Properties

Label 5712.2.a.bs.1.3
Level $5712$
Weight $2$
Character 5712.1
Self dual yes
Analytic conductor $45.611$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5712,2,Mod(1,5712)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5712, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5712.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5712.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,-2,0,3,0,3,0,2,0,-2,0,2,0,-3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.6105496346\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2856)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.34292\) of defining polynomial
Character \(\chi\) \(=\) 5712.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +1.34292 q^{5} +1.00000 q^{7} +1.00000 q^{9} +2.19656 q^{11} -3.63565 q^{13} -1.34292 q^{15} -1.00000 q^{17} -1.63565 q^{19} -1.00000 q^{21} +7.17513 q^{23} -3.19656 q^{25} -1.00000 q^{27} -6.97858 q^{29} +2.85363 q^{31} -2.19656 q^{33} +1.34292 q^{35} -5.83221 q^{37} +3.63565 q^{39} +10.7146 q^{41} +6.19656 q^{43} +1.34292 q^{45} +2.85363 q^{47} +1.00000 q^{49} +1.00000 q^{51} +8.51806 q^{53} +2.94981 q^{55} +1.63565 q^{57} +1.14637 q^{59} +6.81079 q^{61} +1.00000 q^{63} -4.88240 q^{65} -2.68585 q^{67} -7.17513 q^{69} +7.27131 q^{71} -4.29273 q^{73} +3.19656 q^{75} +2.19656 q^{77} +9.53948 q^{79} +1.00000 q^{81} +10.3503 q^{83} -1.34292 q^{85} +6.97858 q^{87} -18.6430 q^{89} -3.63565 q^{91} -2.85363 q^{93} -2.19656 q^{95} +12.3503 q^{97} +2.19656 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 2 q^{5} + 3 q^{7} + 3 q^{9} + 2 q^{11} - 2 q^{13} + 2 q^{15} - 3 q^{17} + 4 q^{19} - 3 q^{21} + 2 q^{23} - 5 q^{25} - 3 q^{27} - 6 q^{29} + 10 q^{31} - 2 q^{33} - 2 q^{35} - 4 q^{37} + 2 q^{39}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 1.34292 0.600573 0.300287 0.953849i \(-0.402918\pi\)
0.300287 + 0.953849i \(0.402918\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.19656 0.662287 0.331144 0.943580i \(-0.392566\pi\)
0.331144 + 0.943580i \(0.392566\pi\)
\(12\) 0 0
\(13\) −3.63565 −1.00835 −0.504175 0.863602i \(-0.668203\pi\)
−0.504175 + 0.863602i \(0.668203\pi\)
\(14\) 0 0
\(15\) −1.34292 −0.346741
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −1.63565 −0.375245 −0.187622 0.982241i \(-0.560078\pi\)
−0.187622 + 0.982241i \(0.560078\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 7.17513 1.49612 0.748060 0.663632i \(-0.230986\pi\)
0.748060 + 0.663632i \(0.230986\pi\)
\(24\) 0 0
\(25\) −3.19656 −0.639312
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −6.97858 −1.29589 −0.647945 0.761687i \(-0.724371\pi\)
−0.647945 + 0.761687i \(0.724371\pi\)
\(30\) 0 0
\(31\) 2.85363 0.512528 0.256264 0.966607i \(-0.417508\pi\)
0.256264 + 0.966607i \(0.417508\pi\)
\(32\) 0 0
\(33\) −2.19656 −0.382372
\(34\) 0 0
\(35\) 1.34292 0.226995
\(36\) 0 0
\(37\) −5.83221 −0.958810 −0.479405 0.877594i \(-0.659147\pi\)
−0.479405 + 0.877594i \(0.659147\pi\)
\(38\) 0 0
\(39\) 3.63565 0.582171
\(40\) 0 0
\(41\) 10.7146 1.67334 0.836671 0.547706i \(-0.184499\pi\)
0.836671 + 0.547706i \(0.184499\pi\)
\(42\) 0 0
\(43\) 6.19656 0.944966 0.472483 0.881340i \(-0.343358\pi\)
0.472483 + 0.881340i \(0.343358\pi\)
\(44\) 0 0
\(45\) 1.34292 0.200191
\(46\) 0 0
\(47\) 2.85363 0.416245 0.208123 0.978103i \(-0.433265\pi\)
0.208123 + 0.978103i \(0.433265\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 8.51806 1.17005 0.585023 0.811017i \(-0.301086\pi\)
0.585023 + 0.811017i \(0.301086\pi\)
\(54\) 0 0
\(55\) 2.94981 0.397752
\(56\) 0 0
\(57\) 1.63565 0.216648
\(58\) 0 0
\(59\) 1.14637 0.149244 0.0746220 0.997212i \(-0.476225\pi\)
0.0746220 + 0.997212i \(0.476225\pi\)
\(60\) 0 0
\(61\) 6.81079 0.872032 0.436016 0.899939i \(-0.356389\pi\)
0.436016 + 0.899939i \(0.356389\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −4.88240 −0.605588
\(66\) 0 0
\(67\) −2.68585 −0.328128 −0.164064 0.986450i \(-0.552460\pi\)
−0.164064 + 0.986450i \(0.552460\pi\)
\(68\) 0 0
\(69\) −7.17513 −0.863785
\(70\) 0 0
\(71\) 7.27131 0.862946 0.431473 0.902126i \(-0.357994\pi\)
0.431473 + 0.902126i \(0.357994\pi\)
\(72\) 0 0
