L(s) = 1 | + (6.01 + 6.01i)5-s − 8.23·7-s + (6.51 − 6.51i)11-s + (8.82 − 8.82i)13-s + 14.1·17-s + (23.7 + 23.7i)19-s − 9.42·23-s + 47.3i·25-s + (−23.7 + 23.7i)29-s + 24.4i·31-s + (−49.4 − 49.4i)35-s + (24.2 + 24.2i)37-s + 6.67i·41-s + (−0.897 + 0.897i)43-s + 25.2i·47-s + ⋯ |
L(s) = 1 | + (1.20 + 1.20i)5-s − 1.17·7-s + (0.592 − 0.592i)11-s + (0.679 − 0.679i)13-s + 0.833·17-s + (1.24 + 1.24i)19-s − 0.409·23-s + 1.89i·25-s + (−0.820 + 0.820i)29-s + 0.787i·31-s + (−1.41 − 1.41i)35-s + (0.654 + 0.654i)37-s + 0.162i·41-s + (−0.0208 + 0.0208i)43-s + 0.537i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.472 - 0.881i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.472 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.061100741\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.061100741\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-6.01 - 6.01i)T + 25iT^{2} \) |
| 7 | \( 1 + 8.23T + 49T^{2} \) |
| 11 | \( 1 + (-6.51 + 6.51i)T - 121iT^{2} \) |
| 13 | \( 1 + (-8.82 + 8.82i)T - 169iT^{2} \) |
| 17 | \( 1 - 14.1T + 289T^{2} \) |
| 19 | \( 1 + (-23.7 - 23.7i)T + 361iT^{2} \) |
| 23 | \( 1 + 9.42T + 529T^{2} \) |
| 29 | \( 1 + (23.7 - 23.7i)T - 841iT^{2} \) |
| 31 | \( 1 - 24.4iT - 961T^{2} \) |
| 37 | \( 1 + (-24.2 - 24.2i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 6.67iT - 1.68e3T^{2} \) |
| 43 | \( 1 + (0.897 - 0.897i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 - 25.2iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (32.6 + 32.6i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (8.31 - 8.31i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + (68.4 - 68.4i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + (-7.71 - 7.71i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 137.T + 5.04e3T^{2} \) |
| 73 | \( 1 + 52.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 87.2iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-9.53 - 9.53i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 146. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 101.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43537826033533612750848088084, −9.892580509585561654423534159204, −9.236399481972516755602044516855, −7.913678101383353131225896208212, −6.84818461199999673204960949822, −6.05325584056530112495158628132, −5.60320205930497690532859796617, −3.42788513081103401990954873754, −3.11835742194415183132883083156, −1.41948078053818822252373277552,
0.872110188224412076756264663098, 2.14881716981579854923468968776, 3.65981664791925854209285675762, 4.84396809676839169597974699926, 5.84606695262347782713956472079, 6.50748844576551414244933157936, 7.69337084701489659737646792168, 9.079707239048819529208614325366, 9.430477594793638860147379596011, 9.922274472914617335787476077961