101995\pi\)
\(12\) 0 0
\(13\) 7.26220 + 7.26220i 0.154936 + 0.154936i 0.780319 0.625382i \(-0.215057\pi\)
−0.625382 + 0.780319i \(0.715057\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 83.4233 1.19018 0.595092 0.803657i \(-0.297116\pi\)
0.595092 + 0.803657i \(0.297116\pi\)
\(18\) 0 0
\(19\) 81.4449 + 81.4449i 0.983407 + 0.983407i 0.999865 0.0164576i \(-0.00523884\pi\)
−0.0164576 + 0.999865i \(0.505239\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 86.6407i 0.785471i −0.919651 0.392736i \(-0.871529\pi\)
0.919651 0.392736i \(-0.128471\pi\)
\(24\) 0 0
\(25\) 314.274i 2.51419i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 37.1890 + 37.1890i 0.238132 + 0.238132i 0.816076 0.577944i \(-0.196145\pi\)
−0.577944 + 0.816076i \(0.696145\pi\)
\(30\) 0 0
\(31\) −251.588 −1.45763 −0.728814 0.684712i \(-0.759928\pi\)
−0.728814 + 0.684712i \(0.759928\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −154.413 154.413i −0.745731 0.745731i
\(36\) 0 0
\(37\) −102.360 + 102.360i −0.454809 + 0.454809i −0.896947 0.442138i \(-0.854220\pi\)
0.442138 + 0.896947i \(0.354220\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 400.216i 1.52447i 0.647300 + 0.762235i \(0.275898\pi\)
−0.647300 + 0.762235i \(0.724102\pi\)
\(42\) 0 0
\(43\) 332.983 332.983i 1.18092 1.18092i 0.201410 0.979507i \(-0.435448\pi\)
0.979507 0.201410i \(-0.0645525\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −192.533 −0.597528 −0.298764 0.954327i \(-0.596574\pi\)
−0.298764 + 0.954327i \(0.596574\pi\)
\(48\) 0 0
\(49\) 234.442 0.683503
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −88.7392 + 88.7392i −0.229986 + 0.229986i −0.812687 0.582701i \(-0.801996\pi\)
0.582701 + 0.812687i \(0.301996\pi\)
\(54\) 0 0
\(55\) 685.726i 1.68115i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −528.529 + 528.529i −1.16625 + 1.16625i −0.183166 + 0.983082i \(0.558635\pi\)
−0.983082 + 0.183166i \(0.941365\pi\)
\(60\) 0 0
\(61\) −131.653 131.653i −0.276336 0.276336i 0.555309 0.831644i \(-0.312600\pi\)
−0.831644 + 0.555309i \(0.812600\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 215.254 0.410753
\(66\) 0 0
\(67\) −480.467 480.467i −0.876095 0.876095i 0.117033 0.993128i \(-0.462662\pi\)
−0.993128 + 0.117033i \(0.962662\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 391.007i 0.653577i −0.945097 0.326789i \(-0.894033\pi\)
0.945097 0.326789i \(-0.105967\pi\)
\(72\) 0 0
\(73\) 292.028i 0.468209i −0.972211 0.234104i \(-0.924784\pi\)
0.972211 0.234104i \(-0.0752158\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −241.046 241.046i −0.356750 0.356750i
\(78\) 0 0
\(79\) 805.236 1.14679 0.573393 0.819280i \(-0.305627\pi\)
0.573393 + 0.819280i \(0.305627\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −232.313 232.313i −0.307225 0.307225i 0.536607 0.843832i \(-0.319706\pi\)
−0.843832 + 0.536607i \(0.819706\pi\)
\(84\) 0 0
\(85\) 1236.35 1236.35i 1.57765 1.57765i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 143.143i 0.170484i 0.996360 + 0.0852420i \(0.0271664\pi\)
−0.996360 + 0.0852420i \(0.972834\pi\)
\(90\) 0 0
\(91\) 75.6658 75.6658i 0.0871641 0.0871641i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2414.05 2.60712
\(96\) 0 0
\(97\) −733.540 −0.767832 −0.383916 0.923368i \(-0.625425\pi\)
−0.383916 + 0.923368i \(0.625425\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 796.362 796.362i 0.784564 0.784564i −0.196033 0.980597i \(-0.562806\pi\)
0.980597 + 0.196033i \(0.0628061\pi\)
\(102\) 0 0
\(103\) 583.858i 0.558536i −0.960213 0.279268i \(-0.909908\pi\)
0.960213 0.279268i \(-0.0900919\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.5292 + 19.5292i −0.0176445 + 0.0176445i −0.715874 0.698230i \(-0.753972\pi\)
0.698230 + 0.715874i \(0.253972\pi\)
\(108\) 0 0
\(109\) −1138.43 1138.43i −1.00039 1.00039i −1.00000 0.000387793i \(-0.999877\pi\)
−0.000387793 1.00000i \(-0.500123\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 906.138 0.754356 0.377178 0.926141i \(-0.376894\pi\)
0.377178 + 0.926141i \(0.376894\pi\)
\(114\) 0 0
\(115\) −1284.03 1284.03i −1.04118 1.04118i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 869.199i 0.669574i
\(120\) 0 0
\(121\) 260.550i 0.195755i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2805.07 2805.07i −2.00714 2.00714i
