Properties

Label 576.3.m.b.271.8
Level $576$
Weight $3$
Character 576.271
Analytic conductor $15.695$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,3,Mod(271,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.271"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 10x^{12} + 88x^{10} - 752x^{8} + 1408x^{6} + 2560x^{4} - 24576x^{2} + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 271.8
Root \(1.99750 - 0.0999235i\) of defining polynomial
Character \(\chi\) \(=\) 576.271
Dual form 576.3.m.b.559.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.01265 + 6.01265i) q^{5} -8.23187 q^{7} +(6.51529 - 6.51529i) q^{11} +(8.82865 - 8.82865i) q^{13} +14.1753 q^{17} +(23.7488 + 23.7488i) q^{19} -9.42125 q^{23} +47.3040i q^{25} +(-23.7973 + 23.7973i) q^{29} +24.4148i q^{31} +(-49.4954 - 49.4954i) q^{35} +(24.2052 + 24.2052i) q^{37} +6.67771i q^{41} +(-0.897918 + 0.897918i) q^{43} +25.2401i q^{47} +18.7636 q^{49} +(-32.6251 - 32.6251i) q^{53} +78.3484 q^{55} +(-8.31871 + 8.31871i) q^{59} +(-68.4028 + 68.4028i) q^{61} +106.167 q^{65} +(7.71922 + 7.71922i) q^{67} +137.259 q^{71} -52.8655i q^{73} +(-53.6330 + 53.6330i) q^{77} +87.2269i q^{79} +(9.53893 + 9.53893i) q^{83} +(85.2314 + 85.2314i) q^{85} -146.488i q^{89} +(-72.6762 + 72.6762i) q^{91} +285.586i q^{95} +101.170 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 32 q^{19} + 96 q^{37} + 32 q^{43} + 112 q^{49} + 256 q^{55} - 32 q^{61} + 256 q^{67} + 160 q^{85} - 288 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.01265 + 6.01265i 1.20253 + 1.20253i 0.973394 + 0.229136i \(0.0735901\pi\)
0.229136 + 0.973394i \(0.426410\pi\)
\(6\) 0 0
\(7\) −8.23187 −1.17598 −0.587990 0.808868i \(-0.700081\pi\)
−0.587990 + 0.808868i \(0.700081\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.51529 6.51529i 0.592299 0.592299i −0.345953 0.938252i \(-0.612444\pi\)
0.938252 + 0.345953i \(0.112444\pi\)
\(12\) 0 0
\(13\) 8.82865 8.82865i 0.679127 0.679127i −0.280676 0.959803i \(-0.590559\pi\)
0.959803 + 0.280676i \(0.0905586\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.1753 0.833844 0.416922 0.908942i \(-0.363109\pi\)
0.416922 + 0.908942i \(0.363109\pi\)
\(18\) 0 0
\(19\) 23.7488 + 23.7488i 1.24994 + 1.24994i 0.955748 + 0.294187i \(0.0950490\pi\)
0.294187 + 0.955748i \(0.404951\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −9.42125 −0.409619 −0.204810 0.978802i \(-0.565658\pi\)
−0.204810 + 0.978802i \(0.565658\pi\)
\(24\) 0 0
\(25\) 47.3040i 1.89216i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −23.7973 + 23.7973i −0.820598 + 0.820598i −0.986194 0.165596i \(-0.947045\pi\)
0.165596 + 0.986194i \(0.447045\pi\)
\(30\) 0 0
\(31\) 24.4148i 0.787575i 0.919202 + 0.393787i \(0.128835\pi\)
−0.919202 + 0.393787i \(0.871165\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −49.4954 49.4954i −1.41415 1.41415i
\(36\) 0 0
\(37\) 24.2052 + 24.2052i 0.654193 + 0.654193i 0.954000 0.299807i \(-0.0969221\pi\)
−0.299807 + 0.954000i \(0.596922\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.67771i 0.162871i 0.996679 + 0.0814355i \(0.0259505\pi\)
−0.996679 + 0.0814355i \(0.974050\pi\)
\(42\) 0 0
\(43\) −0.897918 + 0.897918i −0.0208818 + 0.0208818i −0.717471 0.696589i \(-0.754700\pi\)
0.696589 + 0.717471i \(0.254700\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 25.2401i 0.537023i 0.963276 + 0.268512i \(0.0865318\pi\)
−0.963276 + 0.268512i \(0.913468\pi\)
\(48\) 0 0
\(49\) 18.7636 0.382931
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −32.6251 32.6251i −0.615568 0.615568i 0.328824 0.944391i \(-0.393348\pi\)
−0.944391 + 0.328824i \(0.893348\pi\)
\(54\) 0 0
\(55\) 78.3484 1.42452
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.31871 + 8.31871i −0.140995 + 0.140995i −0.774081 0.633086i \(-0.781788\pi\)
0.633086 + 0.774081i \(0.281788\pi\)
\(60\) 0 0
\(61\) −68.4028 + 68.4028i −1.12136 + 1.12136i −0.129820 + 0.991538i \(0.541440\pi\)
−0.991538 + 0.129820i \(0.958560\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 106.167 1.63334
\(66\) 0 0
\(67\) 7.71922 + 7.71922i 0.115212 + 0.115212i 0.762362 0.647150i \(-0.224039\pi\)
−0.647150 + 0.762362i \(0.724039\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 137.259 1.93322 0.966612 0.256245i \(-0.0824853\pi\)
0.966612 + 0.256245i \(0.0824853\pi\)
\(72\) 0 0
\(73\) 52.8655i 0.724185i −0.932142 0.362093i \(-0.882062\pi\)
0.932142 0.362093i \(-0.117938\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −53.6330 + 53.6330i −0.696533 + 0.696533i
\(78\) 0 0
\(79\) 87.2269i 1.10414i 0.833798 + 0.552069i \(0.186162\pi\)