\(73\) −4.29273 −0.502426 −0.251213 0.967932i \(-0.580829\pi\)
−0.251213 + 0.967932i \(0.580829\pi\)
\(74\) 0 0
\(75\) 3.19656 0.369107
\(76\) 0 0
\(77\) 2.19656 0.250321
\(78\) 0 0
\(79\) 9.53948 1.07328 0.536638 0.843813i \(-0.319694\pi\)
0.536638 + 0.843813i \(0.319694\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 10.3503 1.13609 0.568045 0.822998i \(-0.307700\pi\)
0.568045 + 0.822998i \(0.307700\pi\)
\(84\) 0 0
\(85\) −1.34292 −0.145660
\(86\) 0 0
\(87\) 6.97858 0.748182
\(88\) 0 0
\(89\) −18.6430 −1.97615 −0.988077 0.153960i \(-0.950797\pi\)
−0.988077 + 0.153960i \(0.950797\pi\)
\(90\) 0 0
\(91\) −3.63565 −0.381120
\(92\) 0 0
\(93\) −2.85363 −0.295908
\(94\) 0 0
\(95\) −2.19656 −0.225362
\(96\) 0 0
\(97\) 12.3503 1.25398 0.626990 0.779027i \(-0.284287\pi\)
0.626990 + 0.779027i \(0.284287\pi\)
\(98\) 0 0
\(99\) 2.19656 0.220762
\(100\) 0 0
\(101\) −8.85363 −0.880970 −0.440485 0.897760i \(-0.645193\pi\)
−0.440485 + 0.897760i \(0.645193\pi\)
\(102\) 0 0
\(103\) −16.3790 −1.61387 −0.806937 0.590637i \(-0.798876\pi\)
−0.806937 + 0.590637i \(0.798876\pi\)
\(104\) 0 0
\(105\) −1.34292 −0.131056
\(106\) 0 0
\(107\) −16.7392 −1.61824 −0.809119 0.587646i \(-0.800055\pi\)
−0.809119 + 0.587646i \(0.800055\pi\)
\(108\) 0 0
\(109\) 9.49663 0.909613 0.454806 0.890590i \(-0.349708\pi\)
0.454806 + 0.890590i \(0.349708\pi\)
\(110\) 0 0
\(111\) 5.83221 0.553569
\(112\) 0 0
\(113\) 14.7392 1.38654 0.693272 0.720676i \(-0.256168\pi\)
0.693272 + 0.720676i \(0.256168\pi\)
\(114\) 0 0
\(115\) 9.63565 0.898529
\(116\) 0 0
\(117\) −3.63565 −0.336116
\(118\) 0 0
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) −6.17513 −0.561376
\(122\) 0 0
\(123\) −10.7146 −0.966104
\(124\) 0 0
\(125\) −11.0073 −0.984527
\(126\) 0 0
\(127\) 14.7820 1.31169 0.655846 0.754895i \(-0.272312\pi\)
0.655846 + 0.754895i \(0.272312\pi\)
\(128\) 0 0
\(129\) −6.19656 −0.545576
\(130\) 0 0
\(131\) 8.90696 0.778205 0.389102 0.921194i \(-0.372785\pi\)
0.389102 + 0.921194i \(0.372785\pi\)
\(132\) 0 0
\(133\) −1.63565 −0.141829
\(134\) 0 0
\(135\) −1.34292 −0.115580
\(136\) 0 0
\(137\) 17.1035 1.46125 0.730626 0.682778i \(-0.239228\pi\)
0.730626 + 0.682778i \(0.239228\pi\)
\(138\) 0 0
\(139\) −6.10038 −0.517428 −0.258714 0.965954i \(-0.583299\pi\)
−0.258714 + 0.965954i \(0.583299\pi\)
\(140\) 0 0
\(141\) −2.85363 −0.240319
\(142\) 0 0
\(143\) −7.98592 −0.667816
\(144\) 0 0
\(145\) −9.37169 −0.778277
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) 3.70727 0.303711 0.151856 0.988403i \(-0.451475\pi\)
0.151856 + 0.988403i \(0.451475\pi\)
\(150\) 0 0
\(151\) −0.978577 −0.0796355 −0.0398177 0.999207i \(-0.512678\pi\)
−0.0398177 + 0.999207i \(0.512678\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) 0 0
\(155\) 3.83221 0.307811
\(156\) 0 0
\(157\) 2.71462 0.216650 0.108325 0.994116i \(-0.465451\pi\)
0.108325 + 0.994116i \(0.465451\pi\)
\(158\) 0 0
\(159\) −8.51806 −0.675526
\(160\) 0 0
\(161\) 7.17513 0.565480
\(162\) 0 0
\(163\) 22.9357 1.79647 0.898233 0.439520i \(-0.144852\pi\)
0.898233 + 0.439520i \(0.144852\pi\)
\(164\) 0 0
\(165\) −2.94981 −0.229642
\(166\) 0 0
\(167\) −8.51385 −0.658821 −0.329411 0.944187i \(-0.606850\pi\)
−0.329411 + 0.944187i \(0.606850\pi\)
\(168\) 0 0
\(169\) 0.217980 0.0167677
\(170\) 0 0
\(171\) −1.63565 −0.125082
\(172\) 0 0
\(173\) 24.6718 1.87576 0.937880 0.346960i \(-0.112786\pi\)
0.937880 + 0.346960i \(0.112786\pi\)
\(174\) 0 0
\(175\) −3.19656 −0.241637
\(176\) 0 0
\(177\) −1.14637 −0.0861661
\(178\) 0 0
\(179\) 2.68585 0.200750 0.100375 0.994950i \(-0.467996\pi\)
0.100375 + 0.994950i \(0.467996\pi\)
\(180\) 0 0
\(181\) −0.292731 −0.0217585 −0.0108793 0.999941i \(-0.503463\pi\)
−0.0108793 + 0.999941i \(0.503463\pi\)
\(182\) 0 0
\(183\) −6.81079 −0.503468
\(184\) 0 0
\(185\) −7.83221 −0.575836
\(186\) 0 0
\(187\) −2.19656 −0.160628
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −0.978577 −0.0708074 −0.0354037 0.999373i \(-0.511272\pi\)
−0.0354037 + 0.999373i \(0.511272\pi\)
\(192\) 0 0
\(193\) −12.7679 −0.919057 −0.459528 0.888163i \(-0.651982\pi\)
−0.459528 + 0.888163i \(0.651982\pi\)
\(194\) 0 0
\(195\) 4.88240 0.349636
\(196\) 0 0