\(126\) 0 0
\(127\) 1326.41 0.926772 0.463386 0.886157i \(-0.346634\pi\)
0.463386 + 0.886157i \(0.346634\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1326.86 + 1326.86i 0.884950 + 0.884950i 0.994033 0.109082i \(-0.0347912\pi\)
−0.109082 + 0.994033i \(0.534791\pi\)
\(132\) 0 0
\(133\) 848.585 848.585i 0.553245 0.553245i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1978.79i 1.23401i 0.786959 + 0.617006i \(0.211654\pi\)
−0.786959 + 0.617006i \(0.788346\pi\)
\(138\) 0 0
\(139\) −353.112 + 353.112i −0.215472 + 0.215472i −0.806587 0.591115i \(-0.798688\pi\)
0.591115 + 0.806587i \(0.298688\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 336.021 0.196500
\(144\) 0 0
\(145\) 1102.29 0.631314
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −400.007 + 400.007i −0.219932 + 0.219932i −0.808470 0.588538i \(-0.799704\pi\)
0.588538 + 0.808470i \(0.299704\pi\)
\(150\) 0 0
\(151\) 1272.74i 0.685922i 0.939350 + 0.342961i \(0.111430\pi\)
−0.939350 + 0.342961i \(0.888570\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3728.57 + 3728.57i −1.93217 + 1.93217i
\(156\) 0 0
\(157\) −380.500 380.500i −0.193422 0.193422i 0.603751 0.797173i \(-0.293672\pi\)
−0.797173 + 0.603751i \(0.793672\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −902.721 −0.441891
\(162\) 0 0
\(163\) 1904.08 + 1904.08i 0.914966 + 0.914966i 0.996658 0.0816918i \(-0.0260323\pi\)
−0.0816918 + 0.996658i \(0.526032\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2648.33i 1.22715i 0.789636 + 0.613576i \(0.210269\pi\)
−0.789636 + 0.613576i \(0.789731\pi\)
\(168\) 0 0
\(169\) 2091.52i 0.951990i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1709.13 1709.13i −0.751112 0.751112i 0.223574 0.974687i \(-0.428227\pi\)
−0.974687 + 0.223574i \(0.928227\pi\)
\(174\) 0 0
\(175\) −3274.46 −1.41443
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2726.24 2726.24i −1.13837 1.13837i −0.988742 0.149629i \(-0.952192\pi\)
−0.149629 0.988742i \(-0.547808\pi\)
\(180\) 0 0
\(181\) −3055.16 + 3055.16i −1.25463 + 1.25463i −0.301009 + 0.953621i \(0.597323\pi\)
−0.953621 + 0.301009i \(0.902677\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3033.99i 1.20575i
\(186\) 0 0
\(187\) 1929.99 1929.99i 0.754733 0.754733i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4033.32 1.52796 0.763981 0.645238i \(-0.223242\pi\)
0.763981 + 0.645238i \(0.223242\pi\)
\(192\) 0 0
\(193\) 159.728 0.0595724 0.0297862 0.999556i \(-0.490517\pi\)
0.0297862 + 0.999556i \(0.490517\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 44.2361 44.2361i 0.0159984 0.0159984i −0.699062 0.715061i \(-0.746399\pi\)
0.715061 + 0.699062i \(0.246399\pi\)
\(198\) 0 0
\(199\) 1589.83i 0.566333i −0.959071 0.283167i \(-0.908615\pi\)
0.959071 0.283167i \(-0.0913849\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 387.477 387.477i 0.133968 0.133968i
\(204\) 0 0
\(205\) 5931.27 + 5931.27i 2.02077 + 2.02077i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3768.44 1.24722
\(210\) 0 0
\(211\) 1952.43 + 1952.43i 0.637019 + 0.637019i 0.949819 0.312800i \(-0.101267\pi\)
−0.312800 + 0.949819i \(0.601267\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9869.72i 3.13074i
\(216\) 0 0
\(217\) 2621.32i 0.820033i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 605.837 + 605.837i 0.184403 + 0.184403i
\(222\) 0 0
\(223\) −3886.74 −1.16715 −0.583577 0.812058i \(-0.698347\pi\)
−0.583577 + 0.812058i \(0.698347\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1536.64 + 1536.64i 0.449296 + 0.449296i 0.895120 0.445824i \(-0.147089\pi\)
−0.445824 + 0.895120i \(0.647089\pi\)
\(228\) 0 0
\(229\) −4221.34 + 4221.34i −1.21814 + 1.21814i −0.249857 + 0.968283i \(0.580384\pi\)
−0.968283 + 0.249857i \(0.919616\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1991.46i 0.559935i 0.960009 + 0.279968i \(0.0903237\pi\)
−0.960009 + 0.279968i \(0.909676\pi\)
\(234\) 0 0
\(235\) −2853.37 + 2853.37i −0.792056 + 0.792056i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −225.264 −0.0609671 −0.0304836 0.999535i \(-0.509705\pi\)
−0.0304836 + 0.999535i \(0.509705\pi\)
\(240\) 0 0
\(241\) −2055.57 −0.549422 −0.274711 0.961527i \(-0.588582\pi\)