−0.833798 + 0.552069i \(0.813838\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.53893 + 9.53893i 0.114927 + 0.114927i 0.762231 0.647305i \(-0.224104\pi\)
−0.647305 + 0.762231i \(0.724104\pi\)
\(84\) 0 0
\(85\) 85.2314 + 85.2314i 1.00272 + 1.00272i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 146.488i 1.64593i −0.568089 0.822967i \(-0.692317\pi\)
0.568089 0.822967i \(-0.307683\pi\)
\(90\) 0 0
\(91\) −72.6762 + 72.6762i −0.798640 + 0.798640i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 285.586i 3.00617i
\(96\) 0 0
\(97\) 101.170 1.04298 0.521492 0.853256i \(-0.325376\pi\)
0.521492 + 0.853256i \(0.325376\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −47.4912 47.4912i −0.470210 0.470210i 0.431773 0.901982i \(-0.357888\pi\)
−0.901982 + 0.431773i \(0.857888\pi\)
\(102\) 0 0
\(103\) −7.58518 −0.0736425 −0.0368213 0.999322i \(-0.511723\pi\)
−0.0368213 + 0.999322i \(0.511723\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 119.757 119.757i 1.11922 1.11922i 0.127367 0.991856i \(-0.459347\pi\)
0.991856 0.127367i \(-0.0406525\pi\)
\(108\) 0 0
\(109\) 61.0263 61.0263i 0.559874 0.559874i −0.369397 0.929272i \(-0.620436\pi\)
0.929272 + 0.369397i \(0.120436\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 31.6377 0.279980 0.139990 0.990153i \(-0.455293\pi\)
0.139990 + 0.990153i \(0.455293\pi\)
\(114\) 0 0
\(115\) −56.6467 56.6467i −0.492580 0.492580i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −116.690 −0.980585
\(120\) 0 0
\(121\) 36.1019i 0.298363i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −134.106 + 134.106i −1.07285 + 1.07285i
\(126\) 0 0
\(127\) 87.8736i 0.691918i −0.938250 0.345959i \(-0.887554\pi\)
0.938250 0.345959i \(-0.112446\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −176.351 176.351i −1.34619 1.34619i −0.889761 0.456428i \(-0.849129\pi\)
−0.456428 0.889761i \(-0.650871\pi\)
\(132\) 0 0
\(133\) −195.497 195.497i −1.46990 1.46990i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 97.0224i 0.708192i −0.935209 0.354096i \(-0.884789\pi\)
0.935209 0.354096i \(-0.115211\pi\)
\(138\) 0 0
\(139\) 130.221 130.221i 0.936841 0.936841i −0.0612800 0.998121i \(-0.519518\pi\)
0.998121 + 0.0612800i \(0.0195183\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 115.042i 0.804493i
\(144\) 0 0
\(145\) −286.170 −1.97359
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −26.3592 26.3592i −0.176907 0.176907i 0.613099 0.790006i \(-0.289923\pi\)
−0.790006 + 0.613099i \(0.789923\pi\)
\(150\) 0 0
\(151\) −196.107 −1.29872 −0.649360 0.760481i \(-0.724963\pi\)
−0.649360 + 0.760481i \(0.724963\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −146.798 + 146.798i −0.947083 + 0.947083i
\(156\) 0 0
\(157\) 98.5323 98.5323i 0.627594 0.627594i −0.319868 0.947462i \(-0.603638\pi\)
0.947462 + 0.319868i \(0.103638\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 77.5545 0.481705
\(162\) 0 0
\(163\) 90.6677 + 90.6677i 0.556244 + 0.556244i 0.928236 0.371992i \(-0.121325\pi\)
−0.371992 + 0.928236i \(0.621325\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 181.602 1.08744 0.543719 0.839267i \(-0.317016\pi\)
0.543719 + 0.839267i \(0.317016\pi\)
\(168\) 0 0
\(169\) 13.1100i 0.0775741i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.66532 + 2.66532i −0.0154065 + 0.0154065i −0.714768 0.699362i \(-0.753468\pi\)
0.699362 + 0.714768i \(0.253468\pi\)
\(174\) 0 0
\(175\) 389.400i 2.22514i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.7491 + 12.7491i 0.0712241 + 0.0712241i 0.741822 0.670597i \(-0.233962\pi\)
−0.670597 + 0.741822i \(0.733962\pi\)
\(180\) 0 0
\(181\) −61.3009 61.3009i −0.338679 0.338679i 0.517191 0.855870i \(-0.326978\pi\)
−0.855870 + 0.517191i \(0.826978\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 291.074i 1.57338i
\(186\) 0 0
\(187\) 92.3566 92.3566i 0.493885 0.493885i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 80.1204i 0.419479i 0.977757 + 0.209739i \(0.0672615\pi\)
−0.977757 + 0.209739i \(0.932738\pi\)
\(192\) 0 0
\(193\) 28.7555 0.148992 0.0744961 0.997221i \(-0.476265\pi\)
0.0744961 + 0.997221i \(0.476265\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 92.8030 + 92.8030i 0.471081 + 0.471081i 0.902264 0.431183i \(-0.141904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(198\) 0 0
\(199\) −165.555 −0.831934 −0.415967 0.909380i \(-0.636557\pi\)
−0.415967 + 0.909380i \(0.636557\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 195.897 195.897i 0.965008 0.965008i
\(204\) 0 0