\(197\) −3.46787 −0.247075 −0.123538 0.992340i \(-0.539424\pi\)
−0.123538 + 0.992340i \(0.539424\pi\)
\(198\) 0 0
\(199\) 18.7104 1.32635 0.663173 0.748466i \(-0.269209\pi\)
0.663173 + 0.748466i \(0.269209\pi\)
\(200\) 0 0
\(201\) 2.68585 0.189445
\(202\) 0 0
\(203\) −6.97858 −0.489800
\(204\) 0 0
\(205\) 14.3889 1.00496
\(206\) 0 0
\(207\) 7.17513 0.498706
\(208\) 0 0
\(209\) −3.59281 −0.248520
\(210\) 0 0
\(211\) 24.6184 1.69480 0.847402 0.530952i \(-0.178166\pi\)
0.847402 + 0.530952i \(0.178166\pi\)
\(212\) 0 0
\(213\) −7.27131 −0.498222
\(214\) 0 0
\(215\) 8.32150 0.567522
\(216\) 0 0
\(217\) 2.85363 0.193717
\(218\) 0 0
\(219\) 4.29273 0.290076
\(220\) 0 0
\(221\) 3.63565 0.244561
\(222\) 0 0
\(223\) −0.906962 −0.0607347 −0.0303673 0.999539i \(-0.509668\pi\)
−0.0303673 + 0.999539i \(0.509668\pi\)
\(224\) 0 0
\(225\) −3.19656 −0.213104
\(226\) 0 0
\(227\) −6.94981 −0.461275 −0.230637 0.973040i \(-0.574081\pi\)
−0.230637 + 0.973040i \(0.574081\pi\)
\(228\) 0 0
\(229\) −17.1365 −1.13241 −0.566206 0.824264i \(-0.691589\pi\)
−0.566206 + 0.824264i \(0.691589\pi\)
\(230\) 0 0
\(231\) −2.19656 −0.144523
\(232\) 0 0
\(233\) 13.9038 0.910870 0.455435 0.890269i \(-0.349484\pi\)
0.455435 + 0.890269i \(0.349484\pi\)
\(234\) 0 0
\(235\) 3.83221 0.249986
\(236\) 0 0
\(237\) −9.53948 −0.619656
\(238\) 0 0
\(239\) −19.3043 −1.24869 −0.624345 0.781148i \(-0.714634\pi\)
−0.624345 + 0.781148i \(0.714634\pi\)
\(240\) 0 0
\(241\) 7.76481 0.500175 0.250088 0.968223i \(-0.419541\pi\)
0.250088 + 0.968223i \(0.419541\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 1.34292 0.0857962
\(246\) 0 0
\(247\) 5.94667 0.378378
\(248\) 0 0
\(249\) −10.3503 −0.655922
\(250\) 0 0
\(251\) −20.4177 −1.28875 −0.644376 0.764709i \(-0.722883\pi\)
−0.644376 + 0.764709i \(0.722883\pi\)
\(252\) 0 0
\(253\) 15.7606 0.990860
\(254\) 0 0
\(255\) 1.34292 0.0840971
\(256\) 0 0
\(257\) −14.4752 −0.902939 −0.451469 0.892287i \(-0.649100\pi\)
−0.451469 + 0.892287i \(0.649100\pi\)
\(258\) 0 0
\(259\) −5.83221 −0.362396
\(260\) 0 0
\(261\) −6.97858 −0.431963
\(262\) 0 0
\(263\) 11.0790 0.683158 0.341579 0.939853i \(-0.389038\pi\)
0.341579 + 0.939853i \(0.389038\pi\)
\(264\) 0 0
\(265\) 11.4391 0.702698
\(266\) 0 0
\(267\) 18.6430 1.14093
\(268\) 0 0
\(269\) −6.65708 −0.405889 −0.202945 0.979190i \(-0.565051\pi\)
−0.202945 + 0.979190i \(0.565051\pi\)
\(270\) 0 0
\(271\) 26.8641 1.63188 0.815939 0.578137i \(-0.196220\pi\)
0.815939 + 0.578137i \(0.196220\pi\)
\(272\) 0 0
\(273\) 3.63565 0.220040
\(274\) 0 0
\(275\) −7.02142 −0.423408
\(276\) 0 0
\(277\) −20.4078 −1.22619 −0.613093 0.790011i \(-0.710075\pi\)
−0.613093 + 0.790011i \(0.710075\pi\)
\(278\) 0 0
\(279\) 2.85363 0.170843
\(280\) 0 0
\(281\) −2.05754 −0.122742 −0.0613712 0.998115i \(-0.519547\pi\)
−0.0613712 + 0.998115i \(0.519547\pi\)
\(282\) 0 0
\(283\) −14.1825 −0.843061 −0.421530 0.906814i \(-0.638507\pi\)
−0.421530 + 0.906814i \(0.638507\pi\)
\(284\) 0 0
\(285\) 2.19656 0.130113
\(286\) 0 0
\(287\) 10.7146 0.632464
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −12.3503 −0.723986
\(292\) 0 0
\(293\) 2.19235 0.128078 0.0640391 0.997947i \(-0.479602\pi\)
0.0640391 + 0.997947i \(0.479602\pi\)
\(294\) 0 0
\(295\) 1.53948 0.0896320
\(296\) 0 0
\(297\) −2.19656 −0.127457
\(298\) 0 0
\(299\) −26.0863 −1.50861
\(300\) 0 0
\(301\) 6.19656 0.357164
\(302\) 0 0
\(303\) 8.85363 0.508628
\(304\) 0 0
\(305\) 9.14637 0.523719
\(306\) 0 0
\(307\) 5.37169 0.306579 0.153289 0.988181i \(-0.451013\pi\)
0.153289 + 0.988181i \(0.451013\pi\)
\(308\) 0 0
\(309\) 16.3790 0.931771
\(310\) 0 0
\(311\) 18.7434 1.06284 0.531420 0.847109i \(-0.321659\pi\)
0.531420 + 0.847109i \(0.321659\pi\)
\(312\) 0 0
\(313\) −5.63986 −0.318784 −0.159392 0.987215i \(-0.550953\pi\)
−0.159392 + 0.987215i \(0.550953\pi\)
\(314\) 0 0
\(315\) 1.34292 0.0756651
\(316\) 0 0
\(317\) −5.32885 −0.299298 −0.149649 0.988739i \(-0.547814\pi\)
−0.149649 + 0.988739i \(0.547814\pi\)
\(318\) 0 0
\(319\) −15.3288 −0.858251
\(320\) 0 0
\(321\) 16.7392 0.934290
\(322\) 0 0
\(323\) 1.63565 0.0910102
\(324\) 0 0
\(325\) 11.6216 0.644649
\(326\) 0 0
\(327\) −9.49663 −0.525165
