Properties

Label 576.4.k.a.433.3
Level $576$
Weight $4$
Character 576.433
Analytic conductor $33.985$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(145,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.145"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 576.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,2,0,0,0,0,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.9851001633\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - x^{8} + 6x^{7} + 14x^{6} - 80x^{5} + 56x^{4} + 96x^{3} - 64x^{2} - 512x + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.3
Root \(0.932438 + 1.76934i\) of defining polynomial
Character \(\chi\) \(=\) 576.433
Dual form 576.4.k.a.145.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.596848 + 0.596848i) q^{5} +29.0828i q^{7} +(12.1291 + 12.1291i) q^{11} +(-48.5658 + 48.5658i) q^{13} -86.7193 q^{17} +(54.8442 - 54.8442i) q^{19} -70.2145i q^{23} -124.288i q^{25} +(-63.4021 + 63.4021i) q^{29} +8.86868 q^{31} +(-17.3580 + 17.3580i) q^{35} +(-21.7145 - 21.7145i) q^{37} -153.274i q^{41} +(120.951 + 120.951i) q^{43} -99.9792 q^{47} -502.812 q^{49} +(-389.132 - 389.132i) q^{53} +14.4785i q^{55} +(-324.819 - 324.819i) q^{59} +(-0.339194 + 0.339194i) q^{61} -57.9728 q^{65} +(-565.288 + 565.288i) q^{67} +419.500i q^{71} -374.833i q^{73} +(-352.750 + 352.750i) q^{77} +705.750 q^{79} +(-947.092 + 947.092i) q^{83} +(-51.7582 - 51.7582i) q^{85} -4.72918i q^{89} +(-1412.43 - 1412.43i) q^{91} +65.4673 q^{95} +379.542 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{5} + 18 q^{11} - 2 q^{13} + 4 q^{17} + 26 q^{19} + 202 q^{29} - 368 q^{31} + 476 q^{35} - 10 q^{37} + 838 q^{43} - 944 q^{47} + 94 q^{49} + 378 q^{53} + 1706 q^{59} + 910 q^{61} + 492 q^{65}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.596848 + 0.596848i 0.0533837 + 0.0533837i 0.733295 0.679911i \(-0.237982\pi\)
−0.679911 + 0.733295i \(0.737982\pi\)
\(6\) 0 0
\(7\) 29.0828i 1.57033i 0.619289 + 0.785163i \(0.287421\pi\)
−0.619289 + 0.785163i \(0.712579\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 12.1291 + 12.1291i 0.332461 + 0.332461i 0.853520 0.521059i \(-0.174463\pi\)
−0.521059 + 0.853520i \(0.674463\pi\)
\(12\) 0 0
\(13\) −48.5658 + 48.5658i −1.03613 + 1.03613i −0.0368113 + 0.999322i \(0.511720\pi\)
−0.999322 + 0.0368113i \(0.988280\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −86.7193 −1.23721 −0.618604 0.785703i \(-0.712301\pi\)
−0.618604 + 0.785703i \(0.712301\pi\)
\(18\) 0 0
\(19\) 54.8442 54.8442i 0.662217 0.662217i −0.293685 0.955902i \(-0.594882\pi\)
0.955902 + 0.293685i \(0.0948817\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 70.2145i 0.636554i −0.947998 0.318277i \(-0.896896\pi\)
0.947998 0.318277i \(-0.103104\pi\)
\(24\) 0 0
\(25\) 124.288i 0.994300i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −63.4021 + 63.4021i −0.405982 + 0.405982i −0.880335 0.474353i \(-0.842682\pi\)
0.474353 + 0.880335i \(0.342682\pi\)
\(30\) 0 0
\(31\) 8.86868 0.0513826 0.0256913 0.999670i \(-0.491821\pi\)
0.0256913 + 0.999670i \(0.491821\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −17.3580 + 17.3580i −0.0838298 + 0.0838298i
\(36\) 0 0
\(37\) −21.7145 21.7145i −0.0964820 0.0964820i 0.657218 0.753700i \(-0.271733\pi\)
−0.753700 + 0.657218i \(0.771733\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 153.274i 0.583840i −0.956443 0.291920i \(-0.905706\pi\)
0.956443 0.291920i \(-0.0942941\pi\)
\(42\) 0 0
\(43\) 120.951 + 120.951i 0.428949 + 0.428949i 0.888270 0.459322i \(-0.151907\pi\)
−0.459322 + 0.888270i \(0.651907\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −99.9792 −0.310286 −0.155143 0.987892i \(-0.549584\pi\)
−0.155143 + 0.987892i \(0.549584\pi\)
\(48\) 0 0
\(49\) −502.812 −1.46592
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −389.132 389.132i −1.00852 1.00852i −0.999963 0.00855213i \(-0.997278\pi\)
−0.00855213 0.999963i \(-0.502722\pi\)
\(54\) 0 0
\(55\) 14.4785i 0.0354960i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −324.819 324.819i −0.716744 0.716744i 0.251193 0.967937i \(-0.419177\pi\)
−0.967937 + 0.251193i \(0.919177\pi\)
\(60\) 0 0
\(61\) −0.339194 + 0.339194i −0.000711957 + 0.000711957i −0.707463 0.706751i \(-0.750160\pi\)
0.706751 + 0.707463i \(0.250160\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −57.9728 −0.110625
\(66\) 0 0
\(67\) −565.288 + 565.288i −1.03076 + 1.03076i −0.0312478 + 0.999512i \(0.509948\pi\)
−0.999512 + 0.0312478i \(0.990052\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 419.500i 0.701205i 0.936524 + 0.350602i \(0.114023\pi\)
−0.936524 + 0.350602i \(0.885977\pi\)
\(72\) 0 0