\(205\) −40.1507 + 40.1507i −0.195857 + 0.195857i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 309.460 1.48067
\(210\) 0 0
\(211\) −187.769 187.769i −0.889902 0.889902i 0.104611 0.994513i \(-0.466640\pi\)
−0.994513 + 0.104611i \(0.966640\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −10.7977 −0.0502220
\(216\) 0 0
\(217\) 200.980i 0.926173i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 125.149 125.149i 0.566286 0.566286i
\(222\) 0 0
\(223\) 307.192i 1.37754i 0.724979 + 0.688771i \(0.241849\pi\)
−0.724979 + 0.688771i \(0.758151\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −112.960 112.960i −0.497621 0.497621i 0.413075 0.910697i \(-0.364455\pi\)
−0.910697 + 0.413075i \(0.864455\pi\)
\(228\) 0 0
\(229\) −7.32210 7.32210i −0.0319742 0.0319742i 0.690939 0.722913i \(-0.257197\pi\)
−0.722913 + 0.690939i \(0.757197\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 115.408i 0.495315i 0.968848 + 0.247657i \(0.0796607\pi\)
−0.968848 + 0.247657i \(0.920339\pi\)
\(234\) 0 0
\(235\) −151.760 + 151.760i −0.645787 + 0.645787i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 323.271i 1.35260i −0.736627 0.676300i \(-0.763583\pi\)
0.736627 0.676300i \(-0.236417\pi\)
\(240\) 0 0
\(241\) 118.056 0.489860 0.244930 0.969541i \(-0.421235\pi\)
0.244930 + 0.969541i \(0.421235\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 112.819 + 112.819i 0.460486 + 0.460486i
\(246\) 0 0
\(247\) 419.339 1.69773
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −166.229 + 166.229i −0.662265 + 0.662265i −0.955913 0.293648i \(-0.905130\pi\)
0.293648 + 0.955913i \(0.405130\pi\)
\(252\) 0 0
\(253\) −61.3822 + 61.3822i −0.242617 + 0.242617i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −342.745 −1.33364 −0.666820 0.745219i \(-0.732345\pi\)
−0.666820 + 0.745219i \(0.732345\pi\)
\(258\) 0 0
\(259\) −199.254 199.254i −0.769319 0.769319i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −219.637 −0.835123 −0.417562 0.908649i \(-0.637115\pi\)
−0.417562 + 0.908649i \(0.637115\pi\)
\(264\) 0 0
\(265\) 392.327i 1.48048i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −77.9061 + 77.9061i −0.289614 + 0.289614i −0.836928 0.547314i \(-0.815650\pi\)
0.547314 + 0.836928i \(0.315650\pi\)
\(270\) 0 0
\(271\) 155.092i 0.572294i −0.958186 0.286147i \(-0.907625\pi\)
0.958186 0.286147i \(-0.0923746\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 308.199 + 308.199i 1.12072 + 1.12072i
\(276\) 0 0
\(277\) −30.0601 30.0601i −0.108520 0.108520i 0.650762 0.759282i \(-0.274450\pi\)
−0.759282 + 0.650762i \(0.774450\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 265.590i 0.945162i −0.881287 0.472581i \(-0.843323\pi\)
0.881287 0.472581i \(-0.156677\pi\)
\(282\) 0 0
\(283\) −160.221 + 160.221i −0.566153 + 0.566153i −0.931049 0.364895i \(-0.881105\pi\)
0.364895 + 0.931049i \(0.381105\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 54.9700i 0.191533i
\(288\) 0 0
\(289\) −88.0595 −0.304704
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −173.762 173.762i −0.593044 0.593044i 0.345408 0.938453i \(-0.387740\pi\)
−0.938453 + 0.345408i \(0.887740\pi\)
\(294\) 0 0
\(295\) −100.035 −0.339102
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −83.1769 + 83.1769i −0.278183 + 0.278183i
\(300\) 0 0
\(301\) 7.39154 7.39154i 0.0245566 0.0245566i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −822.565 −2.69693
\(306\) 0 0
\(307\) −136.842 136.842i −0.445741 0.445741i 0.448195 0.893936i \(-0.352067\pi\)
−0.893936 + 0.448195i \(0.852067\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −458.117 −1.47305 −0.736523 0.676412i \(-0.763534\pi\)
−0.736523 + 0.676412i \(0.763534\pi\)
\(312\) 0 0
\(313\) 170.865i 0.545893i 0.962029 + 0.272947i \(0.0879982\pi\)
−0.962029 + 0.272947i \(0.912002\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 372.560 372.560i 1.17527 1.17527i 0.194334 0.980935i \(-0.437746\pi\)
0.980935 0.194334i \(-0.0622544\pi\)
\(318\) 0 0
\(319\) 310.093i 0.972079i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 336.647 + 336.647i 1.04225 + 1.04225i
\(324\) 0 0
\(325\) 417.630 + 417.630i 1.28502 + 1.28502i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 207.773i 0.631529i
\(330\) 0 0
\(331\) 177.685 177.685i 0.536812 0.536812i −0.385779 0.922591i \(-0.626067\pi\)
0.922591 + 0.385779i \(0.126067\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 92.8260i 0.277092i
\(336\) 0 0
\(337\) 491.680 1.45899 0.729496 0.683985i \(-0.239755\pi\)
0.729496 + 0.683985i \(0.239755\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 159.070 + 159.070i 0.466480 + 0.466480i