−0.274711 + 0.961527i \(0.588582\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3474.46 3474.46i 0.906021 0.906021i
\(246\) 0 0
\(247\) 1182.94i 0.304731i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2551.25 + 2551.25i −0.641567 + 0.641567i −0.950941 0.309373i \(-0.899881\pi\)
0.309373 + 0.950941i \(0.399881\pi\)
\(252\) 0 0
\(253\) −2004.43 2004.43i −0.498092 0.498092i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5083.08 1.23375 0.616875 0.787061i \(-0.288398\pi\)
0.616875 + 0.787061i \(0.288398\pi\)
\(258\) 0 0
\(259\) 1066.51 + 1066.51i 0.255867 + 0.255867i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3233.91i 0.758219i 0.925352 + 0.379109i \(0.123770\pi\)
−0.925352 + 0.379109i \(0.876230\pi\)
\(264\) 0 0
\(265\) 2630.26i 0.609719i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 662.348 + 662.348i 0.150127 + 0.150127i 0.778175 0.628048i \(-0.216146\pi\)
−0.628048 + 0.778175i \(0.716146\pi\)
\(270\) 0 0
\(271\) 5617.02 1.25908 0.629539 0.776969i \(-0.283244\pi\)
0.629539 + 0.776969i \(0.283244\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7270.70 7270.70i −1.59433 1.59433i
\(276\) 0 0
\(277\) 3194.76 3194.76i 0.692978 0.692978i −0.269908 0.962886i \(-0.586993\pi\)
0.962886 + 0.269908i \(0.0869934\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 514.426i 0.109210i 0.998508 + 0.0546051i \(0.0173900\pi\)
−0.998508 + 0.0546051i \(0.982610\pi\)
\(282\) 0 0
\(283\) −4602.93 + 4602.93i −0.966841 + 0.966841i −0.999468 0.0326267i \(-0.989613\pi\)
0.0326267 + 0.999468i \(0.489613\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4169.91 0.857637
\(288\) 0 0
\(289\) 2046.45 0.416539
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1506.83 + 1506.83i −0.300444 + 0.300444i −0.841187 0.540744i \(-0.818143\pi\)
0.540744 + 0.841187i \(0.318143\pi\)
\(294\) 0 0
\(295\) 15665.8i 3.09185i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 629.202 629.202i 0.121698 0.121698i
\(300\) 0 0
\(301\) −3469.39 3469.39i −0.664361 0.664361i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3902.25 −0.732597
\(306\) 0 0
\(307\) −267.320 267.320i −0.0496963 0.0496963i 0.681822 0.731518i \(-0.261188\pi\)
−0.731518 + 0.681822i \(0.761188\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2639.31i 0.481228i −0.970621 0.240614i \(-0.922651\pi\)
0.970621 0.240614i \(-0.0773487\pi\)
\(312\) 0 0
\(313\) 6802.92i 1.22851i 0.789107 + 0.614255i \(0.210543\pi\)
−0.789107 + 0.614255i \(0.789457\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 448.870 + 448.870i 0.0795301 + 0.0795301i 0.745753 0.666223i \(-0.232090\pi\)
−0.666223 + 0.745753i \(0.732090\pi\)
\(318\) 0 0
\(319\) 1720.73 0.302014
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6794.40 + 6794.40i 1.17044 + 1.17044i
\(324\) 0 0
\(325\) 2282.32 2282.32i 0.389539 0.389539i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2006.03i 0.336157i
\(330\) 0 0
\(331\) 1326.59 1326.59i 0.220290 0.220290i −0.588331 0.808620i \(-0.700215\pi\)
0.808620 + 0.588331i \(0.200215\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14241.2 −2.32262
\(336\) 0 0
\(337\) −1888.30 −0.305230 −0.152615 0.988286i \(-0.548769\pi\)
−0.152615 + 0.988286i \(0.548769\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −5820.46 + 5820.46i −0.924327 + 0.924327i
\(342\) 0 0
\(343\) 6016.44i 0.947106i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1714.34 + 1714.34i −0.265218 + 0.265218i −0.827170 0.561952i \(-0.810051\pi\)
0.561952 + 0.827170i \(0.310051\pi\)
\(348\) 0 0
\(349\) 3880.39 + 3880.39i 0.595165 + 0.595165i 0.939022 0.343857i \(-0.111734\pi\)
−0.343857 + 0.939022i \(0.611734\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3413.42 −0.514669 −0.257334 0.966322i \(-0.582844\pi\)
−0.257334 + 0.966322i \(0.582844\pi\)
\(354\) 0 0
\(355\) −5794.78 5794.78i −0.866353 0.866353i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9923.21i 1.45885i 0.684061 + 0.729425i \(0.260212\pi\)
−0.684061 + 0.729425i \(0.739788\pi\)
\(360\) 0 0
\(361\) 6407.53i 0.934179i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4327.89 4327.89i −0.620637 0.620637i
\(366\) 0 0
\(367\) 7863.30 1.11842 0.559211 0.829025i \(-0.311104\pi\)
0.559211 + 0.829025i \(0.311104\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 924.586 + 924.586i 0.129386 + 0.129386i