\(73\) 374.833i 0.600971i −0.953786 0.300485i \(-0.902851\pi\)
0.953786 0.300485i \(-0.0971487\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −352.750 + 352.750i −0.522072 + 0.522072i
\(78\) 0 0
\(79\) 705.750 1.00510 0.502551 0.864547i \(-0.332395\pi\)
0.502551 + 0.864547i \(0.332395\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −947.092 + 947.092i −1.25249 + 1.25249i −0.297893 + 0.954599i \(0.596284\pi\)
−0.954599 + 0.297893i \(0.903716\pi\)
\(84\) 0 0
\(85\) −51.7582 51.7582i −0.0660467 0.0660467i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.72918i 0.00563249i −0.999996 0.00281625i \(-0.999104\pi\)
0.999996 0.00281625i \(-0.000896440\pi\)
\(90\) 0 0
\(91\) −1412.43 1412.43i −1.62707 1.62707i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 65.4673 0.0707032
\(96\) 0 0
\(97\) 379.542 0.397285 0.198643 0.980072i \(-0.436347\pi\)
0.198643 + 0.980072i \(0.436347\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 391.005 + 391.005i 0.385212 + 0.385212i 0.872976 0.487764i \(-0.162187\pi\)
−0.487764 + 0.872976i \(0.662187\pi\)
\(102\) 0 0
\(103\) 307.935i 0.294580i −0.989093 0.147290i \(-0.952945\pi\)
0.989093 0.147290i \(-0.0470551\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −601.607 601.607i −0.543548 0.543548i 0.381019 0.924567i \(-0.375573\pi\)
−0.924567 + 0.381019i \(0.875573\pi\)
\(108\) 0 0
\(109\) −948.890 + 948.890i −0.833827 + 0.833827i −0.988038 0.154211i \(-0.950717\pi\)
0.154211 + 0.988038i \(0.450717\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1824.02 −1.51849 −0.759244 0.650807i \(-0.774431\pi\)
−0.759244 + 0.650807i \(0.774431\pi\)
\(114\) 0 0
\(115\) 41.9074 41.9074i 0.0339816 0.0339816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2522.04i 1.94282i
\(120\) 0 0
\(121\) 1036.77i 0.778939i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 148.787 148.787i 0.106463 0.106463i
\(126\) 0 0
\(127\) −988.748 −0.690844 −0.345422 0.938447i \(-0.612264\pi\)
−0.345422 + 0.938447i \(0.612264\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 793.572 793.572i 0.529273 0.529273i −0.391083 0.920356i \(-0.627899\pi\)
0.920356 + 0.391083i \(0.127899\pi\)
\(132\) 0 0
\(133\) 1595.03 + 1595.03i 1.03990 + 1.03990i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1595.30i 0.994856i −0.867505 0.497428i \(-0.834278\pi\)
0.867505 0.497428i \(-0.165722\pi\)
\(138\) 0 0
\(139\) 277.696 + 277.696i 0.169452 + 0.169452i 0.786738 0.617286i \(-0.211768\pi\)
−0.617286 + 0.786738i \(0.711768\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1178.12 −0.688948
\(144\) 0 0
\(145\) −75.6828 −0.0433456
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 593.272 + 593.272i 0.326193 + 0.326193i 0.851137 0.524944i \(-0.175914\pi\)
−0.524944 + 0.851137i \(0.675914\pi\)
\(150\) 0 0
\(151\) 160.655i 0.0865821i −0.999063 0.0432911i \(-0.986216\pi\)
0.999063 0.0432911i \(-0.0137843\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.29325 + 5.29325i 0.00274299 + 0.00274299i
\(156\) 0 0
\(157\) −705.762 + 705.762i −0.358764 + 0.358764i −0.863357 0.504593i \(-0.831642\pi\)
0.504593 + 0.863357i \(0.331642\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2042.04 0.999598
\(162\) 0 0
\(163\) −1872.64 + 1872.64i −0.899855 + 0.899855i −0.995423 0.0955676i \(-0.969533\pi\)
0.0955676 + 0.995423i \(0.469533\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3852.19i 1.78498i 0.451066 + 0.892490i \(0.351044\pi\)
−0.451066 + 0.892490i \(0.648956\pi\)
\(168\) 0 0
\(169\) 2520.28i 1.14715i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2625.61 + 2625.61i −1.15388 + 1.15388i −0.168112 + 0.985768i \(0.553767\pi\)
−0.985768 + 0.168112i \(0.946233\pi\)
\(174\) 0 0
\(175\) 3614.64 1.56138
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1236.73 + 1236.73i −0.516413 + 0.516413i −0.916484 0.400071i \(-0.868985\pi\)
0.400071 + 0.916484i \(0.368985\pi\)
\(180\) 0 0
\(181\) 1574.90 + 1574.90i 0.646748 + 0.646748i 0.952206 0.305458i \(-0.0988094\pi\)
−0.305458 + 0.952206i \(0.598809\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 25.9204i 0.0103011i
\(186\) 0 0
\(187\) −1051.83 1051.83i −0.411323 0.411323i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3585.92 1.35847 0.679236 0.733920i \(-0.262311\pi\)
0.679236 + 0.733920i \(0.262311\pi\)
\(192\) 0 0
\(193\) 523.601 0.195283 0.0976415 0.995222i \(-0.468870\pi\)
0.0976415 + 0.995222i \(0.468870\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1125.64 + 1125.64i 0.407098 + 0.407098i 0.880725 0.473627i \(-0.157056\pi\)
−0.473627 + 0.880725i \(0.657056\pi\)
\(198\) 0 0
\(199\) 2312.48i 0.823757i −0.911239 0.411878i \(-0.864873\pi\)