\(342\) 0 0
\(343\) 248.902 0.725661
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 176.788 176.788i 0.509477 0.509477i −0.404889 0.914366i \(-0.632690\pi\)
0.914366 + 0.404889i \(0.132690\pi\)
\(348\) 0 0
\(349\) −272.298 + 272.298i −0.780223 + 0.780223i −0.979868 0.199645i \(-0.936021\pi\)
0.199645 + 0.979868i \(0.436021\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −168.099 −0.476200 −0.238100 0.971241i \(-0.576525\pi\)
−0.238100 + 0.971241i \(0.576525\pi\)
\(354\) 0 0
\(355\) 825.290 + 825.290i 2.32476 + 2.32476i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 476.009 1.32593 0.662965 0.748651i \(-0.269298\pi\)
0.662965 + 0.748651i \(0.269298\pi\)
\(360\) 0 0
\(361\) 767.008i 2.12468i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 317.862 317.862i 0.870855 0.870855i
\(366\) 0 0
\(367\) 104.894i 0.285814i 0.989736 + 0.142907i \(0.0456450\pi\)
−0.989736 + 0.142907i \(0.954355\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 268.565 + 268.565i 0.723896 + 0.723896i
\(372\) 0 0
\(373\) −122.301 122.301i −0.327884 0.327884i 0.523898 0.851781i \(-0.324477\pi\)
−0.851781 + 0.523898i \(0.824477\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 420.197i 1.11458i
\(378\) 0 0
\(379\) −75.5625 + 75.5625i −0.199373 + 0.199373i −0.799731 0.600358i \(-0.795025\pi\)
0.600358 + 0.799731i \(0.295025\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 501.509i 1.30942i −0.755878 0.654712i \(-0.772790\pi\)
0.755878 0.654712i \(-0.227210\pi\)
\(384\) 0 0
\(385\) −644.953 −1.67520
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −22.6053 22.6053i −0.0581114 0.0581114i 0.677454 0.735565i \(-0.263083\pi\)
−0.735565 + 0.677454i \(0.763083\pi\)
\(390\) 0 0
\(391\) −133.549 −0.341559
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −524.465 + 524.465i −1.32776 + 1.32776i
\(396\) 0 0
\(397\) −6.09563 + 6.09563i −0.0153542 + 0.0153542i −0.714742 0.699388i \(-0.753456\pi\)
0.699388 + 0.714742i \(0.253456\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 598.130 1.49160 0.745798 0.666172i \(-0.232068\pi\)
0.745798 + 0.666172i \(0.232068\pi\)
\(402\) 0 0
\(403\) 215.550 + 215.550i 0.534863 + 0.534863i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 315.407 0.774957
\(408\) 0 0
\(409\) 271.241i 0.663181i 0.943423 + 0.331591i \(0.107585\pi\)
−0.943423 + 0.331591i \(0.892415\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 68.4785 68.4785i 0.165808 0.165808i
\(414\) 0 0
\(415\) 114.709i 0.276406i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 412.163 + 412.163i 0.983681 + 0.983681i 0.999869 0.0161876i \(-0.00515289\pi\)
−0.0161876 + 0.999869i \(0.505153\pi\)
\(420\) 0 0
\(421\) 135.609 + 135.609i 0.322111 + 0.322111i 0.849576 0.527466i \(-0.176858\pi\)
−0.527466 + 0.849576i \(0.676858\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 670.550i 1.57777i
\(426\) 0 0
\(427\) 563.083 563.083i 1.31869 1.31869i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 204.169i 0.473710i −0.971545 0.236855i \(-0.923883\pi\)
0.971545 0.236855i \(-0.0761166\pi\)
\(432\) 0 0
\(433\) 317.530 0.733325 0.366663 0.930354i \(-0.380500\pi\)
0.366663 + 0.930354i \(0.380500\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −223.743 223.743i −0.511998 0.511998i
\(438\) 0 0
\(439\) −226.050 −0.514921 −0.257461 0.966289i \(-0.582886\pi\)
−0.257461 + 0.966289i \(0.582886\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 157.388 157.388i 0.355278 0.355278i −0.506791 0.862069i \(-0.669169\pi\)
0.862069 + 0.506791i \(0.169169\pi\)
\(444\) 0 0
\(445\) 880.782 880.782i 1.97929 1.97929i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −458.567 −1.02131 −0.510653 0.859787i \(-0.670596\pi\)
−0.510653 + 0.859787i \(0.670596\pi\)
\(450\) 0 0
\(451\) 43.5072 + 43.5072i 0.0964684 + 0.0964684i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −873.954 −1.92078
\(456\) 0 0
\(457\) 548.682i 1.20062i 0.799768 + 0.600309i \(0.204956\pi\)
−0.799768 + 0.600309i \(0.795044\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 359.058 359.058i 0.778868 0.778868i −0.200770 0.979638i \(-0.564344\pi\)
0.979638 + 0.200770i \(0.0643444\pi\)
\(462\) 0 0
\(463\) 126.697i 0.273643i −0.990596 0.136822i \(-0.956311\pi\)
0.990596 0.136822i \(-0.0436887\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −526.834 526.834i −1.12812 1.12812i −0.990482 0.137643i \(-0.956047\pi\)
−0.137643 0.990482i \(-0.543953\pi\)
\(468\) 0 0
\(469\) −63.5436 63.5436i −0.135487 0.135487i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.7004i 0.0247366i