\(328\) 0 0
\(329\) 2.85363 0.157326
\(330\) 0 0
\(331\) 19.9038 1.09401 0.547007 0.837128i \(-0.315767\pi\)
0.547007 + 0.837128i \(0.315767\pi\)
\(332\) 0 0
\(333\) −5.83221 −0.319603
\(334\) 0 0
\(335\) −3.60688 −0.197065
\(336\) 0 0
\(337\) 30.8108 1.67837 0.839185 0.543846i \(-0.183032\pi\)
0.839185 + 0.543846i \(0.183032\pi\)
\(338\) 0 0
\(339\) −14.7392 −0.800522
\(340\) 0 0
\(341\) 6.26817 0.339441
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −9.63565 −0.518766
\(346\) 0 0
\(347\) 14.7350 0.791014 0.395507 0.918463i \(-0.370569\pi\)
0.395507 + 0.918463i \(0.370569\pi\)
\(348\) 0 0
\(349\) 19.6932 1.05415 0.527076 0.849818i \(-0.323288\pi\)
0.527076 + 0.849818i \(0.323288\pi\)
\(350\) 0 0
\(351\) 3.63565 0.194057
\(352\) 0 0
\(353\) 27.9044 1.48520 0.742602 0.669733i \(-0.233592\pi\)
0.742602 + 0.669733i \(0.233592\pi\)
\(354\) 0 0
\(355\) 9.76481 0.518262
\(356\) 0 0
\(357\) 1.00000 0.0529256
\(358\) 0 0
\(359\) 15.4391 0.814844 0.407422 0.913240i \(-0.366428\pi\)
0.407422 + 0.913240i \(0.366428\pi\)
\(360\) 0 0
\(361\) −16.3246 −0.859191
\(362\) 0 0
\(363\) 6.17513 0.324111
\(364\) 0 0
\(365\) −5.76481 −0.301744
\(366\) 0 0
\(367\) 35.5296 1.85463 0.927315 0.374281i \(-0.122110\pi\)
0.927315 + 0.374281i \(0.122110\pi\)
\(368\) 0 0
\(369\) 10.7146 0.557781
\(370\) 0 0
\(371\) 8.51806 0.442236
\(372\) 0 0
\(373\) 22.6430 1.17241 0.586205 0.810163i \(-0.300621\pi\)
0.586205 + 0.810163i \(0.300621\pi\)
\(374\) 0 0
\(375\) 11.0073 0.568417
\(376\) 0 0
\(377\) 25.3717 1.30671
\(378\) 0 0
\(379\) 5.95715 0.305998 0.152999 0.988226i \(-0.451107\pi\)
0.152999 + 0.988226i \(0.451107\pi\)
\(380\) 0 0
\(381\) −14.7820 −0.757306
\(382\) 0 0
\(383\) −6.57560 −0.335997 −0.167999 0.985787i \(-0.553730\pi\)
−0.167999 + 0.985787i \(0.553730\pi\)
\(384\) 0 0
\(385\) 2.94981 0.150336
\(386\) 0 0
\(387\) 6.19656 0.314989
\(388\) 0 0
\(389\) −10.6430 −0.539622 −0.269811 0.962913i \(-0.586961\pi\)
−0.269811 + 0.962913i \(0.586961\pi\)
\(390\) 0 0
\(391\) −7.17513 −0.362862
\(392\) 0 0
\(393\) −8.90696 −0.449297
\(394\) 0 0
\(395\) 12.8108 0.644581
\(396\) 0 0
\(397\) 19.3963 0.973470 0.486735 0.873550i \(-0.338188\pi\)
0.486735 + 0.873550i \(0.338188\pi\)
\(398\) 0 0
\(399\) 1.63565 0.0818851
\(400\) 0 0
\(401\) 30.2113 1.50868 0.754339 0.656485i \(-0.227958\pi\)
0.754339 + 0.656485i \(0.227958\pi\)
\(402\) 0 0
\(403\) −10.3748 −0.516807
\(404\) 0 0
\(405\) 1.34292 0.0667304
\(406\) 0 0
\(407\) −12.8108 −0.635007
\(408\) 0 0
\(409\) −2.52227 −0.124718 −0.0623591 0.998054i \(-0.519862\pi\)
−0.0623591 + 0.998054i \(0.519862\pi\)
\(410\) 0 0
\(411\) −17.1035 −0.843654
\(412\) 0 0
\(413\) 1.14637 0.0564090
\(414\) 0 0
\(415\) 13.8996 0.682305
\(416\) 0 0
\(417\) 6.10038 0.298737
\(418\) 0 0
\(419\) −22.8866 −1.11808 −0.559042 0.829139i \(-0.688831\pi\)
−0.559042 + 0.829139i \(0.688831\pi\)
\(420\) 0 0
\(421\) 2.29694 0.111946 0.0559730 0.998432i \(-0.482174\pi\)
0.0559730 + 0.998432i \(0.482174\pi\)
\(422\) 0 0
\(423\) 2.85363 0.138748
\(424\) 0 0
\(425\) 3.19656 0.155056
\(426\) 0 0
\(427\) 6.81079 0.329597
\(428\) 0 0
\(429\) 7.98592 0.385564
\(430\) 0 0
\(431\) −36.1151 −1.73960 −0.869801 0.493403i \(-0.835753\pi\)
−0.869801 + 0.493403i \(0.835753\pi\)
\(432\) 0 0
\(433\) −27.6932 −1.33085 −0.665425 0.746465i \(-0.731750\pi\)
−0.665425 + 0.746465i \(0.731750\pi\)
\(434\) 0 0
\(435\) 9.37169 0.449338
\(436\) 0 0
\(437\) −11.7360 −0.561411
\(438\) 0 0
\(439\) 5.00314 0.238787 0.119393 0.992847i \(-0.461905\pi\)
0.119393 + 0.992847i \(0.461905\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 6.37483 0.302877 0.151439 0.988467i \(-0.451609\pi\)
0.151439 + 0.988467i \(0.451609\pi\)
\(444\) 0 0
\(445\) −25.0361 −1.18683
\(446\) 0 0
\(447\) −3.70727 −0.175348
\(448\) 0 0
\(449\) 36.8009 1.73674 0.868371 0.495914i \(-0.165167\pi\)
0.868371 + 0.495914i \(0.165167\pi\)
\(450\) 0 0
\(451\) 23.5353 1.10823
\(452\) 0 0
\(453\) 0.978577 0.0459776
\(454\) 0 0
\(455\) −4.88240 −0.228891
\(456\) 0 0
\(457\) −0.0533277 −0.00249456 −0.00124728 0.999999i \(-0.500397\pi\)
−0.00124728 + 0.999999i \(0.500397\pi\)
\(458\) 0 0