0.911239 0.411878i \(-0.135127\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1843.91 1843.91i −0.637524 0.637524i
\(204\) 0 0
\(205\) 91.4815 91.4815i 0.0311675 0.0311675i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1330.43 0.440323
\(210\) 0 0
\(211\) −1418.59 + 1418.59i −0.462842 + 0.462842i −0.899586 0.436744i \(-0.856132\pi\)
0.436744 + 0.899586i \(0.356132\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 144.378i 0.0457977i
\(216\) 0 0
\(217\) 257.926i 0.0806875i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4211.60 4211.60i 1.28191 1.28191i
\(222\) 0 0
\(223\) 4315.08 1.29578 0.647890 0.761734i \(-0.275651\pi\)
0.647890 + 0.761734i \(0.275651\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 701.203 701.203i 0.205024 0.205024i −0.597124 0.802149i \(-0.703690\pi\)
0.802149 + 0.597124i \(0.203690\pi\)
\(228\) 0 0
\(229\) −663.351 663.351i −0.191421 0.191421i 0.604889 0.796310i \(-0.293218\pi\)
−0.796310 + 0.604889i \(0.793218\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3490.15i 0.981318i −0.871352 0.490659i \(-0.836756\pi\)
0.871352 0.490659i \(-0.163244\pi\)
\(234\) 0 0
\(235\) −59.6724 59.6724i −0.0165642 0.0165642i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2950.43 0.798525 0.399263 0.916837i \(-0.369266\pi\)
0.399263 + 0.916837i \(0.369266\pi\)
\(240\) 0 0
\(241\) −1128.96 −0.301755 −0.150877 0.988552i \(-0.548210\pi\)
−0.150877 + 0.988552i \(0.548210\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −300.102 300.102i −0.0782565 0.0782565i
\(246\) 0 0
\(247\) 5327.11i 1.37229i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4621.86 + 4621.86i 1.16227 + 1.16227i 0.983978 + 0.178291i \(0.0570569\pi\)
0.178291 + 0.983978i \(0.442943\pi\)
\(252\) 0 0
\(253\) 851.642 851.642i 0.211630 0.211630i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −610.977 −0.148295 −0.0741473 0.997247i \(-0.523623\pi\)
−0.0741473 + 0.997247i \(0.523623\pi\)
\(258\) 0 0
\(259\) 631.518 631.518i 0.151508 0.151508i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4973.57i 1.16610i −0.812438 0.583048i \(-0.801860\pi\)
0.812438 0.583048i \(-0.198140\pi\)
\(264\) 0 0
\(265\) 464.505i 0.107677i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 938.415 938.415i 0.212700 0.212700i −0.592714 0.805413i \(-0.701943\pi\)
0.805413 + 0.592714i \(0.201943\pi\)
\(270\) 0 0
\(271\) 4010.64 0.898999 0.449500 0.893280i \(-0.351602\pi\)
0.449500 + 0.893280i \(0.351602\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1507.50 1507.50i 0.330566 0.330566i
\(276\) 0 0
\(277\) −3534.99 3534.99i −0.766776 0.766776i 0.210762 0.977538i \(-0.432406\pi\)
−0.977538 + 0.210762i \(0.932406\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7468.35i 1.58550i 0.609550 + 0.792748i \(0.291350\pi\)
−0.609550 + 0.792748i \(0.708650\pi\)
\(282\) 0 0
\(283\) 2249.22 + 2249.22i 0.472447 + 0.472447i 0.902705 0.430259i \(-0.141578\pi\)
−0.430259 + 0.902705i \(0.641578\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4457.66 0.916819
\(288\) 0 0
\(289\) 2607.24 0.530682
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3952.79 + 3952.79i 0.788139 + 0.788139i 0.981189 0.193050i \(-0.0618381\pi\)
−0.193050 + 0.981189i \(0.561838\pi\)
\(294\) 0 0
\(295\) 387.736i 0.0765249i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3410.03 + 3410.03i 0.659555 + 0.659555i
\(300\) 0 0
\(301\) −3517.59 + 3517.59i −0.673589 + 0.673589i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.404895 −7.60138e−5
\(306\) 0 0
\(307\) 3855.24 3855.24i 0.716711 0.716711i −0.251219 0.967930i \(-0.580832\pi\)
0.967930 + 0.251219i \(0.0808316\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5194.39i 0.947096i 0.880768 + 0.473548i \(0.157027\pi\)
−0.880768 + 0.473548i \(0.842973\pi\)
\(312\) 0 0
\(313\) 4710.01i 0.850561i −0.905062 0.425281i \(-0.860175\pi\)
0.905062 0.425281i \(-0.139825\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5680.21 + 5680.21i −1.00641 + 1.00641i −0.00643263 + 0.999979i \(0.502048\pi\)
−0.999979 + 0.00643263i \(0.997952\pi\)
\(318\) 0 0
\(319\) −1538.03 −0.269946
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4756.05 + 4756.05i −0.819300 + 0.819300i
\(324\) 0 0
\(325\) 6036.13 + 6036.13i 1.03023 + 1.03023i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2907.68i 0.487251i
\(330\) 0 0
\(331\) −1815.80 1815.80i −0.301526 0.301526i 0.540084 0.841611i \(-0.318392\pi\)
−0.841611 + 0.540084i \(0.818392\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −674.782 −0.110052
\(336\) 0 0
\(337\) −2683.29 −0.433733 −0.216867 0.976201i \(-0.569584\pi\)