\(474\) 0 0
\(475\) −1123.41 + 1123.41i −2.36508 + 2.36508i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 712.831i 1.48817i −0.668087 0.744083i \(-0.732887\pi\)
0.668087 0.744083i \(-0.267113\pi\)
\(480\) 0 0
\(481\) 427.398 0.888560
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 608.297 + 608.297i 1.25422 + 1.25422i
\(486\) 0 0
\(487\) −579.851 −1.19066 −0.595330 0.803481i \(-0.702979\pi\)
−0.595330 + 0.803481i \(0.702979\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −131.309 + 131.309i −0.267432 + 0.267432i −0.828065 0.560632i \(-0.810558\pi\)
0.560632 + 0.828065i \(0.310558\pi\)
\(492\) 0 0
\(493\) −337.336 + 337.336i −0.684251 + 0.684251i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1129.90 −2.27343
\(498\) 0 0
\(499\) −329.208 329.208i −0.659736 0.659736i 0.295582 0.955318i \(-0.404487\pi\)
−0.955318 + 0.295582i \(0.904487\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 254.299 0.505564 0.252782 0.967523i \(-0.418654\pi\)
0.252782 + 0.967523i \(0.418654\pi\)
\(504\) 0 0
\(505\) 571.096i 1.13088i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −326.512 + 326.512i −0.641477 + 0.641477i −0.950918 0.309442i \(-0.899858\pi\)
0.309442 + 0.950918i \(0.399858\pi\)
\(510\) 0 0
\(511\) 435.182i 0.851628i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −45.6071 45.6071i −0.0885574 0.0885574i
\(516\) 0 0
\(517\) 164.447 + 164.447i 0.318079 + 0.318079i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 775.042i 1.48760i −0.668400 0.743802i \(-0.733020\pi\)
0.668400 0.743802i \(-0.266980\pi\)
\(522\) 0 0
\(523\) 461.875 461.875i 0.883126 0.883126i −0.110725 0.993851i \(-0.535317\pi\)
0.993851 + 0.110725i \(0.0353172\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 346.089i 0.656715i
\(528\) 0 0
\(529\) −440.240 −0.832212
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 58.9551 + 58.9551i 0.110610 + 0.110610i
\(534\) 0 0
\(535\) 1440.11 2.69180
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 122.251 122.251i 0.226810 0.226810i
\(540\) 0 0
\(541\) −426.071 + 426.071i −0.787563 + 0.787563i −0.981094 0.193531i \(-0.938006\pi\)
0.193531 + 0.981094i \(0.438006\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 733.860 1.34653
\(546\) 0 0
\(547\) 111.138 + 111.138i 0.203178 + 0.203178i 0.801360 0.598182i \(-0.204110\pi\)
−0.598182 + 0.801360i \(0.704110\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1130.32 −2.05139
\(552\) 0 0
\(553\) 718.041i 1.29845i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −233.731 + 233.731i −0.419625 + 0.419625i −0.885075 0.465449i \(-0.845893\pi\)
0.465449 + 0.885075i \(0.345893\pi\)
\(558\) 0 0
\(559\) 15.8548i 0.0283628i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −261.362 261.362i −0.464231 0.464231i 0.435809 0.900039i \(-0.356462\pi\)
−0.900039 + 0.435809i \(0.856462\pi\)
\(564\) 0 0
\(565\) 190.227 + 190.227i 0.336684 + 0.336684i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 453.881i 0.797682i 0.917020 + 0.398841i \(0.130587\pi\)
−0.917020 + 0.398841i \(0.869413\pi\)
\(570\) 0 0
\(571\) 289.009 289.009i 0.506146 0.506146i −0.407195 0.913341i \(-0.633493\pi\)
0.913341 + 0.407195i \(0.133493\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 445.662i 0.775065i
\(576\) 0 0
\(577\) 588.041 1.01913 0.509567 0.860431i \(-0.329806\pi\)
0.509567 + 0.860431i \(0.329806\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −78.5232 78.5232i −0.135152 0.135152i
\(582\) 0 0
\(583\) −425.124 −0.729201
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 392.596 392.596i 0.668818 0.668818i −0.288624 0.957442i \(-0.593198\pi\)
0.957442 + 0.288624i \(0.0931978\pi\)
\(588\) 0 0
\(589\) −579.822 + 579.822i −0.984417 + 0.984417i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1008.70 1.70101 0.850505 0.525967i \(-0.176297\pi\)
0.850505 + 0.525967i \(0.176297\pi\)
\(594\) 0 0
\(595\) −701.614 701.614i −1.17918 1.17918i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 526.819 0.879498 0.439749 0.898121i \(-0.355067\pi\)
0.439749 + 0.898121i \(0.355067\pi\)
\(600\) 0 0
\(601\) 867.891i 1.44408i −0.691853 0.722039i \(-0.743205\pi\)
0.691853 0.722039i \(-0.256795\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −217.068 + 217.068i −0.358790 + 0.358790i
\(606\) 0 0
\(607\) 98.8497i 0.162850i −0.996679 0.0814248i \(-0.974053\pi\)
0.996679 0.0814248i \(-0.0259470\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 222.836 + 222.836i 0.364707 + 0.364707i
\(612\) 0 0