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −26.2829 −1.22412 −0.612058 0.790813i \(-0.709658\pi\)
−0.612058 + 0.790813i \(0.709658\pi\)
\(462\) 0 0
\(463\) 22.3503 1.03871 0.519353 0.854560i \(-0.326173\pi\)
0.519353 + 0.854560i \(0.326173\pi\)
\(464\) 0 0
\(465\) −3.83221 −0.177715
\(466\) 0 0
\(467\) −18.0147 −0.833621 −0.416810 0.908994i \(-0.636852\pi\)
−0.416810 + 0.908994i \(0.636852\pi\)
\(468\) 0 0
\(469\) −2.68585 −0.124021
\(470\) 0 0
\(471\) −2.71462 −0.125083
\(472\) 0 0
\(473\) 13.6111 0.625839
\(474\) 0 0
\(475\) 5.22846 0.239898
\(476\) 0 0
\(477\) 8.51806 0.390015
\(478\) 0 0
\(479\) 26.7293 1.22129 0.610647 0.791903i \(-0.290910\pi\)
0.610647 + 0.791903i \(0.290910\pi\)
\(480\) 0 0
\(481\) 21.2039 0.966815
\(482\) 0 0
\(483\) −7.17513 −0.326480
\(484\) 0 0
\(485\) 16.5855 0.753107
\(486\) 0 0
\(487\) −8.97858 −0.406858 −0.203429 0.979090i \(-0.565209\pi\)
−0.203429 + 0.979090i \(0.565209\pi\)
\(488\) 0 0
\(489\) −22.9357 −1.03719
\(490\) 0 0
\(491\) −23.7220 −1.07056 −0.535279 0.844676i \(-0.679793\pi\)
−0.535279 + 0.844676i \(0.679793\pi\)
\(492\) 0 0
\(493\) 6.97858 0.314299
\(494\) 0 0
\(495\) 2.94981 0.132584
\(496\) 0 0
\(497\) 7.27131 0.326163
\(498\) 0 0
\(499\) 42.2400 1.89092 0.945461 0.325734i \(-0.105611\pi\)
0.945461 + 0.325734i \(0.105611\pi\)
\(500\) 0 0
\(501\) 8.51385 0.380371
\(502\) 0 0
\(503\) 32.4366 1.44628 0.723138 0.690704i \(-0.242699\pi\)
0.723138 + 0.690704i \(0.242699\pi\)
\(504\) 0 0
\(505\) −11.8898 −0.529087
\(506\) 0 0
\(507\) −0.217980 −0.00968085
\(508\) 0 0
\(509\) −13.5212 −0.599316 −0.299658 0.954047i \(-0.596873\pi\)
−0.299658 + 0.954047i \(0.596873\pi\)
\(510\) 0 0
\(511\) −4.29273 −0.189899
\(512\) 0 0
\(513\) 1.63565 0.0722159
\(514\) 0 0
\(515\) −21.9958 −0.969250
\(516\) 0 0
\(517\) 6.26817 0.275674
\(518\) 0 0
\(519\) −24.6718 −1.08297
\(520\) 0 0
\(521\) −10.9927 −0.481597 −0.240798 0.970575i \(-0.577409\pi\)
−0.240798 + 0.970575i \(0.577409\pi\)
\(522\) 0 0
\(523\) 19.8652 0.868644 0.434322 0.900758i \(-0.356988\pi\)
0.434322 + 0.900758i \(0.356988\pi\)
\(524\) 0 0
\(525\) 3.19656 0.139509
\(526\) 0 0
\(527\) −2.85363 −0.124306
\(528\) 0 0
\(529\) 28.4826 1.23837
\(530\) 0 0
\(531\) 1.14637 0.0497480
\(532\) 0 0
\(533\) −38.9546 −1.68731
\(534\) 0 0
\(535\) −22.4794 −0.971870
\(536\) 0 0
\(537\) −2.68585 −0.115903
\(538\) 0 0
\(539\) 2.19656 0.0946124
\(540\) 0 0
\(541\) −34.7581 −1.49437 −0.747183 0.664618i \(-0.768594\pi\)
−0.747183 + 0.664618i \(0.768594\pi\)
\(542\) 0 0
\(543\) 0.292731 0.0125623
\(544\) 0 0
\(545\) 12.7533 0.546289
\(546\) 0 0
\(547\) −39.0178 −1.66828 −0.834141 0.551551i \(-0.814036\pi\)
−0.834141 + 0.551551i \(0.814036\pi\)
\(548\) 0 0
\(549\) 6.81079 0.290677
\(550\) 0 0
\(551\) 11.4145 0.486276
\(552\) 0 0
\(553\) 9.53948 0.405660
\(554\) 0 0
\(555\) 7.83221 0.332459
\(556\) 0 0
\(557\) −17.0544 −0.722618 −0.361309 0.932446i \(-0.617670\pi\)
−0.361309 + 0.932446i \(0.617670\pi\)
\(558\) 0 0
\(559\) −22.5285 −0.952856
\(560\) 0 0
\(561\) 2.19656 0.0927387
\(562\) 0 0
\(563\) 12.1432 0.511776 0.255888 0.966706i \(-0.417632\pi\)
0.255888 + 0.966706i \(0.417632\pi\)
\(564\) 0 0
\(565\) 19.7936 0.832722
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 24.0147 1.00675 0.503374 0.864069i \(-0.332092\pi\)
0.503374 + 0.864069i \(0.332092\pi\)
\(570\) 0 0
\(571\) −29.9572 −1.25367 −0.626834 0.779153i \(-0.715650\pi\)
−0.626834 + 0.779153i \(0.715650\pi\)
\(572\) 0 0
\(573\) 0.978577 0.0408806
\(574\) 0 0
\(575\) −22.9357 −0.956486
\(576\) 0 0
\(577\) −35.6932 −1.48593 −0.742964 0.669332i \(-0.766580\pi\)
−0.742964 + 0.669332i \(0.766580\pi\)
\(578\) 0 0
\(579\) 12.7679 0.530618
\(580\) 0 0
\(581\) 10.3503 0.429402
\(582\) 0 0
\(583\) 18.7104 0.774906
\(584\) 0 0
\(585\) −4.88240 −0.201863
\(586\) 0 0
\(587\) −45.2039 −1.86576 −0.932882 0.360181i \(-0.882715\pi\)
−0.932882 + 0.360181i \(0.882715\pi\)
\(588\) 0 0
\(589\) −4.66756 −0.192323
\(590\) 0 0
\(591\) 3.46787 0.142649
\(592\) 0 0
\(593\) 38.8683 1.59613 0.798065 0.602571i \(-0.205857\pi\)
0.798065 + 0.602571i \(0.205857\pi\)
\(594\) 0 0
\(595\) −1.34292 −0.0550545
\(596\) 0 0