−0.216867 + 0.976201i \(0.569584\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 107.569 + 107.569i 0.0170827 + 0.0170827i
\(342\) 0 0
\(343\) 4647.79i 0.731653i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5291.81 5291.81i −0.818671 0.818671i 0.167244 0.985916i \(-0.446513\pi\)
−0.985916 + 0.167244i \(0.946513\pi\)
\(348\) 0 0
\(349\) 73.7084 73.7084i 0.0113052 0.0113052i −0.701432 0.712737i \(-0.747455\pi\)
0.712737 + 0.701432i \(0.247455\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 5067.25 0.764030 0.382015 0.924156i \(-0.375230\pi\)
0.382015 + 0.924156i \(0.375230\pi\)
\(354\) 0 0
\(355\) −250.378 + 250.378i −0.0374329 + 0.0374329i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 970.230i 0.142637i −0.997454 0.0713186i \(-0.977279\pi\)
0.997454 0.0713186i \(-0.0227207\pi\)
\(360\) 0 0
\(361\) 843.224i 0.122937i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 223.718 223.718i 0.0320821 0.0320821i
\(366\) 0 0
\(367\) −13451.4 −1.91323 −0.956617 0.291347i \(-0.905896\pi\)
−0.956617 + 0.291347i \(0.905896\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11317.1 11317.1i 1.58370 1.58370i
\(372\) 0 0
\(373\) 5898.22 + 5898.22i 0.818762 + 0.818762i 0.985929 0.167167i \(-0.0534619\pi\)
−0.167167 + 0.985929i \(0.553462\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6158.35i 0.841302i
\(378\) 0 0
\(379\) 4446.72 + 4446.72i 0.602673 + 0.602673i 0.941021 0.338348i \(-0.109868\pi\)
−0.338348 + 0.941021i \(0.609868\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6417.68 −0.856209 −0.428105 0.903729i \(-0.640819\pi\)
−0.428105 + 0.903729i \(0.640819\pi\)
\(384\) 0 0
\(385\) −421.076 −0.0557403
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6555.61 6555.61i −0.854455 0.854455i 0.136223 0.990678i \(-0.456503\pi\)
−0.990678 + 0.136223i \(0.956503\pi\)
\(390\) 0 0
\(391\) 6088.96i 0.787549i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 421.226 + 421.226i 0.0536561 + 0.0536561i
\(396\) 0 0
\(397\) 8902.51 8902.51i 1.12545 1.12545i 0.134543 0.990908i \(-0.457043\pi\)
0.990908 0.134543i \(-0.0429566\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6425.77 0.800218 0.400109 0.916468i \(-0.368972\pi\)
0.400109 + 0.916468i \(0.368972\pi\)
\(402\) 0 0
\(403\) −430.715 + 430.715i −0.0532393 + 0.0532393i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 526.755i 0.0641530i
\(408\) 0 0
\(409\) 12796.0i 1.54699i 0.633801 + 0.773496i \(0.281494\pi\)
−0.633801 + 0.773496i \(0.718506\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9446.67 9446.67i 1.12552 1.12552i
\(414\) 0 0
\(415\) −1130.54 −0.133725
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6545.21 + 6545.21i −0.763137 + 0.763137i −0.976888 0.213751i \(-0.931432\pi\)
0.213751 + 0.976888i \(0.431432\pi\)
\(420\) 0 0
\(421\) −6390.00 6390.00i −0.739738 0.739738i 0.232789 0.972527i \(-0.425215\pi\)
−0.972527 + 0.232789i \(0.925215\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10778.1i 1.23016i
\(426\) 0 0
\(427\) −9.86474 9.86474i −0.00111801 0.00111801i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10639.3 −1.18904 −0.594519 0.804081i \(-0.702658\pi\)
−0.594519 + 0.804081i \(0.702658\pi\)
\(432\) 0 0
\(433\) 3806.14 0.422428 0.211214 0.977440i \(-0.432258\pi\)
0.211214 + 0.977440i \(0.432258\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3850.86 3850.86i −0.421537 0.421537i
\(438\) 0 0
\(439\) 14102.8i 1.53323i −0.642106 0.766616i \(-0.721939\pi\)
0.642106 0.766616i \(-0.278061\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7662.45 7662.45i −0.821792 0.821792i 0.164573 0.986365i \(-0.447375\pi\)
−0.986365 + 0.164573i \(0.947375\pi\)
\(444\) 0 0
\(445\) 2.82260 2.82260i 0.000300683 0.000300683i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −13679.4 −1.43779 −0.718897 0.695117i \(-0.755353\pi\)
−0.718897 + 0.695117i \(0.755353\pi\)
\(450\) 0 0
\(451\) 1859.09 1859.09i 0.194104 0.194104i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1686.01i 0.173718i
\(456\) 0 0
\(457\) 7913.48i 0.810016i 0.914313 + 0.405008i \(0.132731\pi\)
−0.914313 + 0.405008i \(0.867269\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 580.215 580.215i 0.0586189 0.0586189i −0.677190 0.735809i \(-0.736802\pi\)
0.735809 + 0.677190i \(0.236802\pi\)
\(462\) 0 0
\(463\) −14236.5 −1.42899 −0.714497 0.699638i \(-0.753344\pi\)
−0.714497 + 0.699638i \(0.753344\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8344.57 + 8344.57i −0.826853 + 0.826853i −0.987080 0.160227i \(-0.948777\pi\)
0.160227 + 0.987080i \(0.448777\pi\)
\(468\) 0 0
\(469\) −16440.2 16440.2i −1.61863 1.61863i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2934.05i 0.285217i