\(372\) 0 0
\(373\) 259.033 259.033i 0.0359576 0.0359576i −0.688899 0.724857i \(-0.741906\pi\)
0.724857 + 0.688899i \(0.241906\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 540.148i 0.0737905i
\(378\) 0 0
\(379\) −1795.65 + 1795.65i −0.243367 + 0.243367i −0.818242 0.574874i \(-0.805051\pi\)
0.574874 + 0.818242i \(0.305051\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5104.92 0.681069 0.340534 0.940232i \(-0.389392\pi\)
0.340534 + 0.940232i \(0.389392\pi\)
\(384\) 0 0
\(385\) −7144.67 −0.945782
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3104.97 3104.97i 0.404700 0.404700i −0.475186 0.879885i \(-0.657619\pi\)
0.879885 + 0.475186i \(0.157619\pi\)
\(390\) 0 0
\(391\) 7227.86i 0.934855i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11933.7 11933.7i 1.52013 1.52013i
\(396\) 0 0
\(397\) −4196.92 4196.92i −0.530573 0.530573i 0.390170 0.920743i \(-0.372416\pi\)
−0.920743 + 0.390170i \(0.872416\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10440.1 −1.30013 −0.650066 0.759878i \(-0.725259\pi\)
−0.650066 + 0.759878i \(0.725259\pi\)
\(402\) 0 0
\(403\) −1827.08 1827.08i −0.225839 0.225839i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4736.20i 0.576818i
\(408\) 0 0
\(409\) 9673.99i 1.16955i −0.811194 0.584777i \(-0.801182\pi\)
0.811194 0.584777i \(-0.198818\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5506.82 + 5506.82i 0.656108 + 0.656108i
\(414\) 0 0
\(415\) −6885.83 −0.814487
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2935.51 + 2935.51i 0.342265 + 0.342265i 0.857218 0.514953i \(-0.172191\pi\)
−0.514953 + 0.857218i \(0.672191\pi\)
\(420\) 0 0
\(421\) 2209.45 2209.45i 0.255776 0.255776i −0.567557 0.823334i \(-0.692112\pi\)
0.823334 + 0.567557i \(0.192112\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 26217.8i 2.99235i
\(426\) 0 0
\(427\) −1371.71 + 1371.71i −0.155461 + 0.155461i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4051.99 0.452848 0.226424 0.974029i \(-0.427297\pi\)
0.226424 + 0.974029i \(0.427297\pi\)
\(432\) 0 0
\(433\) 12206.3 1.35473 0.677365 0.735647i \(-0.263122\pi\)
0.677365 + 0.735647i \(0.263122\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7056.44 7056.44i 0.772438 0.772438i
\(438\) 0 0
\(439\) 8630.90i 0.938339i −0.883108 0.469169i \(-0.844553\pi\)
0.883108 0.469169i \(-0.155447\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −342.023 + 342.023i −0.0366817 + 0.0366817i −0.725210 0.688528i \(-0.758257\pi\)
0.688528 + 0.725210i \(0.258257\pi\)
\(444\) 0 0
\(445\) 2121.39 + 2121.39i 0.225986 + 0.225986i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8495.76 0.892961 0.446481 0.894793i \(-0.352677\pi\)
0.446481 + 0.894793i \(0.352677\pi\)
\(450\) 0 0
\(451\) 9258.98 + 9258.98i 0.966715 + 0.966715i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2242.76i 0.231082i
\(456\) 0 0
\(457\) 11832.0i 1.21111i −0.795803 0.605556i \(-0.792951\pi\)
0.795803 0.605556i \(-0.207049\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5997.14 + 5997.14i 0.605889 + 0.605889i 0.941869 0.335980i \(-0.109068\pi\)
−0.335980 + 0.941869i \(0.609068\pi\)
\(462\) 0 0
\(463\) −12533.3 −1.25804 −0.629018 0.777391i \(-0.716543\pi\)
−0.629018 + 0.777391i \(0.716543\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9707.05 + 9707.05i 0.961861 + 0.961861i 0.999299 0.0374384i \(-0.0119198\pi\)
−0.0374384 + 0.999299i \(0.511920\pi\)
\(468\) 0 0
\(469\) −5006.05 + 5006.05i −0.492874 + 0.492874i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15407.1i 1.49771i
\(474\) 0 0
\(475\) 25596.0 25596.0i 2.47247 2.47247i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4387.69 −0.418536 −0.209268 0.977858i \(-0.567108\pi\)
−0.209268 + 0.977858i \(0.567108\pi\)
\(480\) 0 0
\(481\) −1486.72 −0.140933
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10871.2 + 10871.2i −1.01780 + 1.01780i
\(486\) 0 0
\(487\) 9320.66i 0.867268i −0.901089 0.433634i \(-0.857231\pi\)
0.901089 0.433634i \(-0.142769\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10257.4 10257.4i 0.942789 0.942789i −0.0556603 0.998450i \(-0.517726\pi\)
0.998450 + 0.0556603i \(0.0177264\pi\)
\(492\) 0 0
\(493\) 3102.43 + 3102.43i 0.283421 + 0.283421i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4073.95 −0.367690