\(613\) −616.976 616.976i −1.00649 1.00649i −0.999979 0.00650651i \(-0.997929\pi\)
−0.00650651 0.999979i \(-0.502071\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1073.62i 1.74007i 0.492993 + 0.870033i \(0.335903\pi\)
−0.492993 + 0.870033i \(0.664097\pi\)
\(618\) 0 0
\(619\) −397.119 + 397.119i −0.641549 + 0.641549i −0.950936 0.309387i \(-0.899876\pi\)
0.309387 + 0.950936i \(0.399876\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1205.87i 1.93559i
\(624\) 0 0
\(625\) −430.067 −0.688107
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 343.117 + 343.117i 0.545495 + 0.545495i
\(630\) 0 0
\(631\) 381.081 0.603931 0.301966 0.953319i \(-0.402357\pi\)
0.301966 + 0.953319i \(0.402357\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 528.354 528.354i 0.832053 0.832053i
\(636\) 0 0
\(637\) 165.657 165.657i 0.260059 0.260059i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 485.443 0.757321 0.378661 0.925536i \(-0.376385\pi\)
0.378661 + 0.925536i \(0.376385\pi\)
\(642\) 0 0
\(643\) −457.641 457.641i −0.711728 0.711728i 0.255168 0.966897i \(-0.417869\pi\)
−0.966897 + 0.255168i \(0.917869\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 845.780 1.30723 0.653617 0.756826i \(-0.273251\pi\)
0.653617 + 0.756826i \(0.273251\pi\)
\(648\) 0 0
\(649\) 108.398i 0.167023i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.1039 11.1039i 0.0170044 0.0170044i −0.698553 0.715558i \(-0.746173\pi\)
0.715558 + 0.698553i \(0.246173\pi\)
\(654\) 0 0
\(655\) 2120.67i 3.23766i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −296.711 296.711i −0.450245 0.450245i 0.445191 0.895436i \(-0.353136\pi\)
−0.895436 + 0.445191i \(0.853136\pi\)
\(660\) 0 0
\(661\) −0.564899 0.564899i −0.000854613 0.000854613i 0.706679 0.707534i \(-0.250192\pi\)
−0.707534 + 0.706679i \(0.750192\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2350.91i 3.53520i
\(666\) 0 0
\(667\) 224.201 224.201i 0.336133 0.336133i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 891.329i 1.32836i
\(672\) 0 0
\(673\) −1091.24 −1.62146 −0.810731 0.585419i \(-0.800930\pi\)
−0.810731 + 0.585419i \(0.800930\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −494.409 494.409i −0.730294 0.730294i 0.240384 0.970678i \(-0.422727\pi\)
−0.970678 + 0.240384i \(0.922727\pi\)
\(678\) 0 0
\(679\) −832.814 −1.22653
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −845.268 + 845.268i −1.23758 + 1.23758i −0.276594 + 0.960987i \(0.589206\pi\)
−0.960987 + 0.276594i \(0.910794\pi\)
\(684\) 0 0
\(685\) 583.362 583.362i 0.851623 0.851623i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −576.071 −0.836097
\(690\) 0 0
\(691\) −457.715 457.715i −0.662395 0.662395i 0.293549 0.955944i \(-0.405164\pi\)
−0.955944 + 0.293549i \(0.905164\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1565.95 2.25316
\(696\) 0 0
\(697\) 94.6589i 0.135809i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 199.252 199.252i 0.284239 0.284239i −0.550558 0.834797i \(-0.685585\pi\)
0.834797 + 0.550558i \(0.185585\pi\)
\(702\) 0 0
\(703\) 1149.69i 1.63540i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 390.941 + 390.941i 0.552958 + 0.552958i
\(708\) 0 0
\(709\) −547.374 547.374i −0.772036 0.772036i 0.206426 0.978462i \(-0.433817\pi\)
−0.978462 + 0.206426i \(0.933817\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 230.018i 0.322606i
\(714\) 0 0
\(715\) 691.710 691.710i 0.967427 0.967427i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 90.5082i 0.125881i 0.998017 + 0.0629403i \(0.0200478\pi\)
−0.998017 + 0.0629403i \(0.979952\pi\)
\(720\) 0 0
\(721\) 62.4402 0.0866022
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1125.71 1125.71i −1.55270 1.55270i
\(726\) 0 0
\(727\) 222.068 0.305459 0.152729 0.988268i \(-0.451194\pi\)
0.152729 + 0.988268i \(0.451194\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.7283 + 12.7283i −0.0174122 + 0.0174122i
\(732\) 0 0
\(733\) 201.142 201.142i 0.274410 0.274410i −0.556463 0.830873i \(-0.687842\pi\)
0.830873 + 0.556463i \(0.187842\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 100.586 0.136480
\(738\) 0 0
\(739\) 771.595 + 771.595i 1.04411 + 1.04411i 0.998981 + 0.0451261i \(0.0143690\pi\)
0.0451261 + 0.998981i \(0.485631\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −754.171 −1.01503 −0.507517 0.861641i \(-0.669437\pi\)
−0.507517 + 0.861641i \(0.669437\pi\)
\(744\) 0 0
\(745\) 316.977i 0.425473i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −985.822 + 985.822i −1.31618 + 1.31618i
\(750\) 0 0
\(751\) 606.477i 0.807559i −0.914856 0.403780i \(-0.867696\pi\)