\(474\) 0 0
\(475\) −6816.45 6816.45i −0.658443 0.658443i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5563.77 −0.530720 −0.265360 0.964149i \(-0.585491\pi\)
−0.265360 + 0.964149i \(0.585491\pi\)
\(480\) 0 0
\(481\) 2109.16 0.199936
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 226.529 + 226.529i 0.0212085 + 0.0212085i
\(486\) 0 0
\(487\) 18150.5i 1.68886i 0.535662 + 0.844432i \(0.320062\pi\)
−0.535662 + 0.844432i \(0.679938\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11593.0 + 11593.0i 1.06555 + 1.06555i 0.997695 + 0.0678570i \(0.0216162\pi\)
0.0678570 + 0.997695i \(0.478384\pi\)
\(492\) 0 0
\(493\) 5498.18 5498.18i 0.502284 0.502284i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12200.3 −1.10112
\(498\) 0 0
\(499\) −3109.58 + 3109.58i −0.278966 + 0.278966i −0.832696 0.553730i \(-0.813204\pi\)
0.553730 + 0.832696i \(0.313204\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6221.21i 0.551471i −0.961233 0.275736i \(-0.911079\pi\)
0.961233 0.275736i \(-0.0889215\pi\)
\(504\) 0 0
\(505\) 466.740i 0.0411281i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −13800.4 + 13800.4i −1.20176 + 1.20176i −0.228124 + 0.973632i \(0.573259\pi\)
−0.973632 + 0.228124i \(0.926741\pi\)
\(510\) 0 0
\(511\) 10901.2 0.943720
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 183.791 183.791i 0.0157258 0.0157258i
\(516\) 0 0
\(517\) −1212.66 1212.66i −0.103158 0.103158i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 6874.63i 0.578086i 0.957316 + 0.289043i \(0.0933371\pi\)
−0.957316 + 0.289043i \(0.906663\pi\)
\(522\) 0 0
\(523\) −2306.52 2306.52i −0.192843 0.192843i 0.604080 0.796924i \(-0.293541\pi\)
−0.796924 + 0.604080i \(0.793541\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −769.086 −0.0635710
\(528\) 0 0
\(529\) 7236.92 0.594799
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7443.90 + 7443.90i 0.604936 + 0.604936i
\(534\) 0 0
\(535\) 718.136i 0.0580332i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6098.68 6098.68i −0.487363 0.487363i
\(540\) 0 0
\(541\) −13240.0 + 13240.0i −1.05218 + 1.05218i −0.0536210 + 0.998561i \(0.517076\pi\)
−0.998561 + 0.0536210i \(0.982924\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1132.69 −0.0890256
\(546\) 0 0
\(547\) 13271.3 13271.3i 1.03737 1.03737i 0.0380940 0.999274i \(-0.487871\pi\)
0.999274 0.0380940i \(-0.0121286\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6954.47i 0.537696i
\(552\) 0 0
\(553\) 20525.2i 1.57834i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8500.61 8500.61i 0.646647 0.646647i −0.305534 0.952181i \(-0.598835\pi\)
0.952181 + 0.305534i \(0.0988349\pi\)
\(558\) 0 0
\(559\) −11748.1 −0.888896
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17327.2 17327.2i 1.29708 1.29708i 0.366763 0.930314i \(-0.380466\pi\)
0.930314 0.366763i \(-0.119534\pi\)
\(564\) 0 0
\(565\) −1088.66 1088.66i −0.0810625 0.0810625i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8998.54i 0.662985i −0.943458 0.331492i \(-0.892448\pi\)
0.943458 0.331492i \(-0.107552\pi\)
\(570\) 0 0
\(571\) 9849.25 + 9849.25i 0.721853 + 0.721853i 0.968983 0.247129i \(-0.0794872\pi\)
−0.247129 + 0.968983i \(0.579487\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −8726.79 −0.632926
\(576\) 0 0
\(577\) −20584.4 −1.48516 −0.742580 0.669757i \(-0.766398\pi\)
−0.742580 + 0.669757i \(0.766398\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −27544.1 27544.1i −1.96682 1.96682i
\(582\) 0 0
\(583\) 9439.66i 0.670585i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2586.77 2586.77i −0.181887 0.181887i 0.610291 0.792177i \(-0.291053\pi\)
−0.792177 + 0.610291i \(0.791053\pi\)
\(588\) 0 0
\(589\) 486.396 486.396i 0.0340265 0.0340265i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6035.89 0.417984 0.208992 0.977917i \(-0.432982\pi\)
0.208992 + 0.977917i \(0.432982\pi\)
\(594\) 0 0
\(595\) 1505.28 1505.28i 0.103715 0.103715i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5427.20i 0.370199i −0.982720 0.185100i \(-0.940739\pi\)
0.982720 0.185100i \(-0.0592608\pi\)
\(600\) 0 0
\(601\) 17725.7i 1.20307i −0.798847 0.601535i \(-0.794556\pi\)
0.798847 0.601535i \(-0.205444\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 618.793 618.793i 0.0415827 0.0415827i
\(606\) 0 0
\(607\) −13487.6 −0.901884 −0.450942 0.892553i \(-0.648912\pi\)
−0.450942 + 0.892553i \(0.648912\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4855.57 4855.57i 0.321498 0.321498i
\(612\) 0 0
\(613\) −16850.4 16850.4i −1.11025 1.11025i −0.993117 0.117129i \(-0.962631\pi\)