\(498\) 0 0
\(499\) −9119.97 9119.97i −0.818168 0.818168i 0.167674 0.985842i \(-0.446374\pi\)
−0.985842 + 0.167674i \(0.946374\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4904.40i 0.434744i 0.976089 + 0.217372i \(0.0697486\pi\)
−0.976089 + 0.217372i \(0.930251\pi\)
\(504\) 0 0
\(505\) 23604.4i 2.07996i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8343.01 + 8343.01i 0.726518 + 0.726518i 0.969924 0.243407i \(-0.0782650\pi\)
−0.243407 + 0.969924i \(0.578265\pi\)
\(510\) 0 0
\(511\) −3042.67 −0.263405
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8652.87 8652.87i −0.740371 0.740371i
\(516\) 0 0
\(517\) −4454.23 + 4454.23i −0.378911 + 0.378911i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 11593.6i 0.974905i 0.873150 + 0.487452i \(0.162074\pi\)
−0.873150 + 0.487452i \(0.837926\pi\)
\(522\) 0 0
\(523\) −2107.92 + 2107.92i −0.176239 + 0.176239i −0.789714 0.613475i \(-0.789771\pi\)
0.613475 + 0.789714i \(0.289771\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −20988.3 −1.73485
\(528\) 0 0
\(529\) 4660.39 0.383035
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2906.45 + 2906.45i −0.236196 + 0.236196i
\(534\) 0 0
\(535\) 578.851i 0.0467774i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5423.79 5423.79i 0.433431 0.433431i
\(540\) 0 0
\(541\) −4161.70 4161.70i −0.330731 0.330731i 0.522133 0.852864i \(-0.325137\pi\)
−0.852864 + 0.522133i \(0.825137\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −33743.5 −2.65214
\(546\) 0 0
\(547\) 13475.0 + 13475.0i 1.05329 + 1.05329i 0.998498 + 0.0547947i \(0.0174504\pi\)
0.0547947 + 0.998498i \(0.482550\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6057.71i 0.468361i
\(552\) 0 0
\(553\) 8389.86i 0.645160i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13237.5 + 13237.5i 1.00698 + 1.00698i 0.999975 + 0.00700860i \(0.00223093\pi\)
0.00700860 + 0.999975i \(0.497769\pi\)
\(558\) 0 0
\(559\) 4836.38 0.365934
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3270.74 3270.74i −0.244840 0.244840i 0.574009 0.818849i \(-0.305387\pi\)
−0.818849 + 0.574009i \(0.805387\pi\)
\(564\) 0 0
\(565\) 13429.1 13429.1i 0.999941 0.999941i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7636.17i 0.562610i 0.959618 + 0.281305i \(0.0907672\pi\)
−0.959618 + 0.281305i \(0.909233\pi\)
\(570\) 0 0
\(571\) −2614.60 + 2614.60i −0.191624 + 0.191624i −0.796398 0.604773i \(-0.793264\pi\)
0.604773 + 0.796398i \(0.293264\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −27228.9 −1.97482
\(576\) 0 0
\(577\) 12989.0 0.937155 0.468578 0.883422i \(-0.344767\pi\)
0.468578 + 0.883422i \(0.344767\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2420.50 + 2420.50i −0.172839 + 0.172839i
\(582\) 0 0
\(583\) 4105.95i 0.291683i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7910.32 + 7910.32i −0.556208 + 0.556208i −0.928226 0.372018i \(-0.878666\pi\)
0.372018 + 0.928226i \(0.378666\pi\)
\(588\) 0 0
\(589\) −20490.5 20490.5i −1.43344 1.43344i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17584.0 1.21769 0.608844 0.793290i \(-0.291634\pi\)
0.608844 + 0.793290i \(0.291634\pi\)
\(594\) 0 0
\(595\) −12881.7 12881.7i −0.887557 0.887557i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14241.2i 0.971417i 0.874121 + 0.485708i \(0.161438\pi\)
−0.874121 + 0.485708i \(0.838562\pi\)
\(600\) 0 0
\(601\) 6490.69i 0.440534i 0.975440 + 0.220267i \(0.0706928\pi\)
−0.975440 + 0.220267i \(0.929307\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3861.39 + 3861.39i 0.259484 + 0.259484i
\(606\) 0 0
\(607\) 1302.36 0.0870856 0.0435428 0.999052i \(-0.486136\pi\)
0.0435428 + 0.999052i \(0.486136\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1398.21 1398.21i −0.0925787 0.0925787i
\(612\) 0 0
\(613\) 17400.6 17400.6i 1.14650 1.14650i 0.159263 0.987236i \(-0.449088\pi\)
0.987236 0.159263i \(-0.0509118\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9223.56i 0.601826i −0.953652 0.300913i \(-0.902709\pi\)
0.953652 0.300913i \(-0.0972914\pi\)
\(618\) 0 0
\(619\) −16008.8 + 16008.8i −1.03950 + 1.03950i −0.0403107 + 0.999187i \(0.512835\pi\)
−0.999187 + 0.0403107i \(0.987165\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1491.42 0.0959110