\(597\) −18.7104 −0.765766
\(598\) 0 0
\(599\) −9.76481 −0.398979 −0.199490 0.979900i \(-0.563928\pi\)
−0.199490 + 0.979900i \(0.563928\pi\)
\(600\) 0 0
\(601\) 21.4109 0.873371 0.436685 0.899614i \(-0.356152\pi\)
0.436685 + 0.899614i \(0.356152\pi\)
\(602\) 0 0
\(603\) −2.68585 −0.109376
\(604\) 0 0
\(605\) −8.29273 −0.337147
\(606\) 0 0
\(607\) −6.31729 −0.256411 −0.128205 0.991748i \(-0.540922\pi\)
−0.128205 + 0.991748i \(0.540922\pi\)
\(608\) 0 0
\(609\) 6.97858 0.282786
\(610\) 0 0
\(611\) −10.3748 −0.419721
\(612\) 0 0
\(613\) 37.5682 1.51737 0.758684 0.651459i \(-0.225843\pi\)
0.758684 + 0.651459i \(0.225843\pi\)
\(614\) 0 0
\(615\) −14.3889 −0.580217
\(616\) 0 0
\(617\) 28.3503 1.14134 0.570669 0.821180i \(-0.306684\pi\)
0.570669 + 0.821180i \(0.306684\pi\)
\(618\) 0 0
\(619\) 11.4391 0.459776 0.229888 0.973217i \(-0.426164\pi\)
0.229888 + 0.973217i \(0.426164\pi\)
\(620\) 0 0
\(621\) −7.17513 −0.287928
\(622\) 0 0
\(623\) −18.6430 −0.746916
\(624\) 0 0
\(625\) 1.20077 0.0480307
\(626\) 0 0
\(627\) 3.59281 0.143483
\(628\) 0 0
\(629\) 5.83221 0.232546
\(630\) 0 0
\(631\) −29.7753 −1.18534 −0.592668 0.805447i \(-0.701925\pi\)
−0.592668 + 0.805447i \(0.701925\pi\)
\(632\) 0 0
\(633\) −24.6184 −0.978495
\(634\) 0 0
\(635\) 19.8511 0.787767
\(636\) 0 0
\(637\) −3.63565 −0.144050
\(638\) 0 0
\(639\) 7.27131 0.287649
\(640\) 0 0
\(641\) −30.6044 −1.20880 −0.604400 0.796681i \(-0.706587\pi\)
−0.604400 + 0.796681i \(0.706587\pi\)
\(642\) 0 0
\(643\) −16.2008 −0.638896 −0.319448 0.947604i \(-0.603497\pi\)
−0.319448 + 0.947604i \(0.603497\pi\)
\(644\) 0 0
\(645\) −8.32150 −0.327659
\(646\) 0 0
\(647\) −28.8438 −1.13397 −0.566983 0.823730i \(-0.691889\pi\)
−0.566983 + 0.823730i \(0.691889\pi\)
\(648\) 0 0
\(649\) 2.51806 0.0988424
\(650\) 0 0
\(651\) −2.85363 −0.111843
\(652\) 0 0
\(653\) 27.3331 1.06963 0.534813 0.844971i \(-0.320382\pi\)
0.534813 + 0.844971i \(0.320382\pi\)
\(654\) 0 0
\(655\) 11.9614 0.467369
\(656\) 0 0
\(657\) −4.29273 −0.167475
\(658\) 0 0
\(659\) −5.87506 −0.228860 −0.114430 0.993431i \(-0.536504\pi\)
−0.114430 + 0.993431i \(0.536504\pi\)
\(660\) 0 0
\(661\) −15.2144 −0.591771 −0.295886 0.955223i \(-0.595615\pi\)
−0.295886 + 0.955223i \(0.595615\pi\)
\(662\) 0 0
\(663\) −3.63565 −0.141197
\(664\) 0 0
\(665\) −2.19656 −0.0851788
\(666\) 0 0
\(667\) −50.0722 −1.93880
\(668\) 0 0
\(669\) 0.906962 0.0350652
\(670\) 0 0
\(671\) 14.9603 0.577536
\(672\) 0 0
\(673\) 0.829076 0.0319585 0.0159793 0.999872i \(-0.494913\pi\)
0.0159793 + 0.999872i \(0.494913\pi\)
\(674\) 0 0
\(675\) 3.19656 0.123036
\(676\) 0 0
\(677\) 20.8066 0.799662 0.399831 0.916589i \(-0.369069\pi\)
0.399831 + 0.916589i \(0.369069\pi\)
\(678\) 0 0
\(679\) 12.3503 0.473960
\(680\) 0 0
\(681\) 6.94981 0.266317
\(682\) 0 0
\(683\) −25.4103 −0.972299 −0.486150 0.873876i \(-0.661599\pi\)
−0.486150 + 0.873876i \(0.661599\pi\)
\(684\) 0 0
\(685\) 22.9687 0.877589
\(686\) 0 0
\(687\) 17.1365 0.653798
\(688\) 0 0
\(689\) −30.9687 −1.17981
\(690\) 0 0
\(691\) 32.7826 1.24711 0.623555 0.781779i \(-0.285688\pi\)
0.623555 + 0.781779i \(0.285688\pi\)
\(692\) 0 0
\(693\) 2.19656 0.0834403
\(694\) 0 0
\(695\) −8.19235 −0.310753
\(696\) 0 0
\(697\) −10.7146 −0.405845
\(698\) 0 0
\(699\) −13.9038 −0.525891
\(700\) 0 0
\(701\) 24.6002 0.929135 0.464568 0.885538i \(-0.346210\pi\)
0.464568 + 0.885538i \(0.346210\pi\)
\(702\) 0 0
\(703\) 9.53948 0.359788
\(704\) 0 0
\(705\) −3.83221 −0.144329
\(706\) 0 0
\(707\) −8.85363 −0.332975
\(708\) 0 0
\(709\) 35.0852 1.31765 0.658827 0.752295i \(-0.271053\pi\)
0.658827 + 0.752295i \(0.271053\pi\)
\(710\) 0 0
\(711\) 9.53948 0.357758
\(712\) 0 0
\(713\) 20.4752 0.766803
\(714\) 0 0
\(715\) −10.7245 −0.401073
\(716\) 0 0
\(717\) 19.3043 0.720932
\(718\) 0 0
\(719\) 5.64408 0.210489 0.105244 0.994446i \(-0.466438\pi\)
0.105244 + 0.994446i \(0.466438\pi\)
\(720\) 0 0
\(721\) −16.3790 −0.609987
\(722\) 0 0
\(723\) −7.76481 −0.288776
\(724\) 0 0
\(725\) 22.3074 0.828477
\(726\) 0 0
\(727\) 32.3650 1.20035 0.600175 0.799869i \(-0.295098\pi\)
0.600175 + 0.799869i \(0.295098\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −6.19656 −0.229188