−0.117129 0.993117i \(-0.537369\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 535.243i 0.0349239i −0.999848 0.0174620i \(-0.994441\pi\)
0.999848 0.0174620i \(-0.00555860\pi\)
\(618\) 0 0
\(619\) 19691.0 + 19691.0i 1.27859 + 1.27859i 0.941458 + 0.337130i \(0.109456\pi\)
0.337130 + 0.941458i \(0.390544\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 137.538 0.00884485
\(624\) 0 0
\(625\) −15358.3 −0.982934
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1883.06 + 1883.06i 0.119368 + 0.119368i
\(630\) 0 0
\(631\) 11880.2i 0.749511i −0.927124 0.374755i \(-0.877727\pi\)
0.927124 0.374755i \(-0.122273\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −590.132 590.132i −0.0368798 0.0368798i
\(636\) 0 0
\(637\) 24419.5 24419.5i 1.51889 1.51889i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −18341.0 −1.13015 −0.565074 0.825040i \(-0.691152\pi\)
−0.565074 + 0.825040i \(0.691152\pi\)
\(642\) 0 0
\(643\) −7026.21 + 7026.21i −0.430928 + 0.430928i −0.888944 0.458016i \(-0.848560\pi\)
0.458016 + 0.888944i \(0.348560\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21429.7i 1.30215i 0.759015 + 0.651073i \(0.225681\pi\)
−0.759015 + 0.651073i \(0.774319\pi\)
\(648\) 0 0
\(649\) 7879.56i 0.476579i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8681.22 + 8681.22i −0.520248 + 0.520248i −0.917646 0.397398i \(-0.869913\pi\)
0.397398 + 0.917646i \(0.369913\pi\)
\(654\) 0 0
\(655\) 947.284 0.0565091
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4151.60 + 4151.60i −0.245407 + 0.245407i −0.819083 0.573675i \(-0.805517\pi\)
0.573675 + 0.819083i \(0.305517\pi\)
\(660\) 0 0
\(661\) 12239.0 + 12239.0i 0.720182 + 0.720182i 0.968642 0.248460i \(-0.0799244\pi\)
−0.248460 + 0.968642i \(0.579924\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1903.98i 0.111027i
\(666\) 0 0
\(667\) 4451.75 + 4451.75i 0.258429 + 0.258429i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.22827 −0.000473396
\(672\) 0 0
\(673\) 6528.62 0.373937 0.186969 0.982366i \(-0.440134\pi\)
0.186969 + 0.982366i \(0.440134\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14220.6 + 14220.6i 0.807299 + 0.807299i 0.984224 0.176925i \(-0.0566151\pi\)
−0.176925 + 0.984224i \(0.556615\pi\)
\(678\) 0 0
\(679\) 11038.2i 0.623867i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21419.5 + 21419.5i 1.19999 + 1.19999i 0.974167 + 0.225827i \(0.0725084\pi\)
0.225827 + 0.974167i \(0.427492\pi\)
\(684\) 0 0
\(685\) 952.149 952.149i 0.0531091 0.0531091i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 37797.0 2.08991
\(690\) 0 0
\(691\) 16537.1 16537.1i 0.910423 0.910423i −0.0858818 0.996305i \(-0.527371\pi\)
0.996305 + 0.0858818i \(0.0273708\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 331.484i 0.0180920i
\(696\) 0 0
\(697\) 13291.8i 0.722331i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3026.52 3026.52i 0.163067 0.163067i −0.620857 0.783924i \(-0.713215\pi\)
0.783924 + 0.620857i \(0.213215\pi\)
\(702\) 0 0
\(703\) −2381.82 −0.127784
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11371.5 + 11371.5i −0.604908 + 0.604908i
\(708\) 0 0
\(709\) 3981.14 + 3981.14i 0.210881 + 0.210881i 0.804642 0.593761i \(-0.202357\pi\)
−0.593761 + 0.804642i \(0.702357\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 622.710i 0.0327078i
\(714\) 0 0
\(715\) −703.160 703.160i −0.0367786 0.0367786i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5682.25 −0.294732 −0.147366 0.989082i \(-0.547079\pi\)
−0.147366 + 0.989082i \(0.547079\pi\)
\(720\) 0 0
\(721\) 8955.64 0.462587
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7880.09 + 7880.09i 0.403668 + 0.403668i
\(726\) 0 0
\(727\) 18883.0i 0.963317i 0.876359 + 0.481658i \(0.159965\pi\)
−0.876359 + 0.481658i \(0.840035\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10488.8 10488.8i −0.530698 0.530698i
\(732\) 0 0
\(733\) −24962.5 + 24962.5i −1.25786 + 1.25786i −0.305748 + 0.952113i \(0.598906\pi\)
−0.952113 + 0.305748i \(0.901094\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13712.9 −0.685375
\(738\) 0 0
\(739\) −6202.38 + 6202.38i −0.308739 + 0.308739i −0.844420 0.535681i \(-0.820055\pi\)
0.535681 + 0.844420i \(0.320055\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.9140i 0.00152641i 1.00000 0.000763205i \(0.000242936\pi\)
−1.00000 0.000763205i \(0.999757\pi\)
\(744\) 0 0
\(745\) 708.187i 0.0348268i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 17496.5 17496.5i 0.853547 0.853547i
\(750\) 0 0
\(751\) 16318.5 0.792905 0.396453 0.918055i \(-0.370241\pi\)
0.396453 + 0.918055i \(0.370241\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 95.8865 95.8865i 0.00462208 0.00462208i