\(624\) 0 0
\(625\) −43858.8 −2.80696
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −8539.25 + 8539.25i −0.541307 + 0.541307i
\(630\) 0 0
\(631\) 7184.18i 0.453245i −0.973983 0.226622i \(-0.927232\pi\)
0.973983 0.226622i \(-0.0727683\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 19657.6 19657.6i 1.22849 1.22849i
\(636\) 0 0
\(637\) 1702.56 + 1702.56i 0.105899 + 0.105899i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 25937.6 1.59824 0.799120 0.601171i \(-0.205299\pi\)
0.799120 + 0.601171i \(0.205299\pi\)
\(642\) 0 0
\(643\) −9092.95 9092.95i −0.557684 0.557684i 0.370963 0.928647i \(-0.379028\pi\)
−0.928647 + 0.370963i \(0.879028\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28247.6i 1.71643i −0.513291 0.858215i \(-0.671574\pi\)
0.513291 0.858215i \(-0.328426\pi\)
\(648\) 0 0
\(649\) 24455.0i 1.47911i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8837.90 + 8837.90i 0.529638 + 0.529638i 0.920465 0.390826i \(-0.127811\pi\)
−0.390826 + 0.920465i \(0.627811\pi\)
\(654\) 0 0
\(655\) 39328.6 2.34610
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2514.61 + 2514.61i 0.148642 + 0.148642i 0.777511 0.628869i \(-0.216482\pi\)
−0.628869 + 0.777511i \(0.716482\pi\)
\(660\) 0 0
\(661\) −11065.3 + 11065.3i −0.651120 + 0.651120i −0.953263 0.302143i \(-0.902298\pi\)
0.302143 + 0.953263i \(0.402298\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 25152.3i 1.46671i
\(666\) 0 0
\(667\) 3222.08 3222.08i 0.187046 0.187046i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6091.58 −0.350466
\(672\) 0 0
\(673\) 26512.1 1.51852 0.759262 0.650785i \(-0.225560\pi\)
0.759262 + 0.650785i \(0.225560\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17699.6 17699.6i 1.00480 1.00480i 0.00481617 0.999988i \(-0.498467\pi\)
0.999988 0.00481617i \(-0.00153304\pi\)
\(678\) 0 0
\(679\) 7642.85i 0.431967i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4418.13 + 4418.13i −0.247518 + 0.247518i −0.819951 0.572433i \(-0.806000\pi\)
0.572433 + 0.819951i \(0.306000\pi\)
\(684\) 0 0
\(685\) 29326.0 + 29326.0i 1.63575 + 1.63575i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1288.88 −0.0712664
\(690\) 0 0
\(691\) −9179.51 9179.51i −0.505362 0.505362i 0.407737 0.913099i \(-0.366318\pi\)
−0.913099 + 0.407737i \(0.866318\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10466.4i 0.571239i
\(696\) 0 0
\(697\) 33387.4i 1.81440i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7741.65 7741.65i −0.417116 0.417116i 0.467093 0.884208i \(-0.345301\pi\)
−0.884208 + 0.467093i \(0.845301\pi\)
\(702\) 0 0
\(703\) −16673.5 −0.894526
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8297.40 8297.40i −0.441380 0.441380i
\(708\) 0 0
\(709\) 1092.40 1092.40i 0.0578644 0.0578644i −0.677582 0.735447i \(-0.736972\pi\)
0.735447 + 0.677582i \(0.236972\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21797.7i 1.14492i
\(714\) 0 0
\(715\) 4979.88 4979.88i 0.260471 0.260471i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24231.3 1.25685 0.628424 0.777871i \(-0.283700\pi\)
0.628424 + 0.777871i \(0.283700\pi\)
\(720\) 0 0
\(721\) −6083.30 −0.314222
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11687.5 11687.5i 0.598709 0.598709i
\(726\) 0 0
\(727\) 20778.8i 1.06003i −0.847989 0.530015i \(-0.822186\pi\)
0.847989 0.530015i \(-0.177814\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 27778.6 27778.6i 1.40551 1.40551i
\(732\) 0 0
\(733\) −9579.11 9579.11i −0.482691 0.482691i 0.423299 0.905990i \(-0.360872\pi\)
−0.905990 + 0.423299i \(0.860872\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −22231.1 −1.11112
\(738\) 0 0
\(739\) −1525.14 1525.14i −0.0759178 0.0759178i 0.668128 0.744046i \(-0.267096\pi\)
−0.744046 + 0.668128i \(0.767096\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.91705i 0.000390913i −1.00000 0.000195457i \(-0.999938\pi\)
1.00000 0.000195457i \(-6.22158e-5\pi\)
\(744\) 0 0
\(745\) 11856.3i 0.583064i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 203.477 + 203.477i 0.00992643 + 0.00992643i
\(750\) 0 0
\(751\) 3840.63 0.186613 0.0933067 0.995637i \(-0.470256\pi\)
0.0933067 + 0.995637i \(0.470256\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18862.2 + 18862.2i 0.909227 + 0.909227i