0.914856 0.403780i \(-0.132304\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1179.12 1179.12i −1.56175 1.56175i
\(756\) 0 0
\(757\) −852.254 852.254i −1.12583 1.12583i −0.990848 0.134983i \(-0.956902\pi\)
−0.134983 0.990848i \(-0.543098\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1373.25i 1.80453i 0.431180 + 0.902266i \(0.358097\pi\)
−0.431180 + 0.902266i \(0.641903\pi\)
\(762\) 0 0
\(763\) −502.360 + 502.360i −0.658401 + 0.658401i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 146.886i 0.191507i
\(768\) 0 0
\(769\) 515.727 0.670647 0.335323 0.942103i \(-0.391154\pi\)
0.335323 + 0.942103i \(0.391154\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −448.985 448.985i −0.580834 0.580834i 0.354299 0.935132i \(-0.384720\pi\)
−0.935132 + 0.354299i \(0.884720\pi\)
\(774\) 0 0
\(775\) −1154.92 −1.49022
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −158.587 + 158.587i −0.203578 + 0.203578i
\(780\) 0 0
\(781\) 894.282 894.282i 1.14505 1.14505i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1184.88 1.50940
\(786\) 0 0
\(787\) −70.0485 70.0485i −0.0890070 0.0890070i 0.661201 0.750208i \(-0.270047\pi\)
−0.750208 + 0.661201i \(0.770047\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −260.437 −0.329251
\(792\) 0 0
\(793\) 1207.81i 1.52309i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −584.026 + 584.026i −0.732780 + 0.732780i −0.971170 0.238390i \(-0.923380\pi\)
0.238390 + 0.971170i \(0.423380\pi\)
\(798\) 0 0
\(799\) 357.787i 0.447794i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −344.434 344.434i −0.428935 0.428935i
\(804\) 0 0
\(805\) 466.308 + 466.308i 0.579265 + 0.579265i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1252.15i 1.54778i −0.633321 0.773889i \(-0.718309\pi\)
0.633321 0.773889i \(-0.281691\pi\)
\(810\) 0 0
\(811\) 255.775 255.775i 0.315382 0.315382i −0.531608 0.846990i \(-0.678412\pi\)
0.846990 + 0.531608i \(0.178412\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1090.31i 1.33780i
\(816\) 0 0
\(817\) −42.6489 −0.0522018
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −228.380 228.380i −0.278173 0.278173i 0.554206 0.832379i \(-0.313022\pi\)
−0.832379 + 0.554206i \(0.813022\pi\)
\(822\) 0 0
\(823\) −1050.55 −1.27649 −0.638246 0.769832i \(-0.720340\pi\)
−0.638246 + 0.769832i \(0.720340\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 78.0300 78.0300i 0.0943531 0.0943531i −0.658355 0.752708i \(-0.728747\pi\)
0.752708 + 0.658355i \(0.228747\pi\)
\(828\) 0 0
\(829\) −517.848 + 517.848i −0.624665 + 0.624665i −0.946721 0.322056i \(-0.895626\pi\)
0.322056 + 0.946721i \(0.395626\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 265.981 0.319305
\(834\) 0 0
\(835\) 1091.91 + 1091.91i 1.30768 + 1.30768i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 649.581 0.774232 0.387116 0.922031i \(-0.373471\pi\)
0.387116 + 0.922031i \(0.373471\pi\)
\(840\) 0 0
\(841\) 291.627i 0.346762i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −78.8260 + 78.8260i −0.0932852 + 0.0932852i
\(846\) 0 0
\(847\) 297.186i 0.350869i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −228.043 228.043i −0.267970 0.267970i
\(852\) 0 0
\(853\) 1124.04 + 1124.04i 1.31775 + 1.31775i 0.915551 + 0.402202i \(0.131755\pi\)
0.402202 + 0.915551i \(0.368245\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 596.973i 0.696585i −0.937386 0.348292i \(-0.886762\pi\)
0.937386 0.348292i \(-0.113238\pi\)
\(858\) 0 0
\(859\) −701.595 + 701.595i −0.816758 + 0.816758i −0.985637 0.168879i \(-0.945985\pi\)
0.168879 + 0.985637i \(0.445985\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 437.703i 0.507187i 0.967311 + 0.253594i \(0.0816126\pi\)
−0.967311 + 0.253594i \(0.918387\pi\)
\(864\) 0 0
\(865\) −32.0513 −0.0370535
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 568.309 + 568.309i 0.653981 + 0.653981i
\(870\) 0 0
\(871\) 136.301 0.156487
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1103.94 1103.94i 1.26165 1.26165i
\(876\) 0 0
\(877\) 769.110 769.110i 0.876978 0.876978i −0.116243 0.993221i \(-0.537085\pi\)
0.993221 + 0.116243i \(0.0370850\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 351.923 0.399459 0.199729 0.979851i \(-0.435994\pi\)
0.199729 + 0.979851i \(0.435994\pi\)
\(882\) 0 0
\(883\) −661.014 661.014i −0.748601 0.748601i 0.225616 0.974216i \(-0.427561\pi\)
−0.974216 + 0.225616i \(0.927561\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −794.853 −0.896114 −0.448057 0.894005i \(-0.647884\pi\)
−0.448057 + 0.894005i \(0.647884\pi\)
\(888\) 0 0