\(732\) 0 0
\(733\) 7.90804 0.292090 0.146045 0.989278i \(-0.453346\pi\)
0.146045 + 0.989278i \(0.453346\pi\)
\(734\) 0 0
\(735\) −1.34292 −0.0495345
\(736\) 0 0
\(737\) −5.89962 −0.217315
\(738\) 0 0
\(739\) −8.15371 −0.299939 −0.149970 0.988691i \(-0.547918\pi\)
−0.149970 + 0.988691i \(0.547918\pi\)
\(740\) 0 0
\(741\) −5.94667 −0.218456
\(742\) 0 0
\(743\) 33.6791 1.23557 0.617783 0.786348i \(-0.288031\pi\)
0.617783 + 0.786348i \(0.288031\pi\)
\(744\) 0 0
\(745\) 4.97858 0.182401
\(746\) 0 0
\(747\) 10.3503 0.378697
\(748\) 0 0
\(749\) −16.7392 −0.611636
\(750\) 0 0
\(751\) −1.53948 −0.0561764 −0.0280882 0.999605i \(-0.508942\pi\)
−0.0280882 + 0.999605i \(0.508942\pi\)
\(752\) 0 0
\(753\) 20.4177 0.744061
\(754\) 0 0
\(755\) −1.31415 −0.0478270
\(756\) 0 0
\(757\) 49.4334 1.79669 0.898344 0.439292i \(-0.144771\pi\)
0.898344 + 0.439292i \(0.144771\pi\)
\(758\) 0 0
\(759\) −15.7606 −0.572073
\(760\) 0 0
\(761\) −44.7434 −1.62195 −0.810973 0.585083i \(-0.801062\pi\)
−0.810973 + 0.585083i \(0.801062\pi\)
\(762\) 0 0
\(763\) 9.49663 0.343801
\(764\) 0 0
\(765\) −1.34292 −0.0485535
\(766\) 0 0
\(767\) −4.16779 −0.150490
\(768\) 0 0
\(769\) 19.7507 0.712230 0.356115 0.934442i \(-0.384101\pi\)
0.356115 + 0.934442i \(0.384101\pi\)
\(770\) 0 0
\(771\) 14.4752 0.521312
\(772\) 0 0
\(773\) −38.3895 −1.38078 −0.690388 0.723440i \(-0.742560\pi\)
−0.690388 + 0.723440i \(0.742560\pi\)
\(774\) 0 0
\(775\) −9.12181 −0.327665
\(776\) 0 0
\(777\) 5.83221 0.209229
\(778\) 0 0
\(779\) −17.5254 −0.627913
\(780\) 0 0
\(781\) 15.9718 0.571518
\(782\) 0 0
\(783\) 6.97858 0.249394
\(784\) 0 0
\(785\) 3.64552 0.130114
\(786\) 0 0
\(787\) −15.8322 −0.564357 −0.282179 0.959362i \(-0.591057\pi\)
−0.282179 + 0.959362i \(0.591057\pi\)
\(788\) 0 0
\(789\) −11.0790 −0.394421
\(790\) 0 0
\(791\) 14.7392 0.524065
\(792\) 0 0
\(793\) −24.7617 −0.879313
\(794\) 0 0
\(795\) −11.4391 −0.405703
\(796\) 0 0
\(797\) 38.5082 1.36403 0.682015 0.731338i \(-0.261104\pi\)
0.682015 + 0.731338i \(0.261104\pi\)
\(798\) 0 0
\(799\) −2.85363 −0.100954
\(800\) 0 0
\(801\) −18.6430 −0.658718
\(802\) 0 0
\(803\) −9.42923 −0.332750
\(804\) 0 0
\(805\) 9.63565 0.339612
\(806\) 0 0
\(807\) 6.65708 0.234340
\(808\) 0 0
\(809\) −11.9101 −0.418737 −0.209368 0.977837i \(-0.567141\pi\)
−0.209368 + 0.977837i \(0.567141\pi\)
\(810\) 0 0
\(811\) −20.3074 −0.713090 −0.356545 0.934278i \(-0.616045\pi\)
−0.356545 + 0.934278i \(0.616045\pi\)
\(812\) 0 0
\(813\) −26.8641 −0.942166
\(814\) 0 0
\(815\) 30.8009 1.07891
\(816\) 0 0
\(817\) −10.1354 −0.354594
\(818\) 0 0
\(819\) −3.63565 −0.127040
\(820\) 0 0
\(821\) −42.2688 −1.47519 −0.737595 0.675243i \(-0.764039\pi\)
−0.737595 + 0.675243i \(0.764039\pi\)
\(822\) 0 0
\(823\) 9.06067 0.315835 0.157918 0.987452i \(-0.449522\pi\)
0.157918 + 0.987452i \(0.449522\pi\)
\(824\) 0 0
\(825\) 7.02142 0.244455
\(826\) 0 0
\(827\) −24.6901 −0.858557 −0.429279 0.903172i \(-0.641232\pi\)
−0.429279 + 0.903172i \(0.641232\pi\)
\(828\) 0 0
\(829\) −10.6712 −0.370624 −0.185312 0.982680i \(-0.559330\pi\)
−0.185312 + 0.982680i \(0.559330\pi\)
\(830\) 0 0
\(831\) 20.4078 0.707939
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) −11.4334 −0.395671
\(836\) 0 0
\(837\) −2.85363 −0.0986360
\(838\) 0 0
\(839\) −26.6142 −0.918825 −0.459413 0.888223i \(-0.651940\pi\)
−0.459413 + 0.888223i \(0.651940\pi\)
\(840\) 0 0
\(841\) 19.7005 0.679329
\(842\) 0 0
\(843\) 2.05754 0.0708654
\(844\) 0 0
\(845\) 0.292731 0.0100703
\(846\) 0 0
\(847\) −6.17513 −0.212180
\(848\) 0 0
\(849\) 14.1825 0.486741
\(850\) 0 0
\(851\) −41.8469 −1.43449
\(852\) 0 0
\(853\) −33.9964 −1.16401 −0.582007 0.813184i \(-0.697733\pi\)
−0.582007 + 0.813184i \(0.697733\pi\)
\(854\) 0 0
\(855\) −2.19656 −0.0751207
\(856\) 0 0
\(857\) −53.5787 −1.83021 −0.915107 0.403210i \(-0.867894\pi\)
−0.915107 + 0.403210i \(0.867894\pi\)
\(858\) 0 0
\(859\) −22.2070 −0.757694 −0.378847 0.925459i \(-0.623679\pi\)
−0.378847 + 0.925459i \(0.623679\pi\)
\(860\) 0 0
\(861\) −10.7146 −0.365153
\(862\) 0 0
\(863\) 18.9028 0.643457 0.321729 0.946832i \(-0.395736\pi\)
0.321729 + 0.946832i \(0.395736\pi\)
\(864\) 0 0