\(756\) 0 0
\(757\) −6448.92 + 6448.92i −0.309630 + 0.309630i −0.844766 0.535136i \(-0.820260\pi\)
0.535136 + 0.844766i \(0.320260\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22769.5i 1.08462i 0.840179 + 0.542309i \(0.182450\pi\)
−0.840179 + 0.542309i \(0.817550\pi\)
\(762\) 0 0
\(763\) −11861.5 + 11861.5i −0.562798 + 0.562798i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7676.57 −0.361388
\(768\) 0 0
\(769\) −14324.3 −0.671714 −0.335857 0.941913i \(-0.609026\pi\)
−0.335857 + 0.941913i \(0.609026\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8074.35 + 8074.35i −0.375697 + 0.375697i −0.869547 0.493850i \(-0.835589\pi\)
0.493850 + 0.869547i \(0.335589\pi\)
\(774\) 0 0
\(775\) 79067.4i 3.66475i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −32595.6 + 32595.6i −1.49918 + 1.49918i
\(780\) 0 0
\(781\) −9045.92 9045.92i −0.414454 0.414454i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11278.1 −0.512782
\(786\) 0 0
\(787\) 16428.0 + 16428.0i 0.744084 + 0.744084i 0.973361 0.229277i \(-0.0736363\pi\)
−0.229277 + 0.973361i \(0.573636\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 9441.17i 0.424386i
\(792\) 0 0
\(793\) 1912.19i 0.0856289i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8701.38 8701.38i −0.386724 0.386724i 0.486794 0.873517i \(-0.338166\pi\)
−0.873517 + 0.486794i \(0.838166\pi\)
\(798\) 0 0
\(799\) −16061.7 −0.711168
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6756.04 6756.04i −0.296906 0.296906i
\(804\) 0 0
\(805\) −13378.5 + 13378.5i −0.585750 + 0.585750i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43605.6i 1.89504i −0.319691 0.947522i \(-0.603579\pi\)
0.319691 0.947522i \(-0.396421\pi\)
\(810\) 0 0
\(811\) −8540.04 + 8540.04i −0.369768 + 0.369768i −0.867392 0.497625i \(-0.834206\pi\)
0.497625 + 0.867392i \(0.334206\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 56437.7 2.42567
\(816\) 0 0
\(817\) 54239.5 2.32264
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −32464.0 + 32464.0i −1.38003 + 1.38003i −0.535477 + 0.844550i \(0.679868\pi\)
−0.844550 + 0.535477i \(0.820132\pi\)
\(822\) 0 0
\(823\) 9716.22i 0.411526i −0.978602 0.205763i \(-0.934032\pi\)
0.978602 0.205763i \(-0.0659676\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25049.7 + 25049.7i −1.05328 + 1.05328i −0.0547815 + 0.998498i \(0.517446\pi\)
−0.998498 + 0.0547815i \(0.982554\pi\)
\(828\) 0 0
\(829\) 11566.7 + 11566.7i 0.484594 + 0.484594i 0.906595 0.422001i \(-0.138672\pi\)
−0.422001 + 0.906595i \(0.638672\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 19557.9 0.813495
\(834\) 0 0
\(835\) 39248.7 + 39248.7i 1.62666 + 1.62666i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7831.99i 0.322277i 0.986932 + 0.161138i \(0.0515166\pi\)
−0.986932 + 0.161138i \(0.948483\pi\)
\(840\) 0 0
\(841\) 21623.0i 0.886586i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −30996.7 30996.7i −1.26191 1.26191i
\(846\) 0 0
\(847\) 2714.71 0.110128
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8868.58 + 8868.58i 0.357240 + 0.357240i
\(852\) 0 0
\(853\) −28375.6 + 28375.6i −1.13900 + 1.13900i −0.150365 + 0.988631i \(0.548045\pi\)
−0.988631 + 0.150365i \(0.951955\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16182.0i 0.645000i −0.946569 0.322500i \(-0.895477\pi\)
0.946569 0.322500i \(-0.104523\pi\)
\(858\) 0 0
\(859\) −3869.82 + 3869.82i −0.153710 + 0.153710i −0.779773 0.626063i \(-0.784665\pi\)
0.626063 + 0.779773i \(0.284665\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −40231.6 −1.58691 −0.793453 0.608632i \(-0.791719\pi\)
−0.793453 + 0.608632i \(0.791719\pi\)
\(864\) 0 0
\(865\) −50659.0 −1.99128
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18629.1 18629.1i 0.727213 0.727213i
\(870\) 0 0
\(871\) 6978.49i 0.271478i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −29226.4 + 29226.4i −1.12918 + 1.12918i
\(876\) 0 0
\(877\) 9968.05 + 9968.05i 0.383805 + 0.383805i 0.872471 0.488666i \(-0.162516\pi\)
−0.488666 + 0.872471i \(0.662516\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2638.39 −0.100896 −0.0504481 0.998727i \(-0.516065\pi\)
−0.0504481 + 0.998727i \(0.516065\pi\)
\(882\) 0 0
\(883\) −1931.38 1931.38i −0.0736081 0.0736081i 0.669344 0.742952i \(-0.266575\pi\)