\(756\) 0 0
\(757\) 9854.59 + 9854.59i 0.473146 + 0.473146i 0.902931 0.429786i \(-0.141411\pi\)
−0.429786 + 0.902931i \(0.641411\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3823.42i 0.182127i 0.995845 + 0.0910637i \(0.0290267\pi\)
−0.995845 + 0.0910637i \(0.970973\pi\)
\(762\) 0 0
\(763\) −27596.4 27596.4i −1.30938 1.30938i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 31550.2 1.48528
\(768\) 0 0
\(769\) 31689.1 1.48601 0.743003 0.669288i \(-0.233401\pi\)
0.743003 + 0.669288i \(0.233401\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1305.84 + 1305.84i 0.0607604 + 0.0607604i 0.736834 0.676074i \(-0.236320\pi\)
−0.676074 + 0.736834i \(0.736320\pi\)
\(774\) 0 0
\(775\) 1102.27i 0.0510898i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8406.21 8406.21i −0.386629 0.386629i
\(780\) 0 0
\(781\) −5088.18 + 5088.18i −0.233123 + 0.233123i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −842.465 −0.0383043
\(786\) 0 0
\(787\) −14399.5 + 14399.5i −0.652209 + 0.652209i −0.953524 0.301316i \(-0.902574\pi\)
0.301316 + 0.953524i \(0.402574\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 53047.6i 2.38452i
\(792\) 0 0
\(793\) 32.9465i 0.00147537i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5572.19 5572.19i 0.247650 0.247650i −0.572356 0.820006i \(-0.693970\pi\)
0.820006 + 0.572356i \(0.193970\pi\)
\(798\) 0 0
\(799\) 8670.13 0.383889
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4546.40 4546.40i 0.199800 0.199800i
\(804\) 0 0
\(805\) 1218.79 + 1218.79i 0.0533622 + 0.0533622i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5081.28i 0.220826i 0.993886 + 0.110413i \(0.0352174\pi\)
−0.993886 + 0.110413i \(0.964783\pi\)
\(810\) 0 0
\(811\) −4493.19 4493.19i −0.194546 0.194546i 0.603111 0.797657i \(-0.293928\pi\)
−0.797657 + 0.603111i \(0.793928\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2235.36 −0.0960752
\(816\) 0 0
\(817\) 13266.9 0.568114
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2115.54 2115.54i −0.0899304 0.0899304i 0.660710 0.750641i \(-0.270255\pi\)
−0.750641 + 0.660710i \(0.770255\pi\)
\(822\) 0 0
\(823\) 24432.6i 1.03483i 0.855734 + 0.517416i \(0.173106\pi\)
−0.855734 + 0.517416i \(0.826894\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21051.4 + 21051.4i 0.885162 + 0.885162i 0.994054 0.108892i \(-0.0347302\pi\)
−0.108892 + 0.994054i \(0.534730\pi\)
\(828\) 0 0
\(829\) 25442.0 25442.0i 1.06591 1.06591i 0.0682392 0.997669i \(-0.478262\pi\)
0.997669 0.0682392i \(-0.0217381\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 43603.5 1.81365
\(834\) 0 0
\(835\) −2299.17 + 2299.17i −0.0952889 + 0.0952889i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18757.2i 0.771837i 0.922533 + 0.385919i \(0.126115\pi\)
−0.922533 + 0.385919i \(0.873885\pi\)
\(840\) 0 0
\(841\) 16349.4i 0.670358i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1504.22 1504.22i 0.0612389 0.0612389i
\(846\) 0 0
\(847\) 30152.2 1.22319
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1524.67 + 1524.67i −0.0614160 + 0.0614160i
\(852\) 0 0
\(853\) −6100.17 6100.17i −0.244860 0.244860i 0.573997 0.818857i \(-0.305392\pi\)
−0.818857 + 0.573997i \(0.805392\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2079.04i 0.0828687i 0.999141 + 0.0414344i \(0.0131927\pi\)
−0.999141 + 0.0414344i \(0.986807\pi\)
\(858\) 0 0
\(859\) −8301.95 8301.95i −0.329754 0.329754i 0.522739 0.852493i \(-0.324910\pi\)
−0.852493 + 0.522739i \(0.824910\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43830.8 1.72887 0.864436 0.502743i \(-0.167676\pi\)
0.864436 + 0.502743i \(0.167676\pi\)
\(864\) 0 0
\(865\) −3134.18 −0.123197
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 8560.14 + 8560.14i 0.334158 + 0.334158i
\(870\) 0 0
\(871\) 54907.3i 2.13601i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4327.14 + 4327.14i 0.167182 + 0.167182i
\(876\) 0 0
\(877\) −2565.89 + 2565.89i −0.0987958 + 0.0987958i −0.754777 0.655981i \(-0.772255\pi\)
0.655981 + 0.754777i \(0.272255\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −26429.8 −1.01072 −0.505360 0.862909i \(-0.668640\pi\)
−0.505360 + 0.862909i \(0.668640\pi\)
\(882\) 0 0
\(883\) 20708.4 20708.4i 0.789232 0.789232i −0.192136 0.981368i \(-0.561542\pi\)
0.981368 + 0.192136i \(0.0615415\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22350.0i 0.846042i 0.906120 + 0.423021i \(0.139030\pi\)
−0.906120 + 0.423021i \(0.860970\pi\)
\(888\) 0 0
\(889\) 28755.6i 1.08485i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5483.28 + 5483.28i −0.205477 + 0.205477i
\(894\) 0 0
\(895\) −1476.28 −0.0551360
