Defining parameters
Level: | \( N \) | \(=\) | \( 575 = 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 575.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 76 | 56 |
Cusp forms | 108 | 68 | 40 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
575.2.e.a | $4$ | $4.591$ | \(\Q(i, \sqrt{46})\) | \(\Q(\sqrt{-115}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta _{2}q^{4}+\beta _{1}q^{7}-3\beta _{2}q^{9}-4q^{16}+\cdots\) |
575.2.e.b | $8$ | $4.591$ | 8.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}+\beta _{1}q^{4}-\beta _{7}q^{7}+\beta _{5}q^{8}+\cdots\) |
575.2.e.c | $12$ | $4.591$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | \(\Q(\sqrt{-23}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{10}q^{3}+(\beta _{6}-2\beta _{7}+\beta _{9}+\cdots)q^{4}+\cdots\) |
575.2.e.d | $20$ | $4.591$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(4\) | \(8\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}-\beta _{2}q^{3}+\beta _{4}q^{4}+(-1+\beta _{3}+\cdots)q^{6}+\cdots\) |
575.2.e.e | $24$ | $4.591$ | \(\Q(\sqrt{-23}) \) | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(575, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(575, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)