Properties

Label 5720.2.a.u
Level $5720$
Weight $2$
Character orbit 5720.a
Self dual yes
Analytic conductor $45.674$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5720,2,Mod(1,5720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5720.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5720 = 2^{3} \cdot 5 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5720.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,-5,0,7,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6744299562\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 13x^{5} + 15x^{4} + 50x^{3} - 11x^{2} - 28x + 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{3} + q^{5} + ( - \beta_{5} + \beta_{3} - \beta_1 - 1) q^{7} + (\beta_{2} - \beta_1 + 2) q^{9} + q^{11} - q^{13} + (\beta_1 - 1) q^{15} + ( - \beta_{6} - \beta_{4} - \beta_{3} + 1) q^{17}+ \cdots + (\beta_{2} - \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 5 q^{3} + 7 q^{5} - 7 q^{7} + 12 q^{9} + 7 q^{11} - 7 q^{13} - 5 q^{15} + 5 q^{17} - 12 q^{19} - 17 q^{23} + 7 q^{25} - 20 q^{27} - 8 q^{29} - 12 q^{31} - 5 q^{33} - 7 q^{35} - 11 q^{37} + 5 q^{39}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 13x^{5} + 15x^{4} + 50x^{3} - 11x^{2} - 28x + 10 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -4\nu^{6} + 6\nu^{5} + 55\nu^{4} - 33\nu^{3} - 216\nu^{2} - 60\nu + 82 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -7\nu^{6} + 11\nu^{5} + 95\nu^{4} - 62\nu^{3} - 370\nu^{2} - 98\nu + 137 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -8\nu^{6} + 12\nu^{5} + 110\nu^{4} - 65\nu^{3} - 433\nu^{2} - 128\nu + 164 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 10\nu^{6} - 15\nu^{5} - 138\nu^{4} + 82\nu^{3} + 545\nu^{2} + 157\nu - 207 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 2\beta_{3} + \beta_{2} + 9\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{6} - \beta_{5} - 3\beta_{3} + 9\beta_{2} + 15\beta _1 + 32 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -5\beta_{6} + 6\beta_{5} + 2\beta_{4} - 28\beta_{3} + 15\beta_{2} + 84\beta _1 + 63 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -35\beta_{6} - 13\beta_{5} + 3\beta_{4} - 67\beta_{3} + 84\beta_{2} + 189\beta _1 + 306 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.46011
−1.68685
−1.05350
0.481773
0.493690
2.84661
3.37839
0 −3.46011 0 1.00000 0 1.85879 0 8.97235 0
1.2 0 −2.68685 0 1.00000 0 −3.36386 0 4.21918 0
1.3 0 −2.05350 0 1.00000 0 −4.65418 0 1.21686 0
1.4 0 −0.518227 0 1.00000 0 0.155278 0 −2.73144 0
1.5 0 −0.506310 0 1.00000 0 3.43169 0 −2.74365 0
1.6 0 1.84661 0 1.00000 0 −0.347722 0 0.409962 0
1.7 0 2.37839 0 1.00000 0 −4.08000 0 2.65674 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5720.2.a.u 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5720.2.a.u 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5720))\):

\( T_{3}^{7} + 5T_{3}^{6} - 4T_{3}^{5} - 45T_{3}^{4} - 25T_{3}^{3} + 90T_{3}^{2} + 90T_{3} + 22 \) Copy content Toggle raw display
\( T_{7}^{7} + 7T_{7}^{6} - 8T_{7}^{5} - 117T_{7}^{4} - 51T_{7}^{3} + 408T_{7}^{2} + 80T_{7} - 22 \) Copy content Toggle raw display
\( T_{17}^{7} - 5T_{17}^{6} - 64T_{17}^{5} + 280T_{17}^{4} + 987T_{17}^{3} - 3975T_{17}^{2} + 164T_{17} + 268 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} \) Copy content Toggle raw display
$3$ \( T^{7} + 5 T^{6} + \cdots + 22 \) Copy content Toggle raw display
$5$ \( (T - 1)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} + 7 T^{6} + \cdots - 22 \) Copy content Toggle raw display
$11$ \( (T - 1)^{7} \) Copy content Toggle raw display
$13$ \( (T + 1)^{7} \) Copy content Toggle raw display
$17$ \( T^{7} - 5 T^{6} + \cdots + 268 \) Copy content Toggle raw display
$19$ \( T^{7} + 12 T^{6} + \cdots - 16847 \) Copy content Toggle raw display
$23$ \( T^{7} + 17 T^{6} + \cdots + 80 \) Copy content Toggle raw display
$29$ \( T^{7} + 8 T^{6} + \cdots - 384568 \) Copy content Toggle raw display
$31$ \( T^{7} + 12 T^{6} + \cdots - 75328 \) Copy content Toggle raw display
$37$ \( T^{7} + 11 T^{6} + \cdots + 157348 \) Copy content Toggle raw display
$41$ \( T^{7} - 14 T^{6} + \cdots - 7666 \) Copy content Toggle raw display
$43$ \( T^{7} + 5 T^{6} + \cdots + 2888 \) Copy content Toggle raw display
$47$ \( T^{7} + 9 T^{6} + \cdots - 117688 \) Copy content Toggle raw display
$53$ \( T^{7} + 13 T^{6} + \cdots + 608 \) Copy content Toggle raw display
$59$ \( T^{7} + 40 T^{6} + \cdots + 1698400 \) Copy content Toggle raw display
$61$ \( T^{7} + 6 T^{6} + \cdots + 759160 \) Copy content Toggle raw display
$67$ \( T^{7} + 23 T^{6} + \cdots - 505552 \) Copy content Toggle raw display
$71$ \( T^{7} + 8 T^{6} + \cdots - 2200 \) Copy content Toggle raw display
$73$ \( T^{7} - 15 T^{6} + \cdots + 323152 \) Copy content Toggle raw display
$79$ \( T^{7} + 6 T^{6} + \cdots - 32896 \) Copy content Toggle raw display
$83$ \( T^{7} + 21 T^{6} + \cdots + 19072 \) Copy content Toggle raw display
$89$ \( T^{7} - 16 T^{6} + \cdots - 4120192 \) Copy content Toggle raw display
$97$ \( T^{7} - 7 T^{6} + \cdots + 16672 \) Copy content Toggle raw display
show more
show less