\(889\) 723.364i 0.813683i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −599.421 + 599.421i −0.671244 + 0.671244i
\(894\) 0 0
\(895\) 153.312i 0.171298i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −581.008 581.008i −0.646282 0.646282i
\(900\) 0 0
\(901\) −462.472 462.472i −0.513288 0.513288i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 737.162i 0.814544i
\(906\) 0 0
\(907\) 943.805 943.805i 1.04058 1.04058i 0.0414379 0.999141i \(-0.486806\pi\)
0.999141 0.0414379i \(-0.0131939\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 190.842i 0.209487i 0.994499 + 0.104743i \(0.0334021\pi\)
−0.994499 + 0.104743i \(0.966598\pi\)
\(912\) 0 0
\(913\) 124.298 0.136142
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1451.70 + 1451.70i 1.58309 + 1.58309i
\(918\) 0 0
\(919\) 925.230 1.00678 0.503389 0.864060i \(-0.332086\pi\)
0.503389 + 0.864060i \(0.332086\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1211.81 1211.81i 1.31290 1.31290i
\(924\) 0 0
\(925\) −1145.00 + 1145.00i −1.23784 + 1.23784i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 91.8388 0.0988577 0.0494289 0.998778i \(-0.484260\pi\)
0.0494289 + 0.998778i \(0.484260\pi\)
\(930\) 0 0
\(931\) 445.613 + 445.613i 0.478639 + 0.478639i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1110.62 1.18782
\(936\) 0 0
\(937\) 1615.44i 1.72406i −0.506857 0.862030i \(-0.669193\pi\)
0.506857 0.862030i \(-0.330807\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 484.931 484.931i 0.515336 0.515336i −0.400820 0.916157i \(-0.631275\pi\)
0.916157 + 0.400820i \(0.131275\pi\)
\(942\) 0 0
\(943\) 62.9124i 0.0667151i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1053.02 + 1053.02i 1.11195 + 1.11195i 0.992887 + 0.119064i \(0.0379895\pi\)
0.119064 + 0.992887i \(0.462010\pi\)
\(948\) 0 0
\(949\) −466.731 466.731i −0.491814 0.491814i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1256.72i 1.31870i 0.751838 + 0.659348i \(0.229168\pi\)
−0.751838 + 0.659348i \(0.770832\pi\)
\(954\) 0 0
\(955\) −481.736 + 481.736i −0.504436 + 0.504436i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 798.675i 0.832821i
\(960\) 0 0
\(961\) 364.917 0.379726
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 172.897 + 172.897i 0.179168 + 0.179168i
\(966\) 0 0
\(967\) 1842.43 1.90530 0.952651 0.304066i \(-0.0983444\pi\)
0.952651 + 0.304066i \(0.0983444\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −802.530 + 802.530i −0.826498 + 0.826498i −0.987031 0.160532i \(-0.948679\pi\)
0.160532 + 0.987031i \(0.448679\pi\)
\(972\) 0 0
\(973\) −1071.96 + 1071.96i −1.10171 + 1.10171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1505.64 1.54109 0.770544 0.637387i \(-0.219985\pi\)
0.770544 + 0.637387i \(0.219985\pi\)
\(978\) 0 0
\(979\) −954.413 954.413i −0.974886 0.974886i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −764.708 −0.777933 −0.388966 0.921252i \(-0.627168\pi\)
−0.388966 + 0.921252i \(0.627168\pi\)
\(984\) 0 0
\(985\) 1115.98i 1.13298i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.45951 8.45951i 0.00855360 0.00855360i
\(990\) 0 0
\(991\) 1683.22i 1.69851i 0.527984 + 0.849254i \(0.322948\pi\)
−0.527984 + 0.849254i \(0.677052\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −995.424 995.424i −1.00043 1.00043i
\(996\) 0 0
\(997\) 942.082 + 942.082i 0.944917 + 0.944917i 0.998560 0.0536431i \(-0.0170833\pi\)
−0.0536431 + 0.998560i \(0.517083\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.3.m.b.271.8 16
3.2 odd 2 inner 576.3.m.b.271.1 16
4.3 odd 2 144.3.m.b.91.5 yes 16
8.3 odd 2 1152.3.m.e.415.1 16
8.5 even 2 1152.3.m.d.415.1 16
12.11 even 2 144.3.m.b.91.4 yes 16
16.3 odd 4 inner 576.3.m.b.559.8 16
16.5 even 4 1152.3.m.e.991.1 16
16.11 odd 4 1152.3.m.d.991.1 16
16.13 even 4 144.3.m.b.19.5 yes 16
24.5 odd 2 1152.3.m.d.415.8 16
24.11 even 2 1152.3.m.e.415.8 16
48.5 odd 4 1152.3.m.e.991.8 16
48.11 even 4 1152.3.m.d.991.8 16
48.29 odd 4 144.3.m.b.19.4 16
48.35 even 4 inner 576.3.m.b.559.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.3.m.b.19.4 16 48.29 odd 4
144.3.m.b.19.5 yes 16 16.13 even 4
144.3.m.b.91.4 yes 16 12.11 even 2
144.3.m.b.91.5 yes 16 4.3 odd 2
576.3.m.b.271.1 16 3.2 odd 2 inner
576.3.m.b.271.8 16 1.1 even 1 trivial
576.3.m.b.559.1 16 48.35 even 4 inner
576.3.m.b.559.8 16 16.3 odd 4 inner
1152.3.m.d.415.1 16 8.5 even 2
1152.3.m.d.415.8 16 24.5 odd 2
1152.3.m.d.991.1 16 16.11 odd 4
1152.3.m.d.991.8 16 48.11 even 4
1152.3.m.e.415.1 16 8.3 odd 2
1152.3.m.e.415.8 16 24.11 even 2
1152.3.m.e.991.1 16 16.5 even 4
1152.3.m.e.991.8 16 48.5 odd 4