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −562.292 + 562.292i −0.0208604 + 0.0208604i
\(900\) 0 0
\(901\) 33745.2 + 33745.2i 1.24774 + 1.24774i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1879.95i 0.0690516i
\(906\) 0 0
\(907\) 4086.93 + 4086.93i 0.149619 + 0.149619i 0.777948 0.628329i \(-0.216261\pi\)
−0.628329 + 0.777948i \(0.716261\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20024.6 −0.728259 −0.364130 0.931348i \(-0.618633\pi\)
−0.364130 + 0.931348i \(0.618633\pi\)
\(912\) 0 0
\(913\) −22974.8 −0.832810
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 23079.3 + 23079.3i 0.831131 + 0.831131i
\(918\) 0 0
\(919\) 26977.7i 0.968349i −0.874971 0.484175i \(-0.839120\pi\)
0.874971 0.484175i \(-0.160880\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20373.4 20373.4i −0.726542 0.726542i
\(924\) 0 0
\(925\) −2698.84 + 2698.84i −0.0959321 + 0.0959321i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 34371.4 1.21387 0.606937 0.794750i \(-0.292398\pi\)
0.606937 + 0.794750i \(0.292398\pi\)
\(930\) 0 0
\(931\) −27576.3 + 27576.3i −0.970760 + 0.970760i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1255.57i 0.0439159i
\(936\) 0 0
\(937\) 32901.8i 1.14712i −0.819163 0.573561i \(-0.805561\pi\)
0.819163 0.573561i \(-0.194439\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −33381.6 + 33381.6i −1.15644 + 1.15644i −0.171204 + 0.985236i \(0.554766\pi\)
−0.985236 + 0.171204i \(0.945234\pi\)
\(942\) 0 0
\(943\) −10762.1 −0.371646
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13611.9 13611.9i 0.467084 0.467084i −0.433884 0.900969i \(-0.642857\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(948\) 0 0
\(949\) 18204.1 + 18204.1i 0.622686 + 0.622686i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4572.49i 0.155422i 0.996976 + 0.0777112i \(0.0247612\pi\)
−0.996976 + 0.0777112i \(0.975239\pi\)
\(954\) 0 0
\(955\) 2140.25 + 2140.25i 0.0725202 + 0.0725202i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 46395.7 1.56225
\(960\) 0 0
\(961\) −29712.3 −0.997360
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 312.510 + 312.510i 0.0104249 + 0.0104249i
\(966\) 0 0
\(967\) 33060.9i 1.09945i 0.835346 + 0.549725i \(0.185268\pi\)
−0.835346 + 0.549725i \(0.814732\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15553.4 15553.4i −0.514041 0.514041i 0.401721 0.915762i \(-0.368412\pi\)
−0.915762 + 0.401721i \(0.868412\pi\)
\(972\) 0 0
\(973\) −8076.18 + 8076.18i −0.266095 + 0.266095i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1241.54 −0.0406555 −0.0203277 0.999793i \(-0.506471\pi\)
−0.0203277 + 0.999793i \(0.506471\pi\)
\(978\) 0 0
\(979\) 57.3608 57.3608i 0.00187258 0.00187258i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10797.7i 0.350349i 0.984537 + 0.175175i \(0.0560490\pi\)
−0.984537 + 0.175175i \(0.943951\pi\)
\(984\) 0 0
\(985\) 1343.67i 0.0434648i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8492.49 8492.49i 0.273049 0.273049i
\(990\) 0 0
\(991\) 10204.8 0.327112 0.163556 0.986534i \(-0.447704\pi\)
0.163556 + 0.986534i \(0.447704\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1380.20 1380.20i 0.0439752 0.0439752i
\(996\) 0 0
\(997\) 15046.7 + 15046.7i 0.477967 + 0.477967i 0.904481 0.426514i \(-0.140259\pi\)
−0.426514 + 0.904481i \(0.640259\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.4.k.a.433.3 10
3.2 odd 2 64.4.e.a.49.2 10
4.3 odd 2 144.4.k.a.37.2 10
12.11 even 2 16.4.e.a.5.4 10
16.3 odd 4 144.4.k.a.109.2 10
16.13 even 4 inner 576.4.k.a.145.3 10
24.5 odd 2 128.4.e.a.97.4 10
24.11 even 2 128.4.e.b.97.2 10
48.5 odd 4 128.4.e.a.33.4 10
48.11 even 4 128.4.e.b.33.2 10
48.29 odd 4 64.4.e.a.17.2 10
48.35 even 4 16.4.e.a.13.4 yes 10
96.5 odd 8 1024.4.b.k.513.4 10
96.11 even 8 1024.4.b.j.513.4 10
96.29 odd 8 1024.4.a.m.1.4 10
96.35 even 8 1024.4.a.n.1.7 10
96.53 odd 8 1024.4.b.k.513.7 10
96.59 even 8 1024.4.b.j.513.7 10
96.77 odd 8 1024.4.a.m.1.7 10
96.83 even 8 1024.4.a.n.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.4.e.a.5.4 10 12.11 even 2
16.4.e.a.13.4 yes 10 48.35 even 4
64.4.e.a.17.2 10 48.29 odd 4
64.4.e.a.49.2 10 3.2 odd 2
128.4.e.a.33.4 10 48.5 odd 4
128.4.e.a.97.4 10 24.5 odd 2
128.4.e.b.33.2 10 48.11 even 4
128.4.e.b.97.2 10 24.11 even 2
144.4.k.a.37.2 10 4.3 odd 2
144.4.k.a.109.2 10 16.3 odd 4
576.4.k.a.145.3 10 16.13 even 4 inner
576.4.k.a.433.3 10 1.1 even 1 trivial
1024.4.a.m.1.4 10 96.29 odd 8
1024.4.a.m.1.7 10 96.77 odd 8
1024.4.a.n.1.4 10 96.83 even 8
1024.4.a.n.1.7 10 96.35 even 8
1024.4.b.j.513.4 10 96.11 even 8
1024.4.b.j.513.7 10 96.59 even 8
1024.4.b.k.513.4 10 96.5 odd 8
1024.4.b.k.513.7 10 96.53 odd 8