Defining parameters
| Level: | \( N \) | \(=\) | \( 5720 = 2^{3} \cdot 5 \cdot 11 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5720.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 29 \) | ||
| Sturm bound: | \(2016\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5720))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1024 | 120 | 904 |
| Cusp forms | 993 | 120 | 873 |
| Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(11\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(58\) | \(8\) | \(50\) | \(57\) | \(8\) | \(49\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(65\) | \(8\) | \(57\) | \(63\) | \(8\) | \(55\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(69\) | \(7\) | \(62\) | \(67\) | \(7\) | \(60\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(62\) | \(6\) | \(56\) | \(60\) | \(6\) | \(54\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(67\) | \(7\) | \(60\) | \(65\) | \(7\) | \(58\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(66\) | \(7\) | \(59\) | \(64\) | \(7\) | \(57\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(62\) | \(8\) | \(54\) | \(60\) | \(8\) | \(52\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(63\) | \(9\) | \(54\) | \(61\) | \(9\) | \(52\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(66\) | \(8\) | \(58\) | \(64\) | \(8\) | \(56\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(59\) | \(5\) | \(54\) | \(57\) | \(5\) | \(52\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(63\) | \(6\) | \(57\) | \(61\) | \(6\) | \(55\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(70\) | \(10\) | \(60\) | \(68\) | \(10\) | \(58\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(65\) | \(7\) | \(58\) | \(63\) | \(7\) | \(56\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(66\) | \(10\) | \(56\) | \(64\) | \(10\) | \(54\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(62\) | \(9\) | \(53\) | \(60\) | \(9\) | \(51\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(61\) | \(5\) | \(56\) | \(59\) | \(5\) | \(54\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(496\) | \(52\) | \(444\) | \(481\) | \(52\) | \(429\) | \(15\) | \(0\) | \(15\) | ||||||
| Minus space | \(-\) | \(528\) | \(68\) | \(460\) | \(512\) | \(68\) | \(444\) | \(16\) | \(0\) | \(16\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5720))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5720))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5720)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(143))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(286))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(572))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(715))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1144))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1430))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2860))\)\(^{\oplus 2}\)