\(865\) 33.1323 1.12653
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 20.9540 0.710816
\(870\) 0 0
\(871\) 9.76481 0.330868
\(872\) 0 0
\(873\) 12.3503 0.417993
\(874\) 0 0
\(875\) −11.0073 −0.372116
\(876\) 0 0
\(877\) −15.5970 −0.526674 −0.263337 0.964704i \(-0.584823\pi\)
−0.263337 + 0.964704i \(0.584823\pi\)
\(878\) 0 0
\(879\) −2.19235 −0.0739460
\(880\) 0 0
\(881\) −47.5359 −1.60152 −0.800762 0.598982i \(-0.795572\pi\)
−0.800762 + 0.598982i \(0.795572\pi\)
\(882\) 0 0
\(883\) 32.1537 1.08206 0.541029 0.841004i \(-0.318035\pi\)
0.541029 + 0.841004i \(0.318035\pi\)
\(884\) 0 0
\(885\) −1.53948 −0.0517491
\(886\) 0 0
\(887\) −44.2358 −1.48529 −0.742647 0.669684i \(-0.766430\pi\)
−0.742647 + 0.669684i \(0.766430\pi\)
\(888\) 0 0
\(889\) 14.7820 0.495773
\(890\) 0 0
\(891\) 2.19656 0.0735874
\(892\) 0 0
\(893\) −4.66756 −0.156194
\(894\) 0 0
\(895\) 3.60688 0.120565
\(896\) 0 0
\(897\) 26.0863 0.870996
\(898\) 0 0
\(899\) −19.9143 −0.664179
\(900\) 0 0
\(901\) −8.51806 −0.283778
\(902\) 0 0
\(903\) −6.19656 −0.206209
\(904\) 0 0
\(905\) −0.393115 −0.0130676
\(906\) 0 0
\(907\) −49.6300 −1.64794 −0.823969 0.566636i \(-0.808245\pi\)
−0.823969 + 0.566636i \(0.808245\pi\)
\(908\) 0 0
\(909\) −8.85363 −0.293657
\(910\) 0 0
\(911\) 13.4763 0.446489 0.223245 0.974762i \(-0.428335\pi\)
0.223245 + 0.974762i \(0.428335\pi\)
\(912\) 0 0
\(913\) 22.7350 0.752417
\(914\) 0 0
\(915\) −9.14637 −0.302370
\(916\) 0 0
\(917\) 8.90696 0.294134
\(918\) 0 0
\(919\) 22.5897 0.745165 0.372582 0.927999i \(-0.378472\pi\)
0.372582 + 0.927999i \(0.378472\pi\)
\(920\) 0 0
\(921\) −5.37169 −0.177003
\(922\) 0 0
\(923\) −26.4360 −0.870150
\(924\) 0 0
\(925\) 18.6430 0.612978
\(926\) 0 0
\(927\) −16.3790 −0.537958
\(928\) 0 0
\(929\) −44.8725 −1.47222 −0.736110 0.676862i \(-0.763339\pi\)
−0.736110 + 0.676862i \(0.763339\pi\)
\(930\) 0 0
\(931\) −1.63565 −0.0536064
\(932\) 0 0
\(933\) −18.7434 −0.613631
\(934\) 0 0
\(935\) −2.94981 −0.0964690
\(936\) 0 0
\(937\) −40.5510 −1.32474 −0.662372 0.749175i \(-0.730450\pi\)
−0.662372 + 0.749175i \(0.730450\pi\)
\(938\) 0 0
\(939\) 5.63986 0.184050
\(940\) 0 0
\(941\) 10.1151 0.329742 0.164871 0.986315i \(-0.447279\pi\)
0.164871 + 0.986315i \(0.447279\pi\)
\(942\) 0 0
\(943\) 76.8788 2.50352
\(944\) 0 0
\(945\) −1.34292 −0.0436853
\(946\) 0 0
\(947\) 10.5510 0.342863 0.171431 0.985196i \(-0.445161\pi\)
0.171431 + 0.985196i \(0.445161\pi\)
\(948\) 0 0
\(949\) 15.6069 0.506621
\(950\) 0 0
\(951\) 5.32885 0.172800
\(952\) 0 0
\(953\) 20.3257 0.658414 0.329207 0.944258i \(-0.393219\pi\)
0.329207 + 0.944258i \(0.393219\pi\)
\(954\) 0 0
\(955\) −1.31415 −0.0425250
\(956\) 0 0
\(957\) 15.3288 0.495511
\(958\) 0 0
\(959\) 17.1035 0.552301
\(960\) 0 0
\(961\) −22.8568 −0.737315
\(962\) 0 0
\(963\) −16.7392 −0.539412
\(964\) 0 0
\(965\) −17.1464 −0.551961
\(966\) 0 0
\(967\) 36.1256 1.16172 0.580860 0.814004i \(-0.302716\pi\)
0.580860 + 0.814004i \(0.302716\pi\)
\(968\) 0 0
\(969\) −1.63565 −0.0525448
\(970\) 0 0
\(971\) 11.6926 0.375233 0.187616 0.982242i \(-0.439924\pi\)
0.187616 + 0.982242i \(0.439924\pi\)
\(972\) 0 0
\(973\) −6.10038 −0.195569
\(974\) 0 0
\(975\) −11.6216 −0.372188
\(976\) 0 0
\(977\) −38.5657 −1.23383 −0.616914 0.787031i \(-0.711617\pi\)
−0.616914 + 0.787031i \(0.711617\pi\)
\(978\) 0 0
\(979\) −40.9504 −1.30878
\(980\) 0 0
\(981\) 9.49663 0.303204
\(982\) 0 0
\(983\) 8.06319 0.257176 0.128588 0.991698i \(-0.458956\pi\)
0.128588 + 0.991698i \(0.458956\pi\)
\(984\) 0 0
\(985\) −4.65708 −0.148387
\(986\) 0 0
\(987\) −2.85363 −0.0908322
\(988\) 0 0
\(989\) 44.4611 1.41378
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) −19.9038 −0.631629
\(994\) 0 0
\(995\) 25.1266 0.796568
\(996\) 0 0
\(997\) −2.58546 −0.0818824 −0.0409412 0.999162i \(-0.513036\pi\)
−0.0409412 + 0.999162i \(0.513036\pi\)
\(998\) 0 0
\(999\) 5.83221 0.184523
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5712.2.a.bs.1.3 3
4.3 odd 2 2856.2.a.s.1.3 3
12.11 even 2 8568.2.a.bc.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2856.2.a.s.1.3 3 4.3 odd 2
5712.2.a.bs.1.3 3 1.1 even 1 trivial
8568.2.a.bc.1.1 3 12.11 even 2