Properties

Label 5712.2.a.bv
Level $5712$
Weight $2$
Character orbit 5712.a
Self dual yes
Analytic conductor $45.611$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5712,2,Mod(1,5712)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5712, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5712.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,2,0,-3,0,3,0,-4,0,0,0,2,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.961.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 10x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2856)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + ( - \beta_1 + 1) q^{5} - q^{7} + q^{9} + ( - \beta_1 - 1) q^{11} + ( - 2 \beta_{2} + \beta_1 - 1) q^{13} + ( - \beta_1 + 1) q^{15} - q^{17} - \beta_{2} q^{19} - q^{21} + \beta_{2} q^{23}+ \cdots + ( - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 2 q^{5} - 3 q^{7} + 3 q^{9} - 4 q^{11} + 2 q^{15} - 3 q^{17} + q^{19} - 3 q^{21} - q^{23} + 7 q^{25} + 3 q^{27} + 18 q^{29} - 2 q^{31} - 4 q^{33} - 2 q^{35} + q^{37} + 7 q^{41} - 6 q^{43}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 10x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + \nu - 8 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} - \beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.29707
0.786802
−3.08387
0 1.00000 0 −2.29707 0 −1.00000 0 1.00000 0
1.2 0 1.00000 0 0.213198 0 −1.00000 0 1.00000 0
1.3 0 1.00000 0 4.08387 0 −1.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5712.2.a.bv 3
4.b odd 2 1 2856.2.a.r 3
12.b even 2 1 8568.2.a.y 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2856.2.a.r 3 4.b odd 2 1
5712.2.a.bv 3 1.a even 1 1 trivial
8568.2.a.y 3 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5712))\):

\( T_{5}^{3} - 2T_{5}^{2} - 9T_{5} + 2 \) Copy content Toggle raw display
\( T_{11}^{3} + 4T_{11}^{2} - 5T_{11} - 16 \) Copy content Toggle raw display
\( T_{13}^{3} - 31T_{13} - 62 \) Copy content Toggle raw display
\( T_{19}^{3} - T_{19}^{2} - 10T_{19} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 4 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$13$ \( T^{3} - 31T - 62 \) Copy content Toggle raw display
$17$ \( (T + 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - T^{2} - 10T + 8 \) Copy content Toggle raw display
$23$ \( T^{3} + T^{2} - 10T - 8 \) Copy content Toggle raw display
$29$ \( (T - 6)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} + 2 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$37$ \( T^{3} - T^{2} - 10T + 8 \) Copy content Toggle raw display
$41$ \( T^{3} - 7 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$43$ \( T^{3} + 6 T^{2} + \cdots - 116 \) Copy content Toggle raw display
$47$ \( T^{3} - 2 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$53$ \( T^{3} - 13 T^{2} + \cdots + 92 \) Copy content Toggle raw display
$59$ \( T^{3} - 6 T^{2} + \cdots + 736 \) Copy content Toggle raw display
$61$ \( T^{3} - 124T - 496 \) Copy content Toggle raw display
$67$ \( T^{3} - 7 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$71$ \( (T + 4)^{3} \) Copy content Toggle raw display
$73$ \( T^{3} - 15 T^{2} + \cdots + 92 \) Copy content Toggle raw display
$79$ \( T^{3} - 7 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$83$ \( T^{3} - 9 T^{2} + \cdots + 376 \) Copy content Toggle raw display
$89$ \( T^{3} - 7 T^{2} + \cdots - 232 \) Copy content Toggle raw display
$97$ \( T^{3} - 9 T^{2} + \cdots + 872 \) Copy content Toggle raw display
show more
show less