−0.742952 + 0.669344i \(0.766575\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 49401.5i 1.87006i 0.354574 + 0.935028i \(0.384626\pi\)
−0.354574 + 0.935028i \(0.615374\pi\)
\(888\) 0 0
\(889\) 13820.1i 0.521383i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15680.8 15680.8i −0.587613 0.587613i
\(894\) 0 0
\(895\) −80806.5 −3.01795
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9356.29 9356.29i −0.347108 0.347108i
\(900\) 0 0
\(901\) −7402.92 + 7402.92i −0.273726 + 0.273726i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 90555.8i 3.32616i
\(906\) 0 0
\(907\) −22152.3 + 22152.3i −0.810977 + 0.810977i −0.984780 0.173803i \(-0.944394\pi\)
0.173803 + 0.984780i \(0.444394\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 50952.6 1.85306 0.926529 0.376222i \(-0.122777\pi\)
0.926529 + 0.376222i \(0.122777\pi\)
\(912\) 0 0
\(913\) −10749.1 −0.389642
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13824.8 13824.8i 0.497856 0.497856i
\(918\) 0 0
\(919\) 4966.56i 0.178272i −0.996019 0.0891359i \(-0.971589\pi\)
0.996019 0.0891359i \(-0.0284105\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2839.57 2839.57i 0.101263 0.101263i
\(924\) 0 0
\(925\) 32169.2 + 32169.2i 1.14348 + 1.14348i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −42097.4 −1.48673 −0.743364 0.668887i \(-0.766771\pi\)
−0.743364 + 0.668887i \(0.766771\pi\)
\(930\) 0 0
\(931\) 19094.1 + 19094.1i 0.672162 + 0.672162i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 57205.6i 2.00088i
\(936\) 0 0
\(937\) 14091.3i 0.491294i −0.969359 0.245647i \(-0.921000\pi\)
0.969359 0.245647i \(-0.0790004\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −5592.37 5592.37i −0.193737 0.193737i 0.603572 0.797309i \(-0.293744\pi\)
−0.797309 + 0.603572i \(0.793744\pi\)
\(942\) 0 0
\(943\) 34675.0 1.19743
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12885.8 + 12885.8i 0.442166 + 0.442166i 0.892739 0.450573i \(-0.148780\pi\)
−0.450573 + 0.892739i \(0.648780\pi\)
\(948\) 0 0
\(949\) 2120.76 2120.76i 0.0725425 0.0725425i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 18107.6i 0.615492i 0.951469 + 0.307746i \(0.0995746\pi\)
−0.951469 + 0.307746i \(0.900425\pi\)
\(954\) 0 0
\(955\) 59774.4 59774.4i 2.02540 2.02540i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 20617.3 0.694230
\(960\) 0 0
\(961\) 33505.3 1.12468
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2367.19 2367.19i 0.0789665 0.0789665i
\(966\) 0 0
\(967\) 16125.0i 0.536241i 0.963385 + 0.268120i \(0.0864025\pi\)
−0.963385 + 0.268120i \(0.913597\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 893.116 893.116i 0.0295174 0.0295174i −0.692194 0.721711i \(-0.743356\pi\)
0.721711 + 0.692194i \(0.243356\pi\)
\(972\) 0 0
\(973\) 3679.12 + 3679.12i 0.121220 + 0.121220i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 46541.5 1.52405 0.762024 0.647549i \(-0.224206\pi\)
0.762024 + 0.647549i \(0.224206\pi\)
\(978\) 0 0
\(979\) 3311.59 + 3311.59i 0.108109 + 0.108109i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 30204.7i 0.980041i −0.871711 0.490020i \(-0.836989\pi\)
0.871711 0.490020i \(-0.163011\pi\)
\(984\) 0 0
\(985\) 1311.17i 0.0424136i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −28849.9 28849.9i −0.927576 0.927576i
\(990\) 0 0
\(991\) 23193.1 0.743446 0.371723 0.928344i \(-0.378767\pi\)
0.371723 + 0.928344i \(0.378767\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −23561.6 23561.6i −0.750705 0.750705i
\(996\) 0 0
\(997\) −17708.8 + 17708.8i −0.562529 + 0.562529i −0.930025 0.367496i \(-0.880215\pi\)
0.367496 + 0.930025i \(0.380215\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.k.c.145.12 24
3.2 odd 2 inner 576.4.k.c.145.1 24
4.3 odd 2 144.4.k.c.109.9 yes 24
12.11 even 2 144.4.k.c.109.4 yes 24
16.5 even 4 inner 576.4.k.c.433.12 24
16.11 odd 4 144.4.k.c.37.9 yes 24
48.5 odd 4 inner 576.4.k.c.433.1 24
48.11 even 4 144.4.k.c.37.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.4.k.c.37.4 24 48.11 even 4
144.4.k.c.37.9 yes 24 16.11 odd 4
144.4.k.c.109.4 yes 24 12.11 even 2
144.4.k.c.109.9 yes 24 4.3 odd 2
576.4.k.c.145.1 24 3.2 odd 2 inner
576.4.k.c.145.12 24 1.1 even 1 trivial
576.4.k.c.433.1 24 48.5 odd 4 inner
576.4.k.c.433.12 24 16.5 even 4 inner